2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
46 [BTRFS_RAID_RAID10
] = {
49 .devs_max
= 0, /* 0 == as many as possible */
51 .tolerated_failures
= 1,
55 [BTRFS_RAID_RAID1
] = {
60 .tolerated_failures
= 1,
69 .tolerated_failures
= 0,
73 [BTRFS_RAID_RAID0
] = {
78 .tolerated_failures
= 0,
82 [BTRFS_RAID_SINGLE
] = {
87 .tolerated_failures
= 0,
91 [BTRFS_RAID_RAID5
] = {
96 .tolerated_failures
= 1,
100 [BTRFS_RAID_RAID6
] = {
105 .tolerated_failures
= 2,
111 const u64
const btrfs_raid_group
[BTRFS_NR_RAID_TYPES
] = {
112 [BTRFS_RAID_RAID10
] = BTRFS_BLOCK_GROUP_RAID10
,
113 [BTRFS_RAID_RAID1
] = BTRFS_BLOCK_GROUP_RAID1
,
114 [BTRFS_RAID_DUP
] = BTRFS_BLOCK_GROUP_DUP
,
115 [BTRFS_RAID_RAID0
] = BTRFS_BLOCK_GROUP_RAID0
,
116 [BTRFS_RAID_SINGLE
] = 0,
117 [BTRFS_RAID_RAID5
] = BTRFS_BLOCK_GROUP_RAID5
,
118 [BTRFS_RAID_RAID6
] = BTRFS_BLOCK_GROUP_RAID6
,
121 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
122 struct btrfs_root
*root
,
123 struct btrfs_device
*device
);
124 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
125 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
126 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
127 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
129 DEFINE_MUTEX(uuid_mutex
);
130 static LIST_HEAD(fs_uuids
);
131 struct list_head
*btrfs_get_fs_uuids(void)
136 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
138 struct btrfs_fs_devices
*fs_devs
;
140 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_NOFS
);
142 return ERR_PTR(-ENOMEM
);
144 mutex_init(&fs_devs
->device_list_mutex
);
146 INIT_LIST_HEAD(&fs_devs
->devices
);
147 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
148 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
149 INIT_LIST_HEAD(&fs_devs
->list
);
155 * alloc_fs_devices - allocate struct btrfs_fs_devices
156 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
159 * Return: a pointer to a new &struct btrfs_fs_devices on success;
160 * ERR_PTR() on error. Returned struct is not linked onto any lists and
161 * can be destroyed with kfree() right away.
163 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
165 struct btrfs_fs_devices
*fs_devs
;
167 fs_devs
= __alloc_fs_devices();
172 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
174 generate_random_uuid(fs_devs
->fsid
);
179 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
181 struct btrfs_device
*device
;
182 WARN_ON(fs_devices
->opened
);
183 while (!list_empty(&fs_devices
->devices
)) {
184 device
= list_entry(fs_devices
->devices
.next
,
185 struct btrfs_device
, dev_list
);
186 list_del(&device
->dev_list
);
187 rcu_string_free(device
->name
);
193 static void btrfs_kobject_uevent(struct block_device
*bdev
,
194 enum kobject_action action
)
198 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
200 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
202 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
203 &disk_to_dev(bdev
->bd_disk
)->kobj
);
206 void btrfs_cleanup_fs_uuids(void)
208 struct btrfs_fs_devices
*fs_devices
;
210 while (!list_empty(&fs_uuids
)) {
211 fs_devices
= list_entry(fs_uuids
.next
,
212 struct btrfs_fs_devices
, list
);
213 list_del(&fs_devices
->list
);
214 free_fs_devices(fs_devices
);
218 static struct btrfs_device
*__alloc_device(void)
220 struct btrfs_device
*dev
;
222 dev
= kzalloc(sizeof(*dev
), GFP_NOFS
);
224 return ERR_PTR(-ENOMEM
);
226 INIT_LIST_HEAD(&dev
->dev_list
);
227 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
228 INIT_LIST_HEAD(&dev
->resized_list
);
230 spin_lock_init(&dev
->io_lock
);
232 spin_lock_init(&dev
->reada_lock
);
233 atomic_set(&dev
->reada_in_flight
, 0);
234 atomic_set(&dev
->dev_stats_ccnt
, 0);
235 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
236 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
241 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
244 struct btrfs_device
*dev
;
246 list_for_each_entry(dev
, head
, dev_list
) {
247 if (dev
->devid
== devid
&&
248 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
255 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
257 struct btrfs_fs_devices
*fs_devices
;
259 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
260 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
267 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
268 int flush
, struct block_device
**bdev
,
269 struct buffer_head
**bh
)
273 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
276 ret
= PTR_ERR(*bdev
);
281 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
282 ret
= set_blocksize(*bdev
, 4096);
284 blkdev_put(*bdev
, flags
);
287 invalidate_bdev(*bdev
);
288 *bh
= btrfs_read_dev_super(*bdev
);
291 blkdev_put(*bdev
, flags
);
303 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
304 struct bio
*head
, struct bio
*tail
)
307 struct bio
*old_head
;
309 old_head
= pending_bios
->head
;
310 pending_bios
->head
= head
;
311 if (pending_bios
->tail
)
312 tail
->bi_next
= old_head
;
314 pending_bios
->tail
= tail
;
318 * we try to collect pending bios for a device so we don't get a large
319 * number of procs sending bios down to the same device. This greatly
320 * improves the schedulers ability to collect and merge the bios.
322 * But, it also turns into a long list of bios to process and that is sure
323 * to eventually make the worker thread block. The solution here is to
324 * make some progress and then put this work struct back at the end of
325 * the list if the block device is congested. This way, multiple devices
326 * can make progress from a single worker thread.
328 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
331 struct backing_dev_info
*bdi
;
332 struct btrfs_fs_info
*fs_info
;
333 struct btrfs_pending_bios
*pending_bios
;
337 unsigned long num_run
;
338 unsigned long batch_run
= 0;
340 unsigned long last_waited
= 0;
342 int sync_pending
= 0;
343 struct blk_plug plug
;
346 * this function runs all the bios we've collected for
347 * a particular device. We don't want to wander off to
348 * another device without first sending all of these down.
349 * So, setup a plug here and finish it off before we return
351 blk_start_plug(&plug
);
353 bdi
= blk_get_backing_dev_info(device
->bdev
);
354 fs_info
= device
->dev_root
->fs_info
;
355 limit
= btrfs_async_submit_limit(fs_info
);
356 limit
= limit
* 2 / 3;
359 spin_lock(&device
->io_lock
);
364 /* take all the bios off the list at once and process them
365 * later on (without the lock held). But, remember the
366 * tail and other pointers so the bios can be properly reinserted
367 * into the list if we hit congestion
369 if (!force_reg
&& device
->pending_sync_bios
.head
) {
370 pending_bios
= &device
->pending_sync_bios
;
373 pending_bios
= &device
->pending_bios
;
377 pending
= pending_bios
->head
;
378 tail
= pending_bios
->tail
;
379 WARN_ON(pending
&& !tail
);
382 * if pending was null this time around, no bios need processing
383 * at all and we can stop. Otherwise it'll loop back up again
384 * and do an additional check so no bios are missed.
386 * device->running_pending is used to synchronize with the
389 if (device
->pending_sync_bios
.head
== NULL
&&
390 device
->pending_bios
.head
== NULL
) {
392 device
->running_pending
= 0;
395 device
->running_pending
= 1;
398 pending_bios
->head
= NULL
;
399 pending_bios
->tail
= NULL
;
401 spin_unlock(&device
->io_lock
);
406 /* we want to work on both lists, but do more bios on the
407 * sync list than the regular list
410 pending_bios
!= &device
->pending_sync_bios
&&
411 device
->pending_sync_bios
.head
) ||
412 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
413 device
->pending_bios
.head
)) {
414 spin_lock(&device
->io_lock
);
415 requeue_list(pending_bios
, pending
, tail
);
420 pending
= pending
->bi_next
;
424 * atomic_dec_return implies a barrier for waitqueue_active
426 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
427 waitqueue_active(&fs_info
->async_submit_wait
))
428 wake_up(&fs_info
->async_submit_wait
);
430 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
433 * if we're doing the sync list, record that our
434 * plug has some sync requests on it
436 * If we're doing the regular list and there are
437 * sync requests sitting around, unplug before
440 if (pending_bios
== &device
->pending_sync_bios
) {
442 } else if (sync_pending
) {
443 blk_finish_plug(&plug
);
444 blk_start_plug(&plug
);
448 btrfsic_submit_bio(cur
->bi_rw
, cur
);
455 * we made progress, there is more work to do and the bdi
456 * is now congested. Back off and let other work structs
459 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
460 fs_info
->fs_devices
->open_devices
> 1) {
461 struct io_context
*ioc
;
463 ioc
= current
->io_context
;
466 * the main goal here is that we don't want to
467 * block if we're going to be able to submit
468 * more requests without blocking.
470 * This code does two great things, it pokes into
471 * the elevator code from a filesystem _and_
472 * it makes assumptions about how batching works.
474 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
475 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
477 ioc
->last_waited
== last_waited
)) {
479 * we want to go through our batch of
480 * requests and stop. So, we copy out
481 * the ioc->last_waited time and test
482 * against it before looping
484 last_waited
= ioc
->last_waited
;
488 spin_lock(&device
->io_lock
);
489 requeue_list(pending_bios
, pending
, tail
);
490 device
->running_pending
= 1;
492 spin_unlock(&device
->io_lock
);
493 btrfs_queue_work(fs_info
->submit_workers
,
497 /* unplug every 64 requests just for good measure */
498 if (batch_run
% 64 == 0) {
499 blk_finish_plug(&plug
);
500 blk_start_plug(&plug
);
509 spin_lock(&device
->io_lock
);
510 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
512 spin_unlock(&device
->io_lock
);
515 blk_finish_plug(&plug
);
518 static void pending_bios_fn(struct btrfs_work
*work
)
520 struct btrfs_device
*device
;
522 device
= container_of(work
, struct btrfs_device
, work
);
523 run_scheduled_bios(device
);
527 void btrfs_free_stale_device(struct btrfs_device
*cur_dev
)
529 struct btrfs_fs_devices
*fs_devs
;
530 struct btrfs_device
*dev
;
535 list_for_each_entry(fs_devs
, &fs_uuids
, list
) {
540 if (fs_devs
->seeding
)
543 list_for_each_entry(dev
, &fs_devs
->devices
, dev_list
) {
551 * Todo: This won't be enough. What if the same device
552 * comes back (with new uuid and) with its mapper path?
553 * But for now, this does help as mostly an admin will
554 * either use mapper or non mapper path throughout.
557 del
= strcmp(rcu_str_deref(dev
->name
),
558 rcu_str_deref(cur_dev
->name
));
565 /* delete the stale device */
566 if (fs_devs
->num_devices
== 1) {
567 btrfs_sysfs_remove_fsid(fs_devs
);
568 list_del(&fs_devs
->list
);
569 free_fs_devices(fs_devs
);
571 fs_devs
->num_devices
--;
572 list_del(&dev
->dev_list
);
573 rcu_string_free(dev
->name
);
582 * Add new device to list of registered devices
585 * 1 - first time device is seen
586 * 0 - device already known
589 static noinline
int device_list_add(const char *path
,
590 struct btrfs_super_block
*disk_super
,
591 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
593 struct btrfs_device
*device
;
594 struct btrfs_fs_devices
*fs_devices
;
595 struct rcu_string
*name
;
597 u64 found_transid
= btrfs_super_generation(disk_super
);
599 fs_devices
= find_fsid(disk_super
->fsid
);
601 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
602 if (IS_ERR(fs_devices
))
603 return PTR_ERR(fs_devices
);
605 list_add(&fs_devices
->list
, &fs_uuids
);
609 device
= __find_device(&fs_devices
->devices
, devid
,
610 disk_super
->dev_item
.uuid
);
614 if (fs_devices
->opened
)
617 device
= btrfs_alloc_device(NULL
, &devid
,
618 disk_super
->dev_item
.uuid
);
619 if (IS_ERR(device
)) {
620 /* we can safely leave the fs_devices entry around */
621 return PTR_ERR(device
);
624 name
= rcu_string_strdup(path
, GFP_NOFS
);
629 rcu_assign_pointer(device
->name
, name
);
631 mutex_lock(&fs_devices
->device_list_mutex
);
632 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
633 fs_devices
->num_devices
++;
634 mutex_unlock(&fs_devices
->device_list_mutex
);
637 device
->fs_devices
= fs_devices
;
638 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
640 * When FS is already mounted.
641 * 1. If you are here and if the device->name is NULL that
642 * means this device was missing at time of FS mount.
643 * 2. If you are here and if the device->name is different
644 * from 'path' that means either
645 * a. The same device disappeared and reappeared with
647 * b. The missing-disk-which-was-replaced, has
650 * We must allow 1 and 2a above. But 2b would be a spurious
653 * Further in case of 1 and 2a above, the disk at 'path'
654 * would have missed some transaction when it was away and
655 * in case of 2a the stale bdev has to be updated as well.
656 * 2b must not be allowed at all time.
660 * For now, we do allow update to btrfs_fs_device through the
661 * btrfs dev scan cli after FS has been mounted. We're still
662 * tracking a problem where systems fail mount by subvolume id
663 * when we reject replacement on a mounted FS.
665 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
667 * That is if the FS is _not_ mounted and if you
668 * are here, that means there is more than one
669 * disk with same uuid and devid.We keep the one
670 * with larger generation number or the last-in if
671 * generation are equal.
676 name
= rcu_string_strdup(path
, GFP_NOFS
);
679 rcu_string_free(device
->name
);
680 rcu_assign_pointer(device
->name
, name
);
681 if (device
->missing
) {
682 fs_devices
->missing_devices
--;
688 * Unmount does not free the btrfs_device struct but would zero
689 * generation along with most of the other members. So just update
690 * it back. We need it to pick the disk with largest generation
693 if (!fs_devices
->opened
)
694 device
->generation
= found_transid
;
697 * if there is new btrfs on an already registered device,
698 * then remove the stale device entry.
700 btrfs_free_stale_device(device
);
702 *fs_devices_ret
= fs_devices
;
707 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
709 struct btrfs_fs_devices
*fs_devices
;
710 struct btrfs_device
*device
;
711 struct btrfs_device
*orig_dev
;
713 fs_devices
= alloc_fs_devices(orig
->fsid
);
714 if (IS_ERR(fs_devices
))
717 mutex_lock(&orig
->device_list_mutex
);
718 fs_devices
->total_devices
= orig
->total_devices
;
720 /* We have held the volume lock, it is safe to get the devices. */
721 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
722 struct rcu_string
*name
;
724 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
730 * This is ok to do without rcu read locked because we hold the
731 * uuid mutex so nothing we touch in here is going to disappear.
733 if (orig_dev
->name
) {
734 name
= rcu_string_strdup(orig_dev
->name
->str
, GFP_NOFS
);
739 rcu_assign_pointer(device
->name
, name
);
742 list_add(&device
->dev_list
, &fs_devices
->devices
);
743 device
->fs_devices
= fs_devices
;
744 fs_devices
->num_devices
++;
746 mutex_unlock(&orig
->device_list_mutex
);
749 mutex_unlock(&orig
->device_list_mutex
);
750 free_fs_devices(fs_devices
);
751 return ERR_PTR(-ENOMEM
);
754 void btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
, int step
)
756 struct btrfs_device
*device
, *next
;
757 struct btrfs_device
*latest_dev
= NULL
;
759 mutex_lock(&uuid_mutex
);
761 /* This is the initialized path, it is safe to release the devices. */
762 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
763 if (device
->in_fs_metadata
) {
764 if (!device
->is_tgtdev_for_dev_replace
&&
766 device
->generation
> latest_dev
->generation
)) {
772 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
774 * In the first step, keep the device which has
775 * the correct fsid and the devid that is used
776 * for the dev_replace procedure.
777 * In the second step, the dev_replace state is
778 * read from the device tree and it is known
779 * whether the procedure is really active or
780 * not, which means whether this device is
781 * used or whether it should be removed.
783 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
788 blkdev_put(device
->bdev
, device
->mode
);
790 fs_devices
->open_devices
--;
792 if (device
->writeable
) {
793 list_del_init(&device
->dev_alloc_list
);
794 device
->writeable
= 0;
795 if (!device
->is_tgtdev_for_dev_replace
)
796 fs_devices
->rw_devices
--;
798 list_del_init(&device
->dev_list
);
799 fs_devices
->num_devices
--;
800 rcu_string_free(device
->name
);
804 if (fs_devices
->seed
) {
805 fs_devices
= fs_devices
->seed
;
809 fs_devices
->latest_bdev
= latest_dev
->bdev
;
811 mutex_unlock(&uuid_mutex
);
814 static void __free_device(struct work_struct
*work
)
816 struct btrfs_device
*device
;
818 device
= container_of(work
, struct btrfs_device
, rcu_work
);
821 blkdev_put(device
->bdev
, device
->mode
);
823 rcu_string_free(device
->name
);
827 static void free_device(struct rcu_head
*head
)
829 struct btrfs_device
*device
;
831 device
= container_of(head
, struct btrfs_device
, rcu
);
833 INIT_WORK(&device
->rcu_work
, __free_device
);
834 schedule_work(&device
->rcu_work
);
837 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
839 struct btrfs_device
*device
, *tmp
;
841 if (--fs_devices
->opened
> 0)
844 mutex_lock(&fs_devices
->device_list_mutex
);
845 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
846 btrfs_close_one_device(device
);
848 mutex_unlock(&fs_devices
->device_list_mutex
);
850 WARN_ON(fs_devices
->open_devices
);
851 WARN_ON(fs_devices
->rw_devices
);
852 fs_devices
->opened
= 0;
853 fs_devices
->seeding
= 0;
858 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
860 struct btrfs_fs_devices
*seed_devices
= NULL
;
863 mutex_lock(&uuid_mutex
);
864 ret
= __btrfs_close_devices(fs_devices
);
865 if (!fs_devices
->opened
) {
866 seed_devices
= fs_devices
->seed
;
867 fs_devices
->seed
= NULL
;
869 mutex_unlock(&uuid_mutex
);
871 while (seed_devices
) {
872 fs_devices
= seed_devices
;
873 seed_devices
= fs_devices
->seed
;
874 __btrfs_close_devices(fs_devices
);
875 free_fs_devices(fs_devices
);
878 * Wait for rcu kworkers under __btrfs_close_devices
879 * to finish all blkdev_puts so device is really
880 * free when umount is done.
