2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
45 * @dst: Buffer to take hex character representation of contents of
46 * src; must be at least of size (src_size * 2)
47 * @src: Buffer to be converted to a hex string respresentation
48 * @src_size: number of bytes to convert
50 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
54 for (x
= 0; x
< src_size
; x
++)
55 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
60 * @dst: Buffer to take the bytes from src hex; must be at least of
62 * @src: Buffer to be converted from a hex string respresentation to raw value
63 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
65 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
70 for (x
= 0; x
< dst_size
; x
++) {
72 tmp
[1] = src
[x
* 2 + 1];
73 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
78 * ecryptfs_calculate_md5 - calculates the md5 of @src
79 * @dst: Pointer to 16 bytes of allocated memory
80 * @crypt_stat: Pointer to crypt_stat struct for the current inode
81 * @src: Data to be md5'd
82 * @len: Length of @src
84 * Uses the allocated crypto context that crypt_stat references to
85 * generate the MD5 sum of the contents of src.
87 static int ecryptfs_calculate_md5(char *dst
,
88 struct ecryptfs_crypt_stat
*crypt_stat
,
91 struct scatterlist sg
;
92 struct hash_desc desc
= {
93 .tfm
= crypt_stat
->hash_tfm
,
94 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
98 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
99 sg_init_one(&sg
, (u8
*)src
, len
);
101 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
103 if (IS_ERR(desc
.tfm
)) {
104 rc
= PTR_ERR(desc
.tfm
);
105 ecryptfs_printk(KERN_ERR
, "Error attempting to "
106 "allocate crypto context; rc = [%d]\n",
110 crypt_stat
->hash_tfm
= desc
.tfm
;
112 rc
= crypto_hash_init(&desc
);
115 "%s: Error initializing crypto hash; rc = [%d]\n",
119 rc
= crypto_hash_update(&desc
, &sg
, len
);
122 "%s: Error updating crypto hash; rc = [%d]\n",
126 rc
= crypto_hash_final(&desc
, dst
);
129 "%s: Error finalizing crypto hash; rc = [%d]\n",
134 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
138 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
140 char *chaining_modifier
)
142 int cipher_name_len
= strlen(cipher_name
);
143 int chaining_modifier_len
= strlen(chaining_modifier
);
144 int algified_name_len
;
147 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
148 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
149 if (!(*algified_name
)) {
153 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
154 chaining_modifier
, cipher_name
);
162 * @iv: destination for the derived iv vale
163 * @crypt_stat: Pointer to crypt_stat struct for the current inode
164 * @offset: Offset of the extent whose IV we are to derive
166 * Generate the initialization vector from the given root IV and page
169 * Returns zero on success; non-zero on error.
171 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
175 char dst
[MD5_DIGEST_SIZE
];
176 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
178 if (unlikely(ecryptfs_verbosity
> 0)) {
179 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
180 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
182 /* TODO: It is probably secure to just cast the least
183 * significant bits of the root IV into an unsigned long and
184 * add the offset to that rather than go through all this
185 * hashing business. -Halcrow */
186 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
187 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
188 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
189 if (unlikely(ecryptfs_verbosity
> 0)) {
190 ecryptfs_printk(KERN_DEBUG
, "source:\n");
191 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
193 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
194 (crypt_stat
->iv_bytes
+ 16));
196 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
197 "MD5 while generating IV for a page\n");
200 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
201 if (unlikely(ecryptfs_verbosity
> 0)) {
202 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
203 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
210 * ecryptfs_init_crypt_stat
211 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
213 * Initialize the crypt_stat structure.
216 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
218 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
219 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
220 mutex_init(&crypt_stat
->keysig_list_mutex
);
221 mutex_init(&crypt_stat
->cs_mutex
);
222 mutex_init(&crypt_stat
->cs_tfm_mutex
);
223 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
224 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
228 * ecryptfs_destroy_crypt_stat
229 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
231 * Releases all memory associated with a crypt_stat struct.
233 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
235 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
238 crypto_free_ablkcipher(crypt_stat
->tfm
);
239 if (crypt_stat
->hash_tfm
)
240 crypto_free_hash(crypt_stat
->hash_tfm
);
241 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
242 &crypt_stat
->keysig_list
, crypt_stat_list
) {
243 list_del(&key_sig
->crypt_stat_list
);
244 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
246 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
249 void ecryptfs_destroy_mount_crypt_stat(
250 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
252 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
254 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
256 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
257 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
258 &mount_crypt_stat
->global_auth_tok_list
,
259 mount_crypt_stat_list
) {
260 list_del(&auth_tok
->mount_crypt_stat_list
);
261 if (!(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
262 key_put(auth_tok
->global_auth_tok_key
);
263 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
265 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
266 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
270 * virt_to_scatterlist
271 * @addr: Virtual address
272 * @size: Size of data; should be an even multiple of the block size
273 * @sg: Pointer to scatterlist array; set to NULL to obtain only
274 * the number of scatterlist structs required in array
275 * @sg_size: Max array size
277 * Fills in a scatterlist array with page references for a passed
280 * Returns the number of scatterlist structs in array used
282 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
288 int remainder_of_page
;
290 sg_init_table(sg
, sg_size
);
292 while (size
> 0 && i
< sg_size
) {
293 pg
= virt_to_page(addr
);
294 offset
= offset_in_page(addr
);
295 sg_set_page(&sg
[i
], pg
, 0, offset
);
296 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
297 if (size
>= remainder_of_page
) {
298 sg
[i
].length
= remainder_of_page
;
299 addr
+= remainder_of_page
