2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
45 static struct kmem_cache
*btrfs_inode_defrag_cachep
;
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
52 struct rb_node rb_node
;
56 * transid where the defrag was added, we search for
57 * extents newer than this
64 /* last offset we were able to defrag */
67 /* if we've wrapped around back to zero once already */
71 static int __compare_inode_defrag(struct inode_defrag
*defrag1
,
72 struct inode_defrag
*defrag2
)
74 if (defrag1
->root
> defrag2
->root
)
76 else if (defrag1
->root
< defrag2
->root
)
78 else if (defrag1
->ino
> defrag2
->ino
)
80 else if (defrag1
->ino
< defrag2
->ino
)
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
92 * If an existing record is found the defrag item you
95 static int __btrfs_add_inode_defrag(struct inode
*inode
,
96 struct inode_defrag
*defrag
)
98 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
99 struct inode_defrag
*entry
;
101 struct rb_node
*parent
= NULL
;
104 p
= &root
->fs_info
->defrag_inodes
.rb_node
;
107 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
109 ret
= __compare_inode_defrag(defrag
, entry
);
111 p
= &parent
->rb_left
;
113 p
= &parent
->rb_right
;
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
119 if (defrag
->transid
< entry
->transid
)
120 entry
->transid
= defrag
->transid
;
121 if (defrag
->last_offset
> entry
->last_offset
)
122 entry
->last_offset
= defrag
->last_offset
;
126 set_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
127 rb_link_node(&defrag
->rb_node
, parent
, p
);
128 rb_insert_color(&defrag
->rb_node
, &root
->fs_info
->defrag_inodes
);
132 static inline int __need_auto_defrag(struct btrfs_root
*root
)
134 if (!btrfs_test_opt(root
, AUTO_DEFRAG
))
137 if (btrfs_fs_closing(root
->fs_info
))
144 * insert a defrag record for this inode if auto defrag is
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
150 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
151 struct inode_defrag
*defrag
;
155 if (!__need_auto_defrag(root
))
158 if (test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
))
162 transid
= trans
->transid
;
164 transid
= BTRFS_I(inode
)->root
->last_trans
;
166 defrag
= kmem_cache_zalloc(btrfs_inode_defrag_cachep
, GFP_NOFS
);
170 defrag
->ino
= btrfs_ino(inode
);
171 defrag
->transid
= transid
;
172 defrag
->root
= root
->root_key
.objectid
;
174 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
175 if (!test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
)) {
177 * If we set IN_DEFRAG flag and evict the inode from memory,
178 * and then re-read this inode, this new inode doesn't have
179 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
183 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
185 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
187 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
192 * Requeue the defrag object. If there is a defrag object that points to
193 * the same inode in the tree, we will merge them together (by
194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 static void btrfs_requeue_inode_defrag(struct inode
*inode
,
197 struct inode_defrag
*defrag
)
199 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
202 if (!__need_auto_defrag(root
))
206 * Here we don't check the IN_DEFRAG flag, because we need merge
209 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
210 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
211 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
216 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
220 * pick the defragable inode that we want, if it doesn't exist, we will get
223 static struct inode_defrag
*
224 btrfs_pick_defrag_inode(struct btrfs_fs_info
*fs_info
, u64 root
, u64 ino
)
226 struct inode_defrag
*entry
= NULL
;
227 struct inode_defrag tmp
;
229 struct rb_node
*parent
= NULL
;
235 spin_lock(&fs_info
->defrag_inodes_lock
);
236 p
= fs_info
->defrag_inodes
.rb_node
;
239 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
241 ret
= __compare_inode_defrag(&tmp
, entry
);
245 p
= parent
->rb_right
;
250 if (parent
&& __compare_inode_defrag(&tmp
, entry
) > 0) {
251 parent
= rb_next(parent
);
253 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
259 rb_erase(parent
, &fs_info
->defrag_inodes
);
260 spin_unlock(&fs_info
->defrag_inodes_lock
);
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info
*fs_info
)
266 struct inode_defrag
*defrag
;
267 struct rb_node
*node
;
269 spin_lock(&fs_info
->defrag_inodes_lock
);
270 node
= rb_first(&fs_info
->defrag_inodes
);
272 rb_erase(node
, &fs_info
->defrag_inodes
);
273 defrag
= rb_entry(node
, struct inode_defrag
, rb_node
);
274 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
276 cond_resched_lock(&fs_info
->defrag_inodes_lock
);
278 node
= rb_first(&fs_info
->defrag_inodes
);
280 spin_unlock(&fs_info
->defrag_inodes_lock
);
283 #define BTRFS_DEFRAG_BATCH 1024
285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info
*fs_info
,
286 struct inode_defrag
*defrag
)
288 struct btrfs_root
*inode_root
;
290 struct btrfs_key key
;
291 struct btrfs_ioctl_defrag_range_args range
;
297 key
.objectid
= defrag
->root
;
298 key
.type
= BTRFS_ROOT_ITEM_KEY
;
299 key
.offset
= (u64
)-1;
301 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
303 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
304 if (IS_ERR(inode_root
)) {
305 ret
= PTR_ERR(inode_root
);
309 key
.objectid
= defrag
->ino
;
310 key
.type
= BTRFS_INODE_ITEM_KEY
;
312 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
314 ret
= PTR_ERR(inode
);
317 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
319 /* do a chunk of defrag */
320 clear_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
321 memset(&range
, 0, sizeof(range
));
323 range
.start
= defrag
->last_offset
;
325 sb_start_write(fs_info
->sb
);
326 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
328 sb_end_write(fs_info
->sb
);
330 * if we filled the whole defrag batch, there
331 * must be more work to do. Queue this defrag
334 if (num_defrag
== BTRFS_DEFRAG_BATCH
) {
335 defrag
->last_offset
= range
.start
;
336 btrfs_requeue_inode_defrag(inode
, defrag
);
337 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
339 * we didn't fill our defrag batch, but
340 * we didn't start at zero. Make sure we loop
341 * around to the start of the file.
343 defrag
->last_offset
= 0;
345 btrfs_requeue_inode_defrag(inode
, defrag
);
347 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
353 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
354 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
359 * run through the list of inodes in the FS that need
362 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
364 struct inode_defrag
*defrag
;
366 u64 root_objectid
= 0;
368 atomic_inc(&fs_info
->defrag_running
);
370 /* Pause the auto defragger. */
371 if (test_bit(BTRFS_FS_STATE_REMOUNTING
,
375 if (!__need_auto_defrag(fs_info
->tree_root
))
378 /* find an inode to defrag */
379 defrag
= btrfs_pick_defrag_inode(fs_info
, root_objectid
,
382 if (root_objectid
|| first_ino
) {
391 first_ino
= defrag
->ino
+ 1;
392 root_objectid
= defrag
->root
;
394 __btrfs_run_defrag_inode(fs_info
, defrag
);
396 atomic_dec(&fs_info
->defrag_running
);
399 * during unmount, we use the transaction_wait queue to
400 * wait for the defragger to stop
402 wake_up(&fs_info
->transaction_wait
);
406 /* simple helper to fault in pages and copy. This should go away
407 * and be replaced with calls into generic code.
409 static noinline
int btrfs_copy_from_user(loff_t pos
, int num_pages
,
411 struct page
**prepared_pages
,
415 size_t total_copied
= 0;
417 int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
419 while (write_bytes
> 0) {
420 size_t count
= min_t(size_t,
421 PAGE_CACHE_SIZE
- offset
, write_bytes
);
422 struct page
*page
= prepared_pages
[pg
];
424 * Copy data from userspace to the current page
426 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page
);
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
440 if (!PageUptodate(page
) && copied
< count
)
443 iov_iter_advance(i
, copied
);
444 write_bytes
-= copied
;
445 total_copied
+= copied
;
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied
== 0))
451 if (copied
< PAGE_CACHE_SIZE
- offset
) {
462 * unlocks pages after btrfs_file_write is done with them
464 static void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
467 for (i
= 0; i
< num_pages
; i
++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
474 ClearPageChecked(pages
[i
]);
475 unlock_page(pages
[i
]);
476 page_cache_release(pages
[i
]);
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
488 int btrfs_dirty_pages(struct btrfs_root
*root
, struct inode
*inode
,
489 struct page
**pages
, size_t num_pages
,
490 loff_t pos
, size_t write_bytes
,
491 struct extent_state
**cached
)
497 u64 end_of_last_block
;
498 u64 end_pos
= pos
+ write_bytes
;
499 loff_t isize
= i_size_read(inode
);
501 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
502 num_bytes
= ALIGN(write_bytes
+ pos
- start_pos
, root
->sectorsize
);
504 end_of_last_block
= start_pos
+ num_bytes
- 1;
505 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
510 for (i
= 0; i
< num_pages
; i
++) {
511 struct page
*p
= pages
[i
];
518 * we've only changed i_size in ram, and we haven't updated
519 * the disk i_size. There is no need to log the inode
523 i_size_write(inode
, end_pos
);
528 * this drops all the extents in the cache that intersect the range
529 * [start, end]. Existing extents are split as required.