886 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
887 fmode_t flags
, void *holder
)
889 struct request_queue
*q
;
890 struct block_device
*bdev
;
891 struct list_head
*head
= &fs_devices
->devices
;
892 struct btrfs_device
*device
;
893 struct btrfs_device
*latest_dev
= NULL
;
894 struct buffer_head
*bh
;
895 struct btrfs_super_block
*disk_super
;
902 list_for_each_entry(device
, head
, dev_list
) {
908 /* Just open everything we can; ignore failures here */
909 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
913 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
914 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
915 if (devid
!= device
->devid
)
918 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
922 device
->generation
= btrfs_super_generation(disk_super
);
924 device
->generation
> latest_dev
->generation
)
927 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
928 device
->writeable
= 0;
930 device
->writeable
= !bdev_read_only(bdev
);
934 q
= bdev_get_queue(bdev
);
935 if (blk_queue_discard(q
))
936 device
->can_discard
= 1;
939 device
->in_fs_metadata
= 0;
940 device
->mode
= flags
;
942 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
943 fs_devices
->rotating
= 1;
945 fs_devices
->open_devices
++;
946 if (device
->writeable
&&
947 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
948 fs_devices
->rw_devices
++;
949 list_add(&device
->dev_alloc_list
,
950 &fs_devices
->alloc_list
);
957 blkdev_put(bdev
, flags
);
960 if (fs_devices
->open_devices
== 0) {
964 fs_devices
->seeding
= seeding
;
965 fs_devices
->opened
= 1;
966 fs_devices
->latest_bdev
= latest_dev
->bdev
;
967 fs_devices
->total_rw_bytes
= 0;
972 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
973 fmode_t flags
, void *holder
)
977 mutex_lock(&uuid_mutex
);
978 if (fs_devices
->opened
) {
979 fs_devices
->opened
++;
982 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
984 mutex_unlock(&uuid_mutex
);
989 * Look for a btrfs signature on a device. This may be called out of the mount path
990 * and we are not allowed to call set_blocksize during the scan. The superblock
991 * is read via pagecache
993 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
994 struct btrfs_fs_devices
**fs_devices_ret
)
996 struct btrfs_super_block
*disk_super
;
997 struct block_device
*bdev
;
1008 * we would like to check all the supers, but that would make
1009 * a btrfs mount succeed after a mkfs from a different FS.
1010 * So, we need to add a special mount option to scan for
1011 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1013 bytenr
= btrfs_sb_offset(0);
1014 flags
|= FMODE_EXCL
;
1015 mutex_lock(&uuid_mutex
);
1017 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1020 ret
= PTR_ERR(bdev
);
1024 /* make sure our super fits in the device */
1025 if (bytenr
+ PAGE_CACHE_SIZE
>= i_size_read(bdev
->bd_inode
))
1026 goto error_bdev_put
;
1028 /* make sure our super fits in the page */
1029 if (sizeof(*disk_super
) > PAGE_CACHE_SIZE
)
1030 goto error_bdev_put
;
1032 /* make sure our super doesn't straddle pages on disk */
1033 index
= bytenr
>> PAGE_CACHE_SHIFT
;
1034 if ((bytenr
+ sizeof(*disk_super
) - 1) >> PAGE_CACHE_SHIFT
!= index
)
1035 goto error_bdev_put
;
1037 /* pull in the page with our super */
1038 page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1041 if (IS_ERR_OR_NULL(page
))
1042 goto error_bdev_put
;
1046 /* align our pointer to the offset of the super block */
1047 disk_super
= p
+ (bytenr
& ~PAGE_CACHE_MASK
);
1049 if (btrfs_super_bytenr(disk_super
) != bytenr
||
1050 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
)
1053 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1054 transid
= btrfs_super_generation(disk_super
);
1055 total_devices
= btrfs_super_num_devices(disk_super
);
1057 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
1059 if (disk_super
->label
[0]) {
1060 if (disk_super
->label
[BTRFS_LABEL_SIZE
- 1])
1061 disk_super
->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1062 printk(KERN_INFO
"BTRFS: device label %s ", disk_super
->label
);
1064 printk(KERN_INFO
"BTRFS: device fsid %pU ", disk_super
->fsid
);
1067 printk(KERN_CONT
"devid %llu transid %llu %s\n", devid
, transid
, path
);
1070 if (!ret
&& fs_devices_ret
)
1071 (*fs_devices_ret
)->total_devices
= total_devices
;
1075 page_cache_release(page
);
1078 blkdev_put(bdev
, flags
);
1080 mutex_unlock(&uuid_mutex
);
1084 /* helper to account the used device space in the range */
1085 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1086 u64 end
, u64
*length
)
1088 struct btrfs_key key
;
1089 struct btrfs_root
*root
= device
->dev_root
;
1090 struct btrfs_dev_extent
*dev_extent
;
1091 struct btrfs_path
*path
;
1095 struct extent_buffer
*l
;
1099 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
1102 path
= btrfs_alloc_path();
1107 key
.objectid
= device
->devid
;
1109 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1111 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1115 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1122 slot
= path
->slots
[0];
1123 if (slot
>= btrfs_header_nritems(l
)) {
1124 ret
= btrfs_next_leaf(root
, path
);
1132 btrfs_item_key_to_cpu(l
, &key
, slot
);
1134 if (key
.objectid
< device
->devid
)
1137 if (key
.objectid
> device
->devid
)
1140 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1143 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1144 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1146 if (key
.offset
<= start
&& extent_end
> end
) {
1147 *length
= end
- start
+ 1;
1149 } else if (key
.offset
<= start
&& extent_end
> start
)
1150 *length
+= extent_end
- start
;
1151 else if (key
.offset
> start
&& extent_end
<= end
)
1152 *length
+= extent_end
- key
.offset
;
1153 else if (key
.offset
> start
&& key
.offset
<= end
) {
1154 *length
+= end
- key
.offset
+ 1;
1156 } else if (key
.offset
> end
)
1164 btrfs_free_path(path
);
1168 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1169 struct btrfs_device
*device
,
1170 u64
*start
, u64 len
)
1172 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
1173 struct extent_map
*em
;
1174 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1176 u64 physical_start
= *start
;
1179 search_list
= &transaction
->pending_chunks
;
1181 list_for_each_entry(em
, search_list
, list
) {
1182 struct map_lookup
*map
;
1185 map
= (struct map_lookup
*)em
->bdev
;
1186 for (i
= 0; i
< map
->num_stripes
; i
++) {
1189 if (map
->stripes
[i
].dev
!= device
)
1191 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1192 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1196 * Make sure that while processing the pinned list we do
1197 * not override our *start with a lower value, because
1198 * we can have pinned chunks that fall within this
1199 * device hole and that have lower physical addresses
1200 * than the pending chunks we processed before. If we
1201 * do not take this special care we can end up getting
1202 * 2 pending chunks that start at the same physical
1203 * device offsets because the end offset of a pinned
1204 * chunk can be equal to the start offset of some
1207 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1214 if (search_list
!= &fs_info
->pinned_chunks
) {
1215 search_list
= &fs_info
->pinned_chunks
;
1224 * find_free_dev_extent_start - find free space in the specified device
1225 * @device: the device which we search the free space in
1226 * @num_bytes: the size of the free space that we need
1227 * @search_start: the position from which to begin the search
1228 * @start: store the start of the free space.
1229 * @len: the size of the free space. that we find, or the size
1230 * of the max free space if we don't find suitable free space
1232 * this uses a pretty simple search, the expectation is that it is
1233 * called very infrequently and that a given device has a small number
1236 * @start is used to store the start of the free space if we find. But if we
1237 * don't find suitable free space, it will be used to store the start position
1238 * of the max free space.
1240 * @len is used to store the size of the free space that we find.
1241 * But if we don't find suitable free space, it is used to store the size of
1242 * the max free space.
1244 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1245 struct btrfs_device
*device
, u64 num_bytes
,
1246 u64 search_start
, u64
*start
, u64
*len
)
1248 struct btrfs_key key
;
1249 struct btrfs_root
*root
= device
->dev_root
;
1250 struct btrfs_dev_extent
*dev_extent
;
1251 struct btrfs_path
*path
;
1256 u64 search_end
= device
->total_bytes
;
1259 struct extent_buffer
*l
;
1261 path
= btrfs_alloc_path();
1265 max_hole_start
= search_start
;
1269 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1275 path
->search_commit_root
= 1;
1276 path
->skip_locking
= 1;
1278 key
.objectid
= device
->devid
;
1279 key
.offset
= search_start
;
1280 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1282 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1286 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1293 slot
= path
->slots
[0];
1294 if (slot
>= btrfs_header_nritems(l
)) {
1295 ret
= btrfs_next_leaf(root
, path
);
1303 btrfs_item_key_to_cpu(l
, &key
, slot
);
1305 if (key
.objectid
< device
->devid
)
1308 if (key
.objectid
> device
->devid
)
1311 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1314 if (key
.offset
> search_start
) {
1315 hole_size
= key
.offset
- search_start
;
1318 * Have to check before we set max_hole_start, otherwise
1319 * we could end up sending back this offset anyway.
1321 if (contains_pending_extent(transaction
, device
,
1324 if (key
.offset
>= search_start
) {
1325 hole_size
= key
.offset
- search_start
;
1332 if (hole_size
> max_hole_size
) {
1333 max_hole_start
= search_start
;
1334 max_hole_size
= hole_size
;
1338 * If this free space is greater than which we need,
1339 * it must be the max free space that we have found
1340 * until now, so max_hole_start must point to the start
1341 * of this free space and the length of this free space
1342 * is stored in max_hole_size. Thus, we return
1343 * max_hole_start and max_hole_size and go back to the
1346 if (hole_size
>= num_bytes
) {
1352 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1353 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1355 if (extent_end
> search_start
)
1356 search_start
= extent_end
;
1363 * At this point, search_start should be the end of
1364 * allocated dev extents, and when shrinking the device,
1365 * search_end may be smaller than search_start.
1367 if (search_end
> search_start
) {
1368 hole_size
= search_end
- search_start
;
1370 if (contains_pending_extent(transaction
, device
, &search_start
,
1372 btrfs_release_path(path
);
1376 if (hole_size
> max_hole_size
) {
1377 max_hole_start
= search_start
;
1378 max_hole_size
= hole_size
;
1383 if (max_hole_size
< num_bytes
)
1389 btrfs_free_path(path
);
1390 *start
= max_hole_start
;
1392 *len
= max_hole_size
;
1396 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1397 struct btrfs_device
*device
, u64 num_bytes
,
1398 u64
*start
, u64
*len
)
1400 struct btrfs_root
*root
= device
->dev_root
;
1403 /* FIXME use last free of some kind */
1406 * we don't want to overwrite the superblock on the drive,
1407 * so we make sure to start at an offset of at least 1MB
1409 search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1410 return find_free_dev_extent_start(trans
->transaction
, device
,
1411 num_bytes
, search_start
, start
, len
);
1414 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1415 struct btrfs_device
*device
,
1416 u64 start
, u64
*dev_extent_len
)
1419 struct btrfs_path
*path
;
1420 struct btrfs_root
*root
= device
->dev_root
;
1421 struct btrfs_key key
;
1422 struct btrfs_key found_key
;
1423 struct extent_buffer
*leaf
= NULL
;
1424 struct btrfs_dev_extent
*extent
= NULL
;
1426 path
= btrfs_alloc_path();
1430 key
.objectid
= device
->devid
;
1432 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1434 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1436 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1437 BTRFS_DEV_EXTENT_KEY
);
1440 leaf
= path
->nodes
[0];
1441 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1442 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1443 struct btrfs_dev_extent
);
1444 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1445 btrfs_dev_extent_length(leaf
, extent
) < start
);
1447 btrfs_release_path(path
);
1449 } else if (ret
== 0) {
1450 leaf
= path
->nodes
[0];
1451 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1452 struct btrfs_dev_extent
);
1454 btrfs_std_error(root
->fs_info
, ret
, "Slot search failed");
1458 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1460 ret
= btrfs_del_item(trans
, root
, path
);
1462 btrfs_std_error(root
->fs_info
, ret
,
1463 "Failed to remove dev extent item");
1465 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1468 btrfs_free_path(path
);
1472 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1473 struct btrfs_device
*device
,
1474 u64 chunk_tree
, u64 chunk_objectid
,
1475 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1478 struct btrfs_path
*path
;
1479 struct btrfs_root
*root
= device
->dev_root
;
1480 struct btrfs_dev_extent
*extent
;
1481 struct extent_buffer
*leaf
;
1482 struct btrfs_key key
;
1484 WARN_ON(!device
->in_fs_metadata
);
1485 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1486 path
= btrfs_alloc_path();
1490 key
.objectid
= device
->devid
;
1492 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1493 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1498 leaf
= path
->nodes
[0];
1499 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1500 struct btrfs_dev_extent
);
1501 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1502 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1503 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1505 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1506 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1508 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1509 btrfs_mark_buffer_dirty(leaf
);
1511 btrfs_free_path(path
);
1515 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1517 struct extent_map_tree
*em_tree
;
1518 struct extent_map
*em
;
1522 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1523 read_lock(&em_tree
->lock
);
1524 n
= rb_last(&em_tree
->map
);
1526 em
= rb_entry(n
, struct extent_map
, rb_node
);
1527 ret
= em
->start
+ em
->len
;
1529 read_unlock(&em_tree
->lock
);
1534 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1538 struct btrfs_key key
;
1539 struct btrfs_key found_key
;
1540 struct btrfs_path
*path
;
1542 path
= btrfs_alloc_path();
1546 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1547 key
.type
= BTRFS_DEV_ITEM_KEY
;
1548 key
.offset
= (u64
)-1;
1550 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1554 BUG_ON(ret
== 0); /* Corruption */
1556 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1557 BTRFS_DEV_ITEMS_OBJECTID
,
1558 BTRFS_DEV_ITEM_KEY
);
1562 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1564 *devid_ret
= found_key
.offset
+ 1;
1568 btrfs_free_path(path
);
1573 * the device information is stored in the chunk root
1574 * the btrfs_device struct should be fully filled in
1576 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1577 struct btrfs_root
*root
,
1578 struct btrfs_device
*device
)
1581 struct btrfs_path
*path
;
1582 struct btrfs_dev_item
*dev_item
;
1583 struct extent_buffer
*leaf
;
1584 struct btrfs_key key
;
1587 root
= root
->fs_info
->chunk_root
;
1589 path
= btrfs_alloc_path();
1593 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1594 key
.type
= BTRFS_DEV_ITEM_KEY
;
1595 key
.offset
= device
->devid
;
1597 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1602 leaf
= path
->nodes
[0];
1603 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1605 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1606 btrfs_set_device_generation(leaf
, dev_item
, 0);
1607 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1608 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1609 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1610 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1611 btrfs_set_device_total_bytes(leaf
, dev_item
,
1612 btrfs_device_get_disk_total_bytes(device
));
1613 btrfs_set_device_bytes_used(leaf
, dev_item
,
1614 btrfs_device_get_bytes_used(device
));
1615 btrfs_set_device_group(leaf
, dev_item
, 0);
1616 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1617 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1618 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1620 ptr
= btrfs_device_uuid(dev_item
);
1621 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1622 ptr
= btrfs_device_fsid(dev_item
);
1623 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1624 btrfs_mark_buffer_dirty(leaf
);
1628 btrfs_free_path(path
);
1633 * Function to update ctime/mtime for a given device path.
1634 * Mainly used for ctime/mtime based probe like libblkid.
1636 static void update_dev_time(char *path_name
)
1640 filp
= filp_open(path_name
, O_RDWR
, 0);
1643 file_update_time(filp
);
1644 filp_close(filp
, NULL
);
1648 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1649 struct btrfs_device
*device
)
1652 struct btrfs_path
*path
;
1653 struct btrfs_key key
;
1654 struct btrfs_trans_handle
*trans
;
1656 root
= root
->fs_info
->chunk_root
;
1658 path
= btrfs_alloc_path();
1662 trans
= btrfs_start_transaction(root
, 0);
1663 if (IS_ERR(trans
)) {
1664 btrfs_free_path(path
);
1665 return PTR_ERR(trans
);
1667 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1668 key
.type
= BTRFS_DEV_ITEM_KEY
;
1669 key
.offset
= device
->devid
;
1671 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1680 ret
= btrfs_del_item(trans
, root
, path
);
1684 btrfs_free_path(path
);
1685 btrfs_commit_transaction(trans
, root
);
1689 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1691 struct btrfs_device
*device
;
1692 struct btrfs_device
*next_device
;
1693 struct block_device
*bdev
;
1694 struct buffer_head
*bh
= NULL
;
1695 struct btrfs_super_block
*disk_super
;
1696 struct btrfs_fs_devices
*cur_devices
;
1703 bool clear_super
= false;
1705 mutex_lock(&uuid_mutex
);
1708 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
1710 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1711 root
->fs_info
->avail_system_alloc_bits
|
1712 root
->fs_info
->avail_metadata_alloc_bits
;
1713 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
1715 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1716 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
);
1717 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1718 WARN_ON(num_devices
< 1);
1721 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
);
1723 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) && num_devices
<= 4) {
1724 ret
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
;
1728 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) && num_devices
<= 2) {
1729 ret
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
;
1733 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID5
) &&
1734 root
->fs_info
->fs_devices
->rw_devices
<= 2) {
1735 ret
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
;
1738 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID6
) &&
1739 root
->fs_info
->fs_devices
->rw_devices
<= 3) {
1740 ret
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
;
1744 if (strcmp(device_path
, "missing") == 0) {
1745 struct list_head
*devices
;
1746 struct btrfs_device
*tmp
;
1749 devices
= &root
->fs_info
->fs_devices
->devices
;
1751 * It is safe to read the devices since the volume_mutex
1754 list_for_each_entry(tmp
, devices
, dev_list
) {
1755 if (tmp
->in_fs_metadata
&&
1756 !tmp
->is_tgtdev_for_dev_replace
&&
1766 ret
= BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
1770 ret
= btrfs_get_bdev_and_sb(device_path
,
1771 FMODE_WRITE
| FMODE_EXCL
,
1772 root
->fs_info
->bdev_holder
, 0,
1776 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1777 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1778 dev_uuid
= disk_super
->dev_item
.uuid
;
1779 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1787 if (device
->is_tgtdev_for_dev_replace
) {
1788 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1792 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1793 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1797 if (device
->writeable
) {
1799 list_del_init(&device
->dev_alloc_list
);
1800 device
->fs_devices
->rw_devices
--;
1801 unlock_chunks(root
);
1805 mutex_unlock(&uuid_mutex
);
1806 ret
= btrfs_shrink_device(device
, 0);
1807 mutex_lock(&uuid_mutex
);
1812 * TODO: the superblock still includes this device in its num_devices
1813 * counter although write_all_supers() is not locked out. This
1814 * could give a filesystem state which requires a degraded mount.
1816 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1820 device
->in_fs_metadata
= 0;
1821 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1824 * the device list mutex makes sure that we don't change
1825 * the device list while someone else is writing out all
1826 * the device supers. Whoever is writing all supers, should
1827 * lock the device list mutex before getting the number of
1828 * devices in the super block (super_copy). Conversely,
1829 * whoever updates the number of devices in the super block
1830 * (super_copy) should hold the device list mutex.