;
300 size
-= remainder_of_page
;
313 struct extent_crypt_result
{
314 struct completion completion
;
318 static void extent_crypt_complete(struct crypto_async_request
*req
, int rc
)
320 struct extent_crypt_result
*ecr
= req
->data
;
322 if (rc
== -EINPROGRESS
)
326 complete(&ecr
->completion
);
331 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
332 * @dst_sg: Destination of the data after performing the crypto operation
333 * @src_sg: Data to be encrypted or decrypted
334 * @size: Length of data
336 * @op: ENCRYPT or DECRYPT to indicate the desired operation
338 * Returns the number of bytes encrypted or decrypted; negative value on error
340 static int crypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
341 struct scatterlist
*dst_sg
,
342 struct scatterlist
*src_sg
, int size
,
343 unsigned char *iv
, int op
)
345 struct ablkcipher_request
*req
= NULL
;
346 struct extent_crypt_result ecr
;
349 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
350 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
351 if (unlikely(ecryptfs_verbosity
> 0)) {
352 ecryptfs_printk(KERN_DEBUG
, "Key size [%zd]; key:\n",
353 crypt_stat
->key_size
);
354 ecryptfs_dump_hex(crypt_stat
->key
,
355 crypt_stat
->key_size
);
358 init_completion(&ecr
.completion
);
360 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
361 req
= ablkcipher_request_alloc(crypt_stat
->tfm
, GFP_NOFS
);
363 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
368 ablkcipher_request_set_callback(req
,
369 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
370 extent_crypt_complete
, &ecr
);
371 /* Consider doing this once, when the file is opened */
372 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
373 rc
= crypto_ablkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
374 crypt_stat
->key_size
);
376 ecryptfs_printk(KERN_ERR
,
377 "Error setting key; rc = [%d]\n",
379 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
383 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
385 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
386 ablkcipher_request_set_crypt(req
, src_sg
, dst_sg
, size
, iv
);
387 rc
= op
== ENCRYPT
? crypto_ablkcipher_encrypt(req
) :
388 crypto_ablkcipher_decrypt(req
);
389 if (rc
== -EINPROGRESS
|| rc
== -EBUSY
) {
390 struct extent_crypt_result
*ecr
= req
->base
.data
;
392 wait_for_completion(&ecr
->completion
);
394 reinit_completion(&ecr
->completion
);
397 ablkcipher_request_free(req
);
402 * lower_offset_for_page
404 * Convert an eCryptfs page index into a lower byte offset
406 static loff_t
lower_offset_for_page(struct ecryptfs_crypt_stat
*crypt_stat
,
409 return ecryptfs_lower_header_size(crypt_stat
) +
410 ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
);
415 * @crypt_stat: crypt_stat containing cryptographic context for the
416 * encryption operation
417 * @dst_page: The page to write the result into
418 * @src_page: The page to read from
419 * @extent_offset: Page extent offset for use in generating IV
420 * @op: ENCRYPT or DECRYPT to indicate the desired operation
422 * Encrypts or decrypts one extent of data.
424 * Return zero on success; non-zero otherwise
426 static int crypt_extent(struct ecryptfs_crypt_stat
*crypt_stat
,
427 struct page
*dst_page
,
428 struct page
*src_page
,
429 unsigned long extent_offset
, int op
)
431 pgoff_t page_index
= op
== ENCRYPT
? src_page
->index
: dst_page
->index
;
433 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
434 struct scatterlist src_sg
, dst_sg
;
435 size_t extent_size
= crypt_stat
->extent_size
;
438 extent_base
= (((loff_t
)page_index
) * (PAGE_CACHE_SIZE
/ extent_size
));
439 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
440 (extent_base
+ extent_offset
));
442 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
443 "extent [0x%.16llx]; rc = [%d]\n",
444 (unsigned long long)(extent_base
+ extent_offset
), rc
);
448 sg_init_table(&src_sg
, 1);
449 sg_init_table(&dst_sg
, 1);
451 sg_set_page(&src_sg
, src_page
, extent_size
,
452 extent_offset
* extent_size
);
453 sg_set_page(&dst_sg
, dst_page
, extent_size
,
454 extent_offset
* extent_size
);
456 rc
= crypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, extent_size
,
459 printk(KERN_ERR
"%s: Error attempting to crypt page with "
460 "page_index = [%ld], extent_offset = [%ld]; "
461 "rc = [%d]\n", __func__
, page_index
, extent_offset
, rc
);
470 * ecryptfs_encrypt_page
471 * @page: Page mapped from the eCryptfs inode for the file; contains
472 * decrypted content that needs to be encrypted (to a temporary
473 * page; not in place) and written out to the lower file
475 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
476 * that eCryptfs pages may straddle the lower pages -- for instance,
477 * if the file was created on a machine with an 8K page size
478 * (resulting in an 8K header), and then the file is copied onto a
479 * host with a 32K page size, then when reading page 0 of the eCryptfs
480 * file, 24K of page 0 of the lower file will be read and decrypted,
481 * and then 8K of page 1 of the lower file will be read and decrypted.
483 * Returns zero on success; negative on error
485 int ecryptfs_encrypt_page(struct page
*page
)
487 struct inode
*ecryptfs_inode
;
488 struct ecryptfs_crypt_stat
*crypt_stat
;
489 char *enc_extent_virt
;
490 struct page
*enc_extent_page
= NULL
;
491 loff_t extent_offset
;
495 ecryptfs_inode
= page
->mapping
->host
;
497 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
498 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
499 enc_extent_page
= alloc_page(GFP_USER
);
500 if (!enc_extent_page
) {
502 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
503 "encrypted extent\n");
507 for (extent_offset
= 0;
508 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
510 rc
= crypt_extent(crypt_stat
, enc_extent_page
, page
,
511 extent_offset
, ENCRYPT
);
513 printk(KERN_ERR
"%s: Error encrypting extent; "
514 "rc = [%d]\n", __func__
, rc
);
519 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
520 enc_extent_virt
= kmap(enc_extent_page
);
521 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
, lower_offset
,
523 kunmap(enc_extent_page
);
525 ecryptfs_printk(KERN_ERR
,
526 "Error attempting to write lower page; rc = [%d]\n",
532 if (enc_extent_page
) {
533 __free_page(enc_extent_page
);
539 * ecryptfs_decrypt_page
540 * @page: Page mapped from the eCryptfs inode for the file; data read
541 * and decrypted from the lower file will be written into this
544 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
545 * that eCryptfs pages may straddle the lower pages -- for instance,
546 * if the file was created on a machine with an 8K page size
547 * (resulting in an 8K header), and then the file is copied onto a
548 * host with a 32K page size, then when reading page 0 of the eCryptfs
549 * file, 24K of page 0 of the lower file will be read and decrypted,
550 * and then 8K of page 1 of the lower file will be read and decrypted.