531 void btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
534 struct extent_map
*em
;
535 struct extent_map
*split
= NULL
;
536 struct extent_map
*split2
= NULL
;
537 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
538 u64 len
= end
- start
+ 1;
546 WARN_ON(end
< start
);
547 if (end
== (u64
)-1) {
556 split
= alloc_extent_map();
558 split2
= alloc_extent_map();
559 if (!split
|| !split2
)
562 write_lock(&em_tree
->lock
);
563 em
= lookup_extent_mapping(em_tree
, start
, len
);
565 write_unlock(&em_tree
->lock
);
569 gen
= em
->generation
;
570 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
571 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
573 write_unlock(&em_tree
->lock
);
576 start
= em
->start
+ em
->len
;
578 len
= start
+ len
- (em
->start
+ em
->len
);
580 write_unlock(&em_tree
->lock
);
583 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
584 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
585 clear_bit(EXTENT_FLAG_LOGGING
, &flags
);
586 modified
= !list_empty(&em
->list
);
590 if (em
->start
< start
) {
591 split
->start
= em
->start
;
592 split
->len
= start
- em
->start
;
594 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
595 split
->orig_start
= em
->orig_start
;
596 split
->block_start
= em
->block_start
;
599 split
->block_len
= em
->block_len
;
601 split
->block_len
= split
->len
;
602 split
->orig_block_len
= max(split
->block_len
,
604 split
->ram_bytes
= em
->ram_bytes
;
606 split
->orig_start
= split
->start
;
607 split
->block_len
= 0;
608 split
->block_start
= em
->block_start
;
609 split
->orig_block_len
= 0;
610 split
->ram_bytes
= split
->len
;
613 split
->generation
= gen
;
614 split
->bdev
= em
->bdev
;
615 split
->flags
= flags
;
616 split
->compress_type
= em
->compress_type
;
617 replace_extent_mapping(em_tree
, em
, split
, modified
);
618 free_extent_map(split
);
622 if (testend
&& em
->start
+ em
->len
> start
+ len
) {
623 u64 diff
= start
+ len
- em
->start
;
625 split
->start
= start
+ len
;
626 split
->len
= em
->start
+ em
->len
- (start
+ len
);
627 split
->bdev
= em
->bdev
;
628 split
->flags
= flags
;
629 split
->compress_type
= em
->compress_type
;
630 split
->generation
= gen
;
632 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
633 split
->orig_block_len
= max(em
->block_len
,
636 split
->ram_bytes
= em
->ram_bytes
;
638 split
->block_len
= em
->block_len
;
639 split
->block_start
= em
->block_start
;
640 split
->orig_start
= em
->orig_start
;
642 split
->block_len
= split
->len
;
643 split
->block_start
= em
->block_start
645 split
->orig_start
= em
->orig_start
;
648 split
->ram_bytes
= split
->len
;
649 split
->orig_start
= split
->start
;
650 split
->block_len
= 0;
651 split
->block_start
= em
->block_start
;
652 split
->orig_block_len
= 0;
655 if (extent_map_in_tree(em
)) {
656 replace_extent_mapping(em_tree
, em
, split
,
659 ret
= add_extent_mapping(em_tree
, split
,
661 ASSERT(ret
== 0); /* Logic error */
663 free_extent_map(split
);
667 if (extent_map_in_tree(em
))
668 remove_extent_mapping(em_tree
, em
);
669 write_unlock(&em_tree
->lock
);
673 /* once for the tree*/
677 free_extent_map(split
);
679 free_extent_map(split2
);
683 * this is very complex, but the basic idea is to drop all extents
684 * in the range start - end. hint_block is filled in with a block number
685 * that would be a good hint to the block allocator for this file.
687 * If an extent intersects the range but is not entirely inside the range
688 * it is either truncated or split. Anything entirely inside the range
689 * is deleted from the tree.
691 int __btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
692 struct btrfs_root
*root
, struct inode
*inode
,
693 struct btrfs_path
*path
, u64 start
, u64 end
,
694 u64
*drop_end
, int drop_cache
,
696 u32 extent_item_size
,
699 struct extent_buffer
*leaf
;
700 struct btrfs_file_extent_item
*fi
;
701 struct btrfs_key key
;
702 struct btrfs_key new_key
;
703 u64 ino
= btrfs_ino(inode
);
704 u64 search_start
= start
;
707 u64 extent_offset
= 0;
714 int modify_tree
= -1;
717 int leafs_visited
= 0;
720 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
722 if (start
>= BTRFS_I(inode
)->disk_i_size
&& !replace_extent
)
725 update_refs
= (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
726 root
== root
->fs_info
->tree_root
);
729 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
730 search_start
, modify_tree
);
733 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
734 leaf
= path
->nodes
[0];
735 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
736 if (key
.objectid
== ino
&&
737 key
.type
== BTRFS_EXTENT_DATA_KEY
)
743 leaf
= path
->nodes
[0];
744 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
746 ret
= btrfs_next_leaf(root
, path
);
754 leaf
= path
->nodes
[0];
758 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
760 if (key
.objectid
> ino
)
762 if (WARN_ON_ONCE(key
.objectid
< ino
) ||
763 key
.type
< BTRFS_EXTENT_DATA_KEY
) {
768 if (key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
771 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
772 struct btrfs_file_extent_item
);
773 extent_type
= btrfs_file_extent_type(leaf
, fi
);
775 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
776 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
777 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
778 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
779 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
780 extent_end
= key
.offset
+
781 btrfs_file_extent_num_bytes(leaf
, fi
);
782 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
783 extent_end
= key
.offset
+
784 btrfs_file_extent_inline_len(leaf
,
792 * Don't skip extent items representing 0 byte lengths. They
793 * used to be created (bug) if while punching holes we hit
794 * -ENOSPC condition. So if we find one here, just ensure we
795 * delete it, otherwise we would insert a new file extent item
796 * with the same key (offset) as that 0 bytes length file
797 * extent item in the call to setup_items_for_insert() later
800 if (extent_end
== key
.offset
&& extent_end
>= search_start
)
801 goto delete_extent_item
;
803 if (extent_end
<= search_start
) {
809 search_start
= max(key
.offset
, start
);
810 if (recow
|| !modify_tree
) {
812 btrfs_release_path(path
);
817 * | - range to drop - |
818 * | -------- extent -------- |
820 if (start
> key
.offset
&& end
< extent_end
) {
822 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
827 memcpy(&new_key
, &key
, sizeof(new_key
));
828 new_key
.offset
= start
;
829 ret
= btrfs_duplicate_item(trans
, root
, path
,
831 if (ret
== -EAGAIN
) {
832 btrfs_release_path(path
);
838 leaf
= path
->nodes
[0];
839 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
840 struct btrfs_file_extent_item
);
841 btrfs_set_file_extent_num_bytes(leaf
, fi
,
844 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
845 struct btrfs_file_extent_item
);
847 extent_offset
+= start
- key
.offset
;
848 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
849 btrfs_set_file_extent_num_bytes(leaf
, fi
,
851 btrfs_mark_buffer_dirty(leaf
);
853 if (update_refs
&& disk_bytenr
> 0) {
854 ret
= btrfs_inc_extent_ref(trans
, root
,
855 disk_bytenr
, num_bytes
, 0,
856 root
->root_key
.objectid
,
858 start
- extent_offset
);
859 BUG_ON(ret
); /* -ENOMEM */
864 * | ---- range to drop ----- |
865 * | -------- extent -------- |
867 if (start
<= key
.offset
&& end
< extent_end
) {
868 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
873 memcpy(&new_key
, &key
, sizeof(new_key
));
874 new_key
.offset
= end
;
875 btrfs_set_item_key_safe(root
->fs_info
, path
, &new_key
);
877 extent_offset
+= end
- key
.offset
;
878 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
879 btrfs_set_file_extent_num_bytes(leaf
, fi
,
881 btrfs_mark_buffer_dirty(leaf
);
882 if (update_refs
&& disk_bytenr
> 0)
883 inode_sub_bytes(inode
, end
- key
.offset
);
887 search_start
= extent_end
;
889 * | ---- range to drop ----- |
890 * | -------- extent -------- |
892 if (start
> key
.offset
&& end
>= extent_end
) {
894 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
899 btrfs_set_file_extent_num_bytes(leaf
, fi
,
901 btrfs_mark_buffer_dirty(leaf
);
902 if (update_refs
&& disk_bytenr
> 0)
903 inode_sub_bytes(inode
, extent_end
- start
);
904 if (end
== extent_end
)
912 * | ---- range to drop ----- |
913 * | ------ extent ------ |
915 if (start
<= key
.offset
&& end
>= extent_end
) {
918 del_slot
= path
->slots
[0];
921 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
926 extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
927 inode_sub_bytes(inode
,
928 extent_end
- key
.offset
);
929 extent_end
= ALIGN(extent_end
,
931 } else if (update_refs
&& disk_bytenr
> 0) {
932 ret
= btrfs_free_extent(trans
, root
,
933 disk_bytenr
, num_bytes
, 0,
934 root
->root_key
.objectid
,
935 key
.objectid
, key
.offset
-
937 BUG_ON(ret
); /* -ENOMEM */
938 inode_sub_bytes(inode
,
939 extent_end
- key
.offset
);
942 if (end
== extent_end
)
945 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
950 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
953 btrfs_abort_transaction(trans
, root
, ret
);
960 btrfs_release_path(path
);
967 if (!ret
&& del_nr
> 0) {
969 * Set path->slots[0] to first slot, so that after the delete
970 * if items are move off from our leaf to its immediate left or
971 * right neighbor leafs, we end up with a correct and adjusted
972 * path->slots[0] for our insertion (if replace_extent != 0).
