2 * linux/fs/ext4/crypto.c
4 * Copyright (C) 2015, Google, Inc.
6 * This contains encryption functions for ext4
8 * Written by Michael Halcrow, 2014.
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
15 * This has not yet undergone a rigorous security audit.
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
21 #include <crypto/hash.h>
22 #include <crypto/sha.h>
23 #include <keys/user-type.h>
24 #include <keys/encrypted-type.h>
25 #include <linux/crypto.h>
26 #include <linux/ecryptfs.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/key.h>
30 #include <linux/list.h>
31 #include <linux/mempool.h>
32 #include <linux/module.h>
33 #include <linux/mutex.h>
34 #include <linux/random.h>
35 #include <linux/scatterlist.h>
36 #include <linux/spinlock_types.h>
38 #include "ext4_extents.h"
41 /* Encryption added and removed here! (L: */
43 static unsigned int num_prealloc_crypto_pages
= 32;
44 static unsigned int num_prealloc_crypto_ctxs
= 128;
46 module_param(num_prealloc_crypto_pages
, uint
, 0444);
47 MODULE_PARM_DESC(num_prealloc_crypto_pages
,
48 "Number of crypto pages to preallocate");
49 module_param(num_prealloc_crypto_ctxs
, uint
, 0444);
50 MODULE_PARM_DESC(num_prealloc_crypto_ctxs
,
51 "Number of crypto contexts to preallocate");
53 static mempool_t
*ext4_bounce_page_pool
;
55 static LIST_HEAD(ext4_free_crypto_ctxs
);
56 static DEFINE_SPINLOCK(ext4_crypto_ctx_lock
);
58 static struct kmem_cache
*ext4_crypto_ctx_cachep
;
59 struct kmem_cache
*ext4_crypt_info_cachep
;
62 * ext4_release_crypto_ctx() - Releases an encryption context
63 * @ctx: The encryption context to release.
65 * If the encryption context was allocated from the pre-allocated pool, returns
66 * it to that pool. Else, frees it.
68 * If there's a bounce page in the context, this frees that.
70 void ext4_release_crypto_ctx(struct ext4_crypto_ctx
*ctx
)
74 if (ctx
->flags
& EXT4_WRITE_PATH_FL
&& ctx
->w
.bounce_page
)
75 mempool_free(ctx
->w
.bounce_page
, ext4_bounce_page_pool
);
76 ctx
->w
.bounce_page
= NULL
;
77 ctx
->w
.control_page
= NULL
;
78 if (ctx
->flags
& EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL
) {
79 kmem_cache_free(ext4_crypto_ctx_cachep
, ctx
);
81 spin_lock_irqsave(&ext4_crypto_ctx_lock
, flags
);
82 list_add(&ctx
->free_list
, &ext4_free_crypto_ctxs
);
83 spin_unlock_irqrestore(&ext4_crypto_ctx_lock
, flags
);
88 * ext4_get_crypto_ctx() - Gets an encryption context
89 * @inode: The inode for which we are doing the crypto
91 * Allocates and initializes an encryption context.
93 * Return: An allocated and initialized encryption context on success; error
94 * value or NULL otherwise.
96 struct ext4_crypto_ctx
*ext4_get_crypto_ctx(struct inode
*inode
)
98 struct ext4_crypto_ctx
*ctx
= NULL
;
101 struct ext4_crypt_info
*ci
= EXT4_I(inode
)->i_crypt_info
;
104 return ERR_PTR(-ENOKEY
);
107 * We first try getting the ctx from a free list because in
108 * the common case the ctx will have an allocated and
109 * initialized crypto tfm, so it's probably a worthwhile
110 * optimization. For the bounce page, we first try getting it
111 * from the kernel allocator because that's just about as fast
112 * as getting it from a list and because a cache of free pages
113 * should generally be a "last resort" option for a filesystem
114 * to be able to do its job.
