irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / fs / f2fs / data.c
blob972eab7ac07193da485df3efc6b6c11c99dacd97
1 /*
2 * fs/f2fs/data.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
30 static void f2fs_read_end_io(struct bio *bio)
32 struct bio_vec *bvec;
33 int i;
35 if (f2fs_bio_encrypted(bio)) {
36 if (bio->bi_error) {
37 f2fs_release_crypto_ctx(bio->bi_private);
38 } else {
39 f2fs_end_io_crypto_work(bio->bi_private, bio);
40 return;
44 bio_for_each_segment_all(bvec, bio, i) {
45 struct page *page = bvec->bv_page;
47 if (!bio->bi_error) {
48 SetPageUptodate(page);
49 } else {
50 ClearPageUptodate(page);
51 SetPageError(page);
53 unlock_page(page);
55 bio_put(bio);
58 static void f2fs_write_end_io(struct bio *bio)
60 struct f2fs_sb_info *sbi = bio->bi_private;
61 struct bio_vec *bvec;
62 int i;
64 bio_for_each_segment_all(bvec, bio, i) {
65 struct page *page = bvec->bv_page;
67 f2fs_restore_and_release_control_page(&page);
69 if (unlikely(bio->bi_error)) {
70 set_page_dirty(page);
71 set_bit(AS_EIO, &page->mapping->flags);
72 f2fs_stop_checkpoint(sbi);
74 end_page_writeback(page);
75 dec_page_count(sbi, F2FS_WRITEBACK);
78 if (!get_pages(sbi, F2FS_WRITEBACK) &&
79 !list_empty(&sbi->cp_wait.task_list))
80 wake_up(&sbi->cp_wait);
82 bio_put(bio);
86 * Low-level block read/write IO operations.
88 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
89 int npages, bool is_read)
91 struct bio *bio;
93 bio = f2fs_bio_alloc(npages);
95 bio->bi_bdev = sbi->sb->s_bdev;
96 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
97 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
98 bio->bi_private = is_read ? NULL : sbi;
100 return bio;
103 static void __submit_merged_bio(struct f2fs_bio_info *io)
105 struct f2fs_io_info *fio = &io->fio;
107 if (!io->bio)
108 return;
110 if (is_read_io(fio->rw))
111 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
112 else
113 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
115 submit_bio(fio->rw, io->bio);
116 io->bio = NULL;
119 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
120 enum page_type type, int rw)
122 enum page_type btype = PAGE_TYPE_OF_BIO(type);
123 struct f2fs_bio_info *io;
125 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
127 down_write(&io->io_rwsem);
129 /* change META to META_FLUSH in the checkpoint procedure */
130 if (type >= META_FLUSH) {
131 io->fio.type = META_FLUSH;
132 if (test_opt(sbi, NOBARRIER))
133 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
134 else
135 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
137 __submit_merged_bio(io);
138 up_write(&io->io_rwsem);
142 * Fill the locked page with data located in the block address.
143 * Return unlocked page.
145 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
147 struct bio *bio;
148 struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
150 trace_f2fs_submit_page_bio(page, fio);
151 f2fs_trace_ios(fio, 0);
153 /* Allocate a new bio */
154 bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
156 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
157 bio_put(bio);
158 return -EFAULT;
161 submit_bio(fio->rw, bio);
162 return 0;
165 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
167 struct f2fs_sb_info *sbi = fio->sbi;
168 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
169 struct f2fs_bio_info *io;
170 bool is_read = is_read_io(fio->rw);
171 struct page *bio_page;
173 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
175 verify_block_addr(sbi, fio->blk_addr);
177 down_write(&io->io_rwsem);
179 if (!is_read)
180 inc_page_count(sbi, F2FS_WRITEBACK);
182 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
183 io->fio.rw != fio->rw))
184 __submit_merged_bio(io);
185 alloc_new:
186 if (io->bio == NULL) {
187 int bio_blocks = MAX_BIO_BLOCKS(sbi);
189 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
190 io->fio = *fio;
193 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
195 if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
196 PAGE_CACHE_SIZE) {
197 __submit_merged_bio(io);
198 goto alloc_new;
201 io->last_block_in_bio = fio->blk_addr;
202 f2fs_trace_ios(fio, 0);