974 path
->slots
[0] = del_slot
;
975 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
977 btrfs_abort_transaction(trans
, root
, ret
);
980 leaf
= path
->nodes
[0];
982 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 * which case it unlocked our path, so check path->locks[0] matches a
986 if (!ret
&& replace_extent
&& leafs_visited
== 1 &&
987 (path
->locks
[0] == BTRFS_WRITE_LOCK_BLOCKING
||
988 path
->locks
[0] == BTRFS_WRITE_LOCK
) &&
989 btrfs_leaf_free_space(root
, leaf
) >=
990 sizeof(struct btrfs_item
) + extent_item_size
) {
993 key
.type
= BTRFS_EXTENT_DATA_KEY
;
995 if (!del_nr
&& path
->slots
[0] < btrfs_header_nritems(leaf
)) {
996 struct btrfs_key slot_key
;
998 btrfs_item_key_to_cpu(leaf
, &slot_key
, path
->slots
[0]);
999 if (btrfs_comp_cpu_keys(&key
, &slot_key
) > 0)
1002 setup_items_for_insert(root
, path
, &key
,
1005 sizeof(struct btrfs_item
) +
1006 extent_item_size
, 1);
1010 if (!replace_extent
|| !(*key_inserted
))
1011 btrfs_release_path(path
);
1013 *drop_end
= found
? min(end
, extent_end
) : end
;
1017 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
1018 struct btrfs_root
*root
, struct inode
*inode
, u64 start
,
1019 u64 end
, int drop_cache
)
1021 struct btrfs_path
*path
;
1024 path
= btrfs_alloc_path();
1027 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, start
, end
, NULL
,
1028 drop_cache
, 0, 0, NULL
);
1029 btrfs_free_path(path
);
1033 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
1034 u64 objectid
, u64 bytenr
, u64 orig_offset
,
1035 u64
*start
, u64
*end
)
1037 struct btrfs_file_extent_item
*fi
;
1038 struct btrfs_key key
;
1041 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
1044 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1045 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1048 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1049 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
1050 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
1051 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
1052 btrfs_file_extent_compression(leaf
, fi
) ||
1053 btrfs_file_extent_encryption(leaf
, fi
) ||
1054 btrfs_file_extent_other_encoding(leaf
, fi
))
1057 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1058 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
1061 *start
= key
.offset
;
1067 * Mark extent in the range start - end as written.
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1073 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
1074 struct inode
*inode
, u64 start
, u64 end
)
1076 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1077 struct extent_buffer
*leaf
;
1078 struct btrfs_path
*path
;
1079 struct btrfs_file_extent_item
*fi
;
1080 struct btrfs_key key
;
1081 struct btrfs_key new_key
;
1093 u64 ino
= btrfs_ino(inode
);
1095 path
= btrfs_alloc_path();
1102 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1105 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1108 if (ret
> 0 && path
->slots
[0] > 0)
1111 leaf
= path
->nodes
[0];
1112 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1113 BUG_ON(key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
);
1114 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1115 struct btrfs_file_extent_item
);
1116 BUG_ON(btrfs_file_extent_type(leaf
, fi
) !=
1117 BTRFS_FILE_EXTENT_PREALLOC
);
1118 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1119 BUG_ON(key
.offset
> start
|| extent_end
< end
);
1121 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1122 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1123 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
1124 memcpy(&new_key
, &key
, sizeof(new_key
));
1126 if (start
== key
.offset
&& end
< extent_end
) {
1129 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1130 ino
, bytenr
, orig_offset
,
1131 &other_start
, &other_end
)) {
1132 new_key
.offset
= end
;
1133 btrfs_set_item_key_safe(root
->fs_info
, path
, &new_key
);
1134 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1135 struct btrfs_file_extent_item
);
1136 btrfs_set_file_extent_generation(leaf
, fi
,
1138 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1140 btrfs_set_file_extent_offset(leaf
, fi
,
1142 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1143 struct btrfs_file_extent_item
);
1144 btrfs_set_file_extent_generation(leaf
, fi
,
1146 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1148 btrfs_mark_buffer_dirty(leaf
);
1153 if (start
> key
.offset
&& end
== extent_end
) {
1156 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1157 ino
, bytenr
, orig_offset
,
1158 &other_start
, &other_end
)) {
1159 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1160 struct btrfs_file_extent_item
);
1161 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1162 start
- key
.offset
);
1163 btrfs_set_file_extent_generation(leaf
, fi
,
1166 new_key
.offset
= start
;
1167 btrfs_set_item_key_safe(root
->fs_info
, path
, &new_key
);
1169 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1170 struct btrfs_file_extent_item
);
1171 btrfs_set_file_extent_generation(leaf
, fi
,
1173 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1175 btrfs_set_file_extent_offset(leaf
, fi
,
1176 start
- orig_offset
);
1177 btrfs_mark_buffer_dirty(leaf
);
1182 while (start
> key
.offset
|| end
< extent_end
) {
1183 if (key
.offset
== start
)
1186 new_key
.offset
= split
;
1187 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
1188 if (ret
== -EAGAIN
) {
1189 btrfs_release_path(path
);
1193 btrfs_abort_transaction(trans
, root
, ret
);
1197 leaf
= path
->nodes
[0];
1198 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1199 struct btrfs_file_extent_item
);
1200 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1201 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1202 split
- key
.offset
);
1204 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1205 struct btrfs_file_extent_item
);
1207 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1208 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
1209 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1210 extent_end
- split
);
1211 btrfs_mark_buffer_dirty(leaf
);
1213 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
, 0,
1214 root
->root_key
.objectid
,
1216 BUG_ON(ret
); /* -ENOMEM */
1218 if (split
== start
) {
1221 BUG_ON(start
!= key
.offset
);
1230 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1231 ino
, bytenr
, orig_offset
,
1232 &other_start
, &other_end
)) {
1234 btrfs_release_path(path
);
1237 extent_end
= other_end
;
1238 del_slot
= path
->slots
[0] + 1;
1240 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1241 0, root
->root_key
.objectid
,
1243 BUG_ON(ret
); /* -ENOMEM */
1247 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1248 ino
, bytenr
, orig_offset
,
1249 &other_start
, &other_end
)) {
1251 btrfs_release_path(path
);
1254 key
.offset
= other_start
;
1255 del_slot
= path
->slots
[0];
1257 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1258 0, root
->root_key
.objectid
,
1260 BUG_ON(ret
); /* -ENOMEM */
1263 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1264 struct btrfs_file_extent_item
);
1265 btrfs_set_file_extent_type(leaf
, fi
,
1266 BTRFS_FILE_EXTENT_REG
);
1267 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1268 btrfs_mark_buffer_dirty(leaf
);
1270 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1271 struct btrfs_file_extent_item
);
1272 btrfs_set_file_extent_type(leaf
, fi
,
1273 BTRFS_FILE_EXTENT_REG
);
1274 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1275 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1276 extent_end
- key
.offset
);
1277 btrfs_mark_buffer_dirty(leaf
);
1279 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1281 btrfs_abort_transaction(trans
, root
, ret
);
1286 btrfs_free_path(path
);
1291 * on error we return an unlocked page and the error value
1292 * on success we return a locked page and 0
1294 static int prepare_uptodate_page(struct inode
*inode
,
1295 struct page
*page
, u64 pos
,
1296 bool force_uptodate
)
1300 if (((pos
& (PAGE_CACHE_SIZE
- 1)) || force_uptodate
) &&
1301 !PageUptodate(page
)) {
1302 ret
= btrfs_readpage(NULL
, page
);
1306 if (!PageUptodate(page
)) {
1310 if (page
->mapping
!= inode
->i_mapping
) {
1319 * this just gets pages into the page cache and locks them down.
