irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / fs / ext4 / inode.c
blobb3bd912df6bfaf475f9304eba7fb1b9ce6368e87
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 raw->i_checksum_hi = 0;
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 return csum;
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
80 __u32 provided, calculated;
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !ext4_has_metadata_csum(inode->i_sb))
85 return 1;
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
95 return provided == calculated;
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
101 __u32 csum;
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
105 !ext4_has_metadata_csum(inode->i_sb))
106 return;
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
118 trace_ext4_begin_ordered_truncate(inode, new_size);
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
140 * Test whether an inode is a fast symlink.
142 int ext4_inode_is_fast_symlink(struct inode *inode)
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
147 if (ext4_has_inline_data(inode))
148 return 0;
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
161 int ret;
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
176 return ret;
180 * Called at the last iput() if i_nlink is zero.
182 void ext4_evict_inode(struct inode *inode)
184 handle_t *handle;
185 int err;
187 trace_ext4_evict_inode(inode);
189 if (inode->i_nlink) {
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
205 * Note that directories do not have this problem because they
206 * don't use page cache.
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
217 truncate_inode_pages_final(&inode->i_data);
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 goto no_delete;
223 if (is_bad_inode(inode))
224 goto no_delete;
225 dquot_initialize(inode);
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages_final(&inode->i_data);
231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
237 sb_start_intwrite(inode->i_sb);
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
240 if (IS_ERR(handle)) {
241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
247 ext4_orphan_del(NULL, inode);
248 sb_end_intwrite(inode->i_sb);
249 goto no_delete;
252 if (IS_SYNC(inode))
253 ext4_handle_sync(handle);
254 inode->i_size = 0;
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
257 ext4_warning(inode->i_sb,
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
261 if (inode->i_blocks)
262 ext4_truncate(inode);
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
270 if (!ext4_handle_has_enough_credits(handle, 3)) {
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
275 ext4_warning(inode->i_sb,
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
279 ext4_orphan_del(NULL, inode);
280 sb_end_intwrite(inode->i_sb);
281 goto no_delete;
286 * Kill off the orphan record which ext4_truncate created.
287 * AKPM: I think this can be inside the above `if'.
288 * Note that ext4_orphan_del() has to be able to cope with the
289 * deletion of a non-existent orphan - this is because we don't
290 * know if ext4_truncate() actually created an orphan record.
291 * (Well, we could do this if we need to, but heck - it works)
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
303 if (ext4_mark_inode_dirty(handle, inode))
304 /* If that failed, just do the required in-core inode clear. */
305 ext4_clear_inode(inode);
306 else
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
309 sb_end_intwrite(inode->i_sb);
310 return;
311 no_delete:
312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 return &EXT4_I(inode)->i_reserved_quota;
320 #endif
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
326 void ext4_da_update_reserve_space(struct inode *inode,
327 int used, int quota_claim)
329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330 struct ext4_inode_info *ei = EXT4_I(inode);
332 spin_lock(&ei->i_block_reservation_lock);
333 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334 if (unlikely(used > ei->i_reserved_data_blocks)) {
335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336 "with only %d reserved data blocks",
337 __func__, inode->i_ino, used,
338 ei->i_reserved_data_blocks);
339 WARN_ON(1);
340 used = ei->i_reserved_data_blocks;
343 /* Update per-inode reservations */
344 ei->i_reserved_data_blocks -= used;
345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
349 /* Update quota subsystem for data blocks */
350 if (quota_claim)
351 dquot_claim_block(inode, EXT4_C2B(sbi, used));
352 else {
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
356 * not re-claim the quota for fallocated blocks.
358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
366 if ((ei->i_reserved_data_blocks == 0) &&
367 (atomic_read(&inode->i_writecount) == 0))
368 ext4_discard_preallocations(inode);
371 static int __check_block_validity(struct inode *inode, const char *func,
372 unsigned int line,
373 struct ext4_map_blocks *map)
375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 map->m_len)) {
377 ext4_error_inode(inode, func, line, map->m_pblk,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map->m_lblk,
380 map->m_len);
381 return -EFSCORRUPTED;
383 return 0;
386 #define check_block_validity(inode, map) \
387 __check_block_validity((inode), __func__, __LINE__, (map))
389 #ifdef ES_AGGRESSIVE_TEST
390 static void ext4_map_blocks_es_recheck(handle_t *handle,
391 struct inode *inode,
392 struct ext4_map_blocks *es_map,
393 struct ext4_map_blocks *map,
394 int flags)
396 int retval;
398 map->m_flags = 0;
400 * There is a race window that the result is not the same.
401 * e.g. xfstests #223 when dioread_nolock enables. The reason
402 * is that we lookup a block mapping in extent status tree with
403 * out taking i_data_sem. So at the time the unwritten extent
404 * could be converted.
406 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
407 down_read(&EXT4_I(inode)->i_data_sem);
408 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409 retval = ext4_ext_map_blocks(handle, inode, map, flags &
410 EXT4_GET_BLOCKS_KEEP_SIZE);
411 } else {
412 retval = ext4_ind_map_blocks(handle, inode, map, flags &
413 EXT4_GET_BLOCKS_KEEP_SIZE);
415 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 up_read((&EXT4_I(inode)->i_data_sem));
419 * We don't check m_len because extent will be collpased in status
420 * tree. So the m_len might not equal.
422 if (es_map->m_lblk != map->m_lblk ||
423 es_map->m_flags != map->m_flags ||
424 es_map->m_pblk != map->m_pblk) {
425 printk("ES cache assertion failed for inode: %lu "
426 "es_cached ex [%d/%d/%llu/%x] != "
427 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428 inode->i_ino, es_map->m_lblk, es_map->m_len,
429 es_map->m_pblk, es_map->m_flags, map->m_lblk,
430 map->m_len, map->m_pblk, map->m_flags,
431 retval, flags);
434 #endif /* ES_AGGRESSIVE_TEST */
437 * The ext4_map_blocks() function tries to look up the requested blocks,
438 * and returns if the blocks are already mapped.
440 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441 * and store the allocated blocks in the result buffer head and mark it
442 * mapped.
444 * If file type is extents based, it will call ext4_ext_map_blocks(),
445 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
446 * based files
448 * On success, it returns the number of blocks being mapped or allocated.
449 * if create==0 and the blocks are pre-allocated and unwritten block,
450 * the result buffer head is unmapped. If the create ==1, it will make sure
451 * the buffer head is mapped.
453 * It returns 0 if plain look up failed (blocks have not been allocated), in
454 * that case, buffer head is unmapped
456 * It returns the error in case of allocation failure.
458 int ext4_map_blocks(handle_t *handle, struct inode *inode,
459 struct ext4_map_blocks *map, int flags)
461 struct extent_status es;
462 int retval;
463 int ret = 0;
464 #ifdef ES_AGGRESSIVE_TEST
465 struct ext4_map_blocks orig_map;
467 memcpy(&orig_map, map, sizeof(*map));
468 #endif
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
476 * ext4_map_blocks returns an int, and m_len is an unsigned int
478 if (unlikely(map->m_len > INT_MAX))
479 map->m_len = INT_MAX;
481 /* We can handle the block number less than EXT_MAX_BLOCKS */
482 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483 return -EFSCORRUPTED;
485 /* Lookup extent status tree firstly */
486 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488 map->m_pblk = ext4_es_pblock(&es) +
489 map->m_lblk - es.es_lblk;
490 map->m_flags |= ext4_es_is_written(&es) ?
491 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492 retval = es.es_len - (map->m_lblk - es.es_lblk);
493 if (retval > map->m_len)
494 retval = map->m_len;
495 map->m_len = retval;
496 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497 retval = 0;
498 } else {
499 BUG_ON(1);
501 #ifdef ES_AGGRESSIVE_TEST
502 ext4_map_blocks_es_recheck(handle, inode, map,
503 &orig_map, flags);
504 #endif
505 goto found;
509 * Try to see if we can get the block without requesting a new
510 * file system block.
512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 down_read(&EXT4_I(inode)->i_data_sem);
514 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
515 retval = ext4_ext_map_blocks(handle, inode, map, flags &
516 EXT4_GET_BLOCKS_KEEP_SIZE);
517 } else {
518 retval = ext4_ind_map_blocks(handle, inode, map, flags &
519 EXT4_GET_BLOCKS_KEEP_SIZE);
521 if (retval > 0) {
522 unsigned int status;
524 if (unlikely(retval != map->m_len)) {
525 ext4_warning(inode->i_sb,
526 "ES len assertion failed for inode "
527 "%lu: retval %d != map->m_len %d",
528 inode->i_ino, retval, map->m_len);
529 WARN_ON(1);
532 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535 !(status & EXTENT_STATUS_WRITTEN) &&
536 ext4_find_delalloc_range(inode, map->m_lblk,
537 map->m_lblk + map->m_len - 1))
538 status |= EXTENT_STATUS_DELAYED;
539 ret = ext4_es_insert_extent(inode, map->m_lblk,
540 map->m_len, map->m_pblk, status);
541 if (ret < 0)
542 retval = ret;
544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 up_read((&EXT4_I(inode)->i_data_sem));
547 found:
548 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549 ret = check_block_validity(inode, map);
550 if (ret != 0)
551 return ret;
554 /* If it is only a block(s) look up */
555 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
556 return retval;
559 * Returns if the blocks have already allocated
561 * Note that if blocks have been preallocated
562 * ext4_ext_get_block() returns the create = 0
563 * with buffer head unmapped.
565 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
567 * If we need to convert extent to unwritten
568 * we continue and do the actual work in
569 * ext4_ext_map_blocks()
571 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572 return retval;
575 * Here we clear m_flags because after allocating an new extent,
576 * it will be set again.
578 map->m_flags &= ~EXT4_MAP_FLAGS;
581 * New blocks allocate and/or writing to unwritten extent
582 * will possibly result in updating i_data, so we take
583 * the write lock of i_data_sem, and call get_block()
584 * with create == 1 flag.
586 down_write(&EXT4_I(inode)->i_data_sem);
589 * We need to check for EXT4 here because migrate
590 * could have changed the inode type in between
592 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593 retval = ext4_ext_map_blocks(handle, inode, map, flags);
594 } else {
595 retval = ext4_ind_map_blocks(handle, inode, map, flags);
597 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599 * We allocated new blocks which will result in
600 * i_data's format changing. Force the migrate
601 * to fail by clearing migrate flags
603 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
607 * Update reserved blocks/metadata blocks after successful
608 * block allocation which had been deferred till now. We don't
609 * support fallocate for non extent files. So we can update
610 * reserve space here.
612 if ((retval > 0) &&
613 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614 ext4_da_update_reserve_space(inode, retval, 1);
617 if (retval > 0) {
618 unsigned int status;
620 if (unlikely(retval != map->m_len)) {
621 ext4_warning(inode->i_sb,
622 "ES len assertion failed for inode "
623 "%lu: retval %d != map->m_len %d",
624 inode->i_ino, retval, map->m_len);
625 WARN_ON(1);
629 * If the extent has been zeroed out, we don't need to update
630 * extent status tree.
632 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634 if (ext4_es_is_written(&es))
635 goto has_zeroout;
637 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640 !(status & EXTENT_STATUS_WRITTEN) &&
641 ext4_find_delalloc_range(inode, map->m_lblk,
642 map->m_lblk + map->m_len - 1))
643 status |= EXTENT_STATUS_DELAYED;
644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 map->m_pblk, status);
646 if (ret < 0)
647 retval = ret;
650 has_zeroout:
651 up_write((&EXT4_I(inode)->i_data_sem));
652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653 ret = check_block_validity(inode, map);
654 if (ret != 0)
655 return ret;
657 return retval;
660 /* Maximum number of blocks we map for direct IO at once. */
661 #define DIO_MAX_BLOCKS 4096
663 static int _ext4_get_block(struct inode *inode, sector_t iblock,
664 struct buffer_head *bh, int flags)
666 handle_t *handle = ext4_journal_current_handle();
667 struct ext4_map_blocks map;
668 int ret = 0, started = 0;
669 int dio_credits;
671 if (ext4_has_inline_data(inode))
672 return -ERANGE;
674 map.m_lblk = iblock;
675 map.m_len = bh->b_size >> inode->i_blkbits;
677 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
678 /* Direct IO write... */
679 if (map.m_len > DIO_MAX_BLOCKS)
680 map.m_len = DIO_MAX_BLOCKS;
681 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
682 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
683 dio_credits);
684 if (IS_ERR(handle)) {
685 ret = PTR_ERR(handle);
686 return ret;
688 started = 1;
691 ret = ext4_map_blocks(handle, inode, &map, flags);
692 if (ret > 0) {
693 ext4_io_end_t *io_end = ext4_inode_aio(inode);
695 map_bh(bh, inode->i_sb, map.m_pblk);
696 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
697 if (IS_DAX(inode) && buffer_unwritten(bh)) {
699 * dgc: I suspect unwritten conversion on ext4+DAX is
700 * fundamentally broken here when there are concurrent
701 * read/write in progress on this inode.
703 WARN_ON_ONCE(io_end);
704 bh->b_assoc_map = inode->i_mapping;
705 bh->b_private = (void *)(unsigned long)iblock;
707 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
708 set_buffer_defer_completion(bh);
709 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
710 ret = 0;
712 if (started)
713 ext4_journal_stop(handle);
714 return ret;
717 int ext4_get_block(struct inode *inode, sector_t iblock,
718 struct buffer_head *bh, int create)
720 return _ext4_get_block(inode, iblock, bh,
721 create ? EXT4_GET_BLOCKS_CREATE : 0);
725 * `handle' can be NULL if create is zero
727 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
728 ext4_lblk_t block, int map_flags)
730 struct ext4_map_blocks map;
731 struct buffer_head *bh;
732 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
733 int err;
735 J_ASSERT(handle != NULL || create == 0);
737 map.m_lblk = block;
738 map.m_len = 1;
739 err = ext4_map_blocks(handle, inode, &map, map_flags);
741 if (err == 0)
742 return create ? ERR_PTR(-ENOSPC) : NULL;
743 if (err < 0)
744 return ERR_PTR(err);
746 bh = sb_getblk(inode->i_sb, map.m_pblk);
747 if (unlikely(!bh))
748 return ERR_PTR(-ENOMEM);
749 if (map.m_flags & EXT4_MAP_NEW) {
750 J_ASSERT(create != 0);
751 J_ASSERT(handle != NULL);
754 * Now that we do not always journal data, we should
755 * keep in mind whether this should always journal the
756 * new buffer as metadata. For now, regular file
757 * writes use ext4_get_block instead, so it's not a
758 * problem.
760 lock_buffer(bh);
761 BUFFER_TRACE(bh, "call get_create_access");
762 err = ext4_journal_get_create_access(handle, bh);
763 if (unlikely(err)) {
764 unlock_buffer(bh);
765 goto errout;
767 if (!buffer_uptodate(bh)) {
768 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
769 set_buffer_uptodate(bh);
771 unlock_buffer(bh);
772 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
773 err = ext4_handle_dirty_metadata(handle, inode, bh);
774 if (unlikely(err))
775 goto errout;
776 } else
777 BUFFER_TRACE(bh, "not a new buffer");
778 return bh;
779 errout:
780 brelse(bh);
781 return ERR_PTR(err);
784 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
785 ext4_lblk_t block, int map_flags)
787 struct buffer_head *bh;
789 bh = ext4_getblk(handle, inode, block, map_flags);
790 if (IS_ERR(bh))
791 return bh;
792 if (!bh || buffer_uptodate(bh))
793 return bh;
794 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
795 wait_on_buffer(bh);
796 if (buffer_uptodate(bh))
797 return bh;
798 put_bh(bh);
799 return ERR_PTR(-EIO);
802 int ext4_walk_page_buffers(handle_t *handle,
803 struct buffer_head *head,
804 unsigned from,
805 unsigned to,
806 int *partial,
807 int (*fn)(handle_t *handle,
808 struct buffer_head *bh))
810 struct buffer_head *bh;
811 unsigned block_start, block_end;
812 unsigned blocksize = head->b_size;
813 int err, ret = 0;
814 struct buffer_head *next;
816 for (bh = head, block_start = 0;
817 ret == 0 && (bh != head || !block_start);
818 block_start = block_end, bh = next) {
819 next = bh->b_this_page;
820 block_end = block_start + blocksize;
821 if (block_end <= from || block_start >= to) {
822 if (partial && !buffer_uptodate(bh))
823 *partial = 1;
824 continue;
826 err = (*fn)(handle, bh);
827 if (!ret)
828 ret = err;
830 return ret;
834 * To preserve ordering, it is essential that the hole instantiation and
835 * the data write be encapsulated in a single transaction. We cannot
836 * close off a transaction and start a new one between the ext4_get_block()
837 * and the commit_write(). So doing the jbd2_journal_start at the start of
838 * prepare_write() is the right place.
840 * Also, this function can nest inside ext4_writepage(). In that case, we
841 * *know* that ext4_writepage() has generated enough buffer credits to do the
842 * whole page. So we won't block on the journal in that case, which is good,
843 * because the caller may be PF_MEMALLOC.
845 * By accident, ext4 can be reentered when a transaction is open via
846 * quota file writes. If we were to commit the transaction while thus
847 * reentered, there can be a deadlock - we would be holding a quota
848 * lock, and the commit would never complete if another thread had a
849 * transaction open and was blocking on the quota lock - a ranking
850 * violation.
852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853 * will _not_ run commit under these circumstances because handle->h_ref
854 * is elevated. We'll still have enough credits for the tiny quotafile
855 * write.
857 int do_journal_get_write_access(handle_t *handle,
858 struct buffer_head *bh)
860 int dirty = buffer_dirty(bh);
861 int ret;
863 if (!buffer_mapped(bh) || buffer_freed(bh))
864 return 0;
866 * __block_write_begin() could have dirtied some buffers. Clean
867 * the dirty bit as jbd2_journal_get_write_access() could complain
868 * otherwise about fs integrity issues. Setting of the dirty bit
869 * by __block_write_begin() isn't a real problem here as we clear
870 * the bit before releasing a page lock and thus writeback cannot
871 * ever write the buffer.