1833 cur_devices
= device
->fs_devices
;
1834 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1835 list_del_rcu(&device
->dev_list
);
1837 device
->fs_devices
->num_devices
--;
1838 device
->fs_devices
->total_devices
--;
1840 if (device
->missing
)
1841 device
->fs_devices
->missing_devices
--;
1843 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1844 struct btrfs_device
, dev_list
);
1845 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1846 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1847 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1848 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1851 device
->fs_devices
->open_devices
--;
1852 /* remove sysfs entry */
1853 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
1856 call_rcu(&device
->rcu
, free_device
);
1858 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1859 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1860 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1862 if (cur_devices
->open_devices
== 0) {
1863 struct btrfs_fs_devices
*fs_devices
;
1864 fs_devices
= root
->fs_info
->fs_devices
;
1865 while (fs_devices
) {
1866 if (fs_devices
->seed
== cur_devices
) {
1867 fs_devices
->seed
= cur_devices
->seed
;
1870 fs_devices
= fs_devices
->seed
;
1872 cur_devices
->seed
= NULL
;
1873 __btrfs_close_devices(cur_devices
);
1874 free_fs_devices(cur_devices
);
1877 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1878 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1881 * at this point, the device is zero sized. We want to
1882 * remove it from the devices list and zero out the old super
1884 if (clear_super
&& disk_super
) {
1888 /* make sure this device isn't detected as part of
1891 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1892 set_buffer_dirty(bh
);
1893 sync_dirty_buffer(bh
);
1895 /* clear the mirror copies of super block on the disk
1896 * being removed, 0th copy is been taken care above and
1897 * the below would take of the rest
1899 for (i
= 1; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
1900 bytenr
= btrfs_sb_offset(i
);
1901 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
1902 i_size_read(bdev
->bd_inode
))
1906 bh
= __bread(bdev
, bytenr
/ 4096,
1907 BTRFS_SUPER_INFO_SIZE
);
1911 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1913 if (btrfs_super_bytenr(disk_super
) != bytenr
||
1914 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
1917 memset(&disk_super
->magic
, 0,
1918 sizeof(disk_super
->magic
));
1919 set_buffer_dirty(bh
);
1920 sync_dirty_buffer(bh
);
1927 /* Notify udev that device has changed */
1928 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
1930 /* Update ctime/mtime for device path for libblkid */
1931 update_dev_time(device_path
);
1937 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1939 mutex_unlock(&uuid_mutex
);
1942 if (device
->writeable
) {
1944 list_add(&device
->dev_alloc_list
,
1945 &root
->fs_info
->fs_devices
->alloc_list
);
1946 device
->fs_devices
->rw_devices
++;
1947 unlock_chunks(root
);
1952 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1953 struct btrfs_device
*srcdev
)
1955 struct btrfs_fs_devices
*fs_devices
;
1957 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1960 * in case of fs with no seed, srcdev->fs_devices will point
1961 * to fs_devices of fs_info. However when the dev being replaced is
1962 * a seed dev it will point to the seed's local fs_devices. In short
1963 * srcdev will have its correct fs_devices in both the cases.
1965 fs_devices
= srcdev
->fs_devices
;
1967 list_del_rcu(&srcdev
->dev_list
);
1968 list_del_rcu(&srcdev
->dev_alloc_list
);
1969 fs_devices
->num_devices
--;
1970 if (srcdev
->missing
)
1971 fs_devices
->missing_devices
--;
1973 if (srcdev
->writeable
) {
1974 fs_devices
->rw_devices
--;
1975 /* zero out the old super if it is writable */
1976 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
1980 fs_devices
->open_devices
--;
1983 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
1984 struct btrfs_device
*srcdev
)
1986 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
1988 call_rcu(&srcdev
->rcu
, free_device
);
1991 * unless fs_devices is seed fs, num_devices shouldn't go
1994 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
1996 /* if this is no devs we rather delete the fs_devices */
1997 if (!fs_devices
->num_devices
) {
1998 struct btrfs_fs_devices
*tmp_fs_devices
;
2000 tmp_fs_devices
= fs_info
->fs_devices
;
2001 while (tmp_fs_devices
) {
2002 if (tmp_fs_devices
->seed
== fs_devices
) {
2003 tmp_fs_devices
->seed
= fs_devices
->seed
;
2006 tmp_fs_devices
= tmp_fs_devices
->seed
;
2008 fs_devices
->seed
= NULL
;
2009 __btrfs_close_devices(fs_devices
);
2010 free_fs_devices(fs_devices
);
2014 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2015 struct btrfs_device
*tgtdev
)
2017 struct btrfs_device
*next_device
;
2019 mutex_lock(&uuid_mutex
);
2021 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2023 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, tgtdev
);
2026 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2027 fs_info
->fs_devices
->open_devices
--;
2029 fs_info
->fs_devices
->num_devices
--;
2031 next_device
= list_entry(fs_info
->fs_devices
->devices
.next
,
2032 struct btrfs_device
, dev_list
);
2033 if (tgtdev
->bdev
== fs_info
->sb
->s_bdev
)
2034 fs_info
->sb
->s_bdev
= next_device
->bdev
;
2035 if (tgtdev
->bdev
== fs_info
->fs_devices
->latest_bdev
)
2036 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
2037 list_del_rcu(&tgtdev
->dev_list
);
2039 call_rcu(&tgtdev
->rcu
, free_device
);
2041 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2042 mutex_unlock(&uuid_mutex
);
2045 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
2046 struct btrfs_device
**device
)
2049 struct btrfs_super_block
*disk_super
;
2052 struct block_device
*bdev
;
2053 struct buffer_head
*bh
;
2056 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2057 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2060 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2061 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2062 dev_uuid
= disk_super
->dev_item
.uuid
;
2063 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2068 blkdev_put(bdev
, FMODE_READ
);
2072 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
2074 struct btrfs_device
**device
)
2077 if (strcmp(device_path
, "missing") == 0) {
2078 struct list_head
*devices
;
2079 struct btrfs_device
*tmp
;
2081 devices
= &root
->fs_info
->fs_devices
->devices
;
2083 * It is safe to read the devices since the volume_mutex
2084 * is held by the caller.
2086 list_for_each_entry(tmp
, devices
, dev_list
) {
2087 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
2094 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2098 return btrfs_find_device_by_path(root
, device_path
, device
);
2103 * does all the dirty work required for changing file system's UUID.
2105 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
2107 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2108 struct btrfs_fs_devices
*old_devices
;
2109 struct btrfs_fs_devices
*seed_devices
;
2110 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
2111 struct btrfs_device
*device
;
2114 BUG_ON(!mutex_is_locked(&uuid_mutex
));
2115 if (!fs_devices
->seeding
)
2118 seed_devices
= __alloc_fs_devices();
2119 if (IS_ERR(seed_devices
))
2120 return PTR_ERR(seed_devices
);
2122 old_devices
= clone_fs_devices(fs_devices
);
2123 if (IS_ERR(old_devices
)) {
2124 kfree(seed_devices
);
2125 return PTR_ERR(old_devices
);
2128 list_add(&old_devices
->list
, &fs_uuids
);
2130 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2131 seed_devices
->opened
= 1;
2132 INIT_LIST_HEAD(&seed_devices
->devices
);
2133 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2134 mutex_init(&seed_devices
->device_list_mutex
);
2136 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2137 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2139 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2140 device
->fs_devices
= seed_devices
;
2143 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2144 unlock_chunks(root
);
2146 fs_devices
->seeding
= 0;
2147 fs_devices
->num_devices
= 0;
2148 fs_devices
->open_devices
= 0;
2149 fs_devices
->missing_devices
= 0;
2150 fs_devices
->rotating
= 0;
2151 fs_devices
->seed
= seed_devices
;
2153 generate_random_uuid(fs_devices
->fsid
);
2154 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2155 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2156 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2158 super_flags
= btrfs_super_flags(disk_super
) &
2159 ~BTRFS_SUPER_FLAG_SEEDING
;
2160 btrfs_set_super_flags(disk_super
, super_flags
);
2166 * strore the expected generation for seed devices in device items.
2168 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2169 struct btrfs_root
*root
)
2171 struct btrfs_path
*path
;
2172 struct extent_buffer
*leaf
;
2173 struct btrfs_dev_item
*dev_item
;
2174 struct btrfs_device
*device
;
2175 struct btrfs_key key
;
2176 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2177 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2181 path
= btrfs_alloc_path();
2185 root
= root
->fs_info
->chunk_root
;
2186 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2188 key
.type
= BTRFS_DEV_ITEM_KEY
;
2191 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2195 leaf
= path
->nodes
[0];
2197 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2198 ret
= btrfs_next_leaf(root
, path
);
2203 leaf
= path
->nodes
[0];
2204 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2205 btrfs_release_path(path
);
2209 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2210 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2211 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2214 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2215 struct btrfs_dev_item
);
2216 devid
= btrfs_device_id(leaf
, dev_item
);
2217 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2219 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2221 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2223 BUG_ON(!device
); /* Logic error */
2225 if (device
->fs_devices
->seeding
) {
2226 btrfs_set_device_generation(leaf
, dev_item
,
2227 device
->generation
);
2228 btrfs_mark_buffer_dirty(leaf
);
2236 btrfs_free_path(path
);
2240 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
2242 struct request_queue
*q
;
2243 struct btrfs_trans_handle
*trans
;
2244 struct btrfs_device
*device
;
2245 struct block_device
*bdev
;
2246 struct list_head
*devices
;
2247 struct super_block
*sb
= root
->fs_info
->sb
;
2248 struct rcu_string
*name
;
2250 int seeding_dev
= 0;
2253 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
2256 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2257 root
->fs_info
->bdev_holder
);
2259 return PTR_ERR(bdev
);
2261 if (root
->fs_info
->fs_devices
->seeding
) {
2263 down_write(&sb
->s_umount
);
2264 mutex_lock(&uuid_mutex
);
2267 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2269 devices
= &root
->fs_info
->fs_devices
->devices
;
2271 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2272 list_for_each_entry(device
, devices
, dev_list
) {
2273 if (device
->bdev
== bdev
) {
2276 &root
->fs_info
->fs_devices
->device_list_mutex
);
2280 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2282 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2283 if (IS_ERR(device
)) {
2284 /* we can safely leave the fs_devices entry around */
2285 ret
= PTR_ERR(device
);
2289 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2295 rcu_assign_pointer(device
->name
, name
);
2297 trans
= btrfs_start_transaction(root
, 0);
2298 if (IS_ERR(trans
)) {
2299 rcu_string_free(device
->name
);
2301 ret
= PTR_ERR(trans
);
2305 q
= bdev_get_queue(bdev
);
2306 if (blk_queue_discard(q
))
2307 device
->can_discard
= 1;
2308 device
->writeable
= 1;
2309 device
->generation
= trans
->transid
;
2310 device
->io_width
= root
->sectorsize
;
2311 device
->io_align
= root
->sectorsize
;
2312 device
->sector_size
= root
->sectorsize
;
2313 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2314 device
->disk_total_bytes
= device
->total_bytes
;
2315 device
->commit_total_bytes
= device
->total_bytes
;
2316 device
->dev_root
= root
->fs_info
->dev_root
;
2317 device
->bdev
= bdev
;
2318 device
->in_fs_metadata
= 1;
2319 device
->is_tgtdev_for_dev_replace
= 0;
2320 device
->mode
= FMODE_EXCL
;
2321 device
->dev_stats_valid
= 1;
2322 set_blocksize(device
->bdev
, 4096);
2325 sb
->s_flags
&= ~MS_RDONLY
;
2326 ret
= btrfs_prepare_sprout(root
);
2327 BUG_ON(ret
); /* -ENOMEM */
2330 device
->fs_devices
= root
->fs_info
->fs_devices
;
2332 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2334 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2335 list_add(&device
->dev_alloc_list
,
2336 &root
->fs_info
->fs_devices
->alloc_list
);
2337 root
->fs_info
->fs_devices
->num_devices
++;
2338 root
->fs_info
->fs_devices
->open_devices
++;
2339 root
->fs_info
->fs_devices
->rw_devices
++;
2340 root
->fs_info
->fs_devices
->total_devices
++;
2341 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2343 spin_lock(&root
->fs_info
->free_chunk_lock
);
2344 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2345 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2347 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2348 root
->fs_info
->fs_devices
->rotating
= 1;
2350 tmp
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2351 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2352 tmp
+ device
->total_bytes
);
2354 tmp
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2355 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2358 /* add sysfs device entry */
2359 btrfs_sysfs_add_device_link(root
->fs_info
->fs_devices
, device
);
2362 * we've got more storage, clear any full flags on the space
2365 btrfs_clear_space_info_full(root
->fs_info
);
2367 unlock_chunks(root
);
2368 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2372 ret
= init_first_rw_device(trans
, root
, device
);
2373 unlock_chunks(root
);
2375 btrfs_abort_transaction(trans
, root
, ret
);
2380 ret
= btrfs_add_device(trans
, root
, device
);
2382 btrfs_abort_transaction(trans
, root
, ret
);
2387 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2389 ret
= btrfs_finish_sprout(trans
, root
);
2391 btrfs_abort_transaction(trans
, root
, ret
);
2395 /* Sprouting would change fsid of the mounted root,
2396 * so rename the fsid on the sysfs
2398 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2399 root
->fs_info
->fsid
);
2400 if (kobject_rename(&root
->fs_info
->fs_devices
->fsid_kobj
,
2402 btrfs_warn(root
->fs_info
,
2403 "sysfs: failed to create fsid for sprout");
2406 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2407 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2408 ret
= btrfs_commit_transaction(trans
, root
);
2411 mutex_unlock(&uuid_mutex
);
2412 up_write(&sb
->s_umount
);
2414 if (ret
) /* transaction commit */
2417 ret
= btrfs_relocate_sys_chunks(root
);
2419 btrfs_std_error(root
->fs_info
, ret
,
2420 "Failed to relocate sys chunks after "
2421 "device initialization. This can be fixed "
2422 "using the \"btrfs balance\" command.");
2423 trans
= btrfs_attach_transaction(root
);
2424 if (IS_ERR(trans
)) {
2425 if (PTR_ERR(trans
) == -ENOENT
)
2427 return PTR_ERR(trans
);
2429 ret
= btrfs_commit_transaction(trans
, root
);
2432 /* Update ctime/mtime for libblkid */
2433 update_dev_time(device_path
);
2437 btrfs_end_transaction(trans
, root
);
2438 rcu_string_free(device
->name
);
2439 btrfs_sysfs_rm_device_link(root
->fs_info
->fs_devices
, device
);
2442 blkdev_put(bdev
, FMODE_EXCL
);
2444 mutex_unlock(&uuid_mutex
);
2445 up_write(&sb
->s_umount
);
2450 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2451 struct btrfs_device
*srcdev
,
2452 struct btrfs_device
**device_out
)
2454 struct request_queue
*q
;
2455 struct btrfs_device
*device
;
2456 struct block_device
*bdev
;
2457 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2458 struct list_head
*devices
;
2459 struct rcu_string
*name
;
2460 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2464 if (fs_info
->fs_devices
->seeding
) {
2465 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2469 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2470 fs_info
->bdev_holder
);
2472 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2473 return PTR_ERR(bdev
);
2476 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2478 devices
= &fs_info
->fs_devices
->devices
;
2479 list_for_each_entry(device
, devices
, dev_list
) {
2480 if (device
->bdev
== bdev
) {
2481 btrfs_err(fs_info
, "target device is in the filesystem!");
2488 if (i_size_read(bdev
->bd_inode
) <
2489 btrfs_device_get_total_bytes(srcdev
)) {
2490 btrfs_err(fs_info
, "target device is smaller than source device!");
2496 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2497 if (IS_ERR(device
)) {
2498 ret
= PTR_ERR(device
);
2502 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2508 rcu_assign_pointer(device
->name
, name
);
2510 q
= bdev_get_queue(bdev
);
2511 if (blk_queue_discard(q
))
2512 device
->can_discard
= 1;
2513 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2514 device
->writeable
= 1;
2515 device
->generation
= 0;
2516 device
->io_width
= root
->sectorsize
;
2517 device
->io_align
= root
->sectorsize
;
2518 device
->sector_size
= root
->sectorsize
;
2519 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2520 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2521 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2522 ASSERT(list_empty(&srcdev
->resized_list
));
2523 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2524 device
->commit_bytes_used
= device
->bytes_used
;
2525 device
->dev_root
= fs_info
->dev_root
;
2526 device
->bdev
= bdev
;
2527 device
->in_fs_metadata
= 1;
2528 device
->is_tgtdev_for_dev_replace
= 1;
2529 device
->mode
= FMODE_EXCL
;
2530 device
->dev_stats_valid
= 1;
2531 set_blocksize(device
->bdev
, 4096);
2532 device
->fs_devices
= fs_info
->fs_devices
;
2533 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2534 fs_info
->fs_devices
->num_devices
++;
2535 fs_info
->fs_devices
->open_devices
++;
2536 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2538 *device_out
= device
;
2542 blkdev_put(bdev
, FMODE_EXCL
);
2546 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2547 struct btrfs_device
*tgtdev
)
2549 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2550 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2551 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2552 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2553 tgtdev
->dev_root
= fs_info
->dev_root
;
2554 tgtdev
->in_fs_metadata
= 1;
2557 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2558 struct btrfs_device
*device
)
2561 struct btrfs_path
*path
;
2562 struct btrfs_root
*root
;
2563 struct btrfs_dev_item
*dev_item
;
2564 struct extent_buffer
*leaf
;
2565 struct btrfs_key key
;
2567 root
= device
->dev_root
->fs_info
->chunk_root
;
2569 path
= btrfs_alloc_path();
2573 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2574 key
.type
= BTRFS_DEV_ITEM_KEY
;
2575 key
.offset
= device
->devid
;
2577 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2586 leaf
= path
->nodes
[0];
2587 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2589 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2590 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2591 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2592 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2593 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2594 btrfs_set_device_total_bytes(leaf
, dev_item
,
2595 btrfs_device_get_disk_total_bytes(device
));
2596 btrfs_set_device_bytes_used(leaf
, dev_item
,
2597 btrfs_device_get_bytes_used(device
));
2598 btrfs_mark_buffer_dirty(leaf
);
2601 btrfs_free_path(path
);
2605 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2606 struct btrfs_device
*device
, u64 new_size
)
2608 struct btrfs_super_block
*super_copy
=
2609 device
->dev_root
->fs_info
->super_copy
;
2610 struct btrfs_fs_devices
*fs_devices
;
2614 if (!device
->writeable
)
2617 lock_chunks(device
->dev_root
);
2618 old_total
= btrfs_super_total_bytes(super_copy
);
2619 diff
= new_size
- device
->total_bytes
;
2621 if (new_size
<= device
->total_bytes
||
2622 device
->is_tgtdev_for_dev_replace
) {
2623 unlock_chunks(device
->dev_root
);
2627 fs_devices
= device
->dev_root
->fs_info
->fs_devices
;
2629 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2630 device
->fs_devices
->total_rw_bytes
+= diff
;
2632 btrfs_device_set_total_bytes(device
, new_size
);
2633 btrfs_device_set_disk_total_bytes(device
, new_size
);
2634 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2635 if (list_empty(&device
->resized_list
))
2636 list_add_tail(&device
->resized_list
,
2637 &fs_devices
->resized_devices
);
2638 unlock_chunks(device
->dev_root
);
2640 return btrfs_update_device(trans
, device
);
2643 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2644 struct btrfs_root
*root
, u64 chunk_objectid
,
2648 struct btrfs_path
*path
;
2649 struct btrfs_key key
;
2651 root
= root
->fs_info
->chunk_root
;
2652 path
= btrfs_alloc_path();
2656 key
.objectid
= chunk_objectid
;
2657 key
.offset
= chunk_offset
;
2658 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2660 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2663 else if (ret
> 0) { /* Logic error or corruption */
2664 btrfs_std_error(root
->fs_info
, -ENOENT
,
2665 "Failed lookup while freeing chunk.");
2670 ret
= btrfs_del_item(trans
, root
, path
);
2672 btrfs_std_error(root
->fs_info
, ret
,
2673 "Failed to delete chunk item.");
2675 btrfs_free_path(path
);
2679 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2682 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2683 struct btrfs_disk_key
*disk_key
;
2684 struct btrfs_chunk
*chunk
;
2691 struct btrfs_key key
;
2694 array_size
= btrfs_super_sys_array_size(super_copy
);
2696 ptr
= super_copy
->sys_chunk_array
;
2699 while (cur
< array_size
) {
2700 disk_key
= (struct btrfs_disk_key
*)ptr
;
2701 btrfs_disk_key_to_cpu(&key
, disk_key
);
2703 len
= sizeof(*disk_key
);
2705 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2706 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2707 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2708 len
+= btrfs_chunk_item_size(num_stripes
);
2713 if (key
.objectid
== chunk_objectid
&&
2714 key
.offset
== chunk_offset
) {
2715 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2717 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2723 unlock_chunks(root
);
2727 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2728 struct btrfs_root
*root
, u64 chunk_offset
)
2730 struct extent_map_tree
*em_tree
;
2731 struct extent_map
*em
;
2732 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2733 struct map_lookup
*map
;
2734 u64 dev_extent_len
= 0;
2735 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2739 root
= root
->fs_info
->chunk_root
;
2740 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2742 read_lock(&em_tree
->lock
);
2743 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2744 read_unlock(&em_tree
->lock
);
2746 if (!em
|| em
->start
> chunk_offset
||
2747 em
->start
+ em
->len
< chunk_offset
) {
2749 * This is a logic error, but we don't want to just rely on the
2750 * user having built with ASSERT enabled, so if ASSERT doens't
2751 * do anything we still error out.