1321 static noinline
int prepare_pages(struct inode
*inode
, struct page
**pages
,
1322 size_t num_pages
, loff_t pos
,
1323 size_t write_bytes
, bool force_uptodate
)
1326 unsigned long index
= pos
>> PAGE_CACHE_SHIFT
;
1327 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1331 for (i
= 0; i
< num_pages
; i
++) {
1333 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1334 mask
| __GFP_WRITE
);
1342 err
= prepare_uptodate_page(inode
, pages
[i
], pos
,
1344 if (!err
&& i
== num_pages
- 1)
1345 err
= prepare_uptodate_page(inode
, pages
[i
],
1346 pos
+ write_bytes
, false);
1348 page_cache_release(pages
[i
]);
1349 if (err
== -EAGAIN
) {
1356 wait_on_page_writeback(pages
[i
]);
1361 while (faili
>= 0) {
1362 unlock_page(pages
[faili
]);
1363 page_cache_release(pages
[faili
]);
1371 * This function locks the extent and properly waits for data=ordered extents
1372 * to finish before allowing the pages to be modified if need.
1375 * 1 - the extent is locked
1376 * 0 - the extent is not locked, and everything is OK
1377 * -EAGAIN - need re-prepare the pages
1378 * the other < 0 number - Something wrong happens
1381 lock_and_cleanup_extent_if_need(struct inode
*inode
, struct page
**pages
,
1382 size_t num_pages
, loff_t pos
,
1383 u64
*lockstart
, u64
*lockend
,
1384 struct extent_state
**cached_state
)
1391 start_pos
= pos
& ~((u64
)PAGE_CACHE_SIZE
- 1);
1392 last_pos
= start_pos
+ ((u64
)num_pages
<< PAGE_CACHE_SHIFT
) - 1;
1394 if (start_pos
< inode
->i_size
) {
1395 struct btrfs_ordered_extent
*ordered
;
1396 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1397 start_pos
, last_pos
, 0, cached_state
);
1398 ordered
= btrfs_lookup_ordered_range(inode
, start_pos
,
1399 last_pos
- start_pos
+ 1);
1401 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1402 ordered
->file_offset
<= last_pos
) {
1403 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1404 start_pos
, last_pos
,
1405 cached_state
, GFP_NOFS
);
1406 for (i
= 0; i
< num_pages
; i
++) {
1407 unlock_page(pages
[i
]);
1408 page_cache_release(pages
[i
]);
1410 btrfs_start_ordered_extent(inode
, ordered
, 1);
1411 btrfs_put_ordered_extent(ordered
);
1415 btrfs_put_ordered_extent(ordered
);
1417 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start_pos
,
1418 last_pos
, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1419 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
1420 0, 0, cached_state
, GFP_NOFS
);
1421 *lockstart
= start_pos
;
1422 *lockend
= last_pos
;
1426 for (i
= 0; i
< num_pages
; i
++) {
1427 if (clear_page_dirty_for_io(pages
[i
]))
1428 account_page_redirty(pages
[i
]);
1429 set_page_extent_mapped(pages
[i
]);
1430 WARN_ON(!PageLocked(pages
[i
]));
1436 static noinline
int check_can_nocow(struct inode
*inode
, loff_t pos
,
1437 size_t *write_bytes
)
1439 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1440 struct btrfs_ordered_extent
*ordered
;
1441 u64 lockstart
, lockend
;
1445 ret
= btrfs_start_write_no_snapshoting(root
);
1449 lockstart
= round_down(pos
, root
->sectorsize
);
1450 lockend
= round_up(pos
+ *write_bytes
, root
->sectorsize
) - 1;
1453 lock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1454 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
1455 lockend
- lockstart
+ 1);
1459 unlock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1460 btrfs_start_ordered_extent(inode
, ordered
, 1);
1461 btrfs_put_ordered_extent(ordered
);
1464 num_bytes
= lockend
- lockstart
+ 1;
1465 ret
= can_nocow_extent(inode
, lockstart
, &num_bytes
, NULL
, NULL
, NULL
);
1468 btrfs_end_write_no_snapshoting(root
);
1470 *write_bytes
= min_t(size_t, *write_bytes
,
1471 num_bytes
- pos
+ lockstart
);
1474 unlock_extent(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
);
1479 static noinline ssize_t
__btrfs_buffered_write(struct file
*file
,
1483 struct inode
*inode
= file_inode(file
);
1484 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1485 struct page
**pages
= NULL
;
1486 struct extent_state
*cached_state
= NULL
;
1487 u64 release_bytes
= 0;
1490 size_t num_written
= 0;
1493 bool only_release_metadata
= false;
1494 bool force_page_uptodate
= false;
1497 nrptrs
= min(DIV_ROUND_UP(iov_iter_count(i
), PAGE_CACHE_SIZE
),
1498 PAGE_CACHE_SIZE
/ (sizeof(struct page
*)));
1499 nrptrs
= min(nrptrs
, current
->nr_dirtied_pause
- current
->nr_dirtied
);
1500 nrptrs
= max(nrptrs
, 8);
1501 pages
= kmalloc_array(nrptrs
, sizeof(struct page
*), GFP_KERNEL
);
1505 while (iov_iter_count(i
) > 0) {
1506 size_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1507 size_t write_bytes
= min(iov_iter_count(i
),
1508 nrptrs
* (size_t)PAGE_CACHE_SIZE
-
1510 size_t num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1512 size_t reserve_bytes
;
1516 WARN_ON(num_pages
> nrptrs
);
1519 * Fault pages before locking them in prepare_pages
1520 * to avoid recursive lock
1522 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1527 reserve_bytes
= num_pages
<< PAGE_CACHE_SHIFT
;
1529 if (BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1530 BTRFS_INODE_PREALLOC
)) {
1531 ret
= check_can_nocow(inode
, pos
, &write_bytes
);
1536 * For nodata cow case, no need to reserve
1539 only_release_metadata
= true;
1541 * our prealloc extent may be smaller than
1542 * write_bytes, so scale down.
1544 num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1546 reserve_bytes
= num_pages
<< PAGE_CACHE_SHIFT
;
1547 goto reserve_metadata
;
1550 ret
= btrfs_check_data_free_space(inode
, pos
, write_bytes
);
1555 ret
= btrfs_delalloc_reserve_metadata(inode
, reserve_bytes
);
1557 if (!only_release_metadata
)
1558 btrfs_free_reserved_data_space(inode
, pos
,
1561 btrfs_end_write_no_snapshoting(root
);
1565 release_bytes
= reserve_bytes
;
1566 need_unlock
= false;
1569 * This is going to setup the pages array with the number of
1570 * pages we want, so we don't really need to worry about the
1571 * contents of pages from loop to loop
1573 ret
= prepare_pages(inode
, pages
, num_pages
,
1575 force_page_uptodate
);
1579 ret
= lock_and_cleanup_extent_if_need(inode
, pages
, num_pages
,
1580 pos
, &lockstart
, &lockend
,
1586 } else if (ret
> 0) {
1591 copied
= btrfs_copy_from_user(pos
, num_pages
,
1592 write_bytes
, pages
, i
);
1595 * if we have trouble faulting in the pages, fall
1596 * back to one page at a time
1598 if (copied
< write_bytes
)
1602 force_page_uptodate
= true;
1605 force_page_uptodate
= false;
1606 dirty_pages
= DIV_ROUND_UP(copied
+ offset
,
1611 * If we had a short copy we need to release the excess delaloc
1612 * bytes we reserved. We need to increment outstanding_extents
1613 * because btrfs_delalloc_release_space will decrement it, but
1614 * we still have an outstanding extent for the chunk we actually
1617 if (num_pages
> dirty_pages
) {
1618 release_bytes
= (num_pages
- dirty_pages
) <<
1621 spin_lock(&BTRFS_I(inode
)->lock
);
1622 BTRFS_I(inode
)->outstanding_extents
++;
1623 spin_unlock(&BTRFS_I(inode
)->lock
);
1625 if (only_release_metadata
) {
1626 btrfs_delalloc_release_metadata(inode
,
1631 __pos
= round_down(pos
, root
->sectorsize
) +
1632 (dirty_pages
<< PAGE_CACHE_SHIFT
);
1633 btrfs_delalloc_release_space(inode
, __pos
,
1638 release_bytes
= dirty_pages
<< PAGE_CACHE_SHIFT
;
1641 ret
= btrfs_dirty_pages(root
, inode
, pages
,
1642 dirty_pages
, pos
, copied
,
1645 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1646 lockstart
, lockend
, &cached_state
,
1649 btrfs_drop_pages(pages
, num_pages
);
1654 if (only_release_metadata
)
1655 btrfs_end_write_no_snapshoting(root
);
1657 if (only_release_metadata
&& copied
> 0) {
1658 lockstart
= round_down(pos
, root
->sectorsize
);
1659 lockend
= lockstart
+
1660 (dirty_pages
<< PAGE_CACHE_SHIFT
) - 1;
1662 set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
1663 lockend
, EXTENT_NORESERVE
, NULL
,
1665 only_release_metadata
= false;
1668 btrfs_drop_pages(pages
, num_pages
);
1672 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1673 if (dirty_pages
< (root
->nodesize
>> PAGE_CACHE_SHIFT
) + 1)
1674 btrfs_btree_balance_dirty(root
);
1677 num_written
+= copied
;
1682 if (release_bytes
) {
1683 if (only_release_metadata
) {
1684 btrfs_end_write_no_snapshoting(root
);
1685 btrfs_delalloc_release_metadata(inode
, release_bytes
);
1687 btrfs_delalloc_release_space(inode
, pos
, release_bytes
);
1691 return num_written
? num_written
: ret
;
1694 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
,
1695 struct iov_iter
*from
,
1698 struct file
*file
= iocb
->ki_filp
;
1699 struct inode
*inode
= file_inode(file
);
1701 ssize_t written_buffered
;
1705 written
= generic_file_direct_write(iocb
, from
, pos
);
1707 if (written
< 0 || !iov_iter_count(from
))
1711 written_buffered
= __btrfs_buffered_write(file
, from
, pos
);
1712 if (written_buffered
< 0) {
1713 err
= written_buffered
;
1717 * Ensure all data is persisted. We want the next direct IO read to be
1718 * able to read what was just written.