873 if (dirty)
874 clear_buffer_dirty(bh);
875 BUFFER_TRACE(bh, "get write access");
876 ret = ext4_journal_get_write_access(handle, bh);
877 if (!ret && dirty)
878 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
879 return ret;
882 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
883 struct buffer_head *bh_result, int create);
885 #ifdef CONFIG_EXT4_FS_ENCRYPTION
886 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
887 get_block_t *get_block)
889 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
890 unsigned to = from + len;
891 struct inode *inode = page->mapping->host;
892 unsigned block_start, block_end;
893 sector_t block;
894 int err = 0;
895 unsigned blocksize = inode->i_sb->s_blocksize;
896 unsigned bbits;
897 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
898 bool decrypt = false;
900 BUG_ON(!PageLocked(page));
901 BUG_ON(from > PAGE_CACHE_SIZE);
902 BUG_ON(to > PAGE_CACHE_SIZE);
903 BUG_ON(from > to);
905 if (!page_has_buffers(page))
906 create_empty_buffers(page, blocksize, 0);
907 head = page_buffers(page);
908 bbits = ilog2(blocksize);
909 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
911 for (bh = head, block_start = 0; bh != head || !block_start;
912 block++, block_start = block_end, bh = bh->b_this_page) {
913 block_end = block_start + blocksize;
914 if (block_end <= from || block_start >= to) {
915 if (PageUptodate(page)) {
916 if (!buffer_uptodate(bh))
917 set_buffer_uptodate(bh);
919 continue;
921 if (buffer_new(bh))
922 clear_buffer_new(bh);
923 if (!buffer_mapped(bh)) {
924 WARN_ON(bh->b_size != blocksize);
925 err = get_block(inode, block, bh, 1);
926 if (err)
927 break;
928 if (buffer_new(bh)) {
929 unmap_underlying_metadata(bh->b_bdev,
930 bh->b_blocknr);
931 if (PageUptodate(page)) {
932 clear_buffer_new(bh);
933 set_buffer_uptodate(bh);
934 mark_buffer_dirty(bh);
935 continue;
937 if (block_end > to || block_start < from)
938 zero_user_segments(page, to, block_end,
939 block_start, from);
940 continue;
943 if (PageUptodate(page)) {
944 if (!buffer_uptodate(bh))
945 set_buffer_uptodate(bh);
946 continue;
948 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
949 !buffer_unwritten(bh) &&
950 (block_start < from || block_end > to)) {
951 ll_rw_block(READ, 1, &bh);
952 *wait_bh++ = bh;
953 decrypt = ext4_encrypted_inode(inode) &&
954 S_ISREG(inode->i_mode);
958 * If we issued read requests, let them complete.
960 while (wait_bh > wait) {
961 wait_on_buffer(*--wait_bh);
962 if (!buffer_uptodate(*wait_bh))
963 err = -EIO;
965 if (unlikely(err))
966 page_zero_new_buffers(page, from, to);
967 else if (decrypt)
968 err = ext4_decrypt(page);
969 return err;
971 #endif
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 loff_t pos, unsigned len, unsigned flags,
975 struct page **pagep, void **fsdata)
977 struct inode *inode = mapping->host;
978 int ret, needed_blocks;
979 handle_t *handle;
980 int retries = 0;
981 struct page *page;
982 pgoff_t index;
983 unsigned from, to;
985 trace_ext4_write_begin(inode, pos, len, flags);
987 * Reserve one block more for addition to orphan list in case
988 * we allocate blocks but write fails for some reason
990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991 index = pos >> PAGE_CACHE_SHIFT;
992 from = pos & (PAGE_CACHE_SIZE - 1);
993 to = from + len;
995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 flags, pagep);
998 if (ret < 0)
999 return ret;
1000 if (ret == 1)
1001 return 0;
1005 * grab_cache_page_write_begin() can take a long time if the
1006 * system is thrashing due to memory pressure, or if the page
1007 * is being written back. So grab it first before we start
1008 * the transaction handle. This also allows us to allocate
1009 * the page (if needed) without using GFP_NOFS.
1011 retry_grab:
1012 page = grab_cache_page_write_begin(mapping, index, flags);
1013 if (!page)
1014 return -ENOMEM;
1015 unlock_page(page);
1017 retry_journal:
1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019 if (IS_ERR(handle)) {
1020 page_cache_release(page);
1021 return PTR_ERR(handle);
1024 lock_page(page);
1025 if (page->mapping != mapping) {
1026 /* The page got truncated from under us */
1027 unlock_page(page);
1028 page_cache_release(page);
1029 ext4_journal_stop(handle);
1030 goto retry_grab;
1032 /* In case writeback began while the page was unlocked */
1033 wait_for_stable_page(page);
1035 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1036 if (ext4_should_dioread_nolock(inode))
1037 ret = ext4_block_write_begin(page, pos, len,
1038 ext4_get_block_write);
1039 else
1040 ret = ext4_block_write_begin(page, pos, len,
1041 ext4_get_block);
1042 #else
1043 if (ext4_should_dioread_nolock(inode))
1044 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1045 else
1046 ret = __block_write_begin(page, pos, len, ext4_get_block);
1047 #endif
1048 if (!ret && ext4_should_journal_data(inode)) {
1049 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1050 from, to, NULL,
1051 do_journal_get_write_access);
1054 if (ret) {
1055 unlock_page(page);
1057 * __block_write_begin may have instantiated a few blocks
1058 * outside i_size. Trim these off again. Don't need
1059 * i_size_read because we hold i_mutex.
1061 * Add inode to orphan list in case we crash before
1062 * truncate finishes
1064 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1065 ext4_orphan_add(handle, inode);
1067 ext4_journal_stop(handle);
1068 if (pos + len > inode->i_size) {
1069 ext4_truncate_failed_write(inode);
1071 * If truncate failed early the inode might
1072 * still be on the orphan list; we need to
1073 * make sure the inode is removed from the
1074 * orphan list in that case.
1076 if (inode->i_nlink)
1077 ext4_orphan_del(NULL, inode);
1080 if (ret == -ENOSPC &&
1081 ext4_should_retry_alloc(inode->i_sb, &retries))
1082 goto retry_journal;
1083 page_cache_release(page);
1084 return ret;
1086 *pagep = page;
1087 return ret;
1090 /* For write_end() in data=journal mode */
1091 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1093 int ret;
1094 if (!buffer_mapped(bh) || buffer_freed(bh))
1095 return 0;
1096 set_buffer_uptodate(bh);
1097 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1098 clear_buffer_meta(bh);
1099 clear_buffer_prio(bh);
1100 return ret;
1104 * We need to pick up the new inode size which generic_commit_write gave us
1105 * `file' can be NULL - eg, when called from page_symlink().
1107 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1108 * buffers are managed internally.
1110 static int ext4_write_end(struct file *file,
1111 struct address_space *mapping,
1112 loff_t pos, unsigned len, unsigned copied,
1113 struct page *page, void *fsdata)
1115 handle_t *handle = ext4_journal_current_handle();
1116 struct inode *inode = mapping->host;
1117 loff_t old_size = inode->i_size;
1118 int ret = 0, ret2;
1119 int i_size_changed = 0;
1121 trace_ext4_write_end(inode, pos, len, copied);
1122 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1123 ret = ext4_jbd2_file_inode(handle, inode);
1124 if (ret) {
1125 unlock_page(page);
1126 page_cache_release(page);
1127 goto errout;
1131 if (ext4_has_inline_data(inode)) {
1132 ret = ext4_write_inline_data_end(inode, pos, len,
1133 copied, page);
1134 if (ret < 0)
1135 goto errout;
1136 copied = ret;
1137 } else
1138 copied = block_write_end(file, mapping, pos,
1139 len, copied, page, fsdata);
1141 * it's important to update i_size while still holding page lock:
1142 * page writeout could otherwise come in and zero beyond i_size.
1144 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1145 unlock_page(page);
1146 page_cache_release(page);
1148 if (old_size < pos)
1149 pagecache_isize_extended(inode, old_size, pos);
1151 * Don't mark the inode dirty under page lock. First, it unnecessarily
1152 * makes the holding time of page lock longer. Second, it forces lock
1153 * ordering of page lock and transaction start for journaling
1154 * filesystems.
1156 if (i_size_changed)
1157 ext4_mark_inode_dirty(handle, inode);
1159 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1160 /* if we have allocated more blocks and copied
1161 * less. We will have blocks allocated outside
1162 * inode->i_size. So truncate them
1164 ext4_orphan_add(handle, inode);
1165 errout:
1166 ret2 = ext4_journal_stop(handle);
1167 if (!ret)
1168 ret = ret2;
1170 if (pos + len > inode->i_size) {
1171 ext4_truncate_failed_write(inode);
1173 * If truncate failed early the inode might still be
1174 * on the orphan list; we need to make sure the inode
1175 * is removed from the orphan list in that case.
1177 if (inode->i_nlink)
1178 ext4_orphan_del(NULL, inode);
1181 return ret ? ret : copied;
1185 * This is a private version of page_zero_new_buffers() which doesn't
1186 * set the buffer to be dirty, since in data=journalled mode we need
1187 * to call ext4_handle_dirty_metadata() instead.
1189 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1191 unsigned int block_start = 0, block_end;
1192 struct buffer_head *head, *bh;
1194 bh = head = page_buffers(page);
1195 do {
1196 block_end = block_start + bh->b_size;
1197 if (buffer_new(bh)) {
1198 if (block_end > from && block_start < to) {
1199 if (!PageUptodate(page)) {
1200 unsigned start, size;
1202 start = max(from, block_start);
1203 size = min(to, block_end) - start;
1205 zero_user(page, start, size);
1206 set_buffer_uptodate(bh);
1208 clear_buffer_new(bh);
1211 block_start = block_end;
1212 bh = bh->b_this_page;
1213 } while (bh != head);
1216 static int ext4_journalled_write_end(struct file *file,
1217 struct address_space *mapping,
1218 loff_t pos, unsigned len, unsigned copied,
1219 struct page *page, void *fsdata)
1221 handle_t *handle = ext4_journal_current_handle();
1222 struct inode *inode = mapping->host;
1223 loff_t old_size = inode->i_size;
1224 int ret = 0, ret2;
1225 int partial = 0;
1226 unsigned from, to;
1227 int size_changed = 0;
1229 trace_ext4_journalled_write_end(inode, pos, len, copied);
1230 from = pos & (PAGE_CACHE_SIZE - 1);
1231 to = from + len;
1233 BUG_ON(!ext4_handle_valid(handle));
1235 if (ext4_has_inline_data(inode))
1236 copied = ext4_write_inline_data_end(inode, pos, len,
1237 copied, page);
1238 else {
1239 if (copied < len) {
1240 if (!PageUptodate(page))
1241 copied = 0;
1242 zero_new_buffers(page, from+copied, to);
1245 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1246 to, &partial, write_end_fn);
1247 if (!partial)
1248 SetPageUptodate(page);
1250 size_changed = ext4_update_inode_size(inode, pos + copied);
1251 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1252 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1253 unlock_page(page);
1254 page_cache_release(page);
1256 if (old_size < pos)
1257 pagecache_isize_extended(inode, old_size, pos);
1259 if (size_changed) {
1260 ret2 = ext4_mark_inode_dirty(handle, inode);
1261 if (!ret)
1262 ret = ret2;
1265 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1266 /* if we have allocated more blocks and copied
1267 * less. We will have blocks allocated outside
1268 * inode->i_size. So truncate them
1270 ext4_orphan_add(handle, inode);
1272 ret2 = ext4_journal_stop(handle);
1273 if (!ret)
1274 ret = ret2;
1275 if (pos + len > inode->i_size) {
1276 ext4_truncate_failed_write(inode);
1278 * If truncate failed early the inode might still be
1279 * on the orphan list; we need to make sure the inode
1280 * is removed from the orphan list in that case.
1282 if (inode->i_nlink)
1283 ext4_orphan_del(NULL, inode);
1286 return ret ? ret : copied;
1290 * Reserve space for a single cluster
1292 static int ext4_da_reserve_space(struct inode *inode)
1294 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1295 struct ext4_inode_info *ei = EXT4_I(inode);
1296 int ret;
1299 * We will charge metadata quota at writeout time; this saves
1300 * us from metadata over-estimation, though we may go over by
1301 * a small amount in the end. Here we just reserve for data.
1303 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1304 if (ret)
1305 return ret;
1307 spin_lock(&ei->i_block_reservation_lock);
1308 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1309 spin_unlock(&ei->i_block_reservation_lock);
1310 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1311 return -ENOSPC;
1313 ei->i_reserved_data_blocks++;
1314 trace_ext4_da_reserve_space(inode);
1315 spin_unlock(&ei->i_block_reservation_lock);
1317 return 0; /* success */
1320 static void ext4_da_release_space(struct inode *inode, int to_free)
1322 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1323 struct ext4_inode_info *ei = EXT4_I(inode);
1325 if (!to_free)
1326 return; /* Nothing to release, exit */
1328 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1330 trace_ext4_da_release_space(inode, to_free);
1331 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1333 * if there aren't enough reserved blocks, then the
1334 * counter is messed up somewhere. Since this
1335 * function is called from invalidate page, it's
1336 * harmless to return without any action.
1338 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1339 "ino %lu, to_free %d with only %d reserved "
1340 "data blocks", inode->i_ino, to_free,
1341 ei->i_reserved_data_blocks);
1342 WARN_ON(1);
1343 to_free = ei->i_reserved_data_blocks;
1345 ei->i_reserved_data_blocks -= to_free;
1347 /* update fs dirty data blocks counter */
1348 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1350 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1352 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1355 static void ext4_da_page_release_reservation(struct page *page,
1356 unsigned int offset,
1357 unsigned int length)
1359 int to_release = 0, contiguous_blks = 0;
1360 struct buffer_head *head, *bh;
1361 unsigned int curr_off = 0;
1362 struct inode *inode = page->mapping->host;
1363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1364 unsigned int stop = offset + length;
1365 int num_clusters;
1366 ext4_fsblk_t lblk;
1368 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1370 head = page_buffers(page);
1371 bh = head;
1372 do {
1373 unsigned int next_off = curr_off + bh->b_size;
1375 if (next_off > stop)
1376 break;
1378 if ((offset <= curr_off) && (buffer_delay(bh))) {
1379 to_release++;
1380 contiguous_blks++;
1381 clear_buffer_delay(bh);
1382 } else if (contiguous_blks) {
1383 lblk = page->index <<
1384 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1385 lblk += (curr_off >> inode->i_blkbits) -
1386 contiguous_blks;
1387 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1388 contiguous_blks = 0;
1390 curr_off = next_off;
1391 } while ((bh = bh->b_this_page) != head);
1393 if (contiguous_blks) {
1394 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1395 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1396 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1399 /* If we have released all the blocks belonging to a cluster, then we
1400 * need to release the reserved space for that cluster. */
1401 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1402 while (num_clusters > 0) {
1403 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1404 ((num_clusters - 1) << sbi->s_cluster_bits);
1405 if (sbi->s_cluster_ratio == 1 ||
1406 !ext4_find_delalloc_cluster(inode, lblk))
1407 ext4_da_release_space(inode, 1);
1409 num_clusters--;
1414 * Delayed allocation stuff
1417 struct mpage_da_data {
1418 struct inode *inode;
1419 struct writeback_control *wbc;
1421 pgoff_t first_page; /* The first page to write */
1422 pgoff_t next_page; /* Current page to examine */
1423 pgoff_t last_page; /* Last page to examine */
1425 * Extent to map - this can be after first_page because that can be
1426 * fully mapped. We somewhat abuse m_flags to store whether the extent
1427 * is delalloc or unwritten.
1429 struct ext4_map_blocks map;
1430 struct ext4_io_submit io_submit; /* IO submission data */
1433 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1434 bool invalidate)
1436 int nr_pages, i;
1437 pgoff_t index, end;
1438 struct pagevec pvec;
1439 struct inode *inode = mpd->inode;
1440 struct address_space *mapping = inode->i_mapping;
1442 /* This is necessary when next_page == 0. */
1443 if (mpd->first_page >= mpd->next_page)
1444 return;
1446 index = mpd->first_page;
1447 end = mpd->next_page - 1;
1448 if (invalidate) {
1449 ext4_lblk_t start, last;
1450 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1451 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1452 ext4_es_remove_extent(inode, start, last - start + 1);
1455 pagevec_init(&pvec, 0);
1456 while (index <= end) {
1457 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1458 if (nr_pages == 0)
1459 break;
1460 for (i = 0; i < nr_pages; i++) {
1461 struct page *page = pvec.pages[i];
1462 if (page->index > end)
1463 break;
1464 BUG_ON(!PageLocked(page));
1465 BUG_ON(PageWriteback(page));
1466 if (invalidate) {
1467 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1468 ClearPageUptodate(page);
1470 unlock_page(page);
1472 index = pvec.pages[nr_pages - 1]->index + 1;
1473 pagevec_release(&pvec);
1477 static void ext4_print_free_blocks(struct inode *inode)
1479 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480 struct super_block *sb = inode->i_sb;
1481 struct ext4_inode_info *ei = EXT4_I(inode);
1483 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1484 EXT4_C2B(EXT4_SB(inode->i_sb),
1485 ext4_count_free_clusters(sb)));
1486 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1487 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1488 (long long) EXT4_C2B(EXT4_SB(sb),
1489 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1490 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1491 (long long) EXT4_C2B(EXT4_SB(sb),
1492 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1493 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1494 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1495 ei->i_reserved_data_blocks);
1496 return;
1499 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1501 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1505 * This function is grabs code from the very beginning of
1506 * ext4_map_blocks, but assumes that the caller is from delayed write
1507 * time. This function looks up the requested blocks and sets the
1508 * buffer delay bit under the protection of i_data_sem.
1510 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1511 struct ext4_map_blocks *map,
1512 struct buffer_head *bh)
1514 struct extent_status es;
1515 int retval;
1516 sector_t invalid_block = ~((sector_t) 0xffff);
1517 #ifdef ES_AGGRESSIVE_TEST
1518 struct ext4_map_blocks orig_map;
1520 memcpy(&orig_map, map, sizeof(*map));
1521 #endif
1523 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1524 invalid_block = ~0;
1526 map->m_flags = 0;
1527 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1528 "logical block %lu\n", inode->i_ino, map->m_len,
1529 (unsigned long) map->m_lblk);
1531 /* Lookup extent status tree firstly */
1532 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1533 if (ext4_es_is_hole(&es)) {
1534 retval = 0;
1535 down_read(&EXT4_I(inode)->i_data_sem);
1536 goto add_delayed;
1540 * Delayed extent could be allocated by fallocate.
1541 * So we need to check it.