204 up_write(&io->io_rwsem);
205 trace_f2fs_submit_page_mbio(fio->page, fio);
209 * Lock ordering for the change of data block address:
210 * ->data_page
211 * ->node_page
212 * update block addresses in the node page
214 void set_data_blkaddr(struct dnode_of_data *dn)
216 struct f2fs_node *rn;
217 __le32 *addr_array;
218 struct page *node_page = dn->node_page;
219 unsigned int ofs_in_node = dn->ofs_in_node;
221 f2fs_wait_on_page_writeback(node_page, NODE);
223 rn = F2FS_NODE(node_page);
225 /* Get physical address of data block */
226 addr_array = blkaddr_in_node(rn);
227 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
228 set_page_dirty(node_page);
231 int reserve_new_block(struct dnode_of_data *dn)
233 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
235 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
236 return -EPERM;
237 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
238 return -ENOSPC;
240 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
242 dn->data_blkaddr = NEW_ADDR;
243 set_data_blkaddr(dn);
244 mark_inode_dirty(dn->inode);
245 sync_inode_page(dn);
246 return 0;
249 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
251 bool need_put = dn->inode_page ? false : true;
252 int err;
254 err = get_dnode_of_data(dn, index, ALLOC_NODE);
255 if (err)
256 return err;
258 if (dn->data_blkaddr == NULL_ADDR)
259 err = reserve_new_block(dn);
260 if (err || need_put)
261 f2fs_put_dnode(dn);
262 return err;
265 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
267 struct extent_info ei;
268 struct inode *inode = dn->inode;
270 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
271 dn->data_blkaddr = ei.blk + index - ei.fofs;
272 return 0;
275 return f2fs_reserve_block(dn, index);
278 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
279 int rw, bool for_write)
281 struct address_space *mapping = inode->i_mapping;
282 struct dnode_of_data dn;
283 struct page *page;
284 struct extent_info ei;
285 int err;
286 struct f2fs_io_info fio = {
287 .sbi = F2FS_I_SB(inode),
288 .type = DATA,
289 .rw = rw,
290 .encrypted_page = NULL,
293 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
294 return read_mapping_page(mapping, index, NULL);
296 page = f2fs_grab_cache_page(mapping, index, for_write);
297 if (!page)
298 return ERR_PTR(-ENOMEM);
300 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
301 dn.data_blkaddr = ei.blk + index - ei.fofs;
302 goto got_it;
305 set_new_dnode(&dn, inode, NULL, NULL, 0);
306 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
307 if (err)
308 goto put_err;
309 f2fs_put_dnode(&dn);
311 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
312 err = -ENOENT;
313 goto put_err;
315 got_it:
316 if (PageUptodate(page)) {
317 unlock_page(page);
318 return page;
322 * A new dentry page is allocated but not able to be written, since its
323 * new inode page couldn't be allocated due to -ENOSPC.
324 * In such the case, its blkaddr can be remained as NEW_ADDR.
325 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
327 if (dn.data_blkaddr == NEW_ADDR) {
328 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
329 SetPageUptodate(page);
330 unlock_page(page);
331 return page;
334 fio.blk_addr = dn.data_blkaddr;
335 fio.page = page;
336 err = f2fs_submit_page_bio(&fio);
337 if (err)
338 goto put_err;
339 return page;
341 put_err:
342 f2fs_put_page(page, 1);
343 return ERR_PTR(err);
346 struct page *find_data_page(struct inode *inode, pgoff_t index)
348 struct address_space *mapping = inode->i_mapping;
349 struct page *page;
351 page = find_get_page(mapping, index);
352 if (page && PageUptodate(page))
353 return page;
354 f2fs_put_page(page, 0);
356 page = get_read_data_page(inode, index, READ_SYNC, false);
357 if (IS_ERR(page))
358 return page;
360 if (PageUptodate(page))
361 return page;
363 wait_on_page_locked(page);
364 if (unlikely(!PageUptodate(page))) {
365 f2fs_put_page(page, 0);
366 return ERR_PTR(-EIO);
368 return page;
372 * If it tries to access a hole, return an error.
373 * Because, the callers, functions in dir.c and GC, should be able to know
374 * whether this page exists or not.