1720 endbyte
= pos
+ written_buffered
- 1;
1721 err
= btrfs_fdatawrite_range(inode
, pos
, endbyte
);
1724 err
= filemap_fdatawait_range(inode
->i_mapping
, pos
, endbyte
);
1727 written
+= written_buffered
;
1728 iocb
->ki_pos
= pos
+ written_buffered
;
1729 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_CACHE_SHIFT
,
1730 endbyte
>> PAGE_CACHE_SHIFT
);
1732 return written
? written
: err
;
1735 static void update_time_for_write(struct inode
*inode
)
1737 struct timespec now
;
1739 if (IS_NOCMTIME(inode
))
1742 now
= current_fs_time(inode
->i_sb
);
1743 if (!timespec_equal(&inode
->i_mtime
, &now
))
1744 inode
->i_mtime
= now
;
1746 if (!timespec_equal(&inode
->i_ctime
, &now
))
1747 inode
->i_ctime
= now
;
1749 if (IS_I_VERSION(inode
))
1750 inode_inc_iversion(inode
);
1753 static ssize_t
btrfs_file_write_iter(struct kiocb
*iocb
,
1754 struct iov_iter
*from
)
1756 struct file
*file
= iocb
->ki_filp
;
1757 struct inode
*inode
= file_inode(file
);
1758 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1761 ssize_t num_written
= 0;
1762 bool sync
= (file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
);
1767 mutex_lock(&inode
->i_mutex
);
1768 err
= generic_write_checks(iocb
, from
);
1770 mutex_unlock(&inode
->i_mutex
);
1774 current
->backing_dev_info
= inode_to_bdi(inode
);
1775 err
= file_remove_privs(file
);
1777 mutex_unlock(&inode
->i_mutex
);
1782 * If BTRFS flips readonly due to some impossible error
1783 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1784 * although we have opened a file as writable, we have
1785 * to stop this write operation to ensure FS consistency.
1787 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
1788 mutex_unlock(&inode
->i_mutex
);
1794 * We reserve space for updating the inode when we reserve space for the
1795 * extent we are going to write, so we will enospc out there. We don't
1796 * need to start yet another transaction to update the inode as we will
1797 * update the inode when we finish writing whatever data we write.
1799 update_time_for_write(inode
);
1802 count
= iov_iter_count(from
);
1803 start_pos
= round_down(pos
, root
->sectorsize
);
1804 if (start_pos
> i_size_read(inode
)) {
1805 /* Expand hole size to cover write data, preventing empty gap */
1806 end_pos
= round_up(pos
+ count
, root
->sectorsize
);
1807 err
= btrfs_cont_expand(inode
, i_size_read(inode
), end_pos
);
1809 mutex_unlock(&inode
->i_mutex
);
1815 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1817 if (iocb
->ki_flags
& IOCB_DIRECT
) {
1818 num_written
= __btrfs_direct_write(iocb
, from
, pos
);
1820 num_written
= __btrfs_buffered_write(file
, from
, pos
);
1821 if (num_written
> 0)
1822 iocb
->ki_pos
= pos
+ num_written
;
1825 mutex_unlock(&inode
->i_mutex
);
1828 * We also have to set last_sub_trans to the current log transid,
1829 * otherwise subsequent syncs to a file that's been synced in this
1830 * transaction will appear to have already occured.
1832 spin_lock(&BTRFS_I(inode
)->lock
);
1833 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
1834 spin_unlock(&BTRFS_I(inode
)->lock
);
1835 if (num_written
> 0) {
1836 err
= generic_write_sync(file
, pos
, num_written
);
1842 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1844 current
->backing_dev_info
= NULL
;
1845 return num_written
? num_written
: err
;
1848 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1850 if (filp
->private_data
)
1851 btrfs_ioctl_trans_end(filp
);
1853 * ordered_data_close is set by settattr when we are about to truncate
1854 * a file from a non-zero size to a zero size. This tries to
1855 * flush down new bytes that may have been written if the
1856 * application were using truncate to replace a file in place.
1858 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
1859 &BTRFS_I(inode
)->runtime_flags
))
1860 filemap_flush(inode
->i_mapping
);
1864 static int start_ordered_ops(struct inode
*inode
, loff_t start
, loff_t end
)
1868 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1869 ret
= btrfs_fdatawrite_range(inode
, start
, end
);
1870 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1876 * fsync call for both files and directories. This logs the inode into
1877 * the tree log instead of forcing full commits whenever possible.
1879 * It needs to call filemap_fdatawait so that all ordered extent updates are
1880 * in the metadata btree are up to date for copying to the log.
1882 * It drops the inode mutex before doing the tree log commit. This is an
1883 * important optimization for directories because holding the mutex prevents
1884 * new operations on the dir while we write to disk.
1886 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1888 struct dentry
*dentry
= file
->f_path
.dentry
;
1889 struct inode
*inode
= d_inode(dentry
);
1890 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1891 struct btrfs_trans_handle
*trans
;
1892 struct btrfs_log_ctx ctx
;
1898 * The range length can be represented by u64, we have to do the typecasts
1899 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1901 len
= (u64
)end
- (u64
)start
+ 1;
1902 trace_btrfs_sync_file(file
, datasync
);
1905 * We write the dirty pages in the range and wait until they complete
1906 * out of the ->i_mutex. If so, we can flush the dirty pages by
1907 * multi-task, and make the performance up. See
1908 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1910 ret
= start_ordered_ops(inode
, start
, end
);
1914 mutex_lock(&inode
->i_mutex
);
1915 atomic_inc(&root
->log_batch
);
1916 full_sync
= test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1917 &BTRFS_I(inode
)->runtime_flags
);
1919 * We might have have had more pages made dirty after calling
1920 * start_ordered_ops and before acquiring the inode's i_mutex.
1924 * For a full sync, we need to make sure any ordered operations
1925 * start and finish before we start logging the inode, so that
1926 * all extents are persisted and the respective file extent
1927 * items are in the fs/subvol btree.
1929 ret
= btrfs_wait_ordered_range(inode
, start
, len
);
1932 * Start any new ordered operations before starting to log the
1933 * inode. We will wait for them to finish in btrfs_sync_log().
1935 * Right before acquiring the inode's mutex, we might have new
1936 * writes dirtying pages, which won't immediately start the
1937 * respective ordered operations - that is done through the
1938 * fill_delalloc callbacks invoked from the writepage and
1939 * writepages address space operations. So make sure we start
1940 * all ordered operations before starting to log our inode. Not
1941 * doing this means that while logging the inode, writeback
1942 * could start and invoke writepage/writepages, which would call
1943 * the fill_delalloc callbacks (cow_file_range,
1944 * submit_compressed_extents). These callbacks add first an
1945 * extent map to the modified list of extents and then create
1946 * the respective ordered operation, which means in
1947 * tree-log.c:btrfs_log_inode() we might capture all existing
1948 * ordered operations (with btrfs_get_logged_extents()) before
1949 * the fill_delalloc callback adds its ordered operation, and by
1950 * the time we visit the modified list of extent maps (with
1951 * btrfs_log_changed_extents()), we see and process the extent
1952 * map they created. We then use the extent map to construct a
1953 * file extent item for logging without waiting for the
1954 * respective ordered operation to finish - this file extent
1955 * item points to a disk location that might not have yet been
1956 * written to, containing random data - so after a crash a log
1957 * replay will make our inode have file extent items that point
1958 * to disk locations containing invalid data, as we returned
1959 * success to userspace without waiting for the respective
1960 * ordered operation to finish, because it wasn't captured by
1961 * btrfs_get_logged_extents().
1963 ret
= start_ordered_ops(inode
, start
, end
);
1966 mutex_unlock(&inode
->i_mutex
);
1969 atomic_inc(&root
->log_batch
);
1972 * If the last transaction that changed this file was before the current
1973 * transaction and we have the full sync flag set in our inode, we can
1974 * bail out now without any syncing.