1543 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1544 map_bh(bh, inode->i_sb, invalid_block);
1545 set_buffer_new(bh);
1546 set_buffer_delay(bh);
1547 return 0;
1550 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1551 retval = es.es_len - (iblock - es.es_lblk);
1552 if (retval > map->m_len)
1553 retval = map->m_len;
1554 map->m_len = retval;
1555 if (ext4_es_is_written(&es))
1556 map->m_flags |= EXT4_MAP_MAPPED;
1557 else if (ext4_es_is_unwritten(&es))
1558 map->m_flags |= EXT4_MAP_UNWRITTEN;
1559 else
1560 BUG_ON(1);
1562 #ifdef ES_AGGRESSIVE_TEST
1563 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1564 #endif
1565 return retval;
1569 * Try to see if we can get the block without requesting a new
1570 * file system block.
1572 down_read(&EXT4_I(inode)->i_data_sem);
1573 if (ext4_has_inline_data(inode))
1574 retval = 0;
1575 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1576 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1577 else
1578 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1580 add_delayed:
1581 if (retval == 0) {
1582 int ret;
1584 * XXX: __block_prepare_write() unmaps passed block,
1585 * is it OK?
1588 * If the block was allocated from previously allocated cluster,
1589 * then we don't need to reserve it again. However we still need
1590 * to reserve metadata for every block we're going to write.
1592 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1593 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1594 ret = ext4_da_reserve_space(inode);
1595 if (ret) {
1596 /* not enough space to reserve */
1597 retval = ret;
1598 goto out_unlock;
1602 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1603 ~0, EXTENT_STATUS_DELAYED);
1604 if (ret) {
1605 retval = ret;
1606 goto out_unlock;
1609 map_bh(bh, inode->i_sb, invalid_block);
1610 set_buffer_new(bh);
1611 set_buffer_delay(bh);
1612 } else if (retval > 0) {
1613 int ret;
1614 unsigned int status;
1616 if (unlikely(retval != map->m_len)) {
1617 ext4_warning(inode->i_sb,
1618 "ES len assertion failed for inode "
1619 "%lu: retval %d != map->m_len %d",
1620 inode->i_ino, retval, map->m_len);
1621 WARN_ON(1);
1624 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1625 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1626 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1627 map->m_pblk, status);
1628 if (ret != 0)
1629 retval = ret;
1632 out_unlock:
1633 up_read((&EXT4_I(inode)->i_data_sem));
1635 return retval;
1639 * This is a special get_block_t callback which is used by
1640 * ext4_da_write_begin(). It will either return mapped block or
1641 * reserve space for a single block.
1643 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1644 * We also have b_blocknr = -1 and b_bdev initialized properly
1646 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1647 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1648 * initialized properly.
1650 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1651 struct buffer_head *bh, int create)
1653 struct ext4_map_blocks map;
1654 int ret = 0;
1656 BUG_ON(create == 0);
1657 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1659 map.m_lblk = iblock;
1660 map.m_len = 1;
1663 * first, we need to know whether the block is allocated already
1664 * preallocated blocks are unmapped but should treated
1665 * the same as allocated blocks.
1667 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1668 if (ret <= 0)
1669 return ret;
1671 map_bh(bh, inode->i_sb, map.m_pblk);
1672 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1674 if (buffer_unwritten(bh)) {
1675 /* A delayed write to unwritten bh should be marked
1676 * new and mapped. Mapped ensures that we don't do
1677 * get_block multiple times when we write to the same
1678 * offset and new ensures that we do proper zero out
1679 * for partial write.
1681 set_buffer_new(bh);
1682 set_buffer_mapped(bh);
1684 return 0;
1687 static int bget_one(handle_t *handle, struct buffer_head *bh)
1689 get_bh(bh);
1690 return 0;
1693 static int bput_one(handle_t *handle, struct buffer_head *bh)
1695 put_bh(bh);
1696 return 0;
1699 static int __ext4_journalled_writepage(struct page *page,
1700 unsigned int len)
1702 struct address_space *mapping = page->mapping;
1703 struct inode *inode = mapping->host;
1704 struct buffer_head *page_bufs = NULL;
1705 handle_t *handle = NULL;
1706 int ret = 0, err = 0;
1707 int inline_data = ext4_has_inline_data(inode);
1708 struct buffer_head *inode_bh = NULL;
1710 ClearPageChecked(page);
1712 if (inline_data) {
1713 BUG_ON(page->index != 0);
1714 BUG_ON(len > ext4_get_max_inline_size(inode));
1715 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1716 if (inode_bh == NULL)
1717 goto out;
1718 } else {
1719 page_bufs = page_buffers(page);
1720 if (!page_bufs) {
1721 BUG();
1722 goto out;
1724 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1725 NULL, bget_one);
1728 * We need to release the page lock before we start the
1729 * journal, so grab a reference so the page won't disappear
1730 * out from under us.
1732 get_page(page);
1733 unlock_page(page);
1735 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1736 ext4_writepage_trans_blocks(inode));
1737 if (IS_ERR(handle)) {
1738 ret = PTR_ERR(handle);
1739 put_page(page);
1740 goto out_no_pagelock;
1742 BUG_ON(!ext4_handle_valid(handle));
1744 lock_page(page);
1745 put_page(page);
1746 if (page->mapping != mapping) {
1747 /* The page got truncated from under us */
1748 ext4_journal_stop(handle);
1749 ret = 0;
1750 goto out;
1753 if (inline_data) {
1754 BUFFER_TRACE(inode_bh, "get write access");
1755 ret = ext4_journal_get_write_access(handle, inode_bh);
1757 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1759 } else {
1760 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1761 do_journal_get_write_access);
1763 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1764 write_end_fn);
1766 if (ret == 0)
1767 ret = err;
1768 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1769 err = ext4_journal_stop(handle);
1770 if (!ret)
1771 ret = err;
1773 if (!ext4_has_inline_data(inode))
1774 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1775 NULL, bput_one);
1776 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1777 out:
1778 unlock_page(page);
1779 out_no_pagelock:
1780 brelse(inode_bh);
1781 return ret;
1785 * Note that we don't need to start a transaction unless we're journaling data
1786 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1787 * need to file the inode to the transaction's list in ordered mode because if
1788 * we are writing back data added by write(), the inode is already there and if
1789 * we are writing back data modified via mmap(), no one guarantees in which
1790 * transaction the data will hit the disk. In case we are journaling data, we
1791 * cannot start transaction directly because transaction start ranks above page
1792 * lock so we have to do some magic.
1794 * This function can get called via...
1795 * - ext4_writepages after taking page lock (have journal handle)
1796 * - journal_submit_inode_data_buffers (no journal handle)
1797 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1798 * - grab_page_cache when doing write_begin (have journal handle)
1800 * We don't do any block allocation in this function. If we have page with
1801 * multiple blocks we need to write those buffer_heads that are mapped. This
1802 * is important for mmaped based write. So if we do with blocksize 1K
1803 * truncate(f, 1024);
1804 * a = mmap(f, 0, 4096);
1805 * a[0] = 'a';
1806 * truncate(f, 4096);
1807 * we have in the page first buffer_head mapped via page_mkwrite call back
1808 * but other buffer_heads would be unmapped but dirty (dirty done via the
1809 * do_wp_page). So writepage should write the first block. If we modify
1810 * the mmap area beyond 1024 we will again get a page_fault and the
1811 * page_mkwrite callback will do the block allocation and mark the
1812 * buffer_heads mapped.
1814 * We redirty the page if we have any buffer_heads that is either delay or
1815 * unwritten in the page.
1817 * We can get recursively called as show below.
1819 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1820 * ext4_writepage()
1822 * But since we don't do any block allocation we should not deadlock.
1823 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1825 static int ext4_writepage(struct page *page,
1826 struct writeback_control *wbc)
1828 int ret = 0;
1829 loff_t size;
1830 unsigned int len;
1831 struct buffer_head *page_bufs = NULL;
1832 struct inode *inode = page->mapping->host;
1833 struct ext4_io_submit io_submit;
1834 bool keep_towrite = false;
1836 trace_ext4_writepage(page);
1837 size = i_size_read(inode);
1838 if (page->index == size >> PAGE_CACHE_SHIFT)
1839 len = size & ~PAGE_CACHE_MASK;
1840 else
1841 len = PAGE_CACHE_SIZE;
1843 page_bufs = page_buffers(page);
1845 * We cannot do block allocation or other extent handling in this
1846 * function. If there are buffers needing that, we have to redirty
1847 * the page. But we may reach here when we do a journal commit via
1848 * journal_submit_inode_data_buffers() and in that case we must write
1849 * allocated buffers to achieve data=ordered mode guarantees.
1851 * Also, if there is only one buffer per page (the fs block
1852 * size == the page size), if one buffer needs block
1853 * allocation or needs to modify the extent tree to clear the
1854 * unwritten flag, we know that the page can't be written at
1855 * all, so we might as well refuse the write immediately.
1856 * Unfortunately if the block size != page size, we can't as
1857 * easily detect this case using ext4_walk_page_buffers(), but
1858 * for the extremely common case, this is an optimization that
1859 * skips a useless round trip through ext4_bio_write_page().
1861 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1862 ext4_bh_delay_or_unwritten)) {
1863 redirty_page_for_writepage(wbc, page);
1864 if ((current->flags & PF_MEMALLOC) ||
1865 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1867 * For memory cleaning there's no point in writing only
1868 * some buffers. So just bail out. Warn if we came here
1869 * from direct reclaim.
1871 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1872 == PF_MEMALLOC);
1873 unlock_page(page);
1874 return 0;
1876 keep_towrite = true;
1879 if (PageChecked(page) && ext4_should_journal_data(inode))
1881 * It's mmapped pagecache. Add buffers and journal it. There
1882 * doesn't seem much point in redirtying the page here.
1884 return __ext4_journalled_writepage(page, len);
1886 ext4_io_submit_init(&io_submit, wbc);
1887 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1888 if (!io_submit.io_end) {
1889 redirty_page_for_writepage(wbc, page);
1890 unlock_page(page);
1891 return -ENOMEM;
1893 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1894 ext4_io_submit(&io_submit);
1895 /* Drop io_end reference we got from init */
1896 ext4_put_io_end_defer(io_submit.io_end);
1897 return ret;
1900 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1902 int len;
1903 loff_t size = i_size_read(mpd->inode);
1904 int err;
1906 BUG_ON(page->index != mpd->first_page);
1907 if (page->index == size >> PAGE_CACHE_SHIFT)
1908 len = size & ~PAGE_CACHE_MASK;
1909 else
1910 len = PAGE_CACHE_SIZE;
1911 clear_page_dirty_for_io(page);
1912 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1913 if (!err)
1914 mpd->wbc->nr_to_write--;
1915 mpd->first_page++;
1917 return err;
1920 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1923 * mballoc gives us at most this number of blocks...
1924 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1925 * The rest of mballoc seems to handle chunks up to full group size.
1927 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1930 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1932 * @mpd - extent of blocks
1933 * @lblk - logical number of the block in the file
1934 * @bh - buffer head we want to add to the extent
1936 * The function is used to collect contig. blocks in the same state. If the
1937 * buffer doesn't require mapping for writeback and we haven't started the
1938 * extent of buffers to map yet, the function returns 'true' immediately - the
1939 * caller can write the buffer right away. Otherwise the function returns true
1940 * if the block has been added to the extent, false if the block couldn't be
1941 * added.
1943 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1944 struct buffer_head *bh)
1946 struct ext4_map_blocks *map = &mpd->map;
1948 /* Buffer that doesn't need mapping for writeback? */
1949 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1950 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1951 /* So far no extent to map => we write the buffer right away */
1952 if (map->m_len == 0)
1953 return true;
1954 return false;
1957 /* First block in the extent? */
1958 if (map->m_len == 0) {
1959 map->m_lblk = lblk;
1960 map->m_len = 1;
1961 map->m_flags = bh->b_state & BH_FLAGS;
1962 return true;
1965 /* Don't go larger than mballoc is willing to allocate */
1966 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1967 return false;
1969 /* Can we merge the block to our big extent? */
1970 if (lblk == map->m_lblk + map->m_len &&
1971 (bh->b_state & BH_FLAGS) == map->m_flags) {
1972 map->m_len++;
1973 return true;
1975 return false;
1979 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1981 * @mpd - extent of blocks for mapping
1982 * @head - the first buffer in the page
1983 * @bh - buffer we should start processing from
1984 * @lblk - logical number of the block in the file corresponding to @bh
1986 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1987 * the page for IO if all buffers in this page were mapped and there's no
1988 * accumulated extent of buffers to map or add buffers in the page to the
1989 * extent of buffers to map. The function returns 1 if the caller can continue
1990 * by processing the next page, 0 if it should stop adding buffers to the
1991 * extent to map because we cannot extend it anymore. It can also return value
1992 * < 0 in case of error during IO submission.
1994 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1995 struct buffer_head *head,
1996 struct buffer_head *bh,
1997 ext4_lblk_t lblk)
1999 struct inode *inode = mpd->inode;
2000 int err;
2001 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2002 >> inode->i_blkbits;
2004 do {
2005 BUG_ON(buffer_locked(bh));
2007 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2008 /* Found extent to map? */
2009 if (mpd->map.m_len)
2010 return 0;
2011 /* Everything mapped so far and we hit EOF */
2012 break;
2014 } while (lblk++, (bh = bh->b_this_page) != head);
2015 /* So far everything mapped? Submit the page for IO. */
2016 if (mpd->map.m_len == 0) {
2017 err = mpage_submit_page(mpd, head->b_page);
2018 if (err < 0)
2019 return err;
2021 return lblk < blocks;
2025 * mpage_map_buffers - update buffers corresponding to changed extent and
2026 * submit fully mapped pages for IO
2028 * @mpd - description of extent to map, on return next extent to map
2030 * Scan buffers corresponding to changed extent (we expect corresponding pages
2031 * to be already locked) and update buffer state according to new extent state.
2032 * We map delalloc buffers to their physical location, clear unwritten bits,
2033 * and mark buffers as uninit when we perform writes to unwritten extents
2034 * and do extent conversion after IO is finished. If the last page is not fully
2035 * mapped, we update @map to the next extent in the last page that needs
2036 * mapping. Otherwise we submit the page for IO.
2038 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2040 struct pagevec pvec;
2041 int nr_pages, i;
2042 struct inode *inode = mpd->inode;
2043 struct buffer_head *head, *bh;
2044 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2045 pgoff_t start, end;
2046 ext4_lblk_t lblk;
2047 sector_t pblock;
2048 int err;
2050 start = mpd->map.m_lblk >> bpp_bits;
2051 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2052 lblk = start << bpp_bits;
2053 pblock = mpd->map.m_pblk;
2055 pagevec_init(&pvec, 0);
2056 while (start <= end) {
2057 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2058 PAGEVEC_SIZE);
2059 if (nr_pages == 0)
2060 break;
2061 for (i = 0; i < nr_pages; i++) {
2062 struct page *page = pvec.pages[i];
2064 if (page->index > end)
2065 break;
2066 /* Up to 'end' pages must be contiguous */
2067 BUG_ON(page->index != start);
2068 bh = head = page_buffers(page);
2069 do {
2070 if (lblk < mpd->map.m_lblk)
2071 continue;
2072 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2074 * Buffer after end of mapped extent.
2075 * Find next buffer in the page to map.
2077 mpd->map.m_len = 0;
2078 mpd->map.m_flags = 0;
2080 * FIXME: If dioread_nolock supports
2081 * blocksize < pagesize, we need to make
2082 * sure we add size mapped so far to
2083 * io_end->size as the following call
2084 * can submit the page for IO.
2086 err = mpage_process_page_bufs(mpd, head,
2087 bh, lblk);
2088 pagevec_release(&pvec);
2089 if (err > 0)
2090 err = 0;
2091 return err;
2093 if (buffer_delay(bh)) {
2094 clear_buffer_delay(bh);
2095 bh->b_blocknr = pblock++;
2097 clear_buffer_unwritten(bh);
2098 } while (lblk++, (bh = bh->b_this_page) != head);
2101 * FIXME: This is going to break if dioread_nolock
2102 * supports blocksize < pagesize as we will try to
2103 * convert potentially unmapped parts of inode.
2105 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2106 /* Page fully mapped - let IO run! */
2107 err = mpage_submit_page(mpd, page);
2108 if (err < 0) {
2109 pagevec_release(&pvec);
2110 return err;
2112 start++;
2114 pagevec_release(&pvec);
2116 /* Extent fully mapped and matches with page boundary. We are done. */
2117 mpd->map.m_len = 0;
2118 mpd->map.m_flags = 0;
2119 return 0;
2122 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2124 struct inode *inode = mpd->inode;
2125 struct ext4_map_blocks *map = &mpd->map;
2126 int get_blocks_flags;
2127 int err, dioread_nolock;
2129 trace_ext4_da_write_pages_extent(inode, map);
2131 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2132 * to convert an unwritten extent to be initialized (in the case
2133 * where we have written into one or more preallocated blocks). It is
2134 * possible that we're going to need more metadata blocks than
2135 * previously reserved. However we must not fail because we're in
2136 * writeback and there is nothing we can do about it so it might result
2137 * in data loss. So use reserved blocks to allocate metadata if
2138 * possible.
2140 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2141 * the blocks in question are delalloc blocks. This indicates
2142 * that the blocks and quotas has already been checked when
2143 * the data was copied into the page cache.
2145 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2146 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2147 dioread_nolock = ext4_should_dioread_nolock(inode);
2148 if (dioread_nolock)
2149 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2150 if (map->m_flags & (1 << BH_Delay))
2151 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2153 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2154 if (err < 0)
2155 return err;
2156 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2157 if (!mpd->io_submit.io_end->handle &&
2158 ext4_handle_valid(handle)) {
2159 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2160 handle->h_rsv_handle = NULL;
2162 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2165 BUG_ON(map->m_len == 0);
2166 if (map->m_flags & EXT4_MAP_NEW) {
2167 struct block_device *bdev = inode->i_sb->s_bdev;
2168 int i;
2170 for (i = 0; i < map->m_len; i++)
2171 unmap_underlying_metadata(bdev, map->m_pblk + i);
2173 return 0;
2177 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2178 * mpd->len and submit pages underlying it for IO
2180 * @handle - handle for journal operations
2181 * @mpd - extent to map
2182 * @give_up_on_write - we set this to true iff there is a fatal error and there
2183 * is no hope of writing the data. The caller should discard
2184 * dirty pages to avoid infinite loops.
2186 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2187 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2188 * them to initialized or split the described range from larger unwritten
2189 * extent. Note that we need not map all the described range since allocation
2190 * can return less blocks or the range is covered by more unwritten extents. We
2191 * cannot map more because we are limited by reserved transaction credits. On
2192 * the other hand we always make sure that the last touched page is fully
2193 * mapped so that it can be written out (and thus forward progress is
2194 * guaranteed). After mapping we submit all mapped pages for IO.