552 * Returns zero on success; negative on error
554 int ecryptfs_decrypt_page(struct page
*page
)
556 struct inode
*ecryptfs_inode
;
557 struct ecryptfs_crypt_stat
*crypt_stat
;
559 unsigned long extent_offset
;
563 ecryptfs_inode
= page
->mapping
->host
;
565 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
566 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
568 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
569 page_virt
= kmap(page
);
570 rc
= ecryptfs_read_lower(page_virt
, lower_offset
, PAGE_CACHE_SIZE
,
574 ecryptfs_printk(KERN_ERR
,
575 "Error attempting to read lower page; rc = [%d]\n",
580 for (extent_offset
= 0;
581 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
583 rc
= crypt_extent(crypt_stat
, page
, page
,
584 extent_offset
, DECRYPT
);
586 printk(KERN_ERR
"%s: Error encrypting extent; "
587 "rc = [%d]\n", __func__
, rc
);
595 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
598 * ecryptfs_init_crypt_ctx
599 * @crypt_stat: Uninitialized crypt stats structure
601 * Initialize the crypto context.
603 * TODO: Performance: Keep a cache of initialized cipher contexts;
604 * only init if needed
606 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
611 ecryptfs_printk(KERN_DEBUG
,
612 "Initializing cipher [%s]; strlen = [%d]; "
613 "key_size_bits = [%zd]\n",
614 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
615 crypt_stat
->key_size
<< 3);
616 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
617 if (crypt_stat
->tfm
) {
621 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
622 crypt_stat
->cipher
, "cbc");
625 crypt_stat
->tfm
= crypto_alloc_ablkcipher(full_alg_name
, 0, 0);
626 if (IS_ERR(crypt_stat
->tfm
)) {
627 rc
= PTR_ERR(crypt_stat
->tfm
);
628 crypt_stat
->tfm
= NULL
;
629 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
630 "Error initializing cipher [%s]\n",
634 crypto_ablkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
637 kfree(full_alg_name
);
639 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
643 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
647 crypt_stat
->extent_mask
= 0xFFFFFFFF;
648 crypt_stat
->extent_shift
= 0;
649 if (crypt_stat
->extent_size
== 0)
651 extent_size_tmp
= crypt_stat
->extent_size
;
652 while ((extent_size_tmp
& 0x01) == 0) {
653 extent_size_tmp
>>= 1;
654 crypt_stat
->extent_mask
<<= 1;
655 crypt_stat
->extent_shift
++;
659 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
661 /* Default values; may be overwritten as we are parsing the
663 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
664 set_extent_mask_and_shift(crypt_stat
);
665 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
666 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
667 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
669 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
670 crypt_stat
->metadata_size
=
671 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
673 crypt_stat
->metadata_size
= PAGE_CACHE_SIZE
;
678 * ecryptfs_compute_root_iv
681 * On error, sets the root IV to all 0's.
683 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
686 char dst
[MD5_DIGEST_SIZE
];
688 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
689 BUG_ON(crypt_stat
->iv_bytes
<= 0);
690 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
692 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
693 "cannot generate root IV\n");
696 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
697 crypt_stat
->key_size
);
699 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
700 "MD5 while generating root IV\n");
703 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
706 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
707 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
712 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
714 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
715 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
716 ecryptfs_compute_root_iv(crypt_stat
);
717 if (unlikely(ecryptfs_verbosity
> 0)) {
718 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
719 ecryptfs_dump_hex(crypt_stat
->key
,
720 crypt_stat
->key_size
);
725 * ecryptfs_copy_mount_wide_flags_to_inode_flags
726 * @crypt_stat: The inode's cryptographic context
727 * @mount_crypt_stat: The mount point's cryptographic context
729 * This function propagates the mount-wide flags to individual inode
732 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
733 struct ecryptfs_crypt_stat
*crypt_stat
,
734 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
736 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
737 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
738 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
739 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
740 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
741 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
742 if (mount_crypt_stat
->flags
743 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
744 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
745 else if (mount_crypt_stat
->flags
746 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
747 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
751 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
752 struct ecryptfs_crypt_stat
*crypt_stat
,
753 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
755 struct ecryptfs_global_auth_tok
*global_auth_tok
;
758 mutex_lock(&crypt_stat
->keysig_list_mutex
);
759 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
761 list_for_each_entry(global_auth_tok
,
762 &mount_crypt_stat
->global_auth_tok_list
,
763 mount_crypt_stat_list
) {
764 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
766 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
768 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
774 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
775 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
780 * ecryptfs_set_default_crypt_stat_vals
781 * @crypt_stat: The inode's cryptographic context
782 * @mount_crypt_stat: The mount point's cryptographic context
784 * Default values in the event that policy does not override them.
786 static void ecryptfs_set_default_crypt_stat_vals(
787 struct ecryptfs_crypt_stat
*crypt_stat
,
788 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
790 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
792 ecryptfs_set_default_sizes(crypt_stat
);
793 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
794 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
795 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
796 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
797 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
801 * ecryptfs_new_file_context
802 * @ecryptfs_inode: The eCryptfs inode
804 * If the crypto context for the file has not yet been established,
805 * this is where we do that. Establishing a new crypto context
806 * involves the following decisions:
807 * - What cipher to use?
808 * - What set of authentication tokens to use?
809 * Here we just worry about getting enough information into the
810 * authentication tokens so that we know that they are available.
811 * We associate the available authentication tokens with the new file
812 * via the set of signatures in the crypt_stat struct. Later, when
813 * the headers are actually written out, we may again defer to
814 * userspace to perform the encryption of the session key; for the
815 * foreseeable future, this will be the case with public key packets.