1976 * Note that we can't bail out if the full sync flag isn't set. This is
1977 * because when the full sync flag is set we start all ordered extents
1978 * and wait for them to fully complete - when they complete they update
1979 * the inode's last_trans field through:
1981 * btrfs_finish_ordered_io() ->
1982 * btrfs_update_inode_fallback() ->
1983 * btrfs_update_inode() ->
1984 * btrfs_set_inode_last_trans()
1986 * So we are sure that last_trans is up to date and can do this check to
1987 * bail out safely. For the fast path, when the full sync flag is not
1988 * set in our inode, we can not do it because we start only our ordered
1989 * extents and don't wait for them to complete (that is when
1990 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1991 * value might be less than or equals to fs_info->last_trans_committed,
1992 * and setting a speculative last_trans for an inode when a buffered
1993 * write is made (such as fs_info->generation + 1 for example) would not
1994 * be reliable since after setting the value and before fsync is called
1995 * any number of transactions can start and commit (transaction kthread
1996 * commits the current transaction periodically), and a transaction
1997 * commit does not start nor waits for ordered extents to complete.
2000 if (btrfs_inode_in_log(inode
, root
->fs_info
->generation
) ||
2001 (BTRFS_I(inode
)->last_trans
<=
2002 root
->fs_info
->last_trans_committed
&&
2004 !btrfs_have_ordered_extents_in_range(inode
, start
, len
)))) {
2006 * We'v had everything committed since the last time we were
2007 * modified so clear this flag in case it was set for whatever
2008 * reason, it's no longer relevant.
2010 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2011 &BTRFS_I(inode
)->runtime_flags
);
2012 mutex_unlock(&inode
->i_mutex
);
2017 * ok we haven't committed the transaction yet, lets do a commit
2019 if (file
->private_data
)
2020 btrfs_ioctl_trans_end(file
);
2023 * We use start here because we will need to wait on the IO to complete
2024 * in btrfs_sync_log, which could require joining a transaction (for
2025 * example checking cross references in the nocow path). If we use join
2026 * here we could get into a situation where we're waiting on IO to
2027 * happen that is blocked on a transaction trying to commit. With start
2028 * we inc the extwriter counter, so we wait for all extwriters to exit
2029 * before we start blocking join'ers. This comment is to keep somebody
2030 * from thinking they are super smart and changing this to
2031 * btrfs_join_transaction *cough*Josef*cough*.
2033 trans
= btrfs_start_transaction(root
, 0);
2034 if (IS_ERR(trans
)) {
2035 ret
= PTR_ERR(trans
);
2036 mutex_unlock(&inode
->i_mutex
);
2041 btrfs_init_log_ctx(&ctx
);
2043 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
, start
, end
, &ctx
);
2045 /* Fallthrough and commit/free transaction. */
2049 /* we've logged all the items and now have a consistent
2050 * version of the file in the log. It is possible that
2051 * someone will come in and modify the file, but that's
2052 * fine because the log is consistent on disk, and we
2053 * have references to all of the file's extents
2055 * It is possible that someone will come in and log the
2056 * file again, but that will end up using the synchronization
2057 * inside btrfs_sync_log to keep things safe.
2059 mutex_unlock(&inode
->i_mutex
);
2062 * If any of the ordered extents had an error, just return it to user
2063 * space, so that the application knows some writes didn't succeed and
2064 * can take proper action (retry for e.g.). Blindly committing the
2065 * transaction in this case, would fool userspace that everything was
2066 * successful. And we also want to make sure our log doesn't contain
2067 * file extent items pointing to extents that weren't fully written to -
2068 * just like in the non fast fsync path, where we check for the ordered
2069 * operation's error flag before writing to the log tree and return -EIO
2070 * if any of them had this flag set (btrfs_wait_ordered_range) -
2071 * therefore we need to check for errors in the ordered operations,
2072 * which are indicated by ctx.io_err.
2075 btrfs_end_transaction(trans
, root
);
2080 if (ret
!= BTRFS_NO_LOG_SYNC
) {
2082 ret
= btrfs_sync_log(trans
, root
, &ctx
);
2084 ret
= btrfs_end_transaction(trans
, root
);
2089 ret
= btrfs_wait_ordered_range(inode
, start
, len
);
2091 btrfs_end_transaction(trans
, root
);
2095 ret
= btrfs_commit_transaction(trans
, root
);
2097 ret
= btrfs_end_transaction(trans
, root
);
2100 return ret
> 0 ? -EIO
: ret
;
2103 static const struct vm_operations_struct btrfs_file_vm_ops
= {
2104 .fault
= filemap_fault
,
2105 .map_pages
= filemap_map_pages
,
2106 .page_mkwrite
= btrfs_page_mkwrite
,
2109 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
2111 struct address_space
*mapping
= filp
->f_mapping
;
2113 if (!mapping
->a_ops
->readpage
)
2116 file_accessed(filp
);
2117 vma
->vm_ops
= &btrfs_file_vm_ops
;
2122 static int hole_mergeable(struct inode
*inode
, struct extent_buffer
*leaf
,
2123 int slot
, u64 start
, u64 end
)
2125 struct btrfs_file_extent_item
*fi
;
2126 struct btrfs_key key
;
2128 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
2131 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2132 if (key
.objectid
!= btrfs_ino(inode
) ||
2133 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2136 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
2138 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2141 if (btrfs_file_extent_disk_bytenr(leaf
, fi
))
2144 if (key
.offset
== end
)
2146 if (key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
) == start
)
2151 static int fill_holes(struct btrfs_trans_handle
*trans
, struct inode
*inode
,
2152 struct btrfs_path
*path
, u64 offset
, u64 end
)
2154 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2155 struct extent_buffer
*leaf
;
2156 struct btrfs_file_extent_item
*fi
;
2157 struct extent_map
*hole_em
;
2158 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2159 struct btrfs_key key
;
2162 if (btrfs_fs_incompat(root
->fs_info
, NO_HOLES
))
2165 key
.objectid
= btrfs_ino(inode
);
2166 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2167 key
.offset
= offset
;
2169 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2174 leaf
= path
->nodes
[0];
2175 if (hole_mergeable(inode
, leaf
, path
->slots
[0]-1, offset
, end
)) {
2179 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2180 struct btrfs_file_extent_item
);
2181 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) +
2183 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2184 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2185 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2186 btrfs_mark_buffer_dirty(leaf
);
2190 if (hole_mergeable(inode
, leaf
, path
->slots
[0], offset
, end
)) {
2193 key
.offset
= offset
;
2194 btrfs_set_item_key_safe(root
->fs_info
, path
, &key
);
2195 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2196 struct btrfs_file_extent_item
);
2197 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) + end
-
2199 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2200 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2201 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2202 btrfs_mark_buffer_dirty(leaf
);
2205 btrfs_release_path(path
);
2207 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
2208 0, 0, end
- offset
, 0, end
- offset
,
2214 btrfs_release_path(path
);
2216 hole_em
= alloc_extent_map();
2218 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2219 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2220 &BTRFS_I(inode
)->runtime_flags
);
2222 hole_em
->start
= offset
;
2223 hole_em
->len
= end
- offset
;
2224 hole_em
->ram_bytes
= hole_em
->len
;
2225 hole_em
->orig_start
= offset
;
2227 hole_em
->block_start
= EXTENT_MAP_HOLE
;
2228 hole_em
->block_len
= 0;
2229 hole_em
->orig_block_len
= 0;
2230 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
2231 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
2232 hole_em
->generation
= trans
->transid
;
2235 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2236 write_lock(&em_tree
->lock
);
2237 ret
= add_extent_mapping(em_tree
, hole_em
, 1);
2238 write_unlock(&em_tree
->lock
);
2239 } while (ret
== -EEXIST
);
2240 free_extent_map(hole_em
);
2242 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2243 &BTRFS_I(inode
)->runtime_flags
);
2250 * Find a hole extent on given inode and change start/len to the end of hole
2251 * extent.(hole/vacuum extent whose em->start <= start &&
2252 * em->start + em->len > start)
2253 * When a hole extent is found, return 1 and modify start/len.
2255 static int find_first_non_hole(struct inode
*inode
, u64
*start
, u64
*len
)
2257 struct extent_map
*em
;
2260 em
= btrfs_get_extent(inode
, NULL
, 0, *start
, *len
, 0);
2261 if (IS_ERR_OR_NULL(em
)) {
2269 /* Hole or vacuum extent(only exists in no-hole mode) */
2270 if (em
->block_start
== EXTENT_MAP_HOLE
) {
2272 *len
= em
->start
+ em
->len
> *start
+ *len
?