2196 static int mpage_map_and_submit_extent(handle_t *handle,
2197 struct mpage_da_data *mpd,
2198 bool *give_up_on_write)
2200 struct inode *inode = mpd->inode;
2201 struct ext4_map_blocks *map = &mpd->map;
2202 int err;
2203 loff_t disksize;
2204 int progress = 0;
2206 mpd->io_submit.io_end->offset =
2207 ((loff_t)map->m_lblk) << inode->i_blkbits;
2208 do {
2209 err = mpage_map_one_extent(handle, mpd);
2210 if (err < 0) {
2211 struct super_block *sb = inode->i_sb;
2213 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2214 goto invalidate_dirty_pages;
2216 * Let the uper layers retry transient errors.
2217 * In the case of ENOSPC, if ext4_count_free_blocks()
2218 * is non-zero, a commit should free up blocks.
2220 if ((err == -ENOMEM) ||
2221 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2222 if (progress)
2223 goto update_disksize;
2224 return err;
2226 ext4_msg(sb, KERN_CRIT,
2227 "Delayed block allocation failed for "
2228 "inode %lu at logical offset %llu with"
2229 " max blocks %u with error %d",
2230 inode->i_ino,
2231 (unsigned long long)map->m_lblk,
2232 (unsigned)map->m_len, -err);
2233 ext4_msg(sb, KERN_CRIT,
2234 "This should not happen!! Data will "
2235 "be lost\n");
2236 if (err == -ENOSPC)
2237 ext4_print_free_blocks(inode);
2238 invalidate_dirty_pages:
2239 *give_up_on_write = true;
2240 return err;
2242 progress = 1;
2244 * Update buffer state, submit mapped pages, and get us new
2245 * extent to map
2247 err = mpage_map_and_submit_buffers(mpd);
2248 if (err < 0)
2249 goto update_disksize;
2250 } while (map->m_len);
2252 update_disksize:
2254 * Update on-disk size after IO is submitted. Races with
2255 * truncate are avoided by checking i_size under i_data_sem.
2257 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2258 if (disksize > EXT4_I(inode)->i_disksize) {
2259 int err2;
2260 loff_t i_size;
2262 down_write(&EXT4_I(inode)->i_data_sem);
2263 i_size = i_size_read(inode);
2264 if (disksize > i_size)
2265 disksize = i_size;
2266 if (disksize > EXT4_I(inode)->i_disksize)
2267 EXT4_I(inode)->i_disksize = disksize;
2268 err2 = ext4_mark_inode_dirty(handle, inode);
2269 up_write(&EXT4_I(inode)->i_data_sem);
2270 if (err2)
2271 ext4_error(inode->i_sb,
2272 "Failed to mark inode %lu dirty",
2273 inode->i_ino);
2274 if (!err)
2275 err = err2;
2277 return err;
2281 * Calculate the total number of credits to reserve for one writepages
2282 * iteration. This is called from ext4_writepages(). We map an extent of
2283 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2284 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2285 * bpp - 1 blocks in bpp different extents.
2287 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2289 int bpp = ext4_journal_blocks_per_page(inode);
2291 return ext4_meta_trans_blocks(inode,
2292 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2296 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2297 * and underlying extent to map
2299 * @mpd - where to look for pages
2301 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2302 * IO immediately. When we find a page which isn't mapped we start accumulating
2303 * extent of buffers underlying these pages that needs mapping (formed by
2304 * either delayed or unwritten buffers). We also lock the pages containing
2305 * these buffers. The extent found is returned in @mpd structure (starting at
2306 * mpd->lblk with length mpd->len blocks).
2308 * Note that this function can attach bios to one io_end structure which are
2309 * neither logically nor physically contiguous. Although it may seem as an
2310 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2311 * case as we need to track IO to all buffers underlying a page in one io_end.
2313 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2315 struct address_space *mapping = mpd->inode->i_mapping;
2316 struct pagevec pvec;
2317 unsigned int nr_pages;
2318 long left = mpd->wbc->nr_to_write;
2319 pgoff_t index = mpd->first_page;
2320 pgoff_t end = mpd->last_page;
2321 int tag;
2322 int i, err = 0;
2323 int blkbits = mpd->inode->i_blkbits;
2324 ext4_lblk_t lblk;
2325 struct buffer_head *head;
2327 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2328 tag = PAGECACHE_TAG_TOWRITE;
2329 else
2330 tag = PAGECACHE_TAG_DIRTY;
2332 pagevec_init(&pvec, 0);
2333 mpd->map.m_len = 0;
2334 mpd->next_page = index;
2335 while (index <= end) {
2336 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2337 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2338 if (nr_pages == 0)
2339 goto out;
2341 for (i = 0; i < nr_pages; i++) {
2342 struct page *page = pvec.pages[i];
2345 * At this point, the page may be truncated or
2346 * invalidated (changing page->mapping to NULL), or
2347 * even swizzled back from swapper_space to tmpfs file
2348 * mapping. However, page->index will not change
2349 * because we have a reference on the page.
2351 if (page->index > end)
2352 goto out;
2355 * Accumulated enough dirty pages? This doesn't apply
2356 * to WB_SYNC_ALL mode. For integrity sync we have to
2357 * keep going because someone may be concurrently
2358 * dirtying pages, and we might have synced a lot of
2359 * newly appeared dirty pages, but have not synced all
2360 * of the old dirty pages.
2362 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2363 goto out;
2365 /* If we can't merge this page, we are done. */
2366 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2367 goto out;
2369 lock_page(page);
2371 * If the page is no longer dirty, or its mapping no
2372 * longer corresponds to inode we are writing (which
2373 * means it has been truncated or invalidated), or the
2374 * page is already under writeback and we are not doing
2375 * a data integrity writeback, skip the page
2377 if (!PageDirty(page) ||
2378 (PageWriteback(page) &&
2379 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2380 unlikely(page->mapping != mapping)) {
2381 unlock_page(page);
2382 continue;
2385 wait_on_page_writeback(page);
2386 BUG_ON(PageWriteback(page));
2388 if (mpd->map.m_len == 0)
2389 mpd->first_page = page->index;
2390 mpd->next_page = page->index + 1;
2391 /* Add all dirty buffers to mpd */
2392 lblk = ((ext4_lblk_t)page->index) <<
2393 (PAGE_CACHE_SHIFT - blkbits);
2394 head = page_buffers(page);
2395 err = mpage_process_page_bufs(mpd, head, head, lblk);
2396 if (err <= 0)
2397 goto out;
2398 err = 0;
2399 left--;
2401 pagevec_release(&pvec);
2402 cond_resched();
2404 return 0;
2405 out:
2406 pagevec_release(&pvec);
2407 return err;
2410 static int __writepage(struct page *page, struct writeback_control *wbc,
2411 void *data)
2413 struct address_space *mapping = data;
2414 int ret = ext4_writepage(page, wbc);
2415 mapping_set_error(mapping, ret);
2416 return ret;
2419 static int ext4_writepages(struct address_space *mapping,
2420 struct writeback_control *wbc)
2422 pgoff_t writeback_index = 0;
2423 long nr_to_write = wbc->nr_to_write;
2424 int range_whole = 0;
2425 int cycled = 1;
2426 handle_t *handle = NULL;
2427 struct mpage_da_data mpd;
2428 struct inode *inode = mapping->host;
2429 int needed_blocks, rsv_blocks = 0, ret = 0;
2430 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2431 bool done;
2432 struct blk_plug plug;
2433 bool give_up_on_write = false;
2435 trace_ext4_writepages(inode, wbc);
2438 * No pages to write? This is mainly a kludge to avoid starting
2439 * a transaction for special inodes like journal inode on last iput()
2440 * because that could violate lock ordering on umount
2442 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2443 goto out_writepages;
2445 if (ext4_should_journal_data(inode)) {
2446 struct blk_plug plug;
2448 blk_start_plug(&plug);
2449 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2450 blk_finish_plug(&plug);
2451 goto out_writepages;
2455 * If the filesystem has aborted, it is read-only, so return
2456 * right away instead of dumping stack traces later on that
2457 * will obscure the real source of the problem. We test
2458 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2459 * the latter could be true if the filesystem is mounted
2460 * read-only, and in that case, ext4_writepages should
2461 * *never* be called, so if that ever happens, we would want
2462 * the stack trace.
2464 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2465 ret = -EROFS;
2466 goto out_writepages;
2469 if (ext4_should_dioread_nolock(inode)) {
2471 * We may need to convert up to one extent per block in
2472 * the page and we may dirty the inode.
2474 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2478 * If we have inline data and arrive here, it means that
2479 * we will soon create the block for the 1st page, so
2480 * we'd better clear the inline data here.
2482 if (ext4_has_inline_data(inode)) {
2483 /* Just inode will be modified... */
2484 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2485 if (IS_ERR(handle)) {
2486 ret = PTR_ERR(handle);
2487 goto out_writepages;
2489 BUG_ON(ext4_test_inode_state(inode,
2490 EXT4_STATE_MAY_INLINE_DATA));
2491 ext4_destroy_inline_data(handle, inode);
2492 ext4_journal_stop(handle);
2495 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2496 range_whole = 1;
2498 if (wbc->range_cyclic) {
2499 writeback_index = mapping->writeback_index;
2500 if (writeback_index)
2501 cycled = 0;
2502 mpd.first_page = writeback_index;
2503 mpd.last_page = -1;
2504 } else {
2505 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2506 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2509 mpd.inode = inode;
2510 mpd.wbc = wbc;
2511 ext4_io_submit_init(&mpd.io_submit, wbc);
2512 retry:
2513 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2514 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2515 done = false;
2516 blk_start_plug(&plug);
2517 while (!done && mpd.first_page <= mpd.last_page) {
2518 /* For each extent of pages we use new io_end */
2519 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2520 if (!mpd.io_submit.io_end) {
2521 ret = -ENOMEM;
2522 break;
2526 * We have two constraints: We find one extent to map and we
2527 * must always write out whole page (makes a difference when
2528 * blocksize < pagesize) so that we don't block on IO when we
2529 * try to write out the rest of the page. Journalled mode is
2530 * not supported by delalloc.
2532 BUG_ON(ext4_should_journal_data(inode));
2533 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2535 /* start a new transaction */
2536 handle = ext4_journal_start_with_reserve(inode,
2537 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2538 if (IS_ERR(handle)) {
2539 ret = PTR_ERR(handle);
2540 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2541 "%ld pages, ino %lu; err %d", __func__,
2542 wbc->nr_to_write, inode->i_ino, ret);
2543 /* Release allocated io_end */
2544 ext4_put_io_end(mpd.io_submit.io_end);
2545 break;
2548 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2549 ret = mpage_prepare_extent_to_map(&mpd);
2550 if (!ret) {
2551 if (mpd.map.m_len)
2552 ret = mpage_map_and_submit_extent(handle, &mpd,
2553 &give_up_on_write);
2554 else {
2556 * We scanned the whole range (or exhausted
2557 * nr_to_write), submitted what was mapped and
2558 * didn't find anything needing mapping. We are
2559 * done.
2561 done = true;
2564 ext4_journal_stop(handle);
2565 /* Submit prepared bio */
2566 ext4_io_submit(&mpd.io_submit);
2567 /* Unlock pages we didn't use */
2568 mpage_release_unused_pages(&mpd, give_up_on_write);
2569 /* Drop our io_end reference we got from init */
2570 ext4_put_io_end(mpd.io_submit.io_end);
2572 if (ret == -ENOSPC && sbi->s_journal) {
2574 * Commit the transaction which would
2575 * free blocks released in the transaction
2576 * and try again
2578 jbd2_journal_force_commit_nested(sbi->s_journal);
2579 ret = 0;
2580 continue;
2582 /* Fatal error - ENOMEM, EIO... */
2583 if (ret)
2584 break;
2586 blk_finish_plug(&plug);
2587 if (!ret && !cycled && wbc->nr_to_write > 0) {
2588 cycled = 1;
2589 mpd.last_page = writeback_index - 1;
2590 mpd.first_page = 0;
2591 goto retry;
2594 /* Update index */
2595 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2597 * Set the writeback_index so that range_cyclic
2598 * mode will write it back later
2600 mapping->writeback_index = mpd.first_page;
2602 out_writepages:
2603 trace_ext4_writepages_result(inode, wbc, ret,
2604 nr_to_write - wbc->nr_to_write);
2605 return ret;
2608 static int ext4_nonda_switch(struct super_block *sb)
2610 s64 free_clusters, dirty_clusters;
2611 struct ext4_sb_info *sbi = EXT4_SB(sb);
2614 * switch to non delalloc mode if we are running low
2615 * on free block. The free block accounting via percpu
2616 * counters can get slightly wrong with percpu_counter_batch getting
2617 * accumulated on each CPU without updating global counters
2618 * Delalloc need an accurate free block accounting. So switch
2619 * to non delalloc when we are near to error range.
2621 free_clusters =
2622 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2623 dirty_clusters =
2624 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2626 * Start pushing delalloc when 1/2 of free blocks are dirty.
2628 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2629 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2631 if (2 * free_clusters < 3 * dirty_clusters ||
2632 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2634 * free block count is less than 150% of dirty blocks
2635 * or free blocks is less than watermark
2637 return 1;
2639 return 0;
2642 /* We always reserve for an inode update; the superblock could be there too */
2643 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2645 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2646 return 1;
2648 if (pos + len <= 0x7fffffffULL)
2649 return 1;
2651 /* We might need to update the superblock to set LARGE_FILE */
2652 return 2;
2655 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2656 loff_t pos, unsigned len, unsigned flags,
2657 struct page **pagep, void **fsdata)
2659 int ret, retries = 0;
2660 struct page *page;
2661 pgoff_t index;
2662 struct inode *inode = mapping->host;
2663 handle_t *handle;
2665 index = pos >> PAGE_CACHE_SHIFT;
2667 if (ext4_nonda_switch(inode->i_sb)) {
2668 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2669 return ext4_write_begin(file, mapping, pos,
2670 len, flags, pagep, fsdata);
2672 *fsdata = (void *)0;
2673 trace_ext4_da_write_begin(inode, pos, len, flags);
2675 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2676 ret = ext4_da_write_inline_data_begin(mapping, inode,
2677 pos, len, flags,
2678 pagep, fsdata);
2679 if (ret < 0)
2680 return ret;
2681 if (ret == 1)
2682 return 0;
2686 * grab_cache_page_write_begin() can take a long time if the
2687 * system is thrashing due to memory pressure, or if the page
2688 * is being written back. So grab it first before we start
2689 * the transaction handle. This also allows us to allocate
2690 * the page (if needed) without using GFP_NOFS.
2692 retry_grab:
2693 page = grab_cache_page_write_begin(mapping, index, flags);
2694 if (!page)
2695 return -ENOMEM;
2696 unlock_page(page);
2699 * With delayed allocation, we don't log the i_disksize update
2700 * if there is delayed block allocation. But we still need
2701 * to journalling the i_disksize update if writes to the end
2702 * of file which has an already mapped buffer.
2704 retry_journal:
2705 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2706 ext4_da_write_credits(inode, pos, len));
2707 if (IS_ERR(handle)) {
2708 page_cache_release(page);
2709 return PTR_ERR(handle);
2712 lock_page(page);
2713 if (page->mapping != mapping) {
2714 /* The page got truncated from under us */
2715 unlock_page(page);
2716 page_cache_release(page);
2717 ext4_journal_stop(handle);
2718 goto retry_grab;
2720 /* In case writeback began while the page was unlocked */
2721 wait_for_stable_page(page);
2723 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2724 ret = ext4_block_write_begin(page, pos, len,
2725 ext4_da_get_block_prep);
2726 #else
2727 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2728 #endif
2729 if (ret < 0) {
2730 unlock_page(page);
2731 ext4_journal_stop(handle);
2733 * block_write_begin may have instantiated a few blocks
2734 * outside i_size. Trim these off again. Don't need
2735 * i_size_read because we hold i_mutex.
2737 if (pos + len > inode->i_size)
2738 ext4_truncate_failed_write(inode);
2740 if (ret == -ENOSPC &&
2741 ext4_should_retry_alloc(inode->i_sb, &retries))
2742 goto retry_journal;
2744 page_cache_release(page);
2745 return ret;
2748 *pagep = page;
2749 return ret;
2753 * Check if we should update i_disksize
2754 * when write to the end of file but not require block allocation
2756 static int ext4_da_should_update_i_disksize(struct page *page,
2757 unsigned long offset)
2759 struct buffer_head *bh;
2760 struct inode *inode = page->mapping->host;
2761 unsigned int idx;
2762 int i;
2764 bh = page_buffers(page);
2765 idx = offset >> inode->i_blkbits;
2767 for (i = 0; i < idx; i++)
2768 bh = bh->b_this_page;
2770 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2771 return 0;
2772 return 1;
2775 static int ext4_da_write_end(struct file *file,
2776 struct address_space *mapping,
2777 loff_t pos, unsigned len, unsigned copied,
2778 struct page *page, void *fsdata)
2780 struct inode *inode = mapping->host;
2781 int ret = 0, ret2;
2782 handle_t *handle = ext4_journal_current_handle();
2783 loff_t new_i_size;
2784 unsigned long start, end;
2785 int write_mode = (int)(unsigned long)fsdata;
2787 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2788 return ext4_write_end(file, mapping, pos,
2789 len, copied, page, fsdata);
2791 trace_ext4_da_write_end(inode, pos, len, copied);
2792 start = pos & (PAGE_CACHE_SIZE - 1);
2793 end = start + copied - 1;
2796 * generic_write_end() will run mark_inode_dirty() if i_size
2797 * changes. So let's piggyback the i_disksize mark_inode_dirty
2798 * into that.
2800 new_i_size = pos + copied;
2801 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2802 if (ext4_has_inline_data(inode) ||
2803 ext4_da_should_update_i_disksize(page, end)) {
2804 ext4_update_i_disksize(inode, new_i_size);
2805 /* We need to mark inode dirty even if
2806 * new_i_size is less that inode->i_size
2807 * bu greater than i_disksize.(hint delalloc)
2809 ext4_mark_inode_dirty(handle, inode);
2813 if (write_mode != CONVERT_INLINE_DATA &&
2814 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2815 ext4_has_inline_data(inode))
2816 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2817 page);
2818 else
2819 ret2 = generic_write_end(file, mapping, pos, len, copied,
2820 page, fsdata);
2822 copied = ret2;
2823 if (ret2 < 0)
2824 ret = ret2;
2825 ret2 = ext4_journal_stop(handle);
2826 if (!ret)
2827 ret = ret2;
2829 return ret ? ret : copied;
2832 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2833 unsigned int length)
2836 * Drop reserved blocks
2838 BUG_ON(!PageLocked(page));
2839 if (!page_has_buffers(page))
2840 goto out;
2842 ext4_da_page_release_reservation(page, offset, length);
2844 out:
2845 ext4_invalidatepage(page, offset, length);
2847 return;
2851 * Force all delayed allocation blocks to be allocated for a given inode.