817 * Returns zero on success; non-zero otherwise
819 int ecryptfs_new_file_context(struct inode
*ecryptfs_inode
)
821 struct ecryptfs_crypt_stat
*crypt_stat
=
822 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
823 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
824 &ecryptfs_superblock_to_private(
825 ecryptfs_inode
->i_sb
)->mount_crypt_stat
;
829 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
830 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
831 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
833 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
836 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
837 "to the inode key sigs; rc = [%d]\n", rc
);
841 strlen(mount_crypt_stat
->global_default_cipher_name
);
842 memcpy(crypt_stat
->cipher
,
843 mount_crypt_stat
->global_default_cipher_name
,
845 crypt_stat
->cipher
[cipher_name_len
] = '\0';
846 crypt_stat
->key_size
=
847 mount_crypt_stat
->global_default_cipher_key_size
;
848 ecryptfs_generate_new_key(crypt_stat
);
849 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
851 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
852 "context for cipher [%s]: rc = [%d]\n",
853 crypt_stat
->cipher
, rc
);
859 * ecryptfs_validate_marker - check for the ecryptfs marker
860 * @data: The data block in which to check
862 * Returns zero if marker found; -EINVAL if not found
864 static int ecryptfs_validate_marker(char *data
)
868 m_1
= get_unaligned_be32(data
);
869 m_2
= get_unaligned_be32(data
+ 4);
870 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
872 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
873 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
874 MAGIC_ECRYPTFS_MARKER
);
875 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
876 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
880 struct ecryptfs_flag_map_elem
{
885 /* Add support for additional flags by adding elements here. */
886 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
887 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
888 {0x00000002, ECRYPTFS_ENCRYPTED
},
889 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
890 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
894 * ecryptfs_process_flags
895 * @crypt_stat: The cryptographic context
896 * @page_virt: Source data to be parsed
897 * @bytes_read: Updated with the number of bytes read
899 * Returns zero on success; non-zero if the flag set is invalid
901 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
902 char *page_virt
, int *bytes_read
)
908 flags
= get_unaligned_be32(page_virt
);
909 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
910 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
911 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
912 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
914 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
915 /* Version is in top 8 bits of the 32-bit flag vector */
916 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
922 * write_ecryptfs_marker
923 * @page_virt: The pointer to in a page to begin writing the marker
924 * @written: Number of bytes written
926 * Marker = 0x3c81b7f5
928 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
932 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
933 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
934 put_unaligned_be32(m_1
, page_virt
);
935 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
936 put_unaligned_be32(m_2
, page_virt
);
937 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
940 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
941 struct ecryptfs_crypt_stat
*crypt_stat
,
947 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
948 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
949 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
950 flags
|= ecryptfs_flag_map
[i
].file_flag
;
951 /* Version is in top 8 bits of the 32-bit flag vector */
952 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
953 put_unaligned_be32(flags
, page_virt
);
957 struct ecryptfs_cipher_code_str_map_elem
{
962 /* Add support for additional ciphers by adding elements here. The
963 * cipher_code is whatever OpenPGP applicatoins use to identify the
964 * ciphers. List in order of probability. */
965 static struct ecryptfs_cipher_code_str_map_elem
966 ecryptfs_cipher_code_str_map
[] = {
967 {"aes",RFC2440_CIPHER_AES_128
},
968 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
969 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
970 {"cast5", RFC2440_CIPHER_CAST_5
},
971 {"twofish", RFC2440_CIPHER_TWOFISH
},
972 {"cast6", RFC2440_CIPHER_CAST_6
},
973 {"aes", RFC2440_CIPHER_AES_192
},
974 {"aes", RFC2440_CIPHER_AES_256
}
978 * ecryptfs_code_for_cipher_string
979 * @cipher_name: The string alias for the cipher
980 * @key_bytes: Length of key in bytes; used for AES code selection
982 * Returns zero on no match, or the cipher code on match
984 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
988 struct ecryptfs_cipher_code_str_map_elem
*map
=
989 ecryptfs_cipher_code_str_map
;
991 if (strcmp(cipher_name
, "aes") == 0) {
994 code
= RFC2440_CIPHER_AES_128
;
997 code
= RFC2440_CIPHER_AES_192
;
1000 code
= RFC2440_CIPHER_AES_256
;
1003 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1004 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
1005 code
= map
[i
].cipher_code
;
1013 * ecryptfs_cipher_code_to_string
1014 * @str: Destination to write out the cipher name
1015 * @cipher_code: The code to convert to cipher name string
1017 * Returns zero on success
1019 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1025 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1026 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1027 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1028 if (str
[0] == '\0') {
1029 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1030 "[%d]\n", cipher_code
);
1036 int ecryptfs_read_and_validate_header_region(struct inode
*inode
)
1038 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1039 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1042 rc
= ecryptfs_read_lower(file_size
, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES
,
1044 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1045 return rc
>= 0 ? -EINVAL
: rc
;
1046 rc
= ecryptfs_validate_marker(marker
);
1048 ecryptfs_i_size_init(file_size
, inode
);
1053 ecryptfs_write_header_metadata(char *virt
,
1054 struct ecryptfs_crypt_stat
*crypt_stat
,
1057 u32 header_extent_size
;
1058 u16 num_header_extents_at_front
;
1060 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1061 num_header_extents_at_front
=
1062 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1063 put_unaligned_be32(header_extent_size
, virt
);
1065 put_unaligned_be16(num_header_extents_at_front
, virt
);
1069 struct kmem_cache
*ecryptfs_header_cache
;
1072 * ecryptfs_write_headers_virt
1073 * @page_virt: The virtual address to write the headers to
1074 * @max: The size of memory allocated at page_virt
1075 * @size: Set to the number of bytes written by this function
1076 * @crypt_stat: The cryptographic context
1077 * @ecryptfs_dentry: The eCryptfs dentry
1082 * Octets 0-7: Unencrypted file size (big-endian)
1083 * Octets 8-15: eCryptfs special marker
1084 * Octets 16-19: Flags