2755 free_extent_map(em
);
2758 map
= (struct map_lookup
*)em
->bdev
;
2759 lock_chunks(root
->fs_info
->chunk_root
);
2760 check_system_chunk(trans
, extent_root
, map
->type
);
2761 unlock_chunks(root
->fs_info
->chunk_root
);
2763 for (i
= 0; i
< map
->num_stripes
; i
++) {
2764 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2765 ret
= btrfs_free_dev_extent(trans
, device
,
2766 map
->stripes
[i
].physical
,
2769 btrfs_abort_transaction(trans
, root
, ret
);
2773 if (device
->bytes_used
> 0) {
2775 btrfs_device_set_bytes_used(device
,
2776 device
->bytes_used
- dev_extent_len
);
2777 spin_lock(&root
->fs_info
->free_chunk_lock
);
2778 root
->fs_info
->free_chunk_space
+= dev_extent_len
;
2779 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2780 btrfs_clear_space_info_full(root
->fs_info
);
2781 unlock_chunks(root
);
2784 if (map
->stripes
[i
].dev
) {
2785 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2787 btrfs_abort_transaction(trans
, root
, ret
);
2792 ret
= btrfs_free_chunk(trans
, root
, chunk_objectid
, chunk_offset
);
2794 btrfs_abort_transaction(trans
, root
, ret
);
2798 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2800 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2801 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2803 btrfs_abort_transaction(trans
, root
, ret
);
2808 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
, em
);
2810 btrfs_abort_transaction(trans
, extent_root
, ret
);
2816 free_extent_map(em
);
2820 static int btrfs_relocate_chunk(struct btrfs_root
*root
, u64 chunk_offset
)
2822 struct btrfs_root
*extent_root
;
2823 struct btrfs_trans_handle
*trans
;
2826 root
= root
->fs_info
->chunk_root
;
2827 extent_root
= root
->fs_info
->extent_root
;
2830 * Prevent races with automatic removal of unused block groups.
2831 * After we relocate and before we remove the chunk with offset
2832 * chunk_offset, automatic removal of the block group can kick in,
2833 * resulting in a failure when calling btrfs_remove_chunk() below.
2835 * Make sure to acquire this mutex before doing a tree search (dev
2836 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2837 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2838 * we release the path used to search the chunk/dev tree and before
2839 * the current task acquires this mutex and calls us.
2841 ASSERT(mutex_is_locked(&root
->fs_info
->delete_unused_bgs_mutex
));
2843 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2847 /* step one, relocate all the extents inside this chunk */
2848 btrfs_scrub_pause(root
);
2849 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2850 btrfs_scrub_continue(root
);
2854 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2856 if (IS_ERR(trans
)) {
2857 ret
= PTR_ERR(trans
);
2858 btrfs_std_error(root
->fs_info
, ret
, NULL
);
2863 * step two, delete the device extents and the
2864 * chunk tree entries
2866 ret
= btrfs_remove_chunk(trans
, root
, chunk_offset
);
2867 btrfs_end_transaction(trans
, root
);
2871 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2873 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2874 struct btrfs_path
*path
;
2875 struct extent_buffer
*leaf
;
2876 struct btrfs_chunk
*chunk
;
2877 struct btrfs_key key
;
2878 struct btrfs_key found_key
;
2880 bool retried
= false;
2884 path
= btrfs_alloc_path();
2889 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2890 key
.offset
= (u64
)-1;
2891 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2894 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
2895 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2897 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2900 BUG_ON(ret
== 0); /* Corruption */
2902 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2905 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2911 leaf
= path
->nodes
[0];
2912 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2914 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2915 struct btrfs_chunk
);
2916 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2917 btrfs_release_path(path
);
2919 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2920 ret
= btrfs_relocate_chunk(chunk_root
,
2927 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
2929 if (found_key
.offset
== 0)
2931 key
.offset
= found_key
.offset
- 1;
2934 if (failed
&& !retried
) {
2938 } else if (WARN_ON(failed
&& retried
)) {
2942 btrfs_free_path(path
);
2946 static int insert_balance_item(struct btrfs_root
*root
,
2947 struct btrfs_balance_control
*bctl
)
2949 struct btrfs_trans_handle
*trans
;
2950 struct btrfs_balance_item
*item
;
2951 struct btrfs_disk_balance_args disk_bargs
;
2952 struct btrfs_path
*path
;
2953 struct extent_buffer
*leaf
;
2954 struct btrfs_key key
;
2957 path
= btrfs_alloc_path();
2961 trans
= btrfs_start_transaction(root
, 0);
2962 if (IS_ERR(trans
)) {
2963 btrfs_free_path(path
);
2964 return PTR_ERR(trans
);
2967 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2968 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2971 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2976 leaf
= path
->nodes
[0];
2977 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
2979 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
2981 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
2982 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
2983 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
2984 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
2985 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
2986 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
2988 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
2990 btrfs_mark_buffer_dirty(leaf
);
2992 btrfs_free_path(path
);
2993 err
= btrfs_commit_transaction(trans
, root
);
2999 static int del_balance_item(struct btrfs_root
*root
)
3001 struct btrfs_trans_handle
*trans
;
3002 struct btrfs_path
*path
;
3003 struct btrfs_key key
;
3006 path
= btrfs_alloc_path();
3010 trans
= btrfs_start_transaction(root
, 0);
3011 if (IS_ERR(trans
)) {
3012 btrfs_free_path(path
);
3013 return PTR_ERR(trans
);
3016 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3017 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
3020 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3028 ret
= btrfs_del_item(trans
, root
, path
);
3030 btrfs_free_path(path
);
3031 err
= btrfs_commit_transaction(trans
, root
);
3038 * This is a heuristic used to reduce the number of chunks balanced on
3039 * resume after balance was interrupted.
3041 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3044 * Turn on soft mode for chunk types that were being converted.
3046 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3047 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3048 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3049 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3050 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3051 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3054 * Turn on usage filter if is not already used. The idea is
3055 * that chunks that we have already balanced should be
3056 * reasonably full. Don't do it for chunks that are being
3057 * converted - that will keep us from relocating unconverted
3058 * (albeit full) chunks.
3060 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3061 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3062 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3063 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3064 bctl
->data
.usage
= 90;
3066 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3067 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3068 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3069 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3070 bctl
->sys
.usage
= 90;
3072 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3073 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3074 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3075 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3076 bctl
->meta
.usage
= 90;
3081 * Should be called with both balance and volume mutexes held to
3082 * serialize other volume operations (add_dev/rm_dev/resize) with
3083 * restriper. Same goes for unset_balance_control.
3085 static void set_balance_control(struct btrfs_balance_control
*bctl
)
3087 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3089 BUG_ON(fs_info
->balance_ctl
);
3091 spin_lock(&fs_info
->balance_lock
);
3092 fs_info
->balance_ctl
= bctl
;
3093 spin_unlock(&fs_info
->balance_lock
);
3096 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
3098 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3100 BUG_ON(!fs_info
->balance_ctl
);
3102 spin_lock(&fs_info
->balance_lock
);
3103 fs_info
->balance_ctl
= NULL
;
3104 spin_unlock(&fs_info
->balance_lock
);
3110 * Balance filters. Return 1 if chunk should be filtered out
3111 * (should not be balanced).
3113 static int chunk_profiles_filter(u64 chunk_type
,
3114 struct btrfs_balance_args
*bargs
)
3116 chunk_type
= chunk_to_extended(chunk_type
) &
3117 BTRFS_EXTENDED_PROFILE_MASK
;
3119 if (bargs
->profiles
& chunk_type
)
3125 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3126 struct btrfs_balance_args
*bargs
)
3128 struct btrfs_block_group_cache
*cache
;
3130 u64 user_thresh_min
;
3131 u64 user_thresh_max
;
3134 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3135 chunk_used
= btrfs_block_group_used(&cache
->item
);
3137 if (bargs
->usage_min
== 0)
3138 user_thresh_min
= 0;
3140 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3143 if (bargs
->usage_max
== 0)
3144 user_thresh_max
= 1;
3145 else if (bargs
->usage_max
> 100)
3146 user_thresh_max
= cache
->key
.offset
;
3148 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3151 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3154 btrfs_put_block_group(cache
);
3158 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3159 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3161 struct btrfs_block_group_cache
*cache
;
3162 u64 chunk_used
, user_thresh
;
3165 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3166 chunk_used
= btrfs_block_group_used(&cache
->item
);
3168 if (bargs
->usage_min
== 0)
3170 else if (bargs
->usage
> 100)
3171 user_thresh
= cache
->key
.offset
;
3173 user_thresh
= div_factor_fine(cache
->key
.offset
,
3176 if (chunk_used
< user_thresh
)
3179 btrfs_put_block_group(cache
);
3183 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3184 struct btrfs_chunk
*chunk
,
3185 struct btrfs_balance_args
*bargs
)
3187 struct btrfs_stripe
*stripe
;
3188 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3191 for (i
= 0; i
< num_stripes
; i
++) {
3192 stripe
= btrfs_stripe_nr(chunk
, i
);
3193 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3200 /* [pstart, pend) */
3201 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3202 struct btrfs_chunk
*chunk
,
3204 struct btrfs_balance_args
*bargs
)
3206 struct btrfs_stripe
*stripe
;
3207 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3213 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3216 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3217 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3218 factor
= num_stripes
/ 2;
3219 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3220 factor
= num_stripes
- 1;
3221 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3222 factor
= num_stripes
- 2;
3224 factor
= num_stripes
;
3227 for (i
= 0; i
< num_stripes
; i
++) {
3228 stripe
= btrfs_stripe_nr(chunk
, i
);
3229 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3232 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3233 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3234 stripe_length
= div_u64(stripe_length
, factor
);
3236 if (stripe_offset
< bargs
->pend
&&
3237 stripe_offset
+ stripe_length
> bargs
->pstart
)
3244 /* [vstart, vend) */
3245 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3246 struct btrfs_chunk
*chunk
,
3248 struct btrfs_balance_args
*bargs
)
3250 if (chunk_offset
< bargs
->vend
&&
3251 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3252 /* at least part of the chunk is inside this vrange */
3258 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3259 struct btrfs_chunk
*chunk
,
3260 struct btrfs_balance_args
*bargs
)
3262 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3264 if (bargs
->stripes_min
<= num_stripes
3265 && num_stripes
<= bargs
->stripes_max
)
3271 static int chunk_soft_convert_filter(u64 chunk_type
,
3272 struct btrfs_balance_args
*bargs
)
3274 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3277 chunk_type
= chunk_to_extended(chunk_type
) &
3278 BTRFS_EXTENDED_PROFILE_MASK
;
3280 if (bargs
->target
== chunk_type
)
3286 static int should_balance_chunk(struct btrfs_root
*root
,
3287 struct extent_buffer
*leaf
,
3288 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3290 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
3291 struct btrfs_balance_args
*bargs
= NULL
;
3292 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3295 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3296 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3300 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3301 bargs
= &bctl
->data
;
3302 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3304 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3305 bargs
= &bctl
->meta
;
3307 /* profiles filter */
3308 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3309 chunk_profiles_filter(chunk_type
, bargs
)) {
3314 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3315 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3317 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3318 chunk_usage_range_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3323 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3324 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3328 /* drange filter, makes sense only with devid filter */
3329 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3330 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3335 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3336 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3340 /* stripes filter */
3341 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3342 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3346 /* soft profile changing mode */
3347 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3348 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3353 * limited by count, must be the last filter
3355 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3356 if (bargs
->limit
== 0)
3360 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3362 * Same logic as the 'limit' filter; the minimum cannot be
3363 * determined here because we do not have the global informatoin
3364 * about the count of all chunks that satisfy the filters.
3366 if (bargs
->limit_max
== 0)
3375 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3377 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3378 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3379 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3380 struct list_head
*devices
;
3381 struct btrfs_device
*device
;
3385 struct btrfs_chunk
*chunk
;
3386 struct btrfs_path
*path
;
3387 struct btrfs_key key
;
3388 struct btrfs_key found_key
;
3389 struct btrfs_trans_handle
*trans
;
3390 struct extent_buffer
*leaf
;
3393 int enospc_errors
= 0;
3394 bool counting
= true;
3395 /* The single value limit and min/max limits use the same bytes in the */
3396 u64 limit_data
= bctl
->data
.limit
;
3397 u64 limit_meta
= bctl
->meta
.limit
;
3398 u64 limit_sys
= bctl
->sys
.limit
;
3402 int chunk_reserved
= 0;
3404 /* step one make some room on all the devices */
3405 devices
= &fs_info
->fs_devices
->devices
;
3406 list_for_each_entry(device
, devices
, dev_list
) {
3407 old_size
= btrfs_device_get_total_bytes(device
);
3408 size_to_free
= div_factor(old_size
, 1);
3409 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
3410 if (!device
->writeable
||
3411 btrfs_device_get_total_bytes(device
) -
3412 btrfs_device_get_bytes_used(device
) > size_to_free
||
3413 device
->is_tgtdev_for_dev_replace
)
3416 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3421 trans
= btrfs_start_transaction(dev_root
, 0);
3422 BUG_ON(IS_ERR(trans
));
3424 ret
= btrfs_grow_device(trans
, device
, old_size
);
3427 btrfs_end_transaction(trans
, dev_root
);
3430 /* step two, relocate all the chunks */
3431 path
= btrfs_alloc_path();
3437 /* zero out stat counters */
3438 spin_lock(&fs_info
->balance_lock
);
3439 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3440 spin_unlock(&fs_info
->balance_lock
);
3444 * The single value limit and min/max limits use the same bytes
3447 bctl
->data
.limit
= limit_data
;
3448 bctl
->meta
.limit
= limit_meta
;
3449 bctl
->sys
.limit
= limit_sys
;
3451 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3452 key
.offset
= (u64
)-1;
3453 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3456 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3457 atomic_read(&fs_info
->balance_cancel_req
)) {
3462 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3463 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3465 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3470 * this shouldn't happen, it means the last relocate
3474 BUG(); /* FIXME break ? */
3476 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3477 BTRFS_CHUNK_ITEM_KEY
);
3479 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3484 leaf
= path
->nodes
[0];
3485 slot
= path
->slots
[0];
3486 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3488 if (found_key
.objectid
!= key
.objectid
) {
3489 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3493 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3494 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3497 spin_lock(&fs_info
->balance_lock
);
3498 bctl
->stat
.considered
++;
3499 spin_unlock(&fs_info
->balance_lock
);
3502 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3505 btrfs_release_path(path
);
3507 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3512 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3513 spin_lock(&fs_info
->balance_lock
);
3514 bctl
->stat
.expected
++;
3515 spin_unlock(&fs_info
->balance_lock
);
3517 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3519 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3521 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3528 * Apply limit_min filter, no need to check if the LIMITS
3529 * filter is used, limit_min is 0 by default
3531 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3532 count_data
< bctl
->data
.limit_min
)
3533 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3534 count_meta
< bctl
->meta
.limit_min
)
3535 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3536 count_sys
< bctl
->sys
.limit_min
)) {
3537 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3541 if ((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) && !chunk_reserved
) {
3542 trans
= btrfs_start_transaction(chunk_root
, 0);
3543 if (IS_ERR(trans
)) {
3544 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3545 ret
= PTR_ERR(trans
);
3549 ret
= btrfs_force_chunk_alloc(trans
, chunk_root
,
3550 BTRFS_BLOCK_GROUP_DATA
);
3551 btrfs_end_transaction(trans
, chunk_root
);
3553 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3559 ret
= btrfs_relocate_chunk(chunk_root
,
3561 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3562 if (ret
&& ret
!= -ENOSPC
)
3564 if (ret
== -ENOSPC
) {
3567 spin_lock(&fs_info
->balance_lock
);
3568 bctl
->stat
.completed
++;
3569 spin_unlock(&fs_info
->balance_lock
);
3572 if (found_key
.offset
== 0)
3574 key
.offset
= found_key
.offset
- 1;
3578 btrfs_release_path(path
);
3583 btrfs_free_path(path
);
3584 if (enospc_errors
) {
3585 btrfs_info(fs_info
, "%d enospc errors during balance",
3595 * alloc_profile_is_valid - see if a given profile is valid and reduced
3596 * @flags: profile to validate
3597 * @extended: if true @flags is treated as an extended profile
3599 static int alloc_profile_is_valid(u64 flags
, int extended
)
3601 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3602 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3604 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3606 /* 1) check that all other bits are zeroed */
3610 /* 2) see if profile is reduced */
3612 return !extended
; /* "0" is valid for usual profiles */
3614 /* true if exactly one bit set */
3615 return (flags
& (flags
- 1)) == 0;
3618 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3620 /* cancel requested || normal exit path */
3621 return atomic_read(&fs_info
->balance_cancel_req
) ||
3622 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3623 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3626 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3630 unset_balance_control(fs_info
);
3631 ret
= del_balance_item(fs_info
->tree_root
);
3633 btrfs_std_error(fs_info
, ret
, NULL
);
3635 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3638 /* Non-zero return value signifies invalidity */
3639 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3642 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3643 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3644 (bctl_arg
->target
& ~allowed
)));
3648 * Should be called with both balance and volume mutexes held
3650 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3651 struct btrfs_ioctl_balance_args
*bargs
)
3653 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3660 if (btrfs_fs_closing(fs_info
) ||
3661 atomic_read(&fs_info
->balance_pause_req
) ||
3662 atomic_read(&fs_info
->balance_cancel_req
)) {
3667 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3668 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3672 * In case of mixed groups both data and meta should be picked,
3673 * and identical options should be given for both of them.