116 spin_lock_irqsave(&ext4_crypto_ctx_lock
, flags
);
117 ctx
= list_first_entry_or_null(&ext4_free_crypto_ctxs
,
118 struct ext4_crypto_ctx
, free_list
);
120 list_del(&ctx
->free_list
);
121 spin_unlock_irqrestore(&ext4_crypto_ctx_lock
, flags
);
123 ctx
= kmem_cache_zalloc(ext4_crypto_ctx_cachep
, GFP_NOFS
);
128 ctx
->flags
|= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL
;
130 ctx
->flags
&= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL
;
132 ctx
->flags
&= ~EXT4_WRITE_PATH_FL
;
136 if (!IS_ERR_OR_NULL(ctx
))
137 ext4_release_crypto_ctx(ctx
);
143 struct workqueue_struct
*ext4_read_workqueue
;
144 static DEFINE_MUTEX(crypto_init
);
147 * ext4_exit_crypto() - Shutdown the ext4 encryption system
149 void ext4_exit_crypto(void)
151 struct ext4_crypto_ctx
*pos
, *n
;
153 list_for_each_entry_safe(pos
, n
, &ext4_free_crypto_ctxs
, free_list
)
154 kmem_cache_free(ext4_crypto_ctx_cachep
, pos
);
155 INIT_LIST_HEAD(&ext4_free_crypto_ctxs
);
156 if (ext4_bounce_page_pool
)
157 mempool_destroy(ext4_bounce_page_pool
);
158 ext4_bounce_page_pool
= NULL
;
159 if (ext4_read_workqueue
)
160 destroy_workqueue(ext4_read_workqueue
);
161 ext4_read_workqueue
= NULL
;
162 if (ext4_crypto_ctx_cachep
)
163 kmem_cache_destroy(ext4_crypto_ctx_cachep
);
164 ext4_crypto_ctx_cachep
= NULL
;
165 if (ext4_crypt_info_cachep
)
166 kmem_cache_destroy(ext4_crypt_info_cachep
);
167 ext4_crypt_info_cachep
= NULL
;
171 * ext4_init_crypto() - Set up for ext4 encryption.
173 * We only call this when we start accessing encrypted files, since it
174 * results in memory getting allocated that wouldn't otherwise be used.
176 * Return: Zero on success, non-zero otherwise.
178 int ext4_init_crypto(void)
180 int i
, res
= -ENOMEM
;
182 mutex_lock(&crypto_init
);
183 if (ext4_read_workqueue
)
184 goto already_initialized
;
185 ext4_read_workqueue
= alloc_workqueue("ext4_crypto", WQ_HIGHPRI
, 0);
186 if (!ext4_read_workqueue
)
189 ext4_crypto_ctx_cachep
= KMEM_CACHE(ext4_crypto_ctx
,
190 SLAB_RECLAIM_ACCOUNT
);
191 if (!ext4_crypto_ctx_cachep
)
194 ext4_crypt_info_cachep
= KMEM_CACHE(ext4_crypt_info
,
195 SLAB_RECLAIM_ACCOUNT
);
196 if (!ext4_crypt_info_cachep
)
199 for (i
= 0; i
< num_prealloc_crypto_ctxs
; i
++) {
200 struct ext4_crypto_ctx
*ctx
;
202 ctx
= kmem_cache_zalloc(ext4_crypto_ctx_cachep
, GFP_NOFS
);
207 list_add(&ctx
->free_list
, &ext4_free_crypto_ctxs
);
210 ext4_bounce_page_pool
=
211 mempool_create_page_pool(num_prealloc_crypto_pages
, 0);
212 if (!ext4_bounce_page_pool
) {
217 mutex_unlock(&crypto_init
);
221 mutex_unlock(&crypto_init
);
225 void ext4_restore_control_page(struct page
*data_page
)
227 struct ext4_crypto_ctx
*ctx
=
228 (struct ext4_crypto_ctx
*)page_private(data_page
);
230 set_page_private(data_page