1085 * Octet 16: File format version number (between 0 and 255)
1086 * Octets 17-18: Reserved
1087 * Octet 19: Bit 1 (lsb): Reserved
1089 * Bits 3-8: Reserved
1090 * Octets 20-23: Header extent size (big-endian)
1091 * Octets 24-25: Number of header extents at front of file
1093 * Octet 26: Begin RFC 2440 authentication token packet set
1095 * Lower data (CBC encrypted)
1097 * Lower data (CBC encrypted)
1100 * Returns zero on success
1102 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1104 struct ecryptfs_crypt_stat
*crypt_stat
,
1105 struct dentry
*ecryptfs_dentry
)
1111 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1112 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1114 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1117 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1120 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1121 ecryptfs_dentry
, &written
,
1124 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1125 "set; rc = [%d]\n", rc
);
1134 ecryptfs_write_metadata_to_contents(struct inode
*ecryptfs_inode
,
1135 char *virt
, size_t virt_len
)
1139 rc
= ecryptfs_write_lower(ecryptfs_inode
, virt
,
1142 printk(KERN_ERR
"%s: Error attempting to write header "
1143 "information to lower file; rc = [%d]\n", __func__
, rc
);
1150 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1151 char *page_virt
, size_t size
)
1155 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1160 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1165 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1167 return (unsigned long) page_address(page
);
1172 * ecryptfs_write_metadata
1173 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1174 * @ecryptfs_inode: The newly created eCryptfs inode
1176 * Write the file headers out. This will likely involve a userspace
1177 * callout, in which the session key is encrypted with one or more
1178 * public keys and/or the passphrase necessary to do the encryption is
1179 * retrieved via a prompt. Exactly what happens at this point should
1180 * be policy-dependent.
1182 * Returns zero on success; non-zero on error
1184 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
,
1185 struct inode
*ecryptfs_inode
)
1187 struct ecryptfs_crypt_stat
*crypt_stat
=
1188 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1195 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1196 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1197 printk(KERN_ERR
"Key is invalid; bailing out\n");
1202 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1207 virt_len
= crypt_stat
->metadata_size
;
1208 order
= get_order(virt_len
);
1209 /* Released in this function */
1210 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1212 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1216 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1217 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1220 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1224 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1225 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, virt
,
1228 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_inode
, virt
,
1231 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1232 "rc = [%d]\n", __func__
, rc
);
1236 free_pages((unsigned long)virt
, order
);
1241 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1242 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1243 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1244 char *virt
, int *bytes_read
,
1245 int validate_header_size
)
1248 u32 header_extent_size
;
1249 u16 num_header_extents_at_front
;
1251 header_extent_size
= get_unaligned_be32(virt
);
1252 virt
+= sizeof(__be32
);
1253 num_header_extents_at_front
= get_unaligned_be16(virt
);
1254 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1255 * (size_t)header_extent_size
));
1256 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1257 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1258 && (crypt_stat
->metadata_size
1259 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1261 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1262 crypt_stat
->metadata_size
);
1268 * set_default_header_data
1269 * @crypt_stat: The cryptographic context
1271 * For version 0 file format; this function is only for backwards
1272 * compatibility for files created with the prior versions of
1275 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1277 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1280 void ecryptfs_i_size_init(const char *page_virt
, struct inode
*inode
)
1282 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
;
1283 struct ecryptfs_crypt_stat
*crypt_stat
;
1286 crypt_stat
= &ecryptfs_inode_to_private(inode
)->crypt_stat
;
1288 &ecryptfs_superblock_to_private(inode
->i_sb
)->mount_crypt_stat
;
1289 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
) {
1290 file_size
= i_size_read(ecryptfs_inode_to_lower(inode
));
1291 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1292 file_size
+= crypt_stat
->metadata_size
;
1294 file_size
= get_unaligned_be64(page_virt
);
1295 i_size_write(inode
, (loff_t
)file_size
);
1296 crypt_stat
->flags
|= ECRYPTFS_I_SIZE_INITIALIZED
;
1300 * ecryptfs_read_headers_virt
1301 * @page_virt: The virtual address into which to read the headers
1302 * @crypt_stat: The cryptographic context
1303 * @ecryptfs_dentry: The eCryptfs dentry
1304 * @validate_header_size: Whether to validate the header size while reading
1306 * Read/parse the header data. The header format is detailed in the
1307 * comment block for the ecryptfs_write_headers_virt() function.
1309 * Returns zero on success
1311 static int ecryptfs_read_headers_virt(char *page_virt
,
1312 struct ecryptfs_crypt_stat
*crypt_stat
,
1313 struct dentry
*ecryptfs_dentry
,
1314 int validate_header_size
)
1320 ecryptfs_set_default_sizes(crypt_stat
);
1321 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1322 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1323 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1324 rc
= ecryptfs_validate_marker(page_virt
+ offset
);
1327 if (!(crypt_stat
->flags
& ECRYPTFS_I_SIZE_INITIALIZED
))
1328 ecryptfs_i_size_init(page_virt
, d_inode(ecryptfs_dentry
));
1329 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1330 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1333 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1336 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1337 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1338 "file version [%d] is supported by this "
1339 "version of eCryptfs\n",
1340 crypt_stat
->file_version
,
1341 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1345 offset
+= bytes_read
;
1346 if (crypt_stat
->file_version
>= 1) {
1347 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1348 &bytes_read
, validate_header_size
);
1350 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1351 "metadata; rc = [%d]\n", rc
);
1353 offset
+= bytes_read
;
1355 set_default_header_data(crypt_stat
);
1356 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1363 * ecryptfs_read_xattr_region
1364 * @page_virt: The vitual address into which to read the xattr data
1365 * @ecryptfs_inode: The eCryptfs inode
1367 * Attempts to read the crypto metadata from the extended attribute
1368 * region of the lower file.