3675 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3676 if (mixed
&& (bctl
->flags
& allowed
)) {
3677 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3678 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3679 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3680 btrfs_err(fs_info
, "with mixed groups data and "
3681 "metadata balance options must be the same");
3687 num_devices
= fs_info
->fs_devices
->num_devices
;
3688 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
3689 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3690 BUG_ON(num_devices
< 1);
3693 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
3694 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
3695 if (num_devices
== 1)
3696 allowed
|= BTRFS_BLOCK_GROUP_DUP
;
3697 else if (num_devices
> 1)
3698 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3699 if (num_devices
> 2)
3700 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3701 if (num_devices
> 3)
3702 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3703 BTRFS_BLOCK_GROUP_RAID6
);
3704 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3705 btrfs_err(fs_info
, "unable to start balance with target "
3706 "data profile %llu",
3711 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3713 "unable to start balance with target metadata profile %llu",
3718 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3720 "unable to start balance with target system profile %llu",
3726 /* allow dup'ed data chunks only in mixed mode */
3727 if (!mixed
&& (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3728 (bctl
->data
.target
& BTRFS_BLOCK_GROUP_DUP
)) {
3729 btrfs_err(fs_info
, "dup for data is not allowed");
3734 /* allow to reduce meta or sys integrity only if force set */
3735 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3736 BTRFS_BLOCK_GROUP_RAID10
|
3737 BTRFS_BLOCK_GROUP_RAID5
|
3738 BTRFS_BLOCK_GROUP_RAID6
;
3740 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3742 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3743 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3744 !(bctl
->sys
.target
& allowed
)) ||
3745 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3746 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3747 !(bctl
->meta
.target
& allowed
))) {
3748 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3749 btrfs_info(fs_info
, "force reducing metadata integrity");
3751 btrfs_err(fs_info
, "balance will reduce metadata "
3752 "integrity, use force if you want this");
3757 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3759 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3760 fs_info
->num_tolerated_disk_barrier_failures
= min(
3761 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
),
3762 btrfs_get_num_tolerated_disk_barrier_failures(
3766 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3767 if (ret
&& ret
!= -EEXIST
)
3770 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3771 BUG_ON(ret
== -EEXIST
);
3772 set_balance_control(bctl
);
3774 BUG_ON(ret
!= -EEXIST
);
3775 spin_lock(&fs_info
->balance_lock
);
3776 update_balance_args(bctl
);
3777 spin_unlock(&fs_info
->balance_lock
);
3780 atomic_inc(&fs_info
->balance_running
);
3781 mutex_unlock(&fs_info
->balance_mutex
);
3783 ret
= __btrfs_balance(fs_info
);
3785 mutex_lock(&fs_info
->balance_mutex
);
3786 atomic_dec(&fs_info
->balance_running
);
3788 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3789 fs_info
->num_tolerated_disk_barrier_failures
=
3790 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3794 memset(bargs
, 0, sizeof(*bargs
));
3795 update_ioctl_balance_args(fs_info
, 0, bargs
);
3798 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3799 balance_need_close(fs_info
)) {
3800 __cancel_balance(fs_info
);
3803 wake_up(&fs_info
->balance_wait_q
);
3807 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3808 __cancel_balance(fs_info
);
3811 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3816 static int balance_kthread(void *data
)
3818 struct btrfs_fs_info
*fs_info
= data
;
3821 mutex_lock(&fs_info
->volume_mutex
);
3822 mutex_lock(&fs_info
->balance_mutex
);
3824 if (fs_info
->balance_ctl
) {
3825 btrfs_info(fs_info
, "continuing balance");
3826 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3829 mutex_unlock(&fs_info
->balance_mutex
);
3830 mutex_unlock(&fs_info
->volume_mutex
);
3835 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3837 struct task_struct
*tsk
;
3839 spin_lock(&fs_info
->balance_lock
);
3840 if (!fs_info
->balance_ctl
) {
3841 spin_unlock(&fs_info
->balance_lock
);
3844 spin_unlock(&fs_info
->balance_lock
);
3846 if (btrfs_test_opt(fs_info
->tree_root
, SKIP_BALANCE
)) {
3847 btrfs_info(fs_info
, "force skipping balance");
3851 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3852 return PTR_ERR_OR_ZERO(tsk
);
3855 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3857 struct btrfs_balance_control
*bctl
;
3858 struct btrfs_balance_item
*item
;
3859 struct btrfs_disk_balance_args disk_bargs
;
3860 struct btrfs_path
*path
;
3861 struct extent_buffer
*leaf
;
3862 struct btrfs_key key
;
3865 path
= btrfs_alloc_path();
3869 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3870 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
3873 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3876 if (ret
> 0) { /* ret = -ENOENT; */
3881 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3887 leaf
= path
->nodes
[0];
3888 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3890 bctl
->fs_info
= fs_info
;
3891 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3892 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3894 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3895 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3896 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3897 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3898 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3899 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3901 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3903 mutex_lock(&fs_info
->volume_mutex
);
3904 mutex_lock(&fs_info
->balance_mutex
);
3906 set_balance_control(bctl
);
3908 mutex_unlock(&fs_info
->balance_mutex
);
3909 mutex_unlock(&fs_info
->volume_mutex
);
3911 btrfs_free_path(path
);
3915 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
3919 mutex_lock(&fs_info
->balance_mutex
);
3920 if (!fs_info
->balance_ctl
) {
3921 mutex_unlock(&fs_info
->balance_mutex
);
3925 if (atomic_read(&fs_info
->balance_running
)) {
3926 atomic_inc(&fs_info
->balance_pause_req
);
3927 mutex_unlock(&fs_info
->balance_mutex
);
3929 wait_event(fs_info
->balance_wait_q
,
3930 atomic_read(&fs_info
->balance_running
) == 0);
3932 mutex_lock(&fs_info
->balance_mutex
);
3933 /* we are good with balance_ctl ripped off from under us */
3934 BUG_ON(atomic_read(&fs_info
->balance_running
));
3935 atomic_dec(&fs_info
->balance_pause_req
);
3940 mutex_unlock(&fs_info
->balance_mutex
);
3944 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
3946 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
3949 mutex_lock(&fs_info
->balance_mutex
);
3950 if (!fs_info
->balance_ctl
) {
3951 mutex_unlock(&fs_info
->balance_mutex
);
3955 atomic_inc(&fs_info
->balance_cancel_req
);
3957 * if we are running just wait and return, balance item is
3958 * deleted in btrfs_balance in this case
3960 if (atomic_read(&fs_info
->balance_running
)) {
3961 mutex_unlock(&fs_info
->balance_mutex
);
3962 wait_event(fs_info
->balance_wait_q
,
3963 atomic_read(&fs_info
->balance_running
) == 0);
3964 mutex_lock(&fs_info
->balance_mutex
);
3966 /* __cancel_balance needs volume_mutex */
3967 mutex_unlock(&fs_info
->balance_mutex
);
3968 mutex_lock(&fs_info
->volume_mutex
);
3969 mutex_lock(&fs_info
->balance_mutex
);
3971 if (fs_info
->balance_ctl
)
3972 __cancel_balance(fs_info
);
3974 mutex_unlock(&fs_info
->volume_mutex
);
3977 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
3978 atomic_dec(&fs_info
->balance_cancel_req
);
3979 mutex_unlock(&fs_info
->balance_mutex
);
3983 static int btrfs_uuid_scan_kthread(void *data
)
3985 struct btrfs_fs_info
*fs_info
= data
;
3986 struct btrfs_root
*root
= fs_info
->tree_root
;
3987 struct btrfs_key key
;
3988 struct btrfs_key max_key
;
3989 struct btrfs_path
*path
= NULL
;
3991 struct extent_buffer
*eb
;
3993 struct btrfs_root_item root_item
;
3995 struct btrfs_trans_handle
*trans
= NULL
;
3997 path
= btrfs_alloc_path();
4004 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4007 max_key
.objectid
= (u64
)-1;
4008 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4009 max_key
.offset
= (u64
)-1;
4012 ret
= btrfs_search_forward(root
, &key
, path
, 0);
4019 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4020 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4021 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4022 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4025 eb
= path
->nodes
[0];
4026 slot
= path
->slots
[0];
4027 item_size
= btrfs_item_size_nr(eb
, slot
);
4028 if (item_size
< sizeof(root_item
))
4031 read_extent_buffer(eb
, &root_item
,
4032 btrfs_item_ptr_offset(eb
, slot
),
4033 (int)sizeof(root_item
));
4034 if (btrfs_root_refs(&root_item
) == 0)
4037 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4038 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4042 btrfs_release_path(path
);
4044 * 1 - subvol uuid item
4045 * 1 - received_subvol uuid item
4047 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4048 if (IS_ERR(trans
)) {
4049 ret
= PTR_ERR(trans
);
4057 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4058 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4060 BTRFS_UUID_KEY_SUBVOL
,
4063 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4069 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4070 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
4071 root_item
.received_uuid
,
4072 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4075 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4083 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4089 btrfs_release_path(path
);
4090 if (key
.offset
< (u64
)-1) {
4092 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4094 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4095 } else if (key
.objectid
< (u64
)-1) {
4097 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4106 btrfs_free_path(path
);
4107 if (trans
&& !IS_ERR(trans
))
4108 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
4110 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4112 fs_info
->update_uuid_tree_gen
= 1;
4113 up(&fs_info
->uuid_tree_rescan_sem
);
4118 * Callback for btrfs_uuid_tree_iterate().
4120 * 0 check succeeded, the entry is not outdated.
4121 * < 0 if an error occured.
4122 * > 0 if the check failed, which means the caller shall remove the entry.
4124 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4125 u8
*uuid
, u8 type
, u64 subid
)
4127 struct btrfs_key key
;
4129 struct btrfs_root
*subvol_root
;
4131 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4132 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4135 key
.objectid
= subid
;
4136 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4137 key
.offset
= (u64
)-1;
4138 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4139 if (IS_ERR(subvol_root
)) {
4140 ret
= PTR_ERR(subvol_root
);
4147 case BTRFS_UUID_KEY_SUBVOL
:
4148 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4151 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4152 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4162 static int btrfs_uuid_rescan_kthread(void *data
)
4164 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4168 * 1st step is to iterate through the existing UUID tree and
4169 * to delete all entries that contain outdated data.
4170 * 2nd step is to add all missing entries to the UUID tree.
4172 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4174 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4175 up(&fs_info
->uuid_tree_rescan_sem
);
4178 return btrfs_uuid_scan_kthread(data
);
4181 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4183 struct btrfs_trans_handle
*trans
;
4184 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4185 struct btrfs_root
*uuid_root
;
4186 struct task_struct
*task
;
4193 trans
= btrfs_start_transaction(tree_root
, 2);
4195 return PTR_ERR(trans
);
4197 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4198 BTRFS_UUID_TREE_OBJECTID
);
4199 if (IS_ERR(uuid_root
)) {
4200 ret
= PTR_ERR(uuid_root
);
4201 btrfs_abort_transaction(trans
, tree_root
, ret
);
4205 fs_info
->uuid_root
= uuid_root
;
4207 ret
= btrfs_commit_transaction(trans
, tree_root
);
4211 down(&fs_info
->uuid_tree_rescan_sem
);
4212 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4214 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4215 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4216 up(&fs_info
->uuid_tree_rescan_sem
);
4217 return PTR_ERR(task
);
4223 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4225 struct task_struct
*task
;
4227 down(&fs_info
->uuid_tree_rescan_sem
);
4228 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4230 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4231 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4232 up(&fs_info
->uuid_tree_rescan_sem
);
4233 return PTR_ERR(task
);
4240 * shrinking a device means finding all of the device extents past
4241 * the new size, and then following the back refs to the chunks.
4242 * The chunk relocation code actually frees the device extent
4244 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4246 struct btrfs_trans_handle
*trans
;
4247 struct btrfs_root
*root
= device
->dev_root
;
4248 struct btrfs_dev_extent
*dev_extent
= NULL
;
4249 struct btrfs_path
*path
;
4255 bool retried
= false;
4256 bool checked_pending_chunks
= false;
4257 struct extent_buffer
*l
;
4258 struct btrfs_key key
;
4259 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4260 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4261 u64 old_size
= btrfs_device_get_total_bytes(device
);
4262 u64 diff
= old_size
- new_size
;
4264 if (device
->is_tgtdev_for_dev_replace
)
4267 path
= btrfs_alloc_path();
4275 btrfs_device_set_total_bytes(device
, new_size
);
4276 if (device
->writeable
) {
4277 device
->fs_devices
->total_rw_bytes
-= diff
;
4278 spin_lock(&root
->fs_info
->free_chunk_lock
);
4279 root
->fs_info
->free_chunk_space
-= diff
;
4280 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4282 unlock_chunks(root
);
4285 key
.objectid
= device
->devid
;
4286 key
.offset
= (u64
)-1;
4287 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4290 mutex_lock(&root
->fs_info
->delete_unused_bgs_mutex
);
4291 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4293 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4297 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4299 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4304 btrfs_release_path(path
);
4309 slot
= path
->slots
[0];
4310 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4312 if (key
.objectid
!= device
->devid
) {
4313 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4314 btrfs_release_path(path
);
4318 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4319 length
= btrfs_dev_extent_length(l
, dev_extent
);
4321 if (key
.offset
+ length
<= new_size
) {
4322 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4323 btrfs_release_path(path
);
4327 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4328 btrfs_release_path(path
);
4330 ret
= btrfs_relocate_chunk(root
, chunk_offset
);
4331 mutex_unlock(&root
->fs_info
->delete_unused_bgs_mutex
);
4332 if (ret
&& ret
!= -ENOSPC
)
4336 } while (key
.offset
-- > 0);
4338 if (failed
&& !retried
) {
4342 } else if (failed
&& retried
) {
4347 /* Shrinking succeeded, else we would be at "done". */
4348 trans
= btrfs_start_transaction(root
, 0);
4349 if (IS_ERR(trans
)) {
4350 ret
= PTR_ERR(trans
);
4357 * We checked in the above loop all device extents that were already in
4358 * the device tree. However before we have updated the device's
4359 * total_bytes to the new size, we might have had chunk allocations that
4360 * have not complete yet (new block groups attached to transaction
4361 * handles), and therefore their device extents were not yet in the
4362 * device tree and we missed them in the loop above. So if we have any
4363 * pending chunk using a device extent that overlaps the device range
4364 * that we can not use anymore, commit the current transaction and
4365 * repeat the search on the device tree - this way we guarantee we will
4366 * not have chunks using device extents that end beyond 'new_size'.
4368 if (!checked_pending_chunks
) {
4369 u64 start
= new_size
;
4370 u64 len
= old_size
- new_size
;
4372 if (contains_pending_extent(trans
->transaction
, device
,
4374 unlock_chunks(root
);
4375 checked_pending_chunks
= true;
4378 ret
= btrfs_commit_transaction(trans
, root
);
4385 btrfs_device_set_disk_total_bytes(device
, new_size
);
4386 if (list_empty(&device
->resized_list
))
4387 list_add_tail(&device
->resized_list
,
4388 &root
->fs_info
->fs_devices
->resized_devices
);
4390 WARN_ON(diff
> old_total
);
4391 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4392 unlock_chunks(root
);
4394 /* Now btrfs_update_device() will change the on-disk size. */
4395 ret
= btrfs_update_device(trans
, device
);
4396 btrfs_end_transaction(trans
, root
);
4398 btrfs_free_path(path
);
4401 btrfs_device_set_total_bytes(device
, old_size
);
4402 if (device
->writeable
)
4403 device
->fs_devices
->total_rw_bytes
+= diff
;
4404 spin_lock(&root
->fs_info
->free_chunk_lock
);
4405 root
->fs_info
->free_chunk_space
+= diff
;
4406 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4407 unlock_chunks(root
);
4412 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
4413 struct btrfs_key
*key
,
4414 struct btrfs_chunk
*chunk
, int item_size
)
4416 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4417 struct btrfs_disk_key disk_key
;
4422 array_size
= btrfs_super_sys_array_size(super_copy
);
4423 if (array_size
+ item_size
+ sizeof(disk_key
)
4424 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4425 unlock_chunks(root
);
4429 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4430 btrfs_cpu_key_to_disk(&disk_key
, key
);
4431 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4432 ptr
+= sizeof(disk_key
);
4433 memcpy(ptr
, chunk
, item_size
);
4434 item_size
+= sizeof(disk_key
);
4435 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4436 unlock_chunks(root
);
4442 * sort the devices in descending order by max_avail, total_avail
4444 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4446 const struct btrfs_device_info
*di_a
= a
;
4447 const struct btrfs_device_info
*di_b
= b
;
4449 if (di_a
->max_avail
> di_b
->max_avail
)
4451 if (di_a
->max_avail
< di_b
->max_avail
)
4453 if (di_a
->total_avail
> di_b
->total_avail
)
4455 if (di_a
->total_avail
< di_b
->total_avail
)
4460 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4462 /* TODO allow them to set a preferred stripe size */
4466 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4468 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4471 btrfs_set_fs_incompat(info
, RAID56
);
4474 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4475 - sizeof(struct btrfs_item) \
4476 - sizeof(struct btrfs_chunk)) \
4477 / sizeof(struct btrfs_stripe) + 1)
4479 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4480 - 2 * sizeof(struct btrfs_disk_key) \
4481 - 2 * sizeof(struct btrfs_chunk)) \
4482 / sizeof(struct btrfs_stripe) + 1)
4484 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4485 struct btrfs_root
*extent_root
, u64 start
,
4488 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
4489 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4490 struct list_head
*cur
;
4491 struct map_lookup
*map
= NULL
;
4492 struct extent_map_tree
*em_tree
;
4493 struct extent_map
*em
;
4494 struct btrfs_device_info
*devices_info
= NULL
;
4496 int num_stripes
; /* total number of stripes to allocate */
4497 int data_stripes
; /* number of stripes that count for
4499 int sub_stripes
; /* sub_stripes info for map */
4500 int dev_stripes
; /* stripes per dev */
4501 int devs_max
; /* max devs to use */
4502 int devs_min
; /* min devs needed */
4503 int devs_increment
; /* ndevs has to be a multiple of this */
4504 int ncopies
; /* how many copies to data has */
4506 u64 max_stripe_size
;
4510 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4516 BUG_ON(!alloc_profile_is_valid(type
, 0));
4518 if (list_empty(&fs_devices
->alloc_list
))
4521 index
= __get_raid_index(type
);
4523 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4524 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4525 devs_max
= btrfs_raid_array
[index
].devs_max
;
4526 devs_min
= btrfs_raid_array
[index
].devs_min
;
4527 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4528 ncopies
= btrfs_raid_array
[index
].ncopies
;
4530 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4531 max_stripe_size
= 1024 * 1024 * 1024;
4532 max_chunk_size
= 10 * max_stripe_size
;
4534 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4535 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4536 /* for larger filesystems, use larger metadata chunks */
4537 if (fs_devices
->total_rw_bytes
> 50ULL * 1024 * 1024 * 1024)
4538 max_stripe_size
= 1024 * 1024 * 1024;
4540 max_stripe_size
= 256 * 1024 * 1024;
4541 max_chunk_size
= max_stripe_size
;
4543 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4544 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4545 max_stripe_size
= 32 * 1024 * 1024;
4546 max_chunk_size
= 2 * max_stripe_size
;
4548 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4550 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4555 /* we don't want a chunk larger than 10% of writeable space */
4556 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4559 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4564 cur
= fs_devices
->alloc_list
.next
;
4567 * in the first pass through the devices list, we gather information
4568 * about the available holes on each device.