2273 0 : *start
+ *len
- em
->start
- em
->len
;
2274 *start
= em
->start
+ em
->len
;
2276 free_extent_map(em
);
2280 static int btrfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
2282 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2283 struct extent_state
*cached_state
= NULL
;
2284 struct btrfs_path
*path
;
2285 struct btrfs_block_rsv
*rsv
;
2286 struct btrfs_trans_handle
*trans
;
2291 u64 orig_start
= offset
;
2293 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
2297 unsigned int rsv_count
;
2299 bool no_holes
= btrfs_fs_incompat(root
->fs_info
, NO_HOLES
);
2301 bool truncated_page
= false;
2302 bool updated_inode
= false;
2304 ret
= btrfs_wait_ordered_range(inode
, offset
, len
);
2308 mutex_lock(&inode
->i_mutex
);
2309 ino_size
= round_up(inode
->i_size
, PAGE_CACHE_SIZE
);
2310 ret
= find_first_non_hole(inode
, &offset
, &len
);
2312 goto out_only_mutex
;
2314 /* Already in a large hole */
2316 goto out_only_mutex
;
2319 lockstart
= round_up(offset
, BTRFS_I(inode
)->root
->sectorsize
);
2320 lockend
= round_down(offset
+ len
,
2321 BTRFS_I(inode
)->root
->sectorsize
) - 1;
2322 same_page
= ((offset
>> PAGE_CACHE_SHIFT
) ==
2323 ((offset
+ len
- 1) >> PAGE_CACHE_SHIFT
));
2326 * We needn't truncate any page which is beyond the end of the file
2327 * because we are sure there is no data there.
2330 * Only do this if we are in the same page and we aren't doing the
2333 if (same_page
&& len
< PAGE_CACHE_SIZE
) {
2334 if (offset
< ino_size
) {
2335 truncated_page
= true;
2336 ret
= btrfs_truncate_page(inode
, offset
, len
, 0);
2340 goto out_only_mutex
;
2343 /* zero back part of the first page */
2344 if (offset
< ino_size
) {
2345 truncated_page
= true;
2346 ret
= btrfs_truncate_page(inode
, offset
, 0, 0);
2348 mutex_unlock(&inode
->i_mutex
);
2353 /* Check the aligned pages after the first unaligned page,
2354 * if offset != orig_start, which means the first unaligned page
2355 * including serveral following pages are already in holes,
2356 * the extra check can be skipped */
2357 if (offset
== orig_start
) {
2358 /* after truncate page, check hole again */
2359 len
= offset
+ len
- lockstart
;
2361 ret
= find_first_non_hole(inode
, &offset
, &len
);
2363 goto out_only_mutex
;
2366 goto out_only_mutex
;
2371 /* Check the tail unaligned part is in a hole */
2372 tail_start
= lockend
+ 1;
2373 tail_len
= offset
+ len
- tail_start
;
2375 ret
= find_first_non_hole(inode
, &tail_start
, &tail_len
);
2376 if (unlikely(ret
< 0))
2377 goto out_only_mutex
;
2379 /* zero the front end of the last page */
2380 if (tail_start
+ tail_len
< ino_size
) {
2381 truncated_page
= true;
2382 ret
= btrfs_truncate_page(inode
,
2383 tail_start
+ tail_len
, 0, 1);
2385 goto out_only_mutex
;
2390 if (lockend
< lockstart
) {
2392 goto out_only_mutex
;
2396 struct btrfs_ordered_extent
*ordered
;
2398 truncate_pagecache_range(inode
, lockstart
, lockend
);
2400 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2402 ordered
= btrfs_lookup_first_ordered_extent(inode
, lockend
);
2405 * We need to make sure we have no ordered extents in this range
2406 * and nobody raced in and read a page in this range, if we did
2407 * we need to try again.
2410 (ordered
->file_offset
+ ordered
->len
<= lockstart
||
2411 ordered
->file_offset
> lockend
)) &&
2412 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)) {
2414 btrfs_put_ordered_extent(ordered
);
2418 btrfs_put_ordered_extent(ordered
);
2419 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2420 lockend
, &cached_state
, GFP_NOFS
);
2421 ret
= btrfs_wait_ordered_range(inode
, lockstart
,
2422 lockend
- lockstart
+ 1);
2424 mutex_unlock(&inode
->i_mutex
);
2429 path
= btrfs_alloc_path();
2435 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
2440 rsv
->size
= btrfs_calc_trunc_metadata_size(root
, 1);
2444 * 1 - update the inode
2445 * 1 - removing the extents in the range
2446 * 1 - adding the hole extent if no_holes isn't set
2448 rsv_count
= no_holes
? 2 : 3;
2449 trans
= btrfs_start_transaction(root
, rsv_count
);
2450 if (IS_ERR(trans
)) {
2451 err
= PTR_ERR(trans
);
2455 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
2458 trans
->block_rsv
= rsv
;
2460 cur_offset
= lockstart
;
2461 len
= lockend
- cur_offset
;
2462 while (cur_offset
< lockend
) {
2463 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
2464 cur_offset
, lockend
+ 1,
2465 &drop_end
, 1, 0, 0, NULL
);
2469 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2471 if (cur_offset
< ino_size
) {
2472 ret
= fill_holes(trans
, inode
, path
, cur_offset
,
2480 cur_offset
= drop_end
;
2482 ret
= btrfs_update_inode(trans
, root
, inode
);
2488 btrfs_end_transaction(trans
, root
);
2489 btrfs_btree_balance_dirty(root
);
2491 trans
= btrfs_start_transaction(root
, rsv_count
);
2492 if (IS_ERR(trans
)) {
2493 ret
= PTR_ERR(trans
);
2498 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
2500 BUG_ON(ret
); /* shouldn't happen */
2501 trans
->block_rsv
= rsv
;
2503 ret
= find_first_non_hole(inode
, &cur_offset
, &len
);
2504 if (unlikely(ret
< 0))
2517 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2519 * If we are using the NO_HOLES feature we might have had already an
2520 * hole that overlaps a part of the region [lockstart, lockend] and
2521 * ends at (or beyond) lockend. Since we have no file extent items to
2522 * represent holes, drop_end can be less than lockend and so we must
2523 * make sure we have an extent map representing the existing hole (the
2524 * call to __btrfs_drop_extents() might have dropped the existing extent
2525 * map representing the existing hole), otherwise the fast fsync path
2526 * will not record the existence of the hole region
2527 * [existing_hole_start, lockend].
2529 if (drop_end
<= lockend
)
2530 drop_end
= lockend
+ 1;
2532 * Don't insert file hole extent item if it's for a range beyond eof
2533 * (because it's useless) or if it represents a 0 bytes range (when
2534 * cur_offset == drop_end).
2536 if (cur_offset
< ino_size
&& cur_offset
< drop_end
) {
2537 ret
= fill_holes(trans
, inode
, path
, cur_offset
, drop_end
);
2548 inode_inc_iversion(inode
);
2549 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2551 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2552 ret
= btrfs_update_inode(trans
, root
, inode
);
2553 updated_inode
= true;
2554 btrfs_end_transaction(trans
, root
);
2555 btrfs_btree_balance_dirty(root
);
2557 btrfs_free_path(path
);
2558 btrfs_free_block_rsv(root
, rsv
);
2560 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2561 &cached_state
, GFP_NOFS
);
2563 if (!updated_inode
&& truncated_page
&& !ret
&& !err
) {
2565 * If we only end up zeroing part of a page, we still need to
2566 * update the inode item, so that all the time fields are
2567 * updated as well as the necessary btrfs inode in memory fields
2568 * for detecting, at fsync time, if the inode isn't yet in the
2569 * log tree or it's there but not up to date.
2571 trans
= btrfs_start_transaction(root
, 1);
2572 if (IS_ERR(trans
)) {
2573 err
= PTR_ERR(trans
);
2575 err
= btrfs_update_inode(trans
, root
, inode
);
2576 ret
= btrfs_end_transaction(trans
, root
);
2579 mutex_unlock(&inode
->i_mutex
);
2585 /* Helper structure to record which range is already reserved */
2586 struct falloc_range
{
2587 struct list_head list
;
2593 * Helper function to add falloc range
2595 * Caller should have locked the larger range of extent containing
2598 static int add_falloc_range(struct list_head
*head
, u64 start
, u64 len
)
2600 struct falloc_range
*prev
= NULL
;
2601 struct falloc_range
*range
= NULL
;
2603 if (list_empty(head
))
2607 * As fallocate iterate by bytenr order, we only need to check
2610 prev
= list_entry(head
->prev
, struct falloc_range
, list
);
2611 if (prev
->start
+ prev
->len
== start
) {
2616 range
= kmalloc(sizeof(*range
), GFP_NOFS
);
2619 range
->start
= start
;
2621 list_add_tail(&range
->list
, head
);
2625 static long btrfs_fallocate(struct file
*file
, int mode
,
2626 loff_t offset
, loff_t len
)
2628 struct inode
*inode
= file_inode(file
);
2629 struct extent_state
*cached_state
= NULL
;
2630 struct falloc_range
*range
;
2631 struct falloc_range
*tmp
;
2632 struct list_head reserve_list
;
2640 struct extent_map
*em
;
2641 int blocksize
= BTRFS_I(inode
)->root
->sectorsize
;
2644 alloc_start
= round_down(offset
, blocksize
);
2645 alloc_end
= round_up(offset
+ len
, blocksize
);
2647 /* Make sure we aren't being give some crap mode */
2648 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2651 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2652 return btrfs_punch_hole(inode
, offset
, len
);
2655 * Only trigger disk allocation, don't trigger qgroup reserve
2657 * For qgroup space, it will be checked later.