2853 int ext4_alloc_da_blocks(struct inode *inode)
2855 trace_ext4_alloc_da_blocks(inode);
2857 if (!EXT4_I(inode)->i_reserved_data_blocks)
2858 return 0;
2861 * We do something simple for now. The filemap_flush() will
2862 * also start triggering a write of the data blocks, which is
2863 * not strictly speaking necessary (and for users of
2864 * laptop_mode, not even desirable). However, to do otherwise
2865 * would require replicating code paths in:
2867 * ext4_writepages() ->
2868 * write_cache_pages() ---> (via passed in callback function)
2869 * __mpage_da_writepage() -->
2870 * mpage_add_bh_to_extent()
2871 * mpage_da_map_blocks()
2873 * The problem is that write_cache_pages(), located in
2874 * mm/page-writeback.c, marks pages clean in preparation for
2875 * doing I/O, which is not desirable if we're not planning on
2876 * doing I/O at all.
2878 * We could call write_cache_pages(), and then redirty all of
2879 * the pages by calling redirty_page_for_writepage() but that
2880 * would be ugly in the extreme. So instead we would need to
2881 * replicate parts of the code in the above functions,
2882 * simplifying them because we wouldn't actually intend to
2883 * write out the pages, but rather only collect contiguous
2884 * logical block extents, call the multi-block allocator, and
2885 * then update the buffer heads with the block allocations.
2887 * For now, though, we'll cheat by calling filemap_flush(),
2888 * which will map the blocks, and start the I/O, but not
2889 * actually wait for the I/O to complete.
2891 return filemap_flush(inode->i_mapping);
2895 * bmap() is special. It gets used by applications such as lilo and by
2896 * the swapper to find the on-disk block of a specific piece of data.
2898 * Naturally, this is dangerous if the block concerned is still in the
2899 * journal. If somebody makes a swapfile on an ext4 data-journaling
2900 * filesystem and enables swap, then they may get a nasty shock when the
2901 * data getting swapped to that swapfile suddenly gets overwritten by
2902 * the original zero's written out previously to the journal and
2903 * awaiting writeback in the kernel's buffer cache.
2905 * So, if we see any bmap calls here on a modified, data-journaled file,
2906 * take extra steps to flush any blocks which might be in the cache.
2908 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2910 struct inode *inode = mapping->host;
2911 journal_t *journal;
2912 int err;
2915 * We can get here for an inline file via the FIBMAP ioctl
2917 if (ext4_has_inline_data(inode))
2918 return 0;
2920 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2921 test_opt(inode->i_sb, DELALLOC)) {
2923 * With delalloc we want to sync the file
2924 * so that we can make sure we allocate
2925 * blocks for file
2927 filemap_write_and_wait(mapping);
2930 if (EXT4_JOURNAL(inode) &&
2931 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2933 * This is a REALLY heavyweight approach, but the use of
2934 * bmap on dirty files is expected to be extremely rare:
2935 * only if we run lilo or swapon on a freshly made file
2936 * do we expect this to happen.
2938 * (bmap requires CAP_SYS_RAWIO so this does not
2939 * represent an unprivileged user DOS attack --- we'd be
2940 * in trouble if mortal users could trigger this path at
2941 * will.)
2943 * NB. EXT4_STATE_JDATA is not set on files other than
2944 * regular files. If somebody wants to bmap a directory
2945 * or symlink and gets confused because the buffer
2946 * hasn't yet been flushed to disk, they deserve
2947 * everything they get.
2950 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2951 journal = EXT4_JOURNAL(inode);
2952 jbd2_journal_lock_updates(journal);
2953 err = jbd2_journal_flush(journal);
2954 jbd2_journal_unlock_updates(journal);
2956 if (err)
2957 return 0;
2960 return generic_block_bmap(mapping, block, ext4_get_block);
2963 static int ext4_readpage(struct file *file, struct page *page)
2965 int ret = -EAGAIN;
2966 struct inode *inode = page->mapping->host;
2968 trace_ext4_readpage(page);
2970 if (ext4_has_inline_data(inode))
2971 ret = ext4_readpage_inline(inode, page);
2973 if (ret == -EAGAIN)
2974 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2976 return ret;
2979 static int
2980 ext4_readpages(struct file *file, struct address_space *mapping,
2981 struct list_head *pages, unsigned nr_pages)
2983 struct inode *inode = mapping->host;
2985 /* If the file has inline data, no need to do readpages. */
2986 if (ext4_has_inline_data(inode))
2987 return 0;
2989 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2992 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2993 unsigned int length)
2995 trace_ext4_invalidatepage(page, offset, length);
2997 /* No journalling happens on data buffers when this function is used */
2998 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3000 block_invalidatepage(page, offset, length);
3003 static int __ext4_journalled_invalidatepage(struct page *page,
3004 unsigned int offset,
3005 unsigned int length)
3007 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3009 trace_ext4_journalled_invalidatepage(page, offset, length);
3012 * If it's a full truncate we just forget about the pending dirtying
3014 if (offset == 0 && length == PAGE_CACHE_SIZE)
3015 ClearPageChecked(page);
3017 return jbd2_journal_invalidatepage(journal, page, offset, length);
3020 /* Wrapper for aops... */
3021 static void ext4_journalled_invalidatepage(struct page *page,
3022 unsigned int offset,
3023 unsigned int length)
3025 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3028 static int ext4_releasepage(struct page *page, gfp_t wait)
3030 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3032 trace_ext4_releasepage(page);
3034 /* Page has dirty journalled data -> cannot release */
3035 if (PageChecked(page))
3036 return 0;
3037 if (journal)
3038 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3039 else
3040 return try_to_free_buffers(page);
3044 * ext4_get_block used when preparing for a DIO write or buffer write.
3045 * We allocate an uinitialized extent if blocks haven't been allocated.
3046 * The extent will be converted to initialized after the IO is complete.
3048 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3049 struct buffer_head *bh_result, int create)
3051 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3052 inode->i_ino, create);
3053 return _ext4_get_block(inode, iblock, bh_result,
3054 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3057 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3058 struct buffer_head *bh_result, int create)
3060 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3061 inode->i_ino, create);
3062 return _ext4_get_block(inode, iblock, bh_result,
3063 EXT4_GET_BLOCKS_NO_LOCK);
3066 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3067 struct buffer_head *bh_result, int create)
3069 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3070 if (create)
3071 flags |= EXT4_GET_BLOCKS_CREATE;
3072 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3073 inode->i_ino, create);
3074 return _ext4_get_block(inode, iblock, bh_result, flags);
3077 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3078 ssize_t size, void *private)
3080 ext4_io_end_t *io_end = iocb->private;
3082 /* if not async direct IO just return */
3083 if (!io_end)
3084 return;
3086 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3087 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3088 iocb->private, io_end->inode->i_ino, iocb, offset,
3089 size);
3091 iocb->private = NULL;
3092 io_end->offset = offset;
3093 io_end->size = size;
3094 ext4_put_io_end(io_end);
3098 * For ext4 extent files, ext4 will do direct-io write to holes,
3099 * preallocated extents, and those write extend the file, no need to
3100 * fall back to buffered IO.
3102 * For holes, we fallocate those blocks, mark them as unwritten
3103 * If those blocks were preallocated, we mark sure they are split, but
3104 * still keep the range to write as unwritten.
3106 * The unwritten extents will be converted to written when DIO is completed.
3107 * For async direct IO, since the IO may still pending when return, we
3108 * set up an end_io call back function, which will do the conversion
3109 * when async direct IO completed.
3111 * If the O_DIRECT write will extend the file then add this inode to the
3112 * orphan list. So recovery will truncate it back to the original size
3113 * if the machine crashes during the write.
3116 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3117 loff_t offset)
3119 struct file *file = iocb->ki_filp;
3120 struct inode *inode = file->f_mapping->host;
3121 ssize_t ret;
3122 size_t count = iov_iter_count(iter);
3123 int overwrite = 0;
3124 get_block_t *get_block_func = NULL;
3125 int dio_flags = 0;
3126 loff_t final_size = offset + count;
3127 ext4_io_end_t *io_end = NULL;
3129 /* Use the old path for reads and writes beyond i_size. */
3130 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3131 return ext4_ind_direct_IO(iocb, iter, offset);
3133 BUG_ON(iocb->private == NULL);
3136 * Make all waiters for direct IO properly wait also for extent
3137 * conversion. This also disallows race between truncate() and
3138 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3140 if (iov_iter_rw(iter) == WRITE)
3141 inode_dio_begin(inode);
3143 /* If we do a overwrite dio, i_mutex locking can be released */
3144 overwrite = *((int *)iocb->private);
3146 if (overwrite) {
3147 down_read(&EXT4_I(inode)->i_data_sem);
3148 mutex_unlock(&inode->i_mutex);
3152 * We could direct write to holes and fallocate.
3154 * Allocated blocks to fill the hole are marked as
3155 * unwritten to prevent parallel buffered read to expose
3156 * the stale data before DIO complete the data IO.
3158 * As to previously fallocated extents, ext4 get_block will
3159 * just simply mark the buffer mapped but still keep the
3160 * extents unwritten.
3162 * For non AIO case, we will convert those unwritten extents
3163 * to written after return back from blockdev_direct_IO.
3165 * For async DIO, the conversion needs to be deferred when the
3166 * IO is completed. The ext4 end_io callback function will be
3167 * called to take care of the conversion work. Here for async
3168 * case, we allocate an io_end structure to hook to the iocb.
3170 iocb->private = NULL;
3171 ext4_inode_aio_set(inode, NULL);
3172 if (!is_sync_kiocb(iocb)) {
3173 io_end = ext4_init_io_end(inode, GFP_NOFS);
3174 if (!io_end) {
3175 ret = -ENOMEM;
3176 goto retake_lock;
3179 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3181 iocb->private = ext4_get_io_end(io_end);
3183 * we save the io structure for current async direct
3184 * IO, so that later ext4_map_blocks() could flag the
3185 * io structure whether there is a unwritten extents
3186 * needs to be converted when IO is completed.
3188 ext4_inode_aio_set(inode, io_end);
3191 if (overwrite) {
3192 get_block_func = ext4_get_block_write_nolock;
3193 } else {
3194 get_block_func = ext4_get_block_write;
3195 dio_flags = DIO_LOCKING;
3197 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3198 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3199 #endif
3200 if (IS_DAX(inode))
3201 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3202 ext4_end_io_dio, dio_flags);
3203 else
3204 ret = __blockdev_direct_IO(iocb, inode,
3205 inode->i_sb->s_bdev, iter, offset,
3206 get_block_func,
3207 ext4_end_io_dio, NULL, dio_flags);
3210 * Put our reference to io_end. This can free the io_end structure e.g.
3211 * in sync IO case or in case of error. It can even perform extent
3212 * conversion if all bios we submitted finished before we got here.
3213 * Note that in that case iocb->private can be already set to NULL
3214 * here.
3216 if (io_end) {
3217 ext4_inode_aio_set(inode, NULL);
3218 ext4_put_io_end(io_end);
3220 * When no IO was submitted ext4_end_io_dio() was not
3221 * called so we have to put iocb's reference.
3223 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3224 WARN_ON(iocb->private != io_end);
3225 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3226 ext4_put_io_end(io_end);
3227 iocb->private = NULL;
3230 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3231 EXT4_STATE_DIO_UNWRITTEN)) {
3232 int err;
3234 * for non AIO case, since the IO is already
3235 * completed, we could do the conversion right here
3237 err = ext4_convert_unwritten_extents(NULL, inode,
3238 offset, ret);
3239 if (err < 0)
3240 ret = err;
3241 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3244 retake_lock:
3245 if (iov_iter_rw(iter) == WRITE)
3246 inode_dio_end(inode);
3247 /* take i_mutex locking again if we do a ovewrite dio */
3248 if (overwrite) {
3249 up_read(&EXT4_I(inode)->i_data_sem);
3250 mutex_lock(&inode->i_mutex);
3253 return ret;
3256 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3257 loff_t offset)
3259 struct file *file = iocb->ki_filp;
3260 struct inode *inode = file->f_mapping->host;
3261 size_t count = iov_iter_count(iter);
3262 ssize_t ret;
3264 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3265 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3266 return 0;
3267 #endif
3270 * If we are doing data journalling we don't support O_DIRECT
3272 if (ext4_should_journal_data(inode))
3273 return 0;
3275 /* Let buffer I/O handle the inline data case. */
3276 if (ext4_has_inline_data(inode))
3277 return 0;
3279 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3280 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3281 ret = ext4_ext_direct_IO(iocb, iter, offset);
3282 else
3283 ret = ext4_ind_direct_IO(iocb, iter, offset);
3284 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3285 return ret;
3289 * Pages can be marked dirty completely asynchronously from ext4's journalling
3290 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3291 * much here because ->set_page_dirty is called under VFS locks. The page is
3292 * not necessarily locked.
3294 * We cannot just dirty the page and leave attached buffers clean, because the
3295 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3296 * or jbddirty because all the journalling code will explode.
3298 * So what we do is to mark the page "pending dirty" and next time writepage
3299 * is called, propagate that into the buffers appropriately.
3301 static int ext4_journalled_set_page_dirty(struct page *page)
3303 SetPageChecked(page);
3304 return __set_page_dirty_nobuffers(page);
3307 static const struct address_space_operations ext4_aops = {
3308 .readpage = ext4_readpage,
3309 .readpages = ext4_readpages,
3310 .writepage = ext4_writepage,
3311 .writepages = ext4_writepages,
3312 .write_begin = ext4_write_begin,
3313 .write_end = ext4_write_end,
3314 .bmap = ext4_bmap,
3315 .invalidatepage = ext4_invalidatepage,
3316 .releasepage = ext4_releasepage,
3317 .direct_IO = ext4_direct_IO,
3318 .migratepage = buffer_migrate_page,
3319 .is_partially_uptodate = block_is_partially_uptodate,
3320 .error_remove_page = generic_error_remove_page,
3323 static const struct address_space_operations ext4_journalled_aops = {
3324 .readpage = ext4_readpage,
3325 .readpages = ext4_readpages,
3326 .writepage = ext4_writepage,
3327 .writepages = ext4_writepages,
3328 .write_begin = ext4_write_begin,
3329 .write_end = ext4_journalled_write_end,
3330 .set_page_dirty = ext4_journalled_set_page_dirty,
3331 .bmap = ext4_bmap,
3332 .invalidatepage = ext4_journalled_invalidatepage,
3333 .releasepage = ext4_releasepage,
3334 .direct_IO = ext4_direct_IO,
3335 .is_partially_uptodate = block_is_partially_uptodate,
3336 .error_remove_page = generic_error_remove_page,
3339 static const struct address_space_operations ext4_da_aops = {
3340 .readpage = ext4_readpage,
3341 .readpages = ext4_readpages,
3342 .writepage = ext4_writepage,
3343 .writepages = ext4_writepages,
3344 .write_begin = ext4_da_write_begin,
3345 .write_end = ext4_da_write_end,
3346 .bmap = ext4_bmap,
3347 .invalidatepage = ext4_da_invalidatepage,
3348 .releasepage = ext4_releasepage,
3349 .direct_IO = ext4_direct_IO,
3350 .migratepage = buffer_migrate_page,
3351 .is_partially_uptodate = block_is_partially_uptodate,
3352 .error_remove_page = generic_error_remove_page,
3355 void ext4_set_aops(struct inode *inode)
3357 switch (ext4_inode_journal_mode(inode)) {
3358 case EXT4_INODE_ORDERED_DATA_MODE:
3359 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3360 break;
3361 case EXT4_INODE_WRITEBACK_DATA_MODE:
3362 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3363 break;
3364 case EXT4_INODE_JOURNAL_DATA_MODE:
3365 inode->i_mapping->a_ops = &ext4_journalled_aops;
3366 return;
3367 default:
3368 BUG();
3370 if (test_opt(inode->i_sb, DELALLOC))
3371 inode->i_mapping->a_ops = &ext4_da_aops;
3372 else
3373 inode->i_mapping->a_ops = &ext4_aops;
3376 static int __ext4_block_zero_page_range(handle_t *handle,
3377 struct address_space *mapping, loff_t from, loff_t length)
3379 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3380 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3381 unsigned blocksize, pos;
3382 ext4_lblk_t iblock;
3383 struct inode *inode = mapping->host;
3384 struct buffer_head *bh;
3385 struct page *page;
3386 int err = 0;
3388 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3389 mapping_gfp_constraint(mapping, ~__GFP_FS));
3390 if (!page)
3391 return -ENOMEM;
3393 blocksize = inode->i_sb->s_blocksize;
3395 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3397 if (!page_has_buffers(page))
3398 create_empty_buffers(page, blocksize, 0);
3400 /* Find the buffer that contains "offset" */
3401 bh = page_buffers(page);
3402 pos = blocksize;
3403 while (offset >= pos) {
3404 bh = bh->b_this_page;
3405 iblock++;
3406 pos += blocksize;
3408 if (buffer_freed(bh)) {
3409 BUFFER_TRACE(bh, "freed: skip");
3410 goto unlock;
3412 if (!buffer_mapped(bh)) {
3413 BUFFER_TRACE(bh, "unmapped");
3414 ext4_get_block(inode, iblock, bh, 0);
3415 /* unmapped? It's a hole - nothing to do */
3416 if (!buffer_mapped(bh)) {
3417 BUFFER_TRACE(bh, "still unmapped");
3418 goto unlock;
3422 /* Ok, it's mapped. Make sure it's up-to-date */
3423 if (PageUptodate(page))
3424 set_buffer_uptodate(bh);
3426 if (!buffer_uptodate(bh)) {
3427 err = -EIO;
3428 ll_rw_block(READ, 1, &bh);
3429 wait_on_buffer(bh);
3430 /* Uhhuh. Read error. Complain and punt. */
3431 if (!buffer_uptodate(bh))
3432 goto unlock;
3433 if (S_ISREG(inode->i_mode) &&
3434 ext4_encrypted_inode(inode)) {
3435 /* We expect the key to be set. */
3436 BUG_ON(!ext4_has_encryption_key(inode));
3437 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3438 WARN_ON_ONCE(ext4_decrypt(page));
3441 if (ext4_should_journal_data(inode)) {
3442 BUFFER_TRACE(bh, "get write access");
3443 err = ext4_journal_get_write_access(handle, bh);
3444 if (err)
3445 goto unlock;
3447 zero_user(page, offset, length);
3448 BUFFER_TRACE(bh, "zeroed end of block");
3450 if (ext4_should_journal_data(inode)) {
3451 err = ext4_handle_dirty_metadata(handle, inode, bh);
3452 } else {
3453 err = 0;
3454 mark_buffer_dirty(bh);
3455 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3456 err = ext4_jbd2_file_inode(handle, inode);
3459 unlock:
3460 unlock_page(page);
3461 page_cache_release(page);
3462 return err;
3466 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3467 * starting from file offset 'from'. The range to be zero'd must
3468 * be contained with in one block. If the specified range exceeds
3469 * the end of the block it will be shortened to end of the block
3470 * that cooresponds to 'from'
3472 static int ext4_block_zero_page_range(handle_t *handle,
3473 struct address_space *mapping, loff_t from, loff_t length)
3475 struct inode *inode = mapping->host;
3476 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3477 unsigned blocksize = inode->i_sb->s_blocksize;
3478 unsigned max = blocksize - (offset & (blocksize - 1));
3481 * correct length if it does not fall between
3482 * 'from' and the end of the block
3484 if (length > max || length < 0)
3485 length = max;
3487 if (IS_DAX(inode))
3488 return dax_zero_page_range(inode, from, length, ext4_get_block);
3489 return __ext4_block_zero_page_range(handle, mapping, from, length);
3493 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3494 * up to the end of the block which corresponds to `from'.