4571 while (cur
!= &fs_devices
->alloc_list
) {
4572 struct btrfs_device
*device
;
4576 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4580 if (!device
->writeable
) {
4582 "BTRFS: read-only device in alloc_list\n");
4586 if (!device
->in_fs_metadata
||
4587 device
->is_tgtdev_for_dev_replace
)
4590 if (device
->total_bytes
> device
->bytes_used
)
4591 total_avail
= device
->total_bytes
- device
->bytes_used
;
4595 /* If there is no space on this device, skip it. */
4596 if (total_avail
== 0)
4599 ret
= find_free_dev_extent(trans
, device
,
4600 max_stripe_size
* dev_stripes
,
4601 &dev_offset
, &max_avail
);
4602 if (ret
&& ret
!= -ENOSPC
)
4606 max_avail
= max_stripe_size
* dev_stripes
;
4608 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4611 if (ndevs
== fs_devices
->rw_devices
) {
4612 WARN(1, "%s: found more than %llu devices\n",
4613 __func__
, fs_devices
->rw_devices
);
4616 devices_info
[ndevs
].dev_offset
= dev_offset
;
4617 devices_info
[ndevs
].max_avail
= max_avail
;
4618 devices_info
[ndevs
].total_avail
= total_avail
;
4619 devices_info
[ndevs
].dev
= device
;
4624 * now sort the devices by hole size / available space
4626 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4627 btrfs_cmp_device_info
, NULL
);
4629 /* round down to number of usable stripes */
4630 ndevs
-= ndevs
% devs_increment
;
4632 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4637 if (devs_max
&& ndevs
> devs_max
)
4640 * the primary goal is to maximize the number of stripes, so use as many
4641 * devices as possible, even if the stripes are not maximum sized.
4643 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4644 num_stripes
= ndevs
* dev_stripes
;
4647 * this will have to be fixed for RAID1 and RAID10 over
4650 data_stripes
= num_stripes
/ ncopies
;
4652 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4653 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4654 btrfs_super_stripesize(info
->super_copy
));
4655 data_stripes
= num_stripes
- 1;
4657 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4658 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4659 btrfs_super_stripesize(info
->super_copy
));
4660 data_stripes
= num_stripes
- 2;
4664 * Use the number of data stripes to figure out how big this chunk
4665 * is really going to be in terms of logical address space,
4666 * and compare that answer with the max chunk size
4668 if (stripe_size
* data_stripes
> max_chunk_size
) {
4669 u64 mask
= (1ULL << 24) - 1;
4671 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4673 /* bump the answer up to a 16MB boundary */
4674 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4676 /* but don't go higher than the limits we found
4677 * while searching for free extents
4679 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4680 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4683 stripe_size
= div_u64(stripe_size
, dev_stripes
);
4685 /* align to BTRFS_STRIPE_LEN */
4686 stripe_size
= div_u64(stripe_size
, raid_stripe_len
);
4687 stripe_size
*= raid_stripe_len
;
4689 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4694 map
->num_stripes
= num_stripes
;
4696 for (i
= 0; i
< ndevs
; ++i
) {
4697 for (j
= 0; j
< dev_stripes
; ++j
) {
4698 int s
= i
* dev_stripes
+ j
;
4699 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4700 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4704 map
->sector_size
= extent_root
->sectorsize
;
4705 map
->stripe_len
= raid_stripe_len
;
4706 map
->io_align
= raid_stripe_len
;
4707 map
->io_width
= raid_stripe_len
;
4709 map
->sub_stripes
= sub_stripes
;
4711 num_bytes
= stripe_size
* data_stripes
;
4713 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4715 em
= alloc_extent_map();
4721 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4722 em
->bdev
= (struct block_device
*)map
;
4724 em
->len
= num_bytes
;
4725 em
->block_start
= 0;
4726 em
->block_len
= em
->len
;
4727 em
->orig_block_len
= stripe_size
;
4729 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4730 write_lock(&em_tree
->lock
);
4731 ret
= add_extent_mapping(em_tree
, em
, 0);
4733 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4734 atomic_inc(&em
->refs
);
4736 write_unlock(&em_tree
->lock
);
4738 free_extent_map(em
);
4742 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4743 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4746 goto error_del_extent
;
4748 for (i
= 0; i
< map
->num_stripes
; i
++) {
4749 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4750 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4753 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4754 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4756 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4758 free_extent_map(em
);
4759 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4761 kfree(devices_info
);
4765 write_lock(&em_tree
->lock
);
4766 remove_extent_mapping(em_tree
, em
);
4767 write_unlock(&em_tree
->lock
);
4769 /* One for our allocation */
4770 free_extent_map(em
);
4771 /* One for the tree reference */
4772 free_extent_map(em
);
4773 /* One for the pending_chunks list reference */
4774 free_extent_map(em
);
4776 kfree(devices_info
);
4780 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4781 struct btrfs_root
*extent_root
,
4782 u64 chunk_offset
, u64 chunk_size
)
4784 struct btrfs_key key
;
4785 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4786 struct btrfs_device
*device
;
4787 struct btrfs_chunk
*chunk
;
4788 struct btrfs_stripe
*stripe
;
4789 struct extent_map_tree
*em_tree
;
4790 struct extent_map
*em
;
4791 struct map_lookup
*map
;
4798 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4799 read_lock(&em_tree
->lock
);
4800 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4801 read_unlock(&em_tree
->lock
);
4804 btrfs_crit(extent_root
->fs_info
, "unable to find logical "
4805 "%Lu len %Lu", chunk_offset
, chunk_size
);
4809 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4810 btrfs_crit(extent_root
->fs_info
, "found a bad mapping, wanted"
4811 " %Lu-%Lu, found %Lu-%Lu", chunk_offset
,
4812 chunk_size
, em
->start
, em
->len
);
4813 free_extent_map(em
);
4817 map
= (struct map_lookup
*)em
->bdev
;
4818 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4819 stripe_size
= em
->orig_block_len
;
4821 chunk
= kzalloc(item_size
, GFP_NOFS
);
4827 for (i
= 0; i
< map
->num_stripes
; i
++) {
4828 device
= map
->stripes
[i
].dev
;
4829 dev_offset
= map
->stripes
[i
].physical
;
4831 ret
= btrfs_update_device(trans
, device
);
4834 ret
= btrfs_alloc_dev_extent(trans
, device
,
4835 chunk_root
->root_key
.objectid
,
4836 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4837 chunk_offset
, dev_offset
,
4843 stripe
= &chunk
->stripe
;
4844 for (i
= 0; i
< map
->num_stripes
; i
++) {
4845 device
= map
->stripes
[i
].dev
;
4846 dev_offset
= map
->stripes
[i
].physical
;
4848 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4849 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4850 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4854 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4855 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4856 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4857 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4858 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4859 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4860 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4861 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
4862 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4864 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4865 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4866 key
.offset
= chunk_offset
;
4868 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4869 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4871 * TODO: Cleanup of inserted chunk root in case of
4874 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
4880 free_extent_map(em
);
4885 * Chunk allocation falls into two parts. The first part does works
4886 * that make the new allocated chunk useable, but not do any operation
4887 * that modifies the chunk tree. The second part does the works that
4888 * require modifying the chunk tree. This division is important for the
4889 * bootstrap process of adding storage to a seed btrfs.
4891 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4892 struct btrfs_root
*extent_root
, u64 type
)
4896 ASSERT(mutex_is_locked(&extent_root
->fs_info
->chunk_mutex
));
4897 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
4898 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
4901 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
4902 struct btrfs_root
*root
,
4903 struct btrfs_device
*device
)
4906 u64 sys_chunk_offset
;
4908 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4909 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4912 chunk_offset
= find_next_chunk(fs_info
);
4913 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
4914 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
4919 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
4920 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
4921 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
4926 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
4930 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
4931 BTRFS_BLOCK_GROUP_RAID10
|
4932 BTRFS_BLOCK_GROUP_RAID5
|
4933 BTRFS_BLOCK_GROUP_DUP
)) {
4935 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
4944 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
4946 struct extent_map
*em
;
4947 struct map_lookup
*map
;
4948 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
4953 read_lock(&map_tree
->map_tree
.lock
);
4954 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
4955 read_unlock(&map_tree
->map_tree
.lock
);
4959 map
= (struct map_lookup
*)em
->bdev
;
4960 for (i
= 0; i
< map
->num_stripes
; i
++) {
4961 if (map
->stripes
[i
].dev
->missing
) {
4966 if (!map
->stripes
[i
].dev
->writeable
) {
4973 * If the number of missing devices is larger than max errors,
4974 * we can not write the data into that chunk successfully, so
4977 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
4980 free_extent_map(em
);
4984 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
4986 extent_map_tree_init(&tree
->map_tree
);
4989 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
4991 struct extent_map
*em
;
4994 write_lock(&tree
->map_tree
.lock
);
4995 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
4997 remove_extent_mapping(&tree
->map_tree
, em
);
4998 write_unlock(&tree
->map_tree
.lock
);
5002 free_extent_map(em
);
5003 /* once for the tree */
5004 free_extent_map(em
);
5008 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5010 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5011 struct extent_map
*em
;
5012 struct map_lookup
*map
;
5013 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5016 read_lock(&em_tree
->lock
);
5017 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5018 read_unlock(&em_tree
->lock
);
5021 * We could return errors for these cases, but that could get ugly and
5022 * we'd probably do the same thing which is just not do anything else
5023 * and exit, so return 1 so the callers don't try to use other copies.
5026 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
5031 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5032 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got "
5033 "%Lu-%Lu", logical
, logical
+len
, em
->start
,
5034 em
->start
+ em
->len
);
5035 free_extent_map(em
);
5039 map
= (struct map_lookup
*)em
->bdev
;
5040 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5041 ret
= map
->num_stripes
;
5042 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5043 ret
= map
->sub_stripes
;
5044 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5046 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5050 free_extent_map(em
);
5052 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
5053 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
5055 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
5060 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
5061 struct btrfs_mapping_tree
*map_tree
,
5064 struct extent_map
*em
;
5065 struct map_lookup
*map
;
5066 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5067 unsigned long len
= root
->sectorsize
;
5069 read_lock(&em_tree
->lock
);
5070 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5071 read_unlock(&em_tree
->lock
);
5074 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5075 map
= (struct map_lookup
*)em
->bdev
;
5076 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5077 len
= map
->stripe_len
* nr_data_stripes(map
);
5078 free_extent_map(em
);
5082 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
5083 u64 logical
, u64 len
, int mirror_num
)
5085 struct extent_map
*em
;
5086 struct map_lookup
*map
;
5087 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5090 read_lock(&em_tree
->lock
);
5091 em
= lookup_extent_mapping(em_tree
, logical
, len
);
5092 read_unlock(&em_tree
->lock
);
5095 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
5096 map
= (struct map_lookup
*)em
->bdev
;
5097 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5099 free_extent_map(em
);
5103 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5104 struct map_lookup
*map
, int first
, int num
,
5105 int optimal
, int dev_replace_is_ongoing
)
5109 struct btrfs_device
*srcdev
;
5111 if (dev_replace_is_ongoing
&&
5112 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5113 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5114 srcdev
= fs_info
->dev_replace
.srcdev
;
5119 * try to avoid the drive that is the source drive for a
5120 * dev-replace procedure, only choose it if no other non-missing
5121 * mirror is available
5123 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5124 if (map
->stripes
[optimal
].dev
->bdev
&&
5125 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
5127 for (i
= first
; i
< first
+ num
; i
++) {
5128 if (map
->stripes
[i
].dev
->bdev
&&
5129 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5134 /* we couldn't find one that doesn't fail. Just return something
5135 * and the io error handling code will clean up eventually
5140 static inline int parity_smaller(u64 a
, u64 b
)
5145 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5146 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5148 struct btrfs_bio_stripe s
;
5155 for (i
= 0; i
< num_stripes
- 1; i
++) {
5156 if (parity_smaller(bbio
->raid_map
[i
],
5157 bbio
->raid_map
[i
+1])) {
5158 s
= bbio
->stripes
[i
];
5159 l
= bbio
->raid_map
[i
];
5160 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5161 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5162 bbio
->stripes
[i
+1] = s
;
5163 bbio
->raid_map
[i
+1] = l
;
5171 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5173 struct btrfs_bio
*bbio
= kzalloc(
5174 /* the size of the btrfs_bio */
5175 sizeof(struct btrfs_bio
) +
5176 /* plus the variable array for the stripes */
5177 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5178 /* plus the variable array for the tgt dev */
5179 sizeof(int) * (real_stripes
) +
5181 * plus the raid_map, which includes both the tgt dev
5184 sizeof(u64
) * (total_stripes
),
5185 GFP_NOFS
|__GFP_NOFAIL
);
5187 atomic_set(&bbio
->error
, 0);
5188 atomic_set(&bbio
->refs
, 1);
5193 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5195 WARN_ON(!atomic_read(&bbio
->refs
));
5196 atomic_inc(&bbio
->refs
);
5199 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5203 if (atomic_dec_and_test(&bbio
->refs
))
5207 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5208 u64 logical
, u64
*length
,
5209 struct btrfs_bio
**bbio_ret
,
5210 int mirror_num
, int need_raid_map
)
5212 struct extent_map
*em
;
5213 struct map_lookup
*map
;
5214 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
5215 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5218 u64 stripe_end_offset
;
5228 int tgtdev_indexes
= 0;
5229 struct btrfs_bio
*bbio
= NULL
;
5230 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5231 int dev_replace_is_ongoing
= 0;
5232 int num_alloc_stripes
;
5233 int patch_the_first_stripe_for_dev_replace
= 0;
5234 u64 physical_to_patch_in_first_stripe
= 0;
5235 u64 raid56_full_stripe_start
= (u64
)-1;
5237 read_lock(&em_tree
->lock
);
5238 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
5239 read_unlock(&em_tree
->lock
);
5242 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
5247 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
5248 btrfs_crit(fs_info
, "found a bad mapping, wanted %Lu, "
5249 "found %Lu-%Lu", logical
, em
->start
,
5250 em
->start
+ em
->len
);
5251 free_extent_map(em
);
5255 map
= (struct map_lookup
*)em
->bdev
;
5256 offset
= logical
- em
->start
;
5258 stripe_len
= map
->stripe_len
;
5261 * stripe_nr counts the total number of stripes we have to stride
5262 * to get to this block
5264 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5266 stripe_offset
= stripe_nr
* stripe_len
;
5267 BUG_ON(offset
< stripe_offset
);
5269 /* stripe_offset is the offset of this block in its stripe*/
5270 stripe_offset
= offset
- stripe_offset
;
5272 /* if we're here for raid56, we need to know the stripe aligned start */
5273 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5274 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5275 raid56_full_stripe_start
= offset
;
5277 /* allow a write of a full stripe, but make sure we don't
5278 * allow straddling of stripes
5280 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5282 raid56_full_stripe_start
*= full_stripe_len
;
5285 if (rw
& REQ_DISCARD
) {
5286 /* we don't discard raid56 yet */
5287 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5291 *length
= min_t(u64
, em
->len
- offset
, *length
);
5292 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5294 /* For writes to RAID[56], allow a full stripeset across all disks.
5295 For other RAID types and for RAID[56] reads, just allow a single
5296 stripe (on a single disk). */
5297 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5299 max_len
= stripe_len
* nr_data_stripes(map
) -
5300 (offset
- raid56_full_stripe_start
);
5302 /* we limit the length of each bio to what fits in a stripe */
5303 max_len
= stripe_len
- stripe_offset
;
5305 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5307 *length
= em
->len
- offset
;
5310 /* This is for when we're called from btrfs_merge_bio_hook() and all
5311 it cares about is the length */
5315 btrfs_dev_replace_lock(dev_replace
);
5316 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5317 if (!dev_replace_is_ongoing
)
5318 btrfs_dev_replace_unlock(dev_replace
);
5320 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5321 !(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) &&
5322 dev_replace
->tgtdev
!= NULL
) {
5324 * in dev-replace case, for repair case (that's the only
5325 * case where the mirror is selected explicitly when
5326 * calling btrfs_map_block), blocks left of the left cursor
5327 * can also be read from the target drive.
5328 * For REQ_GET_READ_MIRRORS, the target drive is added as
5329 * the last one to the array of stripes. For READ, it also
5330 * needs to be supported using the same mirror number.
5331 * If the requested block is not left of the left cursor,
5332 * EIO is returned. This can happen because btrfs_num_copies()
5333 * returns one more in the dev-replace case.
5335 u64 tmp_length
= *length
;
5336 struct btrfs_bio
*tmp_bbio
= NULL
;
5337 int tmp_num_stripes
;
5338 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5339 int index_srcdev
= 0;
5341 u64 physical_of_found
= 0;
5343 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
5344 logical
, &tmp_length
, &tmp_bbio
, 0, 0);
5346 WARN_ON(tmp_bbio
!= NULL
);
5350 tmp_num_stripes
= tmp_bbio
->num_stripes
;
5351 if (mirror_num
> tmp_num_stripes
) {
5353 * REQ_GET_READ_MIRRORS does not contain this
5354 * mirror, that means that the requested area
5355 * is not left of the left cursor
5358 btrfs_put_bbio(tmp_bbio
);
5363 * process the rest of the function using the mirror_num
5364 * of the source drive. Therefore look it up first.