1370 * Returns zero on success; non-zero on error
1372 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1374 struct dentry
*lower_dentry
=
1375 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_path
.dentry
;
1379 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1380 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1382 if (unlikely(ecryptfs_verbosity
> 0))
1383 printk(KERN_INFO
"Error attempting to read the [%s] "
1384 "xattr from the lower file; return value = "
1385 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1393 int ecryptfs_read_and_validate_xattr_region(struct dentry
*dentry
,
1394 struct inode
*inode
)
1396 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1397 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1400 rc
= ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry
),
1401 ECRYPTFS_XATTR_NAME
, file_size
,
1402 ECRYPTFS_SIZE_AND_MARKER_BYTES
);
1403 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1404 return rc
>= 0 ? -EINVAL
: rc
;
1405 rc
= ecryptfs_validate_marker(marker
);
1407 ecryptfs_i_size_init(file_size
, inode
);
1412 * ecryptfs_read_metadata
1414 * Common entry point for reading file metadata. From here, we could
1415 * retrieve the header information from the header region of the file,
1416 * the xattr region of the file, or some other repostory that is
1417 * stored separately from the file itself. The current implementation
1418 * supports retrieving the metadata information from the file contents
1419 * and from the xattr region.
1421 * Returns zero if valid headers found and parsed; non-zero otherwise
1423 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1427 struct inode
*ecryptfs_inode
= d_inode(ecryptfs_dentry
);
1428 struct ecryptfs_crypt_stat
*crypt_stat
=
1429 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1430 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1431 &ecryptfs_superblock_to_private(
1432 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1434 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1436 /* Read the first page from the underlying file */
1437 page_virt
= kmem_cache_alloc(ecryptfs_header_cache
, GFP_USER
);
1440 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1444 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1447 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1449 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1451 /* metadata is not in the file header, so try xattrs */
1452 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1453 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1455 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1456 "file header region or xattr region, inode %lu\n",
1457 ecryptfs_inode
->i_ino
);
1461 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1463 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1465 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1466 "file xattr region either, inode %lu\n",
1467 ecryptfs_inode
->i_ino
);
1470 if (crypt_stat
->mount_crypt_stat
->flags
1471 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1472 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1474 printk(KERN_WARNING
"Attempt to access file with "
1475 "crypto metadata only in the extended attribute "
1476 "region, but eCryptfs was mounted without "
1477 "xattr support enabled. eCryptfs will not treat "
1478 "this like an encrypted file, inode %lu\n",
1479 ecryptfs_inode
->i_ino
);
1485 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1486 kmem_cache_free(ecryptfs_header_cache
, page_virt
);
1492 * ecryptfs_encrypt_filename - encrypt filename
1494 * CBC-encrypts the filename. We do not want to encrypt the same
1495 * filename with the same key and IV, which may happen with hard
1496 * links, so we prepend random bits to each filename.
1498 * Returns zero on success; non-zero otherwise
1501 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1502 struct ecryptfs_crypt_stat
*crypt_stat
,
1503 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1507 filename
->encrypted_filename
= NULL
;
1508 filename
->encrypted_filename_size
= 0;
1509 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1510 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1511 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
1513 size_t remaining_bytes
;
1515 rc
= ecryptfs_write_tag_70_packet(
1517 &filename
->encrypted_filename_size
,
1518 mount_crypt_stat
, NULL
,
1519 filename
->filename_size
);
1521 printk(KERN_ERR
"%s: Error attempting to get packet "
1522 "size for tag 72; rc = [%d]\n", __func__
,
1524 filename
->encrypted_filename_size
= 0;
1527 filename
->encrypted_filename
=
1528 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1529 if (!filename
->encrypted_filename
) {
1530 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1531 "to kmalloc [%zd] bytes\n", __func__
,
1532 filename
->encrypted_filename_size
);
1536 remaining_bytes
= filename
->encrypted_filename_size
;
1537 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1542 filename
->filename_size
);
1544 printk(KERN_ERR
"%s: Error attempting to generate "
1545 "tag 70 packet; rc = [%d]\n", __func__
,
1547 kfree(filename
->encrypted_filename
);
1548 filename
->encrypted_filename
= NULL
;
1549 filename
->encrypted_filename_size
= 0;
1552 filename
->encrypted_filename_size
= packet_size
;
1554 printk(KERN_ERR
"%s: No support for requested filename "
1555 "encryption method in this release\n", __func__
);
1563 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1564 const char *name
, size_t name_size
)
1568 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1569 if (!(*copied_name
)) {
1573 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1574 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1575 * in printing out the
1578 (*copied_name_size
) = name_size
;
1584 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1585 * @key_tfm: Crypto context for key material, set by this function
1586 * @cipher_name: Name of the cipher
1587 * @key_size: Size of the key in bytes
1589 * Returns zero on success. Any crypto_tfm structs allocated here
1590 * should be released by other functions, such as on a superblock put
1591 * event, regardless of whether this function succeeds for fails.