3495 * This required during truncate. We need to physically zero the tail end
3496 * of that block so it doesn't yield old data if the file is later grown.
3498 static int ext4_block_truncate_page(handle_t *handle,
3499 struct address_space *mapping, loff_t from)
3501 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3502 unsigned length;
3503 unsigned blocksize;
3504 struct inode *inode = mapping->host;
3506 blocksize = inode->i_sb->s_blocksize;
3507 length = blocksize - (offset & (blocksize - 1));
3509 return ext4_block_zero_page_range(handle, mapping, from, length);
3512 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3513 loff_t lstart, loff_t length)
3515 struct super_block *sb = inode->i_sb;
3516 struct address_space *mapping = inode->i_mapping;
3517 unsigned partial_start, partial_end;
3518 ext4_fsblk_t start, end;
3519 loff_t byte_end = (lstart + length - 1);
3520 int err = 0;
3522 partial_start = lstart & (sb->s_blocksize - 1);
3523 partial_end = byte_end & (sb->s_blocksize - 1);
3525 start = lstart >> sb->s_blocksize_bits;
3526 end = byte_end >> sb->s_blocksize_bits;
3528 /* Handle partial zero within the single block */
3529 if (start == end &&
3530 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3531 err = ext4_block_zero_page_range(handle, mapping,
3532 lstart, length);
3533 return err;
3535 /* Handle partial zero out on the start of the range */
3536 if (partial_start) {
3537 err = ext4_block_zero_page_range(handle, mapping,
3538 lstart, sb->s_blocksize);
3539 if (err)
3540 return err;
3542 /* Handle partial zero out on the end of the range */
3543 if (partial_end != sb->s_blocksize - 1)
3544 err = ext4_block_zero_page_range(handle, mapping,
3545 byte_end - partial_end,
3546 partial_end + 1);
3547 return err;
3550 int ext4_can_truncate(struct inode *inode)
3552 if (S_ISREG(inode->i_mode))
3553 return 1;
3554 if (S_ISDIR(inode->i_mode))
3555 return 1;
3556 if (S_ISLNK(inode->i_mode))
3557 return !ext4_inode_is_fast_symlink(inode);
3558 return 0;
3562 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3563 * associated with the given offset and length
3565 * @inode: File inode
3566 * @offset: The offset where the hole will begin
3567 * @len: The length of the hole
3569 * Returns: 0 on success or negative on failure
3572 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3574 struct super_block *sb = inode->i_sb;
3575 ext4_lblk_t first_block, stop_block;
3576 struct address_space *mapping = inode->i_mapping;
3577 loff_t first_block_offset, last_block_offset;
3578 handle_t *handle;
3579 unsigned int credits;
3580 int ret = 0;
3582 if (!S_ISREG(inode->i_mode))
3583 return -EOPNOTSUPP;
3585 trace_ext4_punch_hole(inode, offset, length, 0);
3588 * Write out all dirty pages to avoid race conditions
3589 * Then release them.
3591 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3592 ret = filemap_write_and_wait_range(mapping, offset,
3593 offset + length - 1);
3594 if (ret)
3595 return ret;
3598 mutex_lock(&inode->i_mutex);
3600 /* No need to punch hole beyond i_size */
3601 if (offset >= inode->i_size)
3602 goto out_mutex;
3605 * If the hole extends beyond i_size, set the hole
3606 * to end after the page that contains i_size
3608 if (offset + length > inode->i_size) {
3609 length = inode->i_size +
3610 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3611 offset;
3614 if (offset & (sb->s_blocksize - 1) ||
3615 (offset + length) & (sb->s_blocksize - 1)) {
3617 * Attach jinode to inode for jbd2 if we do any zeroing of
3618 * partial block
3620 ret = ext4_inode_attach_jinode(inode);
3621 if (ret < 0)
3622 goto out_mutex;
3626 first_block_offset = round_up(offset, sb->s_blocksize);
3627 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3629 /* Now release the pages and zero block aligned part of pages*/
3630 if (last_block_offset > first_block_offset)
3631 truncate_pagecache_range(inode, first_block_offset,
3632 last_block_offset);
3634 /* Wait all existing dio workers, newcomers will block on i_mutex */
3635 ext4_inode_block_unlocked_dio(inode);
3636 inode_dio_wait(inode);
3638 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3639 credits = ext4_writepage_trans_blocks(inode);
3640 else
3641 credits = ext4_blocks_for_truncate(inode);
3642 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3643 if (IS_ERR(handle)) {
3644 ret = PTR_ERR(handle);
3645 ext4_std_error(sb, ret);
3646 goto out_dio;
3649 ret = ext4_zero_partial_blocks(handle, inode, offset,
3650 length);
3651 if (ret)
3652 goto out_stop;
3654 first_block = (offset + sb->s_blocksize - 1) >>
3655 EXT4_BLOCK_SIZE_BITS(sb);
3656 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3658 /* If there are no blocks to remove, return now */
3659 if (first_block >= stop_block)
3660 goto out_stop;
3662 down_write(&EXT4_I(inode)->i_data_sem);
3663 ext4_discard_preallocations(inode);
3665 ret = ext4_es_remove_extent(inode, first_block,
3666 stop_block - first_block);
3667 if (ret) {
3668 up_write(&EXT4_I(inode)->i_data_sem);
3669 goto out_stop;
3672 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3673 ret = ext4_ext_remove_space(inode, first_block,
3674 stop_block - 1);
3675 else
3676 ret = ext4_ind_remove_space(handle, inode, first_block,
3677 stop_block);
3679 up_write(&EXT4_I(inode)->i_data_sem);
3680 if (IS_SYNC(inode))
3681 ext4_handle_sync(handle);
3683 /* Now release the pages again to reduce race window */
3684 if (last_block_offset > first_block_offset)
3685 truncate_pagecache_range(inode, first_block_offset,
3686 last_block_offset);
3688 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3689 ext4_mark_inode_dirty(handle, inode);
3690 out_stop:
3691 ext4_journal_stop(handle);
3692 out_dio:
3693 ext4_inode_resume_unlocked_dio(inode);
3694 out_mutex:
3695 mutex_unlock(&inode->i_mutex);
3696 return ret;
3699 int ext4_inode_attach_jinode(struct inode *inode)
3701 struct ext4_inode_info *ei = EXT4_I(inode);
3702 struct jbd2_inode *jinode;
3704 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3705 return 0;
3707 jinode = jbd2_alloc_inode(GFP_KERNEL);
3708 spin_lock(&inode->i_lock);
3709 if (!ei->jinode) {
3710 if (!jinode) {
3711 spin_unlock(&inode->i_lock);
3712 return -ENOMEM;
3714 ei->jinode = jinode;
3715 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3716 jinode = NULL;
3718 spin_unlock(&inode->i_lock);
3719 if (unlikely(jinode != NULL))
3720 jbd2_free_inode(jinode);
3721 return 0;
3725 * ext4_truncate()
3727 * We block out ext4_get_block() block instantiations across the entire
3728 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3729 * simultaneously on behalf of the same inode.
3731 * As we work through the truncate and commit bits of it to the journal there
3732 * is one core, guiding principle: the file's tree must always be consistent on
3733 * disk. We must be able to restart the truncate after a crash.
3735 * The file's tree may be transiently inconsistent in memory (although it
3736 * probably isn't), but whenever we close off and commit a journal transaction,
3737 * the contents of (the filesystem + the journal) must be consistent and
3738 * restartable. It's pretty simple, really: bottom up, right to left (although
3739 * left-to-right works OK too).
3741 * Note that at recovery time, journal replay occurs *before* the restart of
3742 * truncate against the orphan inode list.
3744 * The committed inode has the new, desired i_size (which is the same as
3745 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3746 * that this inode's truncate did not complete and it will again call
3747 * ext4_truncate() to have another go. So there will be instantiated blocks
3748 * to the right of the truncation point in a crashed ext4 filesystem. But
3749 * that's fine - as long as they are linked from the inode, the post-crash
3750 * ext4_truncate() run will find them and release them.
3752 void ext4_truncate(struct inode *inode)
3754 struct ext4_inode_info *ei = EXT4_I(inode);
3755 unsigned int credits;
3756 handle_t *handle;
3757 struct address_space *mapping = inode->i_mapping;
3760 * There is a possibility that we're either freeing the inode
3761 * or it's a completely new inode. In those cases we might not
3762 * have i_mutex locked because it's not necessary.
3764 if (!(inode->i_state & (I_NEW|I_FREEING)))
3765 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3766 trace_ext4_truncate_enter(inode);
3768 if (!ext4_can_truncate(inode))
3769 return;
3771 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3773 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3774 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3776 if (ext4_has_inline_data(inode)) {
3777 int has_inline = 1;
3779 ext4_inline_data_truncate(inode, &has_inline);
3780 if (has_inline)
3781 return;
3784 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3785 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3786 if (ext4_inode_attach_jinode(inode) < 0)
3787 return;
3790 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3791 credits = ext4_writepage_trans_blocks(inode);
3792 else
3793 credits = ext4_blocks_for_truncate(inode);
3795 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3796 if (IS_ERR(handle)) {
3797 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3798 return;
3801 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3802 ext4_block_truncate_page(handle, mapping, inode->i_size);
3805 * We add the inode to the orphan list, so that if this
3806 * truncate spans multiple transactions, and we crash, we will
3807 * resume the truncate when the filesystem recovers. It also
3808 * marks the inode dirty, to catch the new size.
3810 * Implication: the file must always be in a sane, consistent
3811 * truncatable state while each transaction commits.
3813 if (ext4_orphan_add(handle, inode))
3814 goto out_stop;
3816 down_write(&EXT4_I(inode)->i_data_sem);
3818 ext4_discard_preallocations(inode);
3820 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3821 ext4_ext_truncate(handle, inode);
3822 else
3823 ext4_ind_truncate(handle, inode);
3825 up_write(&ei->i_data_sem);
3827 if (IS_SYNC(inode))
3828 ext4_handle_sync(handle);
3830 out_stop:
3832 * If this was a simple ftruncate() and the file will remain alive,
3833 * then we need to clear up the orphan record which we created above.
3834 * However, if this was a real unlink then we were called by
3835 * ext4_evict_inode(), and we allow that function to clean up the
3836 * orphan info for us.
3838 if (inode->i_nlink)
3839 ext4_orphan_del(handle, inode);
3841 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3842 ext4_mark_inode_dirty(handle, inode);
3843 ext4_journal_stop(handle);
3845 trace_ext4_truncate_exit(inode);
3849 * ext4_get_inode_loc returns with an extra refcount against the inode's
3850 * underlying buffer_head on success. If 'in_mem' is true, we have all
3851 * data in memory that is needed to recreate the on-disk version of this
3852 * inode.
3854 static int __ext4_get_inode_loc(struct inode *inode,
3855 struct ext4_iloc *iloc, int in_mem)
3857 struct ext4_group_desc *gdp;
3858 struct buffer_head *bh;
3859 struct super_block *sb = inode->i_sb;
3860 ext4_fsblk_t block;
3861 int inodes_per_block, inode_offset;
3863 iloc->bh = NULL;
3864 if (!ext4_valid_inum(sb, inode->i_ino))
3865 return -EFSCORRUPTED;
3867 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3868 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3869 if (!gdp)
3870 return -EIO;
3873 * Figure out the offset within the block group inode table
3875 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3876 inode_offset = ((inode->i_ino - 1) %
3877 EXT4_INODES_PER_GROUP(sb));
3878 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3879 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3881 bh = sb_getblk(sb, block);
3882 if (unlikely(!bh))
3883 return -ENOMEM;
3884 if (!buffer_uptodate(bh)) {
3885 lock_buffer(bh);
3888 * If the buffer has the write error flag, we have failed
3889 * to write out another inode in the same block. In this
3890 * case, we don't have to read the block because we may
3891 * read the old inode data successfully.
3893 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3894 set_buffer_uptodate(bh);
3896 if (buffer_uptodate(bh)) {
3897 /* someone brought it uptodate while we waited */
3898 unlock_buffer(bh);
3899 goto has_buffer;
3903 * If we have all information of the inode in memory and this
3904 * is the only valid inode in the block, we need not read the
3905 * block.
3907 if (in_mem) {
3908 struct buffer_head *bitmap_bh;
3909 int i, start;
3911 start = inode_offset & ~(inodes_per_block - 1);
3913 /* Is the inode bitmap in cache? */
3914 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3915 if (unlikely(!bitmap_bh))
3916 goto make_io;
3919 * If the inode bitmap isn't in cache then the
3920 * optimisation may end up performing two reads instead
3921 * of one, so skip it.
3923 if (!buffer_uptodate(bitmap_bh)) {
3924 brelse(bitmap_bh);
3925 goto make_io;
3927 for (i = start; i < start + inodes_per_block; i++) {
3928 if (i == inode_offset)
3929 continue;
3930 if (ext4_test_bit(i, bitmap_bh->b_data))
3931 break;
3933 brelse(bitmap_bh);
3934 if (i == start + inodes_per_block) {
3935 /* all other inodes are free, so skip I/O */
3936 memset(bh->b_data, 0, bh->b_size);
3937 set_buffer_uptodate(bh);
3938 unlock_buffer(bh);
3939 goto has_buffer;
3943 make_io:
3945 * If we need to do any I/O, try to pre-readahead extra
3946 * blocks from the inode table.
3948 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3949 ext4_fsblk_t b, end, table;
3950 unsigned num;
3951 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3953 table = ext4_inode_table(sb, gdp);
3954 /* s_inode_readahead_blks is always a power of 2 */
3955 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3956 if (table > b)
3957 b = table;
3958 end = b + ra_blks;
3959 num = EXT4_INODES_PER_GROUP(sb);
3960 if (ext4_has_group_desc_csum(sb))
3961 num -= ext4_itable_unused_count(sb, gdp);
3962 table += num / inodes_per_block;
3963 if (end > table)
3964 end = table;
3965 while (b <= end)
3966 sb_breadahead(sb, b++);
3970 * There are other valid inodes in the buffer, this inode
3971 * has in-inode xattrs, or we don't have this inode in memory.
3972 * Read the block from disk.
3974 trace_ext4_load_inode(inode);
3975 get_bh(bh);
3976 bh->b_end_io = end_buffer_read_sync;
3977 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3978 wait_on_buffer(bh);
3979 if (!buffer_uptodate(bh)) {
3980 EXT4_ERROR_INODE_BLOCK(inode, block,
3981 "unable to read itable block");
3982 brelse(bh);
3983 return -EIO;
3986 has_buffer:
3987 iloc->bh = bh;
3988 return 0;
3991 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3993 /* We have all inode data except xattrs in memory here. */
3994 return __ext4_get_inode_loc(inode, iloc,
3995 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3998 void ext4_set_inode_flags(struct inode *inode)
4000 unsigned int flags = EXT4_I(inode)->i_flags;
4001 unsigned int new_fl = 0;
4003 if (flags & EXT4_SYNC_FL)
4004 new_fl |= S_SYNC;
4005 if (flags & EXT4_APPEND_FL)
4006 new_fl |= S_APPEND;
4007 if (flags & EXT4_IMMUTABLE_FL)
4008 new_fl |= S_IMMUTABLE;
4009 if (flags & EXT4_NOATIME_FL)
4010 new_fl |= S_NOATIME;
4011 if (flags & EXT4_DIRSYNC_FL)
4012 new_fl |= S_DIRSYNC;
4013 if (test_opt(inode->i_sb, DAX))
4014 new_fl |= S_DAX;
4015 inode_set_flags(inode, new_fl,
4016 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4019 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4020 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4022 unsigned int vfs_fl;
4023 unsigned long old_fl, new_fl;
4025 do {
4026 vfs_fl = ei->vfs_inode.i_flags;
4027 old_fl = ei->i_flags;
4028 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4029 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4030 EXT4_DIRSYNC_FL);
4031 if (vfs_fl & S_SYNC)
4032 new_fl |= EXT4_SYNC_FL;
4033 if (vfs_fl & S_APPEND)
4034 new_fl |= EXT4_APPEND_FL;
4035 if (vfs_fl & S_IMMUTABLE)
4036 new_fl |= EXT4_IMMUTABLE_FL;
4037 if (vfs_fl & S_NOATIME)
4038 new_fl |= EXT4_NOATIME_FL;
4039 if (vfs_fl & S_DIRSYNC)
4040 new_fl |= EXT4_DIRSYNC_FL;
4041 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4044 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4045 struct ext4_inode_info *ei)
4047 blkcnt_t i_blocks ;
4048 struct inode *inode = &(ei->vfs_inode);
4049 struct super_block *sb = inode->i_sb;
4051 if (ext4_has_feature_huge_file(sb)) {
4052 /* we are using combined 48 bit field */
4053 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4054 le32_to_cpu(raw_inode->i_blocks_lo);
4055 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4056 /* i_blocks represent file system block size */
4057 return i_blocks << (inode->i_blkbits - 9);
4058 } else {
4059 return i_blocks;
4061 } else {
4062 return le32_to_cpu(raw_inode->i_blocks_lo);
4066 static inline void ext4_iget_extra_inode(struct inode *inode,
4067 struct ext4_inode *raw_inode,
4068 struct ext4_inode_info *ei)
4070 __le32 *magic = (void *)raw_inode +
4071 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4072 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4073 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4074 ext4_find_inline_data_nolock(inode);
4075 } else
4076 EXT4_I(inode)->i_inline_off = 0;
4079 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4081 struct ext4_iloc iloc;
4082 struct ext4_inode *raw_inode;
4083 struct ext4_inode_info *ei;
4084 struct inode *inode;
4085 journal_t *journal = EXT4_SB(sb)->s_journal;
4086 long ret;
4087 int block;
4088 uid_t i_uid;
4089 gid_t i_gid;
4091 inode = iget_locked(sb, ino);
4092 if (!inode)
4093 return ERR_PTR(-ENOMEM);
4094 if (!(inode->i_state & I_NEW))
4095 return inode;
4097 ei = EXT4_I(inode);
4098 iloc.bh = NULL;
4100 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4101 if (ret < 0)
4102 goto bad_inode;
4103 raw_inode = ext4_raw_inode(&iloc);
4105 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4106 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4107 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4108 EXT4_INODE_SIZE(inode->i_sb)) {
4109 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4110 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4111 EXT4_INODE_SIZE(inode->i_sb));
4112 ret = -EFSCORRUPTED;
4113 goto bad_inode;
4115 } else
4116 ei->i_extra_isize = 0;
4118 /* Precompute checksum seed for inode metadata */
4119 if (ext4_has_metadata_csum(sb)) {
4120 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4121 __u32 csum;
4122 __le32 inum = cpu_to_le32(inode->i_ino);
4123 __le32 gen = raw_inode->i_generation;
4124 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4125 sizeof(inum));
4126 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4127 sizeof(gen));
4130 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4131 EXT4_ERROR_INODE(inode, "checksum invalid");
4132 ret = -EFSBADCRC;
4133 goto bad_inode;
4136 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4137 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4138 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4139 if (!(test_opt(inode->i_sb, NO_UID32))) {
4140 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4141 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4143 i_uid_write(inode, i_uid);
4144 i_gid_write(inode, i_gid);
4145 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4147 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4148 ei->i_inline_off = 0;
4149 ei->i_dir_start_lookup = 0;
4150 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4151 /* We now have enough fields to check if the inode was active or not.