, (unsigned long)NULL
);
231 ClearPagePrivate(data_page
);
232 unlock_page(data_page
);
233 ext4_release_crypto_ctx(ctx
);
237 * ext4_crypt_complete() - The completion callback for page encryption
238 * @req: The asynchronous encryption request context
239 * @res: The result of the encryption operation
241 static void ext4_crypt_complete(struct crypto_async_request
*req
, int res
)
243 struct ext4_completion_result
*ecr
= req
->data
;
245 if (res
== -EINPROGRESS
)
248 complete(&ecr
->completion
);
256 static int ext4_page_crypto(struct inode
*inode
,
259 struct page
*src_page
,
260 struct page
*dest_page
)
263 u8 xts_tweak
[EXT4_XTS_TWEAK_SIZE
];
264 struct ablkcipher_request
*req
= NULL
;
265 DECLARE_EXT4_COMPLETION_RESULT(ecr
);
266 struct scatterlist dst
, src
;
267 struct ext4_crypt_info
*ci
= EXT4_I(inode
)->i_crypt_info
;
268 struct crypto_ablkcipher
*tfm
= ci
->ci_ctfm
;
271 req
= ablkcipher_request_alloc(tfm
, GFP_NOFS
);
273 printk_ratelimited(KERN_ERR
274 "%s: crypto_request_alloc() failed\n",
278 ablkcipher_request_set_callback(
279 req
, CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
280 ext4_crypt_complete
, &ecr
);
282 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE
< sizeof(index
));
283 memcpy(xts_tweak
, &index
, sizeof(index
));
284 memset(&xts_tweak
[sizeof(index
)], 0,
285 EXT4_XTS_TWEAK_SIZE
- sizeof(index
));
287 sg_init_table(&dst
, 1);
288 sg_set_page(&dst
, dest_page
, PAGE_CACHE_SIZE
, 0);
289 sg_init_table(&src
, 1);
290 sg_set_page(&src
, src_page
, PAGE_CACHE_SIZE
, 0);
291 ablkcipher_request_set_crypt(req
, &src
, &dst
, PAGE_CACHE_SIZE
,
293 if (rw
== EXT4_DECRYPT
)
294 res
= crypto_ablkcipher_decrypt(req
);
296 res
= crypto_ablkcipher_encrypt(req
);
297 if (res
== -EINPROGRESS
|| res
== -EBUSY
) {
298 wait_for_completion(&ecr
.completion
);
301 ablkcipher_request_free(req
);
305 "%s: crypto_ablkcipher_encrypt() returned %d\n",
312 static struct page
*alloc_bounce_page(struct ext4_crypto_ctx
*ctx
)
314 ctx
->w
.bounce_page
= mempool_alloc(ext4_bounce_page_pool
, GFP_NOWAIT
);
315 if (ctx
->w
.bounce_page
== NULL
)
316 return ERR_PTR(-ENOMEM
);
317 ctx
->flags
|= EXT4_WRITE_PATH_FL
;
318 return ctx
->w
.bounce_page
;
322 * ext4_encrypt() - Encrypts a page
323 * @inode: The inode for which the encryption should take place
324 * @plaintext_page: The page to encrypt. Must be locked.
326 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
327 * encryption context.
329 * Called on the page write path. The caller must call
330 * ext4_restore_control_page() on the returned ciphertext page to
331 * release the bounce buffer and the encryption context.
333 * Return: An allocated page with the encrypted content on success. Else, an
334 * error value or NULL.