5365 * At the end, patch the device pointer to the one of the
5368 for (i
= 0; i
< tmp_num_stripes
; i
++) {
5369 if (tmp_bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5371 * In case of DUP, in order to keep it
5372 * simple, only add the mirror with the
5373 * lowest physical address
5376 physical_of_found
<=
5377 tmp_bbio
->stripes
[i
].physical
)
5382 tmp_bbio
->stripes
[i
].physical
;
5387 mirror_num
= index_srcdev
+ 1;
5388 patch_the_first_stripe_for_dev_replace
= 1;
5389 physical_to_patch_in_first_stripe
= physical_of_found
;
5393 btrfs_put_bbio(tmp_bbio
);
5397 btrfs_put_bbio(tmp_bbio
);
5398 } else if (mirror_num
> map
->num_stripes
) {
5404 stripe_nr_orig
= stripe_nr
;
5405 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
5406 stripe_nr_end
= div_u64(stripe_nr_end
, map
->stripe_len
);
5407 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5410 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5411 if (rw
& REQ_DISCARD
)
5412 num_stripes
= min_t(u64
, map
->num_stripes
,
5413 stripe_nr_end
- stripe_nr_orig
);
5414 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5416 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)))
5418 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5419 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
))
5420 num_stripes
= map
->num_stripes
;
5421 else if (mirror_num
)
5422 stripe_index
= mirror_num
- 1;
5424 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5426 current
->pid
% map
->num_stripes
,
5427 dev_replace_is_ongoing
);
5428 mirror_num
= stripe_index
+ 1;
5431 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5432 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) {
5433 num_stripes
= map
->num_stripes
;
5434 } else if (mirror_num
) {
5435 stripe_index
= mirror_num
- 1;
5440 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5441 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5443 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5444 stripe_index
*= map
->sub_stripes
;
5446 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5447 num_stripes
= map
->sub_stripes
;
5448 else if (rw
& REQ_DISCARD
)
5449 num_stripes
= min_t(u64
, map
->sub_stripes
*
5450 (stripe_nr_end
- stripe_nr_orig
),
5452 else if (mirror_num
)
5453 stripe_index
+= mirror_num
- 1;
5455 int old_stripe_index
= stripe_index
;
5456 stripe_index
= find_live_mirror(fs_info
, map
,
5458 map
->sub_stripes
, stripe_index
+
5459 current
->pid
% map
->sub_stripes
,
5460 dev_replace_is_ongoing
);
5461 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5464 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5465 if (need_raid_map
&&
5466 ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5468 /* push stripe_nr back to the start of the full stripe */
5469 stripe_nr
= div_u64(raid56_full_stripe_start
,
5470 stripe_len
* nr_data_stripes(map
));
5472 /* RAID[56] write or recovery. Return all stripes */
5473 num_stripes
= map
->num_stripes
;
5474 max_errors
= nr_parity_stripes(map
);
5476 *length
= map
->stripe_len
;
5481 * Mirror #0 or #1 means the original data block.
5482 * Mirror #2 is RAID5 parity block.
5483 * Mirror #3 is RAID6 Q block.
5485 stripe_nr
= div_u64_rem(stripe_nr
,
5486 nr_data_stripes(map
), &stripe_index
);
5488 stripe_index
= nr_data_stripes(map
) +
5491 /* We distribute the parity blocks across stripes */
5492 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5494 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
|
5495 REQ_GET_READ_MIRRORS
)) && mirror_num
<= 1)
5500 * after this, stripe_nr is the number of stripes on this
5501 * device we have to walk to find the data, and stripe_index is
5502 * the number of our device in the stripe array
5504 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5506 mirror_num
= stripe_index
+ 1;
5508 BUG_ON(stripe_index
>= map
->num_stripes
);
5510 num_alloc_stripes
= num_stripes
;
5511 if (dev_replace_is_ongoing
) {
5512 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
5513 num_alloc_stripes
<<= 1;
5514 if (rw
& REQ_GET_READ_MIRRORS
)
5515 num_alloc_stripes
++;
5516 tgtdev_indexes
= num_stripes
;
5519 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5524 if (dev_replace_is_ongoing
)
5525 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5527 /* build raid_map */
5528 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&&
5529 need_raid_map
&& ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5534 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5535 sizeof(struct btrfs_bio_stripe
) *
5537 sizeof(int) * tgtdev_indexes
);
5539 /* Work out the disk rotation on this stripe-set */
5540 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5542 /* Fill in the logical address of each stripe */
5543 tmp
= stripe_nr
* nr_data_stripes(map
);
5544 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5545 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5546 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5548 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5549 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5550 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5554 if (rw
& REQ_DISCARD
) {
5556 u32 sub_stripes
= 0;
5557 u64 stripes_per_dev
= 0;
5558 u32 remaining_stripes
= 0;
5559 u32 last_stripe
= 0;
5562 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5563 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5566 sub_stripes
= map
->sub_stripes
;
5568 factor
= map
->num_stripes
/ sub_stripes
;
5569 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5572 &remaining_stripes
);
5573 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5574 last_stripe
*= sub_stripes
;
5577 for (i
= 0; i
< num_stripes
; i
++) {
5578 bbio
->stripes
[i
].physical
=
5579 map
->stripes
[stripe_index
].physical
+
5580 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5581 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5583 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5584 BTRFS_BLOCK_GROUP_RAID10
)) {
5585 bbio
->stripes
[i
].length
= stripes_per_dev
*
5588 if (i
/ sub_stripes
< remaining_stripes
)
5589 bbio
->stripes
[i
].length
+=
5593 * Special for the first stripe and
5596 * |-------|...|-------|
5600 if (i
< sub_stripes
)
5601 bbio
->stripes
[i
].length
-=
5604 if (stripe_index
>= last_stripe
&&
5605 stripe_index
<= (last_stripe
+
5607 bbio
->stripes
[i
].length
-=
5610 if (i
== sub_stripes
- 1)
5613 bbio
->stripes
[i
].length
= *length
;
5616 if (stripe_index
== map
->num_stripes
) {
5617 /* This could only happen for RAID0/10 */
5623 for (i
= 0; i
< num_stripes
; i
++) {
5624 bbio
->stripes
[i
].physical
=
5625 map
->stripes
[stripe_index
].physical
+
5627 stripe_nr
* map
->stripe_len
;
5628 bbio
->stripes
[i
].dev
=
5629 map
->stripes
[stripe_index
].dev
;
5634 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5635 max_errors
= btrfs_chunk_max_errors(map
);
5638 sort_parity_stripes(bbio
, num_stripes
);
5641 if (dev_replace_is_ongoing
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
5642 dev_replace
->tgtdev
!= NULL
) {
5643 int index_where_to_add
;
5644 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5647 * duplicate the write operations while the dev replace
5648 * procedure is running. Since the copying of the old disk
5649 * to the new disk takes place at run time while the
5650 * filesystem is mounted writable, the regular write
5651 * operations to the old disk have to be duplicated to go
5652 * to the new disk as well.
5653 * Note that device->missing is handled by the caller, and
5654 * that the write to the old disk is already set up in the
5657 index_where_to_add
= num_stripes
;
5658 for (i
= 0; i
< num_stripes
; i
++) {
5659 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5660 /* write to new disk, too */
5661 struct btrfs_bio_stripe
*new =
5662 bbio
->stripes
+ index_where_to_add
;
5663 struct btrfs_bio_stripe
*old
=
5666 new->physical
= old
->physical
;
5667 new->length
= old
->length
;
5668 new->dev
= dev_replace
->tgtdev
;
5669 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5670 index_where_to_add
++;
5675 num_stripes
= index_where_to_add
;
5676 } else if (dev_replace_is_ongoing
&& (rw
& REQ_GET_READ_MIRRORS
) &&
5677 dev_replace
->tgtdev
!= NULL
) {
5678 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5679 int index_srcdev
= 0;
5681 u64 physical_of_found
= 0;
5684 * During the dev-replace procedure, the target drive can
5685 * also be used to read data in case it is needed to repair
5686 * a corrupt block elsewhere. This is possible if the
5687 * requested area is left of the left cursor. In this area,
5688 * the target drive is a full copy of the source drive.
5690 for (i
= 0; i
< num_stripes
; i
++) {
5691 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5693 * In case of DUP, in order to keep it
5694 * simple, only add the mirror with the
5695 * lowest physical address
5698 physical_of_found
<=
5699 bbio
->stripes
[i
].physical
)
5703 physical_of_found
= bbio
->stripes
[i
].physical
;
5707 if (physical_of_found
+ map
->stripe_len
<=
5708 dev_replace
->cursor_left
) {
5709 struct btrfs_bio_stripe
*tgtdev_stripe
=
5710 bbio
->stripes
+ num_stripes
;
5712 tgtdev_stripe
->physical
= physical_of_found
;
5713 tgtdev_stripe
->length
=
5714 bbio
->stripes
[index_srcdev
].length
;
5715 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5716 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5725 bbio
->map_type
= map
->type
;
5726 bbio
->num_stripes
= num_stripes
;
5727 bbio
->max_errors
= max_errors
;
5728 bbio
->mirror_num
= mirror_num
;
5729 bbio
->num_tgtdevs
= tgtdev_indexes
;
5732 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5733 * mirror_num == num_stripes + 1 && dev_replace target drive is
5734 * available as a mirror
5736 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5737 WARN_ON(num_stripes
> 1);
5738 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5739 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5740 bbio
->mirror_num
= map
->num_stripes
+ 1;
5743 if (dev_replace_is_ongoing
)
5744 btrfs_dev_replace_unlock(dev_replace
);
5745 free_extent_map(em
);
5749 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5750 u64 logical
, u64
*length
,
5751 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5753 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5757 /* For Scrub/replace */
5758 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, int rw
,
5759 u64 logical
, u64
*length
,
5760 struct btrfs_bio
**bbio_ret
, int mirror_num
,
5763 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5764 mirror_num
, need_raid_map
);
5767 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
5768 u64 chunk_start
, u64 physical
, u64 devid
,
5769 u64
**logical
, int *naddrs
, int *stripe_len
)
5771 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5772 struct extent_map
*em
;
5773 struct map_lookup
*map
;
5781 read_lock(&em_tree
->lock
);
5782 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5783 read_unlock(&em_tree
->lock
);
5786 printk(KERN_ERR
"BTRFS: couldn't find em for chunk %Lu\n",
5791 if (em
->start
!= chunk_start
) {
5792 printk(KERN_ERR
"BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5793 em
->start
, chunk_start
);
5794 free_extent_map(em
);
5797 map
= (struct map_lookup
*)em
->bdev
;
5800 rmap_len
= map
->stripe_len
;
5802 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5803 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
5804 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5805 length
= div_u64(length
, map
->num_stripes
);
5806 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5807 length
= div_u64(length
, nr_data_stripes(map
));
5808 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5811 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
5812 BUG_ON(!buf
); /* -ENOMEM */
5814 for (i
= 0; i
< map
->num_stripes
; i
++) {
5815 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5817 if (map
->stripes
[i
].physical
> physical
||
5818 map
->stripes
[i
].physical
+ length
<= physical
)
5821 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5822 stripe_nr
= div_u64(stripe_nr
, map
->stripe_len
);
5824 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5825 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5826 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
5827 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5828 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5829 } /* else if RAID[56], multiply by nr_data_stripes().
5830 * Alternatively, just use rmap_len below instead of
5831 * map->stripe_len */
5833 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5834 WARN_ON(nr
>= map
->num_stripes
);
5835 for (j
= 0; j
< nr
; j
++) {
5836 if (buf
[j
] == bytenr
)
5840 WARN_ON(nr
>= map
->num_stripes
);
5847 *stripe_len
= rmap_len
;
5849 free_extent_map(em
);
5853 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
5855 bio
->bi_private
= bbio
->private;
5856 bio
->bi_end_io
= bbio
->end_io
;
5859 btrfs_put_bbio(bbio
);
5862 static void btrfs_end_bio(struct bio
*bio
)
5864 struct btrfs_bio
*bbio
= bio
->bi_private
;
5865 int is_orig_bio
= 0;
5867 if (bio
->bi_error
) {
5868 atomic_inc(&bbio
->error
);
5869 if (bio
->bi_error
== -EIO
|| bio
->bi_error
== -EREMOTEIO
) {
5870 unsigned int stripe_index
=
5871 btrfs_io_bio(bio
)->stripe_index
;
5872 struct btrfs_device
*dev
;
5874 BUG_ON(stripe_index
>= bbio
->num_stripes
);
5875 dev
= bbio
->stripes
[stripe_index
].dev
;
5877 if (bio
->bi_rw
& WRITE
)
5878 btrfs_dev_stat_inc(dev
,
5879 BTRFS_DEV_STAT_WRITE_ERRS
);
5881 btrfs_dev_stat_inc(dev
,
5882 BTRFS_DEV_STAT_READ_ERRS
);
5883 if ((bio
->bi_rw
& WRITE_FLUSH
) == WRITE_FLUSH
)
5884 btrfs_dev_stat_inc(dev
,
5885 BTRFS_DEV_STAT_FLUSH_ERRS
);
5886 btrfs_dev_stat_print_on_error(dev
);
5891 if (bio
== bbio
->orig_bio
)
5894 btrfs_bio_counter_dec(bbio
->fs_info
);
5896 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5899 bio
= bbio
->orig_bio
;
5902 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5903 /* only send an error to the higher layers if it is
5904 * beyond the tolerance of the btrfs bio
5906 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
5907 bio
->bi_error
= -EIO
;
5910 * this bio is actually up to date, we didn't
5911 * go over the max number of errors
5916 btrfs_end_bbio(bbio
, bio
);
5917 } else if (!is_orig_bio
) {
5923 * see run_scheduled_bios for a description of why bios are collected for
5926 * This will add one bio to the pending list for a device and make sure
5927 * the work struct is scheduled.
5929 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
5930 struct btrfs_device
*device
,
5931 int rw
, struct bio
*bio
)
5933 int should_queue
= 1;
5934 struct btrfs_pending_bios
*pending_bios
;
5936 if (device
->missing
|| !device
->bdev
) {
5941 /* don't bother with additional async steps for reads, right now */
5942 if (!(rw
& REQ_WRITE
)) {
5944 btrfsic_submit_bio(rw
, bio
);
5950 * nr_async_bios allows us to reliably return congestion to the
5951 * higher layers. Otherwise, the async bio makes it appear we have
5952 * made progress against dirty pages when we've really just put it
5953 * on a queue for later
5955 atomic_inc(&root
->fs_info
->nr_async_bios
);
5956 WARN_ON(bio
->bi_next
);
5957 bio
->bi_next
= NULL
;
5960 spin_lock(&device
->io_lock
);
5961 if (bio
->bi_rw
& REQ_SYNC
)
5962 pending_bios
= &device
->pending_sync_bios
;
5964 pending_bios
= &device
->pending_bios
;
5966 if (pending_bios
->tail
)
5967 pending_bios
->tail
->bi_next
= bio
;
5969 pending_bios
->tail
= bio
;
5970 if (!pending_bios
->head
)
5971 pending_bios
->head
= bio
;
5972 if (device
->running_pending
)
5975 spin_unlock(&device
->io_lock
);
5978 btrfs_queue_work(root
->fs_info
->submit_workers
,
5982 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5983 struct bio
*bio
, u64 physical
, int dev_nr
,
5986 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
5988 bio
->bi_private
= bbio
;
5989 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
5990 bio
->bi_end_io
= btrfs_end_bio
;
5991 bio
->bi_iter
.bi_sector
= physical
>> 9;
5994 struct rcu_string
*name
;
5997 name
= rcu_dereference(dev
->name
);
5998 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5999 "(%s id %llu), size=%u\n", rw
,
6000 (u64
)bio
->bi_iter
.bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
6001 name
->str
, dev
->devid
, bio
->bi_iter
.bi_size
);
6005 bio
->bi_bdev
= dev
->bdev
;
6007 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
6010 btrfs_schedule_bio(root
, dev
, rw
, bio
);
6012 btrfsic_submit_bio(rw
, bio
);
6015 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6017 atomic_inc(&bbio
->error
);
6018 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6019 /* Shoud be the original bio. */
6020 WARN_ON(bio
!= bbio
->orig_bio
);
6022 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6023 bio
->bi_iter
.bi_sector
= logical
>> 9;
6024 bio
->bi_error
= -EIO
;
6025 btrfs_end_bbio(bbio
, bio
);
6029 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
6030 int mirror_num
, int async_submit
)
6032 struct btrfs_device
*dev
;
6033 struct bio
*first_bio
= bio
;
6034 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6040 struct btrfs_bio
*bbio
= NULL
;
6042 length
= bio
->bi_iter
.bi_size
;
6043 map_length
= length
;
6045 btrfs_bio_counter_inc_blocked(root
->fs_info
);
6046 ret
= __btrfs_map_block(root
->fs_info
, rw
, logical
, &map_length
, &bbio
,
6049 btrfs_bio_counter_dec(root
->fs_info
);
6053 total_devs
= bbio
->num_stripes
;
6054 bbio
->orig_bio
= first_bio
;
6055 bbio
->private = first_bio
->bi_private
;
6056 bbio
->end_io
= first_bio
->bi_end_io
;
6057 bbio
->fs_info
= root
->fs_info
;
6058 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6060 if (bbio
->raid_map
) {
6061 /* In this case, map_length has been set to the length of
6062 a single stripe; not the whole write */
6064 ret
= raid56_parity_write(root
, bio
, bbio
, map_length
);
6066 ret
= raid56_parity_recover(root
, bio
, bbio
, map_length
,
6070 btrfs_bio_counter_dec(root
->fs_info
);
6074 if (map_length
< length
) {
6075 btrfs_crit(root
->fs_info
, "mapping failed logical %llu bio len %llu len %llu",
6076 logical
, length
, map_length
);
6080 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6081 dev
= bbio
->stripes
[dev_nr
].dev
;
6082 if (!dev
|| !dev
->bdev
|| (rw
& WRITE
&& !dev
->writeable
)) {
6083 bbio_error(bbio
, first_bio
, logical
);
6087 if (dev_nr
< total_devs
- 1) {
6088 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
6089 BUG_ON(!bio
); /* -ENOMEM */
6093 submit_stripe_bio(root
, bbio
, bio
,
6094 bbio
->stripes
[dev_nr
].physical
, dev_nr
, rw
,
6097 btrfs_bio_counter_dec(root
->fs_info
);
6101 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6104 struct btrfs_device
*device
;
6105 struct btrfs_fs_devices
*cur_devices
;
6107 cur_devices
= fs_info
->fs_devices
;
6108 while (cur_devices
) {
6110 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
6111 device
= __find_device(&cur_devices
->devices
,
6116 cur_devices
= cur_devices
->seed
;
6121 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
6122 struct btrfs_fs_devices
*fs_devices
,
6123 u64 devid
, u8
*dev_uuid
)
6125 struct btrfs_device
*device
;
6127 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6131 list_add(&device
->dev_list
, &fs_devices
->devices
);
6132 device
->fs_devices
= fs_devices
;
6133 fs_devices
->num_devices
++;
6135 device
->missing
= 1;
6136 fs_devices
->missing_devices
++;
6142 * btrfs_alloc_device - allocate struct btrfs_device
6143 * @fs_info: used only for generating a new devid, can be NULL if
6144 * devid is provided (i.e. @devid != NULL).