4152 * This is needed because nfsd might try to access dead inodes
4153 * the test is that same one that e2fsck uses
4154 * NeilBrown 1999oct15
4156 if (inode->i_nlink == 0) {
4157 if ((inode->i_mode == 0 ||
4158 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4159 ino != EXT4_BOOT_LOADER_INO) {
4160 /* this inode is deleted */
4161 ret = -ESTALE;
4162 goto bad_inode;
4164 /* The only unlinked inodes we let through here have
4165 * valid i_mode and are being read by the orphan
4166 * recovery code: that's fine, we're about to complete
4167 * the process of deleting those.
4168 * OR it is the EXT4_BOOT_LOADER_INO which is
4169 * not initialized on a new filesystem. */
4171 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4172 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4173 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4174 if (ext4_has_feature_64bit(sb))
4175 ei->i_file_acl |=
4176 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4177 inode->i_size = ext4_isize(raw_inode);
4178 ei->i_disksize = inode->i_size;
4179 #ifdef CONFIG_QUOTA
4180 ei->i_reserved_quota = 0;
4181 #endif
4182 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4183 ei->i_block_group = iloc.block_group;
4184 ei->i_last_alloc_group = ~0;
4186 * NOTE! The in-memory inode i_data array is in little-endian order
4187 * even on big-endian machines: we do NOT byteswap the block numbers!
4189 for (block = 0; block < EXT4_N_BLOCKS; block++)
4190 ei->i_data[block] = raw_inode->i_block[block];
4191 INIT_LIST_HEAD(&ei->i_orphan);
4194 * Set transaction id's of transactions that have to be committed
4195 * to finish f[data]sync. We set them to currently running transaction
4196 * as we cannot be sure that the inode or some of its metadata isn't
4197 * part of the transaction - the inode could have been reclaimed and
4198 * now it is reread from disk.
4200 if (journal) {
4201 transaction_t *transaction;
4202 tid_t tid;
4204 read_lock(&journal->j_state_lock);
4205 if (journal->j_running_transaction)
4206 transaction = journal->j_running_transaction;
4207 else
4208 transaction = journal->j_committing_transaction;
4209 if (transaction)
4210 tid = transaction->t_tid;
4211 else
4212 tid = journal->j_commit_sequence;
4213 read_unlock(&journal->j_state_lock);
4214 ei->i_sync_tid = tid;
4215 ei->i_datasync_tid = tid;
4218 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4219 if (ei->i_extra_isize == 0) {
4220 /* The extra space is currently unused. Use it. */
4221 ei->i_extra_isize = sizeof(struct ext4_inode) -
4222 EXT4_GOOD_OLD_INODE_SIZE;
4223 } else {
4224 ext4_iget_extra_inode(inode, raw_inode, ei);
4228 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4229 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4230 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4231 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4233 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4234 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4235 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4236 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4237 inode->i_version |=
4238 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4242 ret = 0;
4243 if (ei->i_file_acl &&
4244 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4245 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4246 ei->i_file_acl);
4247 ret = -EFSCORRUPTED;
4248 goto bad_inode;
4249 } else if (!ext4_has_inline_data(inode)) {
4250 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4251 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4252 (S_ISLNK(inode->i_mode) &&
4253 !ext4_inode_is_fast_symlink(inode))))
4254 /* Validate extent which is part of inode */
4255 ret = ext4_ext_check_inode(inode);
4256 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4257 (S_ISLNK(inode->i_mode) &&
4258 !ext4_inode_is_fast_symlink(inode))) {
4259 /* Validate block references which are part of inode */
4260 ret = ext4_ind_check_inode(inode);
4263 if (ret)
4264 goto bad_inode;
4266 if (S_ISREG(inode->i_mode)) {
4267 inode->i_op = &ext4_file_inode_operations;
4268 inode->i_fop = &ext4_file_operations;
4269 ext4_set_aops(inode);
4270 } else if (S_ISDIR(inode->i_mode)) {
4271 inode->i_op = &ext4_dir_inode_operations;
4272 inode->i_fop = &ext4_dir_operations;
4273 } else if (S_ISLNK(inode->i_mode)) {
4274 if (ext4_encrypted_inode(inode)) {
4275 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4276 ext4_set_aops(inode);
4277 } else if (ext4_inode_is_fast_symlink(inode)) {
4278 inode->i_link = (char *)ei->i_data;
4279 inode->i_op = &ext4_fast_symlink_inode_operations;
4280 nd_terminate_link(ei->i_data, inode->i_size,
4281 sizeof(ei->i_data) - 1);
4282 } else {
4283 inode->i_op = &ext4_symlink_inode_operations;
4284 ext4_set_aops(inode);
4286 inode_nohighmem(inode);
4287 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4288 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4289 inode->i_op = &ext4_special_inode_operations;
4290 if (raw_inode->i_block[0])
4291 init_special_inode(inode, inode->i_mode,
4292 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4293 else
4294 init_special_inode(inode, inode->i_mode,
4295 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4296 } else if (ino == EXT4_BOOT_LOADER_INO) {
4297 make_bad_inode(inode);
4298 } else {
4299 ret = -EFSCORRUPTED;
4300 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4301 goto bad_inode;
4303 brelse(iloc.bh);
4304 ext4_set_inode_flags(inode);
4305 unlock_new_inode(inode);
4306 return inode;
4308 bad_inode:
4309 brelse(iloc.bh);
4310 iget_failed(inode);
4311 return ERR_PTR(ret);
4314 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4316 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4317 return ERR_PTR(-EFSCORRUPTED);
4318 return ext4_iget(sb, ino);
4321 static int ext4_inode_blocks_set(handle_t *handle,
4322 struct ext4_inode *raw_inode,
4323 struct ext4_inode_info *ei)
4325 struct inode *inode = &(ei->vfs_inode);
4326 u64 i_blocks = inode->i_blocks;
4327 struct super_block *sb = inode->i_sb;
4329 if (i_blocks <= ~0U) {
4331 * i_blocks can be represented in a 32 bit variable
4332 * as multiple of 512 bytes
4334 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4335 raw_inode->i_blocks_high = 0;
4336 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4337 return 0;
4339 if (!ext4_has_feature_huge_file(sb))
4340 return -EFBIG;
4342 if (i_blocks <= 0xffffffffffffULL) {
4344 * i_blocks can be represented in a 48 bit variable
4345 * as multiple of 512 bytes
4347 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4348 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4349 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4350 } else {
4351 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4352 /* i_block is stored in file system block size */
4353 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4354 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4355 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4357 return 0;
4360 struct other_inode {
4361 unsigned long orig_ino;
4362 struct ext4_inode *raw_inode;
4365 static int other_inode_match(struct inode * inode, unsigned long ino,
4366 void *data)
4368 struct other_inode *oi = (struct other_inode *) data;
4370 if ((inode->i_ino != ino) ||
4371 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4372 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4373 ((inode->i_state & I_DIRTY_TIME) == 0))
4374 return 0;
4375 spin_lock(&inode->i_lock);
4376 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4377 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4378 (inode->i_state & I_DIRTY_TIME)) {
4379 struct ext4_inode_info *ei = EXT4_I(inode);
4381 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4382 spin_unlock(&inode->i_lock);
4384 spin_lock(&ei->i_raw_lock);
4385 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4386 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4387 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4388 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4389 spin_unlock(&ei->i_raw_lock);
4390 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4391 return -1;
4393 spin_unlock(&inode->i_lock);
4394 return -1;
4398 * Opportunistically update the other time fields for other inodes in
4399 * the same inode table block.
4401 static void ext4_update_other_inodes_time(struct super_block *sb,
4402 unsigned long orig_ino, char *buf)
4404 struct other_inode oi;
4405 unsigned long ino;
4406 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4407 int inode_size = EXT4_INODE_SIZE(sb);
4409 oi.orig_ino = orig_ino;
4411 * Calculate the first inode in the inode table block. Inode
4412 * numbers are one-based. That is, the first inode in a block
4413 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4415 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4416 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4417 if (ino == orig_ino)
4418 continue;
4419 oi.raw_inode = (struct ext4_inode *) buf;
4420 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4425 * Post the struct inode info into an on-disk inode location in the
4426 * buffer-cache. This gobbles the caller's reference to the
4427 * buffer_head in the inode location struct.
4429 * The caller must have write access to iloc->bh.
4431 static int ext4_do_update_inode(handle_t *handle,
4432 struct inode *inode,
4433 struct ext4_iloc *iloc)
4435 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4436 struct ext4_inode_info *ei = EXT4_I(inode);
4437 struct buffer_head *bh = iloc->bh;
4438 struct super_block *sb = inode->i_sb;
4439 int err = 0, rc, block;
4440 int need_datasync = 0, set_large_file = 0;
4441 uid_t i_uid;
4442 gid_t i_gid;
4444 spin_lock(&ei->i_raw_lock);
4446 /* For fields not tracked in the in-memory inode,
4447 * initialise them to zero for new inodes. */
4448 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4449 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4451 ext4_get_inode_flags(ei);
4452 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4453 i_uid = i_uid_read(inode);
4454 i_gid = i_gid_read(inode);
4455 if (!(test_opt(inode->i_sb, NO_UID32))) {
4456 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4457 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4459 * Fix up interoperability with old kernels. Otherwise, old inodes get
4460 * re-used with the upper 16 bits of the uid/gid intact
4462 if (!ei->i_dtime) {
4463 raw_inode->i_uid_high =
4464 cpu_to_le16(high_16_bits(i_uid));
4465 raw_inode->i_gid_high =
4466 cpu_to_le16(high_16_bits(i_gid));
4467 } else {
4468 raw_inode->i_uid_high = 0;
4469 raw_inode->i_gid_high = 0;
4471 } else {
4472 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4473 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4474 raw_inode->i_uid_high = 0;
4475 raw_inode->i_gid_high = 0;
4477 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4479 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4480 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4481 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4482 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4484 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4485 if (err) {
4486 spin_unlock(&ei->i_raw_lock);
4487 goto out_brelse;
4489 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4490 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4491 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4492 raw_inode->i_file_acl_high =
4493 cpu_to_le16(ei->i_file_acl >> 32);
4494 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4495 if (ei->i_disksize != ext4_isize(raw_inode)) {
4496 ext4_isize_set(raw_inode, ei->i_disksize);
4497 need_datasync = 1;
4499 if (ei->i_disksize > 0x7fffffffULL) {
4500 if (!ext4_has_feature_large_file(sb) ||
4501 EXT4_SB(sb)->s_es->s_rev_level ==
4502 cpu_to_le32(EXT4_GOOD_OLD_REV))
4503 set_large_file = 1;
4505 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4506 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4507 if (old_valid_dev(inode->i_rdev)) {
4508 raw_inode->i_block[0] =
4509 cpu_to_le32(old_encode_dev(inode->i_rdev));
4510 raw_inode->i_block[1] = 0;
4511 } else {
4512 raw_inode->i_block[0] = 0;
4513 raw_inode->i_block[1] =
4514 cpu_to_le32(new_encode_dev(inode->i_rdev));
4515 raw_inode->i_block[2] = 0;
4517 } else if (!ext4_has_inline_data(inode)) {
4518 for (block = 0; block < EXT4_N_BLOCKS; block++)
4519 raw_inode->i_block[block] = ei->i_data[block];
4522 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4523 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4524 if (ei->i_extra_isize) {
4525 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4526 raw_inode->i_version_hi =
4527 cpu_to_le32(inode->i_version >> 32);
4528 raw_inode->i_extra_isize =
4529 cpu_to_le16(ei->i_extra_isize);
4532 ext4_inode_csum_set(inode, raw_inode, ei);
4533 spin_unlock(&ei->i_raw_lock);
4534 if (inode->i_sb->s_flags & MS_LAZYTIME)
4535 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4536 bh->b_data);
4538 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4539 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4540 if (!err)
4541 err = rc;
4542 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4543 if (set_large_file) {
4544 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4545 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4546 if (err)
4547 goto out_brelse;
4548 ext4_update_dynamic_rev(sb);
4549 ext4_set_feature_large_file(sb);
4550 ext4_handle_sync(handle);
4551 err = ext4_handle_dirty_super(handle, sb);
4553 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4554 out_brelse:
4555 brelse(bh);
4556 ext4_std_error(inode->i_sb, err);
4557 return err;
4561 * ext4_write_inode()
4563 * We are called from a few places:
4565 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4566 * Here, there will be no transaction running. We wait for any running
4567 * transaction to commit.
4569 * - Within flush work (sys_sync(), kupdate and such).
4570 * We wait on commit, if told to.
4572 * - Within iput_final() -> write_inode_now()
4573 * We wait on commit, if told to.
4575 * In all cases it is actually safe for us to return without doing anything,
4576 * because the inode has been copied into a raw inode buffer in
4577 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4578 * writeback.
4580 * Note that we are absolutely dependent upon all inode dirtiers doing the
4581 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4582 * which we are interested.
4584 * It would be a bug for them to not do this. The code:
4586 * mark_inode_dirty(inode)
4587 * stuff();
4588 * inode->i_size = expr;
4590 * is in error because write_inode() could occur while `stuff()' is running,
4591 * and the new i_size will be lost. Plus the inode will no longer be on the
4592 * superblock's dirty inode list.
4594 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4596 int err;
4598 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4599 return 0;
4601 if (EXT4_SB(inode->i_sb)->s_journal) {
4602 if (ext4_journal_current_handle()) {
4603 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4604 dump_stack();
4605 return -EIO;
4609 * No need to force transaction in WB_SYNC_NONE mode. Also
4610 * ext4_sync_fs() will force the commit after everything is
4611 * written.
4613 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4614 return 0;
4616 err = ext4_force_commit(inode->i_sb);
4617 } else {
4618 struct ext4_iloc iloc;
4620 err = __ext4_get_inode_loc(inode, &iloc, 0);
4621 if (err)
4622 return err;
4624 * sync(2) will flush the whole buffer cache. No need to do
4625 * it here separately for each inode.
4627 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4628 sync_dirty_buffer(iloc.bh);
4629 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4630 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4631 "IO error syncing inode");
4632 err = -EIO;
4634 brelse(iloc.bh);
4636 return err;
4640 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4641 * buffers that are attached to a page stradding i_size and are undergoing
4642 * commit. In that case we have to wait for commit to finish and try again.
4644 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4646 struct page *page;
4647 unsigned offset;
4648 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4649 tid_t commit_tid = 0;
4650 int ret;
4652 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4654 * All buffers in the last page remain valid? Then there's nothing to
4655 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4656 * blocksize case
4658 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4659 return;
4660 while (1) {
4661 page = find_lock_page(inode->i_mapping,
4662 inode->i_size >> PAGE_CACHE_SHIFT);
4663 if (!page)
4664 return;
4665 ret = __ext4_journalled_invalidatepage(page, offset,
4666 PAGE_CACHE_SIZE - offset);
4667 unlock_page(page);
4668 page_cache_release(page);
4669 if (ret != -EBUSY)
4670 return;
4671 commit_tid = 0;
4672 read_lock(&journal->j_state_lock);
4673 if (journal->j_committing_transaction)
4674 commit_tid = journal->j_committing_transaction->t_tid;
4675 read_unlock(&journal->j_state_lock);
4676 if (commit_tid)
4677 jbd2_log_wait_commit(journal, commit_tid);
4682 * ext4_setattr()
4684 * Called from notify_change.
4686 * We want to trap VFS attempts to truncate the file as soon as
4687 * possible. In particular, we want to make sure that when the VFS
4688 * shrinks i_size, we put the inode on the orphan list and modify
4689 * i_disksize immediately, so that during the subsequent flushing of
4690 * dirty pages and freeing of disk blocks, we can guarantee that any
4691 * commit will leave the blocks being flushed in an unused state on
4692 * disk. (On recovery, the inode will get truncated and the blocks will
4693 * be freed, so we have a strong guarantee that no future commit will
4694 * leave these blocks visible to the user.)
4696 * Another thing we have to assure is that if we are in ordered mode
4697 * and inode is still attached to the committing transaction, we must
4698 * we start writeout of all the dirty pages which are being truncated.