336 struct page
*ext4_encrypt(struct inode
*inode
,
337 struct page
*plaintext_page
)
339 struct ext4_crypto_ctx
*ctx
;
340 struct page
*ciphertext_page
= NULL
;
343 BUG_ON(!PageLocked(plaintext_page
));
345 ctx
= ext4_get_crypto_ctx(inode
);
347 return (struct page
*) ctx
;
349 /* The encryption operation will require a bounce page. */
350 ciphertext_page
= alloc_bounce_page(ctx
);
351 if (IS_ERR(ciphertext_page
))
353 ctx
->w
.control_page
= plaintext_page
;
354 err
= ext4_page_crypto(inode
, EXT4_ENCRYPT
, plaintext_page
->index
,
355 plaintext_page
, ciphertext_page
);
357 ciphertext_page
= ERR_PTR(err
);
359 ext4_release_crypto_ctx(ctx
);
360 return ciphertext_page
;
362 SetPagePrivate(ciphertext_page
);
363 set_page_private(ciphertext_page
, (unsigned long)ctx
);
364 lock_page(ciphertext_page
);
365 return ciphertext_page
;
369 * ext4_decrypt() - Decrypts a page in-place
370 * @ctx: The encryption context.
371 * @page: The page to decrypt. Must be locked.
373 * Decrypts page in-place using the ctx encryption context.
375 * Called from the read completion callback.
377 * Return: Zero on success, non-zero otherwise.
379 int ext4_decrypt(struct page
*page
)
381 BUG_ON(!PageLocked(page
));
383 return ext4_page_crypto(page
->mapping
->host
,
384 EXT4_DECRYPT
, page
->index
, page
, page
);
387 int ext4_encrypted_zeroout(struct inode
*inode
, struct ext4_extent
*ex
)
389 struct ext4_crypto_ctx
*ctx
;
390 struct page
*ciphertext_page
= NULL
;
392 ext4_lblk_t lblk
= le32_to_cpu(ex
->ee_block
);
393 ext4_fsblk_t pblk
= ext4_ext_pblock(ex
);
394 unsigned int len
= ext4_ext_get_actual_len(ex
);
398 ext4_msg(inode
->i_sb
, KERN_CRIT
,
399 "ext4_encrypted_zeroout ino %lu lblk %u len %u",
400 (unsigned long) inode
->i_ino
, lblk
, len
);
403 BUG_ON(inode
->i_sb
->s_blocksize
!= PAGE_CACHE_SIZE
);
405 ctx
= ext4_get_crypto_ctx(inode
);
409 ciphertext_page
= alloc_bounce_page(ctx
);
410 if (IS_ERR(ciphertext_page
)) {
411 err
= PTR_ERR(ciphertext_page
);
416 err
= ext4_page_crypto(inode
, EXT4_ENCRYPT
, lblk
,
417 ZERO_PAGE(0), ciphertext_page
);
421 bio
= bio_alloc(GFP_KERNEL
, 1);
426 bio
->bi_bdev
= inode
->i_sb
->s_bdev
;
427 bio
->bi_iter
.bi_sector
=
428 pblk
<< (inode
->i_sb
->s_blocksize_bits
- 9);
429 ret
= bio_add_page(bio
, ciphertext_page
,
430 inode
->i_sb
->s_blocksize
, 0);
431 if (ret
!= inode
->i_sb
->s_blocksize
) {
432 /* should never happen! */
433 ext4_msg(inode
->i_sb
, KERN_ERR
,
434 "bio_add_page failed: %d", ret
);
440 err
= submit_bio_wait(WRITE
, bio
);
441 if ((err
== 0) && bio
->bi_error
)
450 ext4_release_crypto_ctx(ctx
);
454 bool ext4_valid_contents_enc_mode(uint32_t mode
)
456 return (mode
== EXT4_ENCRYPTION_MODE_AES_256_XTS
);
460 * ext4_validate_encryption_key_size() - Validate the encryption key size
461 * @mode: The key mode.
462 * @size: The key size to validate.
464 * Return: The validated key size for @mode. Zero if invalid.
466 uint32_t ext4_validate_encryption_key_size(uint32_t mode
, uint32_t size
)
468 if (size
== ext4_encryption_key_size(mode
))