1594 ecryptfs_process_key_cipher(struct crypto_blkcipher
**key_tfm
,
1595 char *cipher_name
, size_t *key_size
)
1597 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1598 char *full_alg_name
= NULL
;
1602 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1604 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1605 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1608 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1612 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1613 if (IS_ERR(*key_tfm
)) {
1614 rc
= PTR_ERR(*key_tfm
);
1615 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1616 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1619 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1620 if (*key_size
== 0) {
1621 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1623 *key_size
= alg
->max_keysize
;
1625 get_random_bytes(dummy_key
, *key_size
);
1626 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1628 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1629 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1635 kfree(full_alg_name
);
1639 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1640 static struct list_head key_tfm_list
;
1641 struct mutex key_tfm_list_mutex
;
1643 int __init
ecryptfs_init_crypto(void)
1645 mutex_init(&key_tfm_list_mutex
);
1646 INIT_LIST_HEAD(&key_tfm_list
);
1651 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1653 * Called only at module unload time
1655 int ecryptfs_destroy_crypto(void)
1657 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1659 mutex_lock(&key_tfm_list_mutex
);
1660 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1662 list_del(&key_tfm
->key_tfm_list
);
1663 if (key_tfm
->key_tfm
)
1664 crypto_free_blkcipher(key_tfm
->key_tfm
);
1665 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1667 mutex_unlock(&key_tfm_list_mutex
);
1672 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1675 struct ecryptfs_key_tfm
*tmp_tfm
;
1678 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1680 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1681 if (key_tfm
!= NULL
)
1682 (*key_tfm
) = tmp_tfm
;
1685 printk(KERN_ERR
"Error attempting to allocate from "
1686 "ecryptfs_key_tfm_cache\n");
1689 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1690 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1691 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1692 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1693 tmp_tfm
->key_size
= key_size
;
1694 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1695 tmp_tfm
->cipher_name
,
1696 &tmp_tfm
->key_size
);
1698 printk(KERN_ERR
"Error attempting to initialize key TFM "
1699 "cipher with name = [%s]; rc = [%d]\n",
1700 tmp_tfm
->cipher_name
, rc
);
1701 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1702 if (key_tfm
!= NULL
)
1706 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1712 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1713 * @cipher_name: the name of the cipher to search for
1714 * @key_tfm: set to corresponding tfm if found
1716 * Searches for cached key_tfm matching @cipher_name
1717 * Must be called with &key_tfm_list_mutex held
1718 * Returns 1 if found, with @key_tfm set
1719 * Returns 0 if not found, with @key_tfm set to NULL
1721 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1723 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1725 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1727 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1728 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1730 (*key_tfm
) = tmp_key_tfm
;
1740 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1742 * @tfm: set to cached tfm found, or new tfm created
1743 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1744 * @cipher_name: the name of the cipher to search for and/or add
1746 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1747 * Searches for cached item first, and creates new if not found.
1748 * Returns 0 on success, non-zero if adding new cipher failed
1750 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher
**tfm
,
1751 struct mutex
**tfm_mutex
,
1754 struct ecryptfs_key_tfm
*key_tfm
;
1758 (*tfm_mutex
) = NULL
;
1760 mutex_lock(&key_tfm_list_mutex
);
1761 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1762 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1764 printk(KERN_ERR
"Error adding new key_tfm to list; "
1769 (*tfm
) = key_tfm
->key_tfm
;
1770 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1772 mutex_unlock(&key_tfm_list_mutex
);
1776 /* 64 characters forming a 6-bit target field */
1777 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1780 "klmnopqrstuvwxyz");
1782 /* We could either offset on every reverse map or just pad some 0x00's
1783 * at the front here */
1784 static const unsigned char filename_rev_map
[256] = {
1785 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1786 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1787 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1788 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1789 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1790 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1791 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1792 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1793 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1794 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1795 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1796 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1797 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1798 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1799 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1800 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1804 * ecryptfs_encode_for_filename
1805 * @dst: Destination location for encoded filename
1806 * @dst_size: Size of the encoded filename in bytes
1807 * @src: Source location for the filename to encode
1808 * @src_size: Size of the source in bytes
1810 static void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1811 unsigned char *src
, size_t src_size
)
1814 size_t block_num
= 0;
1815 size_t dst_offset
= 0;
1816 unsigned char last_block
[3];
1818 if (src_size
== 0) {
1822 num_blocks
= (src_size
/ 3);
1823 if ((src_size
% 3) == 0) {
1824 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1827 last_block
[2] = 0x00;
1828 switch (src_size
% 3) {
1830 last_block
[0] = src
[src_size
- 1];
1831 last_block
[1] = 0x00;
1834 last_block
[0] = src
[src_size
- 2];
1835 last_block
[1] = src
[src_size
- 1];
1838 (*dst_size
) = (num_blocks
* 4);
1841 while (block_num
< num_blocks
) {
1842 unsigned char *src_block
;
1843 unsigned char dst_block
[4];
1845 if (block_num
== (num_blocks
- 1))
1846 src_block
= last_block
;
1848 src_block
= &src
[block_num
* 3];
1849 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
1850 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
1851 | ((src_block
[1] >> 4) & 0x0F));
1852 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
1853 | ((src_block
[2] >> 6) & 0x03));
1854 dst_block
[3] = (src_block
[2] & 0x3F);
1855 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
1856 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
1857 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
1858 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
1865 static size_t ecryptfs_max_decoded_size(size_t encoded_size
)
1867 /* Not exact; conservatively long. Every block of 4
1868 * encoded characters decodes into a block of 3
1869 * decoded characters. This segment of code provides
1870 * the caller with the maximum amount of allocated
1871 * space that @dst will need to point to in a
1872 * subsequent call. */
1873 return ((encoded_size
+ 1) * 3) / 4;
1877 * ecryptfs_decode_from_filename
1878 * @dst: If NULL, this function only sets @dst_size and returns. If
1879 * non-NULL, this function decodes the encoded octets in @src
1880 * into the memory that @dst points to.
1881 * @dst_size: Set to the size of the decoded string.
1882 * @src: The encoded set of octets to decode.
1883 * @src_size: The size of the encoded set of octets to decode.
1886 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
1887 const unsigned char *src
, size_t src_size
)
1889 u8 current_bit_offset
= 0;
1890 size_t src_byte_offset
= 0;
1891 size_t dst_byte_offset
= 0;
1894 (*dst_size
) = ecryptfs_max_decoded_size(src_size
);
1897 while (src_byte_offset
< src_size
) {
1898 unsigned char src_byte
=
1899 filename_rev_map
[(int)src
[src_byte_offset
]];
1901 switch (current_bit_offset
) {
1903 dst
[dst_byte_offset
] = (src_byte
<< 2);
1904 current_bit_offset
= 6;
1907 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
1908 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
1910 current_bit_offset
= 4;
1913 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
1914 dst
[dst_byte_offset
] = (src_byte
<< 6);
1915 current_bit_offset
= 2;
1918 dst
[dst_byte_offset
++] |= (src_byte
);
1919 current_bit_offset
= 0;
1924 (*dst_size
) = dst_byte_offset
;
1930 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1931 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1932 * @name: The plaintext name
1933 * @length: The length of the plaintext
1934 * @encoded_name: The encypted name
1936 * Encrypts and encodes a filename into something that constitutes a
1937 * valid filename for a filesystem, with printable characters.