4699 * This way we are sure that all the data written in the previous
4700 * transaction are already on disk (truncate waits for pages under
4701 * writeback).
4703 * Called with inode->i_mutex down.
4705 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4707 struct inode *inode = d_inode(dentry);
4708 int error, rc = 0;
4709 int orphan = 0;
4710 const unsigned int ia_valid = attr->ia_valid;
4712 error = inode_change_ok(inode, attr);
4713 if (error)
4714 return error;
4716 if (is_quota_modification(inode, attr)) {
4717 error = dquot_initialize(inode);
4718 if (error)
4719 return error;
4721 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4722 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4723 handle_t *handle;
4725 /* (user+group)*(old+new) structure, inode write (sb,
4726 * inode block, ? - but truncate inode update has it) */
4727 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4728 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4729 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4730 if (IS_ERR(handle)) {
4731 error = PTR_ERR(handle);
4732 goto err_out;
4734 error = dquot_transfer(inode, attr);
4735 if (error) {
4736 ext4_journal_stop(handle);
4737 return error;
4739 /* Update corresponding info in inode so that everything is in
4740 * one transaction */
4741 if (attr->ia_valid & ATTR_UID)
4742 inode->i_uid = attr->ia_uid;
4743 if (attr->ia_valid & ATTR_GID)
4744 inode->i_gid = attr->ia_gid;
4745 error = ext4_mark_inode_dirty(handle, inode);
4746 ext4_journal_stop(handle);
4749 if (attr->ia_valid & ATTR_SIZE) {
4750 handle_t *handle;
4751 loff_t oldsize = inode->i_size;
4752 int shrink = (attr->ia_size <= inode->i_size);
4754 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4755 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4757 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4758 return -EFBIG;
4760 if (!S_ISREG(inode->i_mode))
4761 return -EINVAL;
4763 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4764 inode_inc_iversion(inode);
4766 if (ext4_should_order_data(inode) &&
4767 (attr->ia_size < inode->i_size)) {
4768 error = ext4_begin_ordered_truncate(inode,
4769 attr->ia_size);
4770 if (error)
4771 goto err_out;
4773 if (attr->ia_size != inode->i_size) {
4774 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4775 if (IS_ERR(handle)) {
4776 error = PTR_ERR(handle);
4777 goto err_out;
4779 if (ext4_handle_valid(handle) && shrink) {
4780 error = ext4_orphan_add(handle, inode);
4781 orphan = 1;
4784 * Update c/mtime on truncate up, ext4_truncate() will
4785 * update c/mtime in shrink case below
4787 if (!shrink) {
4788 inode->i_mtime = ext4_current_time(inode);
4789 inode->i_ctime = inode->i_mtime;
4791 down_write(&EXT4_I(inode)->i_data_sem);
4792 EXT4_I(inode)->i_disksize = attr->ia_size;
4793 rc = ext4_mark_inode_dirty(handle, inode);
4794 if (!error)
4795 error = rc;
4797 * We have to update i_size under i_data_sem together
4798 * with i_disksize to avoid races with writeback code
4799 * running ext4_wb_update_i_disksize().
4801 if (!error)
4802 i_size_write(inode, attr->ia_size);
4803 up_write(&EXT4_I(inode)->i_data_sem);
4804 ext4_journal_stop(handle);
4805 if (error) {
4806 if (orphan)
4807 ext4_orphan_del(NULL, inode);
4808 goto err_out;
4811 if (!shrink)
4812 pagecache_isize_extended(inode, oldsize, inode->i_size);
4815 * Blocks are going to be removed from the inode. Wait
4816 * for dio in flight. Temporarily disable
4817 * dioread_nolock to prevent livelock.
4819 if (orphan) {
4820 if (!ext4_should_journal_data(inode)) {
4821 ext4_inode_block_unlocked_dio(inode);
4822 inode_dio_wait(inode);
4823 ext4_inode_resume_unlocked_dio(inode);
4824 } else
4825 ext4_wait_for_tail_page_commit(inode);
4828 * Truncate pagecache after we've waited for commit
4829 * in data=journal mode to make pages freeable.
4831 truncate_pagecache(inode, inode->i_size);
4832 if (shrink)
4833 ext4_truncate(inode);
4836 if (!rc) {
4837 setattr_copy(inode, attr);
4838 mark_inode_dirty(inode);
4842 * If the call to ext4_truncate failed to get a transaction handle at
4843 * all, we need to clean up the in-core orphan list manually.
4845 if (orphan && inode->i_nlink)
4846 ext4_orphan_del(NULL, inode);
4848 if (!rc && (ia_valid & ATTR_MODE))
4849 rc = posix_acl_chmod(inode, inode->i_mode);
4851 err_out:
4852 ext4_std_error(inode->i_sb, error);
4853 if (!error)
4854 error = rc;
4855 return error;
4858 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4859 struct kstat *stat)
4861 struct inode *inode;
4862 unsigned long long delalloc_blocks;
4864 inode = d_inode(dentry);
4865 generic_fillattr(inode, stat);
4868 * If there is inline data in the inode, the inode will normally not
4869 * have data blocks allocated (it may have an external xattr block).
4870 * Report at least one sector for such files, so tools like tar, rsync,
4871 * others doen't incorrectly think the file is completely sparse.
4873 if (unlikely(ext4_has_inline_data(inode)))
4874 stat->blocks += (stat->size + 511) >> 9;
4877 * We can't update i_blocks if the block allocation is delayed
4878 * otherwise in the case of system crash before the real block
4879 * allocation is done, we will have i_blocks inconsistent with
4880 * on-disk file blocks.
4881 * We always keep i_blocks updated together with real
4882 * allocation. But to not confuse with user, stat
4883 * will return the blocks that include the delayed allocation
4884 * blocks for this file.
4886 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4887 EXT4_I(inode)->i_reserved_data_blocks);
4888 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4889 return 0;
4892 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4893 int pextents)
4895 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4896 return ext4_ind_trans_blocks(inode, lblocks);
4897 return ext4_ext_index_trans_blocks(inode, pextents);
4901 * Account for index blocks, block groups bitmaps and block group
4902 * descriptor blocks if modify datablocks and index blocks
4903 * worse case, the indexs blocks spread over different block groups
4905 * If datablocks are discontiguous, they are possible to spread over
4906 * different block groups too. If they are contiguous, with flexbg,
4907 * they could still across block group boundary.
4909 * Also account for superblock, inode, quota and xattr blocks
4911 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4912 int pextents)
4914 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4915 int gdpblocks;
4916 int idxblocks;
4917 int ret = 0;
4920 * How many index blocks need to touch to map @lblocks logical blocks
4921 * to @pextents physical extents?
4923 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4925 ret = idxblocks;
4928 * Now let's see how many group bitmaps and group descriptors need
4929 * to account
4931 groups = idxblocks + pextents;
4932 gdpblocks = groups;
4933 if (groups > ngroups)
4934 groups = ngroups;
4935 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4936 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4938 /* bitmaps and block group descriptor blocks */
4939 ret += groups + gdpblocks;
4941 /* Blocks for super block, inode, quota and xattr blocks */
4942 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4944 return ret;
4948 * Calculate the total number of credits to reserve to fit
4949 * the modification of a single pages into a single transaction,
4950 * which may include multiple chunks of block allocations.
4952 * This could be called via ext4_write_begin()
4954 * We need to consider the worse case, when
4955 * one new block per extent.
4957 int ext4_writepage_trans_blocks(struct inode *inode)
4959 int bpp = ext4_journal_blocks_per_page(inode);
4960 int ret;
4962 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4964 /* Account for data blocks for journalled mode */
4965 if (ext4_should_journal_data(inode))
4966 ret += bpp;
4967 return ret;
4971 * Calculate the journal credits for a chunk of data modification.
4973 * This is called from DIO, fallocate or whoever calling
4974 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4976 * journal buffers for data blocks are not included here, as DIO
4977 * and fallocate do no need to journal data buffers.
4979 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4981 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4985 * The caller must have previously called ext4_reserve_inode_write().
4986 * Give this, we know that the caller already has write access to iloc->bh.
4988 int ext4_mark_iloc_dirty(handle_t *handle,
4989 struct inode *inode, struct ext4_iloc *iloc)
4991 int err = 0;
4993 if (IS_I_VERSION(inode))
4994 inode_inc_iversion(inode);
4996 /* the do_update_inode consumes one bh->b_count */
4997 get_bh(iloc->bh);
4999 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5000 err = ext4_do_update_inode(handle, inode, iloc);
5001 put_bh(iloc->bh);
5002 return err;
5006 * On success, We end up with an outstanding reference count against
5007 * iloc->bh. This _must_ be cleaned up later.
5011 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5012 struct ext4_iloc *iloc)
5014 int err;
5016 err = ext4_get_inode_loc(inode, iloc);
5017 if (!err) {
5018 BUFFER_TRACE(iloc->bh, "get_write_access");
5019 err = ext4_journal_get_write_access(handle, iloc->bh);
5020 if (err) {
5021 brelse(iloc->bh);
5022 iloc->bh = NULL;
5025 ext4_std_error(inode->i_sb, err);
5026 return err;
5030 * Expand an inode by new_extra_isize bytes.
5031 * Returns 0 on success or negative error number on failure.
5033 static int ext4_expand_extra_isize(struct inode *inode,
5034 unsigned int new_extra_isize,
5035 struct ext4_iloc iloc,
5036 handle_t *handle)
5038 struct ext4_inode *raw_inode;
5039 struct ext4_xattr_ibody_header *header;
5041 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5042 return 0;
5044 raw_inode = ext4_raw_inode(&iloc);
5046 header = IHDR(inode, raw_inode);
5048 /* No extended attributes present */
5049 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5050 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5051 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5052 new_extra_isize);
5053 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5054 return 0;
5057 /* try to expand with EAs present */
5058 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5059 raw_inode, handle);
5063 * What we do here is to mark the in-core inode as clean with respect to inode
5064 * dirtiness (it may still be data-dirty).
5065 * This means that the in-core inode may be reaped by prune_icache
5066 * without having to perform any I/O. This is a very good thing,
5067 * because *any* task may call prune_icache - even ones which
5068 * have a transaction open against a different journal.
5070 * Is this cheating? Not really. Sure, we haven't written the
5071 * inode out, but prune_icache isn't a user-visible syncing function.
5072 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5073 * we start and wait on commits.
5075 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5077 struct ext4_iloc iloc;
5078 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5079 static unsigned int mnt_count;
5080 int err, ret;
5082 might_sleep();
5083 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5084 err = ext4_reserve_inode_write(handle, inode, &iloc);
5085 if (ext4_handle_valid(handle) &&
5086 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5087 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5089 * We need extra buffer credits since we may write into EA block
5090 * with this same handle. If journal_extend fails, then it will
5091 * only result in a minor loss of functionality for that inode.
5092 * If this is felt to be critical, then e2fsck should be run to
5093 * force a large enough s_min_extra_isize.
5095 if ((jbd2_journal_extend(handle,
5096 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5097 ret = ext4_expand_extra_isize(inode,
5098 sbi->s_want_extra_isize,
5099 iloc, handle);
5100 if (ret) {
5101 ext4_set_inode_state(inode,
5102 EXT4_STATE_NO_EXPAND);
5103 if (mnt_count !=
5104 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5105 ext4_warning(inode->i_sb,
5106 "Unable to expand inode %lu. Delete"
5107 " some EAs or run e2fsck.",
5108 inode->i_ino);
5109 mnt_count =
5110 le16_to_cpu(sbi->s_es->s_mnt_count);
5115 if (!err)
5116 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5117 return err;
5121 * ext4_dirty_inode() is called from __mark_inode_dirty()
5123 * We're really interested in the case where a file is being extended.
5124 * i_size has been changed by generic_commit_write() and we thus need
5125 * to include the updated inode in the current transaction.
5127 * Also, dquot_alloc_block() will always dirty the inode when blocks
5128 * are allocated to the file.
5130 * If the inode is marked synchronous, we don't honour that here - doing
5131 * so would cause a commit on atime updates, which we don't bother doing.
5132 * We handle synchronous inodes at the highest possible level.
5134 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5135 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5136 * to copy into the on-disk inode structure are the timestamp files.
5138 void ext4_dirty_inode(struct inode *inode, int flags)
5140 handle_t *handle;
5142 if (flags == I_DIRTY_TIME)
5143 return;
5144 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5145 if (IS_ERR(handle))
5146 goto out;
5148 ext4_mark_inode_dirty(handle, inode);
5150 ext4_journal_stop(handle);
5151 out:
5152 return;
5155 #if 0
5157 * Bind an inode's backing buffer_head into this transaction, to prevent
5158 * it from being flushed to disk early. Unlike
5159 * ext4_reserve_inode_write, this leaves behind no bh reference and
5160 * returns no iloc structure, so the caller needs to repeat the iloc
5161 * lookup to mark the inode dirty later.
5163 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5165 struct ext4_iloc iloc;
5167 int err = 0;
5168 if (handle) {
5169 err = ext4_get_inode_loc(inode, &iloc);
5170 if (!err) {
5171 BUFFER_TRACE(iloc.bh, "get_write_access");
5172 err = jbd2_journal_get_write_access(handle, iloc.bh);
5173 if (!err)
5174 err = ext4_handle_dirty_metadata(handle,
5175 NULL,
5176 iloc.bh);
5177 brelse(iloc.bh);
5180 ext4_std_error(inode->i_sb, err);
5181 return err;
5183 #endif
5185 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5187 journal_t *journal;
5188 handle_t *handle;
5189 int err;
5192 * We have to be very careful here: changing a data block's
5193 * journaling status dynamically is dangerous. If we write a
5194 * data block to the journal, change the status and then delete
5195 * that block, we risk forgetting to revoke the old log record
5196 * from the journal and so a subsequent replay can corrupt data.
5197 * So, first we make sure that the journal is empty and that
5198 * nobody is changing anything.
5201 journal = EXT4_JOURNAL(inode);
5202 if (!journal)
5203 return 0;
5204 if (is_journal_aborted(journal))
5205 return -EROFS;
5206 /* We have to allocate physical blocks for delalloc blocks
5207 * before flushing journal. otherwise delalloc blocks can not
5208 * be allocated any more. even more truncate on delalloc blocks
5209 * could trigger BUG by flushing delalloc blocks in journal.
5210 * There is no delalloc block in non-journal data mode.
5212 if (val && test_opt(inode->i_sb, DELALLOC)) {
5213 err = ext4_alloc_da_blocks(inode);
5214 if (err < 0)
5215 return err;
5218 /* Wait for all existing dio workers */
5219 ext4_inode_block_unlocked_dio(inode);
5220 inode_dio_wait(inode);
5222 jbd2_journal_lock_updates(journal);
5225 * OK, there are no updates running now, and all cached data is
5226 * synced to disk. We are now in a completely consistent state
5227 * which doesn't have anything in the journal, and we know that
5228 * no filesystem updates are running, so it is safe to modify
5229 * the inode's in-core data-journaling state flag now.
5232 if (val)
5233 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5234 else {
5235 err = jbd2_journal_flush(journal);
5236 if (err < 0) {
5237 jbd2_journal_unlock_updates(journal);
5238 ext4_inode_resume_unlocked_dio(inode);
5239 return err;
5241 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5243 ext4_set_aops(inode);
5245 jbd2_journal_unlock_updates(journal);
5246 ext4_inode_resume_unlocked_dio(inode);
5248 /* Finally we can mark the inode as dirty. */
5250 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5251 if (IS_ERR(handle))
5252 return PTR_ERR(handle);
5254 err = ext4_mark_inode_dirty(handle, inode);
5255 ext4_handle_sync(handle);
5256 ext4_journal_stop(handle);
5257 ext4_std_error(inode->i_sb, err);
5259 return err;
5262 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5264 return !buffer_mapped(bh);
5267 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5269 struct page *page = vmf->page;
5270 loff_t size;
5271 unsigned long len;
5272 int ret;
5273 struct file *file = vma->vm_file;
5274 struct inode *inode = file_inode(file);
5275 struct address_space *mapping = inode->i_mapping;
5276 handle_t *handle;
5277 get_block_t *get_block;
5278 int retries = 0;
5280 sb_start_pagefault(inode->i_sb);
5281 file_update_time(vma->vm_file);
5282 /* Delalloc case is easy... */
5283 if (test_opt(inode->i_sb, DELALLOC) &&
5284 !ext4_should_journal_data(inode) &&
5285 !ext4_nonda_switch(inode->i_sb)) {
5286 do {
5287 ret = block_page_mkwrite(vma, vmf,
5288 ext4_da_get_block_prep);
5289 } while (ret == -ENOSPC &&
5290 ext4_should_retry_alloc(inode->i_sb, &retries));
5291 goto out_ret;
5294 lock_page(page);
5295 size = i_size_read(inode);
5296 /* Page got truncated from under us? */
5297 if (page->mapping != mapping || page_offset(page) > size) {
5298 unlock_page(page);
5299 ret = VM_FAULT_NOPAGE;
5300 goto out;
5303 if (page->index == size >> PAGE_CACHE_SHIFT)
5304 len = size & ~PAGE_CACHE_MASK;
5305 else
5306 len = PAGE_CACHE_SIZE;
5308 * Return if we have all the buffers mapped. This avoids the need to do
5309 * journal_start/journal_stop which can block and take a long time
5311 if (page_has_buffers(page)) {
5312 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5313 0, len, NULL,
5314 ext4_bh_unmapped)) {
5315 /* Wait so that we don't change page under IO */
5316 wait_for_stable_page(page);
5317 ret = VM_FAULT_LOCKED;
5318 goto out;
5321 unlock_page(page);
5322 /* OK, we need to fill the hole... */
5323 if (ext4_should_dioread_nolock(inode))
5324 get_block = ext4_get_block_write;
5325 else
5326 get_block = ext4_get_block;
5327 retry_alloc:
5328 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5329 ext4_writepage_trans_blocks(inode));
5330 if (IS_ERR(handle)) {
5331 ret = VM_FAULT_SIGBUS;
5332 goto out;
5334 ret = block_page_mkwrite(vma, vmf, get_block);
5335 if (!ret && ext4_should_journal_data(inode)) {
5336 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5337 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5338 unlock_page(page);
5339 ret = VM_FAULT_SIGBUS;
5340 ext4_journal_stop(handle);
5341 goto out;
5343 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5345 ext4_journal_stop(handle);
5346 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5347 goto retry_alloc;
5348 out_ret:
5349 ret = block_page_mkwrite_return(ret);
5350 out:
5351 sb_end_pagefault(inode->i_sb);
5352 return ret;