2659 ret
= btrfs_alloc_data_chunk_ondemand(inode
, alloc_end
- alloc_start
);
2663 mutex_lock(&inode
->i_mutex
);
2664 ret
= inode_newsize_ok(inode
, alloc_end
);
2669 * TODO: Move these two operations after we have checked
2670 * accurate reserved space, or fallocate can still fail but
2671 * with page truncated or size expanded.
2673 * But that's a minor problem and won't do much harm BTW.
2675 if (alloc_start
> inode
->i_size
) {
2676 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
2680 } else if (offset
+ len
> inode
->i_size
) {
2682 * If we are fallocating from the end of the file onward we
2683 * need to zero out the end of the page if i_size lands in the
2686 ret
= btrfs_truncate_page(inode
, inode
->i_size
, 0, 0);
2692 * wait for ordered IO before we have any locks. We'll loop again
2693 * below with the locks held.
2695 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
2696 alloc_end
- alloc_start
);
2700 locked_end
= alloc_end
- 1;
2702 struct btrfs_ordered_extent
*ordered
;
2704 /* the extent lock is ordered inside the running
2707 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
2708 locked_end
, 0, &cached_state
);
2709 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2712 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
2713 ordered
->file_offset
< alloc_end
) {
2714 btrfs_put_ordered_extent(ordered
);
2715 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
2716 alloc_start
, locked_end
,
2717 &cached_state
, GFP_NOFS
);
2719 * we can't wait on the range with the transaction
2720 * running or with the extent lock held
2722 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
2723 alloc_end
- alloc_start
);
2728 btrfs_put_ordered_extent(ordered
);
2733 /* First, check if we exceed the qgroup limit */
2734 INIT_LIST_HEAD(&reserve_list
);
2735 cur_offset
= alloc_start
;
2737 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2738 alloc_end
- cur_offset
, 0);
2739 if (IS_ERR_OR_NULL(em
)) {
2746 last_byte
= min(extent_map_end(em
), alloc_end
);
2747 actual_end
= min_t(u64
, extent_map_end(em
), offset
+ len
);
2748 last_byte
= ALIGN(last_byte
, blocksize
);
2749 if (em
->block_start
== EXTENT_MAP_HOLE
||
2750 (cur_offset
>= inode
->i_size
&&
2751 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
2752 ret
= add_falloc_range(&reserve_list
, cur_offset
,
2753 last_byte
- cur_offset
);
2755 free_extent_map(em
);
2758 ret
= btrfs_qgroup_reserve_data(inode
, cur_offset
,
2759 last_byte
- cur_offset
);
2763 free_extent_map(em
);
2764 cur_offset
= last_byte
;
2765 if (cur_offset
>= alloc_end
)
2770 * If ret is still 0, means we're OK to fallocate.
2771 * Or just cleanup the list and exit.
2773 list_for_each_entry_safe(range
, tmp
, &reserve_list
, list
) {
2775 ret
= btrfs_prealloc_file_range(inode
, mode
,
2777 range
->len
, 1 << inode
->i_blkbits
,
2778 offset
+ len
, &alloc_hint
);
2779 list_del(&range
->list
);
2785 if (actual_end
> inode
->i_size
&&
2786 !(mode
& FALLOC_FL_KEEP_SIZE
)) {
2787 struct btrfs_trans_handle
*trans
;
2788 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2791 * We didn't need to allocate any more space, but we
2792 * still extended the size of the file so we need to
2793 * update i_size and the inode item.
2795 trans
= btrfs_start_transaction(root
, 1);
2796 if (IS_ERR(trans
)) {
2797 ret
= PTR_ERR(trans
);
2799 inode
->i_ctime
= CURRENT_TIME
;
2800 i_size_write(inode
, actual_end
);
2801 btrfs_ordered_update_i_size(inode
, actual_end
, NULL
);
2802 ret
= btrfs_update_inode(trans
, root
, inode
);
2804 btrfs_end_transaction(trans
, root
);
2806 ret
= btrfs_end_transaction(trans
, root
);
2810 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
2811 &cached_state
, GFP_NOFS
);
2814 * As we waited the extent range, the data_rsv_map must be empty
2815 * in the range, as written data range will be released from it.
2816 * And for prealloacted extent, it will also be released when
2817 * its metadata is written.
2818 * So this is completely used as cleanup.
2820 btrfs_qgroup_free_data(inode
, alloc_start
, alloc_end
- alloc_start
);
2821 mutex_unlock(&inode
->i_mutex
);
2822 /* Let go of our reservation. */
2823 btrfs_free_reserved_data_space(inode
, alloc_start
,
2824 alloc_end
- alloc_start
);
2828 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int whence
)
2830 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2831 struct extent_map
*em
= NULL
;
2832 struct extent_state
*cached_state
= NULL
;
2839 if (inode
->i_size
== 0)
2843 * *offset can be negative, in this case we start finding DATA/HOLE from
2844 * the very start of the file.
2846 start
= max_t(loff_t
, 0, *offset
);
2848 lockstart
= round_down(start
, root
->sectorsize
);
2849 lockend
= round_up(i_size_read(inode
), root
->sectorsize
);
2850 if (lockend
<= lockstart
)
2851 lockend
= lockstart
+ root
->sectorsize
;
2853 len
= lockend
- lockstart
+ 1;
2855 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
, 0,
2858 while (start
< inode
->i_size
) {
2859 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, start
, len
, 0);
2866 if (whence
== SEEK_HOLE
&&
2867 (em
->block_start
== EXTENT_MAP_HOLE
||
2868 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
2870 else if (whence
== SEEK_DATA
&&
2871 (em
->block_start
!= EXTENT_MAP_HOLE
&&
2872 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
2875 start
= em
->start
+ em
->len
;
2876 free_extent_map(em
);
2880 free_extent_map(em
);
2882 if (whence
== SEEK_DATA
&& start
>= inode
->i_size
)
2885 *offset
= min_t(loff_t
, start
, inode
->i_size
);
2887 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2888 &cached_state
, GFP_NOFS
);
2892 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2894 struct inode
*inode
= file
->f_mapping
->host
;
2897 mutex_lock(&inode
->i_mutex
);
2901 offset
= generic_file_llseek(file
, offset
, whence
);
2905 if (offset
>= i_size_read(inode
)) {
2906 mutex_unlock(&inode
->i_mutex
);
2910 ret
= find_desired_extent(inode
, &offset
, whence
);
2912 mutex_unlock(&inode
->i_mutex
);
2917 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
2919 mutex_unlock(&inode
->i_mutex
);
2923 const struct file_operations btrfs_file_operations
= {
2924 .llseek
= btrfs_file_llseek
,
2925 .read_iter
= generic_file_read_iter
,
2926 .splice_read
= generic_file_splice_read
,
2927 .write_iter
= btrfs_file_write_iter
,
2928 .mmap
= btrfs_file_mmap
,
2929 .open
= generic_file_open
,
2930 .release
= btrfs_release_file
,
2931 .fsync
= btrfs_sync_file
,
2932 .fallocate
= btrfs_fallocate
,
2933 .unlocked_ioctl
= btrfs_ioctl
,
2934 #ifdef CONFIG_COMPAT
2935 .compat_ioctl
= btrfs_ioctl
,
2939 void btrfs_auto_defrag_exit(void)
2941 if (btrfs_inode_defrag_cachep
)
2942 kmem_cache_destroy(btrfs_inode_defrag_cachep
);
2945 int btrfs_auto_defrag_init(void)
2947 btrfs_inode_defrag_cachep
= kmem_cache_create("btrfs_inode_defrag",
2948 sizeof(struct inode_defrag
), 0,
2949 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
2951 if (!btrfs_inode_defrag_cachep
)
2957 int btrfs_fdatawrite_range(struct inode
*inode
, loff_t start
, loff_t end
)
2962 * So with compression we will find and lock a dirty page and clear the
2963 * first one as dirty, setup an async extent, and immediately return
2964 * with the entire range locked but with nobody actually marked with
2965 * writeback. So we can't just filemap_write_and_wait_range() and
2966 * expect it to work since it will just kick off a thread to do the
2967 * actual work. So we need to call filemap_fdatawrite_range _again_
2968 * since it will wait on the page lock, which won't be unlocked until
2969 * after the pages have been marked as writeback and so we're good to go
2970 * from there. We have to do this otherwise we'll miss the ordered
2971 * extents and that results in badness. Please Josef, do not think you
2972 * know better and pull this out at some point in the future, it is
2973 * right and you are wrong.
2975 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
2976 if (!ret
&& test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
2977 &BTRFS_I(inode
)->runtime_flags
))
2978 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);