1939 * We assume that we have a properly initialized crypto context,
1940 * pointed to by crypt_stat->tfm.
1942 * Returns zero on success; non-zero on otherwise
1944 int ecryptfs_encrypt_and_encode_filename(
1945 char **encoded_name
,
1946 size_t *encoded_name_size
,
1947 struct ecryptfs_crypt_stat
*crypt_stat
,
1948 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
1949 const char *name
, size_t name_size
)
1951 size_t encoded_name_no_prefix_size
;
1954 (*encoded_name
) = NULL
;
1955 (*encoded_name_size
) = 0;
1956 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCRYPT_FILENAMES
))
1957 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1958 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
))) {
1959 struct ecryptfs_filename
*filename
;
1961 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
1963 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1964 "to kzalloc [%zd] bytes\n", __func__
,
1969 filename
->filename
= (char *)name
;
1970 filename
->filename_size
= name_size
;
1971 rc
= ecryptfs_encrypt_filename(filename
, crypt_stat
,
1974 printk(KERN_ERR
"%s: Error attempting to encrypt "
1975 "filename; rc = [%d]\n", __func__
, rc
);
1979 ecryptfs_encode_for_filename(
1980 NULL
, &encoded_name_no_prefix_size
,
1981 filename
->encrypted_filename
,
1982 filename
->encrypted_filename_size
);
1983 if ((crypt_stat
&& (crypt_stat
->flags
1984 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1985 || (mount_crypt_stat
1986 && (mount_crypt_stat
->flags
1987 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)))
1988 (*encoded_name_size
) =
1989 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1990 + encoded_name_no_prefix_size
);
1992 (*encoded_name_size
) =
1993 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1994 + encoded_name_no_prefix_size
);
1995 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
1996 if (!(*encoded_name
)) {
1997 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1998 "to kzalloc [%zd] bytes\n", __func__
,
1999 (*encoded_name_size
));
2001 kfree(filename
->encrypted_filename
);
2005 if ((crypt_stat
&& (crypt_stat
->flags
2006 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2007 || (mount_crypt_stat
2008 && (mount_crypt_stat
->flags
2009 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
2010 memcpy((*encoded_name
),
2011 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2012 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
2013 ecryptfs_encode_for_filename(
2015 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
2016 &encoded_name_no_prefix_size
,
2017 filename
->encrypted_filename
,
2018 filename
->encrypted_filename_size
);
2019 (*encoded_name_size
) =
2020 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2021 + encoded_name_no_prefix_size
);
2022 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2027 printk(KERN_ERR
"%s: Error attempting to encode "
2028 "encrypted filename; rc = [%d]\n", __func__
,
2030 kfree((*encoded_name
));
2031 (*encoded_name
) = NULL
;
2032 (*encoded_name_size
) = 0;
2034 kfree(filename
->encrypted_filename
);
2037 rc
= ecryptfs_copy_filename(encoded_name
,
2046 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2047 * @plaintext_name: The plaintext name
2048 * @plaintext_name_size: The plaintext name size
2049 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2050 * @name: The filename in cipher text
2051 * @name_size: The cipher text name size
2053 * Decrypts and decodes the filename.
2055 * Returns zero on error; non-zero otherwise
2057 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2058 size_t *plaintext_name_size
,
2059 struct super_block
*sb
,
2060 const char *name
, size_t name_size
)
2062 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2063 &ecryptfs_superblock_to_private(sb
)->mount_crypt_stat
;
2065 size_t decoded_name_size
;
2069 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2070 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2071 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2072 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2073 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2074 const char *orig_name
= name
;
2075 size_t orig_name_size
= name_size
;
2077 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2078 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2079 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2081 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2082 if (!decoded_name
) {
2083 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2084 "to kmalloc [%zd] bytes\n", __func__
,
2089 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2091 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2092 plaintext_name_size
,
2098 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2099 "from filename; copying through filename "
2100 "as-is\n", __func__
);
2101 rc
= ecryptfs_copy_filename(plaintext_name
,
2102 plaintext_name_size
,
2103 orig_name
, orig_name_size
);
2107 rc
= ecryptfs_copy_filename(plaintext_name
,
2108 plaintext_name_size
,
2113 kfree(decoded_name
);
2118 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2120 int ecryptfs_set_f_namelen(long *namelen
, long lower_namelen
,
2121 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
2123 struct blkcipher_desc desc
;
2124 struct mutex
*tfm_mutex
;
2125 size_t cipher_blocksize
;
2128 if (!(mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
2129 (*namelen
) = lower_namelen
;
2133 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc
.tfm
, &tfm_mutex
,
2134 mount_crypt_stat
->global_default_fn_cipher_name
);
2140 mutex_lock(tfm_mutex
);
2141 cipher_blocksize
= crypto_blkcipher_blocksize(desc
.tfm
);
2142 mutex_unlock(tfm_mutex
);
2144 /* Return an exact amount for the common cases */
2145 if (lower_namelen
== NAME_MAX
2146 && (cipher_blocksize
== 8 || cipher_blocksize
== 16)) {
2147 (*namelen
) = ENC_NAME_MAX_BLOCKLEN_8_OR_16
;
2151 /* Return a safe estimate for the uncommon cases */
2152 (*namelen
) = lower_namelen
;
2153 (*namelen
) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2154 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2155 (*namelen
) = ecryptfs_max_decoded_size(*namelen
) - 3;
2156 (*namelen
) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE
;
2157 (*namelen
) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
;
2158 /* Worst case is that the filename is padded nearly a full block size */
2159 (*namelen
) -= cipher_blocksize
- 1;