6145 * @devid: a pointer to devid for this device. If NULL a new devid
6147 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6150 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6151 * on error. Returned struct is not linked onto any lists and can be
6152 * destroyed with kfree() right away.
6154 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6158 struct btrfs_device
*dev
;
6161 if (WARN_ON(!devid
&& !fs_info
))
6162 return ERR_PTR(-EINVAL
);
6164 dev
= __alloc_device();
6173 ret
= find_next_devid(fs_info
, &tmp
);
6176 return ERR_PTR(ret
);
6182 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6184 generate_random_uuid(dev
->uuid
);
6186 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6187 pending_bios_fn
, NULL
, NULL
);
6192 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
6193 struct extent_buffer
*leaf
,
6194 struct btrfs_chunk
*chunk
)
6196 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
6197 struct map_lookup
*map
;
6198 struct extent_map
*em
;
6202 u8 uuid
[BTRFS_UUID_SIZE
];
6207 logical
= key
->offset
;
6208 length
= btrfs_chunk_length(leaf
, chunk
);
6210 read_lock(&map_tree
->map_tree
.lock
);
6211 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6212 read_unlock(&map_tree
->map_tree
.lock
);
6214 /* already mapped? */
6215 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6216 free_extent_map(em
);
6219 free_extent_map(em
);
6222 em
= alloc_extent_map();
6225 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6226 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6228 free_extent_map(em
);
6232 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6233 em
->bdev
= (struct block_device
*)map
;
6234 em
->start
= logical
;
6237 em
->block_start
= 0;
6238 em
->block_len
= em
->len
;
6240 map
->num_stripes
= num_stripes
;
6241 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6242 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6243 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6244 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6245 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6246 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6247 for (i
= 0; i
< num_stripes
; i
++) {
6248 map
->stripes
[i
].physical
=
6249 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6250 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6251 read_extent_buffer(leaf
, uuid
, (unsigned long)
6252 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6254 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
6256 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
6257 free_extent_map(em
);
6260 if (!map
->stripes
[i
].dev
) {
6261 map
->stripes
[i
].dev
=
6262 add_missing_dev(root
, root
->fs_info
->fs_devices
,
6264 if (!map
->stripes
[i
].dev
) {
6265 free_extent_map(em
);
6268 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU is missing",
6271 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6274 write_lock(&map_tree
->map_tree
.lock
);
6275 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6276 write_unlock(&map_tree
->map_tree
.lock
);
6277 BUG_ON(ret
); /* Tree corruption */
6278 free_extent_map(em
);
6283 static void fill_device_from_item(struct extent_buffer
*leaf
,
6284 struct btrfs_dev_item
*dev_item
,
6285 struct btrfs_device
*device
)
6289 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6290 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6291 device
->total_bytes
= device
->disk_total_bytes
;
6292 device
->commit_total_bytes
= device
->disk_total_bytes
;
6293 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6294 device
->commit_bytes_used
= device
->bytes_used
;
6295 device
->type
= btrfs_device_type(leaf
, dev_item
);
6296 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6297 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6298 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6299 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6300 device
->is_tgtdev_for_dev_replace
= 0;
6302 ptr
= btrfs_device_uuid(dev_item
);
6303 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6306 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_root
*root
,
6309 struct btrfs_fs_devices
*fs_devices
;
6312 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6314 fs_devices
= root
->fs_info
->fs_devices
->seed
;
6315 while (fs_devices
) {
6316 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6319 fs_devices
= fs_devices
->seed
;
6322 fs_devices
= find_fsid(fsid
);
6324 if (!btrfs_test_opt(root
, DEGRADED
))
6325 return ERR_PTR(-ENOENT
);
6327 fs_devices
= alloc_fs_devices(fsid
);
6328 if (IS_ERR(fs_devices
))
6331 fs_devices
->seeding
= 1;
6332 fs_devices
->opened
= 1;
6336 fs_devices
= clone_fs_devices(fs_devices
);
6337 if (IS_ERR(fs_devices
))
6340 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6341 root
->fs_info
->bdev_holder
);
6343 free_fs_devices(fs_devices
);
6344 fs_devices
= ERR_PTR(ret
);
6348 if (!fs_devices
->seeding
) {
6349 __btrfs_close_devices(fs_devices
);
6350 free_fs_devices(fs_devices
);
6351 fs_devices
= ERR_PTR(-EINVAL
);
6355 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
6356 root
->fs_info
->fs_devices
->seed
= fs_devices
;
6361 static int read_one_dev(struct btrfs_root
*root
,
6362 struct extent_buffer
*leaf
,
6363 struct btrfs_dev_item
*dev_item
)
6365 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6366 struct btrfs_device
*device
;
6369 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6370 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6372 devid
= btrfs_device_id(leaf
, dev_item
);
6373 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6375 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6378 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6379 fs_devices
= open_seed_devices(root
, fs_uuid
);
6380 if (IS_ERR(fs_devices
))
6381 return PTR_ERR(fs_devices
);
6384 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
6386 if (!btrfs_test_opt(root
, DEGRADED
))
6389 device
= add_missing_dev(root
, fs_devices
, devid
, dev_uuid
);
6392 btrfs_warn(root
->fs_info
, "devid %llu uuid %pU missing",
6395 if (!device
->bdev
&& !btrfs_test_opt(root
, DEGRADED
))
6398 if(!device
->bdev
&& !device
->missing
) {
6400 * this happens when a device that was properly setup
6401 * in the device info lists suddenly goes bad.
6402 * device->bdev is NULL, and so we have to set
6403 * device->missing to one here
6405 device
->fs_devices
->missing_devices
++;
6406 device
->missing
= 1;
6409 /* Move the device to its own fs_devices */
6410 if (device
->fs_devices
!= fs_devices
) {
6411 ASSERT(device
->missing
);
6413 list_move(&device
->dev_list
, &fs_devices
->devices
);
6414 device
->fs_devices
->num_devices
--;
6415 fs_devices
->num_devices
++;
6417 device
->fs_devices
->missing_devices
--;
6418 fs_devices
->missing_devices
++;
6420 device
->fs_devices
= fs_devices
;
6424 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
6425 BUG_ON(device
->writeable
);
6426 if (device
->generation
!=
6427 btrfs_device_generation(leaf
, dev_item
))
6431 fill_device_from_item(leaf
, dev_item
, device
);
6432 device
->in_fs_metadata
= 1;
6433 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6434 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6435 spin_lock(&root
->fs_info
->free_chunk_lock
);
6436 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
6438 spin_unlock(&root
->fs_info
->free_chunk_lock
);
6444 int btrfs_read_sys_array(struct btrfs_root
*root
)
6446 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
6447 struct extent_buffer
*sb
;
6448 struct btrfs_disk_key
*disk_key
;
6449 struct btrfs_chunk
*chunk
;
6451 unsigned long sb_array_offset
;
6457 struct btrfs_key key
;
6459 ASSERT(BTRFS_SUPER_INFO_SIZE
<= root
->nodesize
);
6461 * This will create extent buffer of nodesize, superblock size is
6462 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6463 * overallocate but we can keep it as-is, only the first page is used.
6465 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
);
6468 btrfs_set_buffer_uptodate(sb
);
6469 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6471 * The sb extent buffer is artifical and just used to read the system array.
6472 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6473 * pages up-to-date when the page is larger: extent does not cover the
6474 * whole page and consequently check_page_uptodate does not find all
6475 * the page's extents up-to-date (the hole beyond sb),
6476 * write_extent_buffer then triggers a WARN_ON.
6478 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6479 * but sb spans only this function. Add an explicit SetPageUptodate call
6480 * to silence the warning eg. on PowerPC 64.
6482 if (PAGE_CACHE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6483 SetPageUptodate(sb
->pages
[0]);
6485 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6486 array_size
= btrfs_super_sys_array_size(super_copy
);
6488 array_ptr
= super_copy
->sys_chunk_array
;
6489 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6492 while (cur_offset
< array_size
) {
6493 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6494 len
= sizeof(*disk_key
);
6495 if (cur_offset
+ len
> array_size
)
6496 goto out_short_read
;
6498 btrfs_disk_key_to_cpu(&key
, disk_key
);
6501 sb_array_offset
+= len
;
6504 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6505 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6507 * At least one btrfs_chunk with one stripe must be
6508 * present, exact stripe count check comes afterwards
6510 len
= btrfs_chunk_item_size(1);
6511 if (cur_offset
+ len
> array_size
)
6512 goto out_short_read
;
6514 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6515 len
= btrfs_chunk_item_size(num_stripes
);
6516 if (cur_offset
+ len
> array_size
)
6517 goto out_short_read
;
6519 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
6527 sb_array_offset
+= len
;
6530 free_extent_buffer(sb
);
6534 printk(KERN_ERR
"BTRFS: sys_array too short to read %u bytes at offset %u\n",
6536 free_extent_buffer(sb
);
6540 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
6542 struct btrfs_path
*path
;
6543 struct extent_buffer
*leaf
;
6544 struct btrfs_key key
;
6545 struct btrfs_key found_key
;
6549 root
= root
->fs_info
->chunk_root
;
6551 path
= btrfs_alloc_path();
6555 mutex_lock(&uuid_mutex
);
6559 * Read all device items, and then all the chunk items. All
6560 * device items are found before any chunk item (their object id
6561 * is smaller than the lowest possible object id for a chunk
6562 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6564 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6567 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6571 leaf
= path
->nodes
[0];
6572 slot
= path
->slots
[0];
6573 if (slot
>= btrfs_header_nritems(leaf
)) {
6574 ret
= btrfs_next_leaf(root
, path
);
6581 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6582 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6583 struct btrfs_dev_item
*dev_item
;
6584 dev_item
= btrfs_item_ptr(leaf
, slot
,
6585 struct btrfs_dev_item
);
6586 ret
= read_one_dev(root
, leaf
, dev_item
);
6589 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6590 struct btrfs_chunk
*chunk
;
6591 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6592 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6600 unlock_chunks(root
);
6601 mutex_unlock(&uuid_mutex
);
6603 btrfs_free_path(path
);
6607 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6609 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6610 struct btrfs_device
*device
;
6612 while (fs_devices
) {
6613 mutex_lock(&fs_devices
->device_list_mutex
);
6614 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6615 device
->dev_root
= fs_info
->dev_root
;
6616 mutex_unlock(&fs_devices
->device_list_mutex
);
6618 fs_devices
= fs_devices
->seed
;
6622 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6626 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6627 btrfs_dev_stat_reset(dev
, i
);
6630 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6632 struct btrfs_key key
;
6633 struct btrfs_key found_key
;
6634 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6635 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6636 struct extent_buffer
*eb
;
6639 struct btrfs_device
*device
;
6640 struct btrfs_path
*path
= NULL
;
6643 path
= btrfs_alloc_path();
6649 mutex_lock(&fs_devices
->device_list_mutex
);
6650 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6652 struct btrfs_dev_stats_item
*ptr
;
6655 key
.type
= BTRFS_DEV_STATS_KEY
;
6656 key
.offset
= device
->devid
;
6657 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6659 __btrfs_reset_dev_stats(device
);
6660 device
->dev_stats_valid
= 1;
6661 btrfs_release_path(path
);
6664 slot
= path
->slots
[0];
6665 eb
= path
->nodes
[0];
6666 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6667 item_size
= btrfs_item_size_nr(eb
, slot
);
6669 ptr
= btrfs_item_ptr(eb
, slot
,
6670 struct btrfs_dev_stats_item
);
6672 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6673 if (item_size
>= (1 + i
) * sizeof(__le64
))
6674 btrfs_dev_stat_set(device
, i
,
6675 btrfs_dev_stats_value(eb
, ptr
, i
));
6677 btrfs_dev_stat_reset(device
, i
);
6680 device
->dev_stats_valid
= 1;
6681 btrfs_dev_stat_print_on_load(device
);
6682 btrfs_release_path(path
);
6684 mutex_unlock(&fs_devices
->device_list_mutex
);
6687 btrfs_free_path(path
);
6688 return ret
< 0 ? ret
: 0;
6691 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6692 struct btrfs_root
*dev_root
,
6693 struct btrfs_device
*device
)
6695 struct btrfs_path
*path
;
6696 struct btrfs_key key
;
6697 struct extent_buffer
*eb
;
6698 struct btrfs_dev_stats_item
*ptr
;
6703 key
.type
= BTRFS_DEV_STATS_KEY
;
6704 key
.offset
= device
->devid
;
6706 path
= btrfs_alloc_path();
6708 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6710 btrfs_warn_in_rcu(dev_root
->fs_info
,
6711 "error %d while searching for dev_stats item for device %s",
6712 ret
, rcu_str_deref(device
->name
));
6717 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6718 /* need to delete old one and insert a new one */
6719 ret
= btrfs_del_item(trans
, dev_root
, path
);
6721 btrfs_warn_in_rcu(dev_root
->fs_info
,
6722 "delete too small dev_stats item for device %s failed %d",
6723 rcu_str_deref(device
->name
), ret
);
6730 /* need to insert a new item */
6731 btrfs_release_path(path
);
6732 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6733 &key
, sizeof(*ptr
));
6735 btrfs_warn_in_rcu(dev_root
->fs_info
,
6736 "insert dev_stats item for device %s failed %d",
6737 rcu_str_deref(device
->name
), ret
);
6742 eb
= path
->nodes
[0];
6743 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6744 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6745 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6746 btrfs_dev_stat_read(device
, i
));
6747 btrfs_mark_buffer_dirty(eb
);
6750 btrfs_free_path(path
);
6755 * called from commit_transaction. Writes all changed device stats to disk.
6757 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
6758 struct btrfs_fs_info
*fs_info
)
6760 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6761 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6762 struct btrfs_device
*device
;
6766 mutex_lock(&fs_devices
->device_list_mutex
);
6767 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6768 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
6771 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
6772 ret
= update_dev_stat_item(trans
, dev_root
, device
);
6774 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
6776 mutex_unlock(&fs_devices
->device_list_mutex
);
6781 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
6783 btrfs_dev_stat_inc(dev
, index
);
6784 btrfs_dev_stat_print_on_error(dev
);
6787 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
6789 if (!dev
->dev_stats_valid
)
6791 btrfs_err_rl_in_rcu(dev
->dev_root
->fs_info
,
6792 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6793 rcu_str_deref(dev
->name
),
6794 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6795 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6796 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6797 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6798 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6801 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
6805 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6806 if (btrfs_dev_stat_read(dev
, i
) != 0)
6808 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
6809 return; /* all values == 0, suppress message */
6811 btrfs_info_in_rcu(dev
->dev_root
->fs_info
,
6812 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6813 rcu_str_deref(dev
->name
),
6814 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6815 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6816 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6817 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6818 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6821 int btrfs_get_dev_stats(struct btrfs_root
*root
,
6822 struct btrfs_ioctl_get_dev_stats
*stats
)
6824 struct btrfs_device
*dev
;
6825 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6828 mutex_lock(&fs_devices
->device_list_mutex
);
6829 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
6830 mutex_unlock(&fs_devices
->device_list_mutex
);
6833 btrfs_warn(root
->fs_info
, "get dev_stats failed, device not found");
6835 } else if (!dev
->dev_stats_valid
) {
6836 btrfs_warn(root
->fs_info
, "get dev_stats failed, not yet valid");
6838 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
6839 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6840 if (stats
->nr_items
> i
)
6842 btrfs_dev_stat_read_and_reset(dev
, i
);
6844 btrfs_dev_stat_reset(dev
, i
);
6847 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6848 if (stats
->nr_items
> i
)
6849 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
6851 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
6852 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
6856 void btrfs_scratch_superblocks(struct block_device
*bdev
, char *device_path
)
6858 struct buffer_head
*bh
;
6859 struct btrfs_super_block
*disk_super
;
6865 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
6868 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
6871 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
6873 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
6874 set_buffer_dirty(bh
);
6875 sync_dirty_buffer(bh
);
6879 /* Notify udev that device has changed */
6880 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
6882 /* Update ctime/mtime for device path for libblkid */
6883 update_dev_time(device_path
);
6887 * Update the size of all devices, which is used for writing out the
6890 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
6892 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6893 struct btrfs_device
*curr
, *next
;
6895 if (list_empty(&fs_devices
->resized_devices
))
6898 mutex_lock(&fs_devices
->device_list_mutex
);
6899 lock_chunks(fs_info
->dev_root
);
6900 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
6902 list_del_init(&curr
->resized_list
);
6903 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
6905 unlock_chunks(fs_info
->dev_root
);
6906 mutex_unlock(&fs_devices
->device_list_mutex
);
6909 /* Must be invoked during the transaction commit */
6910 void btrfs_update_commit_device_bytes_used(struct btrfs_root
*root
,
6911 struct btrfs_transaction
*transaction
)
6913 struct extent_map
*em
;
6914 struct map_lookup
*map
;
6915 struct btrfs_device
*dev
;
6918 if (list_empty(&transaction
->pending_chunks
))
6921 /* In order to kick the device replace finish process */
6923 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
6924 map
= (struct map_lookup
*)em
->bdev
;
6926 for (i
= 0; i
< map
->num_stripes
; i
++) {
6927 dev
= map
->stripes
[i
].dev
;
6928 dev
->commit_bytes_used
= dev
->bytes_used
;
6931 unlock_chunks(root
);
6934 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
6936 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6937 while (fs_devices
) {
6938 fs_devices
->fs_info
= fs_info
;
6939 fs_devices
= fs_devices
->seed
;
6943 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
6945 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6946 while (fs_devices
) {
6947 fs_devices
->fs_info
= NULL
;
6948 fs_devices
= fs_devices
->seed
;
6952 void btrfs_close_one_device(struct btrfs_device
*device
)
6954 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
6955 struct btrfs_device
*new_device
;
6956 struct rcu_string
*name
;
6959 fs_devices
->open_devices
--;
6961 if (device
->writeable
&&
6962 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
6963 list_del_init(&device
->dev_alloc_list
);
6964 fs_devices
->rw_devices
--;
6967 if (device
->missing
)
6968 fs_devices
->missing_devices
--;
6970 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
6972 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
6974 /* Safe because we are under uuid_mutex */
6976 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
6977 BUG_ON(!name
); /* -ENOMEM */
6978 rcu_assign_pointer(new_device
->name
, name
);
6981 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
6982 new_device
->fs_devices
= device
->fs_devices
;
6984 call_rcu(&device
->rcu
, free_device
);