376 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
377 bool for_write)
379 struct address_space *mapping = inode->i_mapping;
380 struct page *page;
381 repeat:
382 page = get_read_data_page(inode, index, READ_SYNC, for_write);
383 if (IS_ERR(page))
384 return page;
386 /* wait for read completion */
387 lock_page(page);
388 if (unlikely(!PageUptodate(page))) {
389 f2fs_put_page(page, 1);
390 return ERR_PTR(-EIO);
392 if (unlikely(page->mapping != mapping)) {
393 f2fs_put_page(page, 1);
394 goto repeat;
396 return page;
400 * Caller ensures that this data page is never allocated.
401 * A new zero-filled data page is allocated in the page cache.
403 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
404 * f2fs_unlock_op().
405 * Note that, ipage is set only by make_empty_dir, and if any error occur,
406 * ipage should be released by this function.
408 struct page *get_new_data_page(struct inode *inode,
409 struct page *ipage, pgoff_t index, bool new_i_size)
411 struct address_space *mapping = inode->i_mapping;
412 struct page *page;
413 struct dnode_of_data dn;
414 int err;
415 repeat:
416 page = f2fs_grab_cache_page(mapping, index, true);
417 if (!page) {
419 * before exiting, we should make sure ipage will be released
420 * if any error occur.
422 f2fs_put_page(ipage, 1);
423 return ERR_PTR(-ENOMEM);
426 set_new_dnode(&dn, inode, ipage, NULL, 0);
427 err = f2fs_reserve_block(&dn, index);
428 if (err) {
429 f2fs_put_page(page, 1);
430 return ERR_PTR(err);
432 if (!ipage)
433 f2fs_put_dnode(&dn);
435 if (PageUptodate(page))
436 goto got_it;
438 if (dn.data_blkaddr == NEW_ADDR) {
439 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
440 SetPageUptodate(page);
441 } else {
442 f2fs_put_page(page, 1);
444 page = get_read_data_page(inode, index, READ_SYNC, true);
445 if (IS_ERR(page))
446 goto repeat;
448 /* wait for read completion */
449 lock_page(page);
451 got_it:
452 if (new_i_size && i_size_read(inode) <
453 ((loff_t)(index + 1) << PAGE_CACHE_SHIFT)) {
454 i_size_write(inode, ((loff_t)(index + 1) << PAGE_CACHE_SHIFT));
455 /* Only the directory inode sets new_i_size */
456 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
458 return page;
461 static int __allocate_data_block(struct dnode_of_data *dn)
463 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
464 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
465 struct f2fs_summary sum;
466 struct node_info ni;
467 int seg = CURSEG_WARM_DATA;
468 pgoff_t fofs;
470 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
471 return -EPERM;
473 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
474 if (dn->data_blkaddr == NEW_ADDR)
475 goto alloc;
477 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
478 return -ENOSPC;
480 alloc:
481 get_node_info(sbi, dn->nid, &ni);
482 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
484 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
485 seg = CURSEG_DIRECT_IO;
487 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
488 &sum, seg);
489 set_data_blkaddr(dn);
491 /* update i_size */
492 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
493 dn->ofs_in_node;
494 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT))
495 i_size_write(dn->inode,
496 ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT));
498 /* direct IO doesn't use extent cache to maximize the performance */
499 f2fs_drop_largest_extent(dn->inode, fofs);
501 return 0;
504 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
505 size_t count)
507 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
508 struct dnode_of_data dn;
509 u64 start = F2FS_BYTES_TO_BLK(offset);
510 u64 len = F2FS_BYTES_TO_BLK(count);
511 bool allocated;
512 u64 end_offset;
514 while (len) {
515 f2fs_balance_fs(sbi);
516 f2fs_lock_op(sbi);
518 /* When reading holes, we need its node page */
519 set_new_dnode(&dn, inode, NULL, NULL, 0);
520 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
521 goto out;
523 allocated = false;
524 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
526 while (dn.ofs_in_node < end_offset && len) {
527 block_t blkaddr;
529 if (unlikely(f2fs_cp_error(sbi)))
530 goto sync_out;
532 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
533 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
534 if (__allocate_data_block(&dn))
535 goto sync_out;
536 allocated = true;
538 len--;
539 start++;
540 dn.ofs_in_node++;
543 if (allocated)
544 sync_inode_page(&dn);
546 f2fs_put_dnode(&dn);
547 f2fs_unlock_op(sbi);
549 return;
551 sync_out:
552 if (allocated)
553 sync_inode_page(&dn);
554 f2fs_put_dnode(&dn);
555 out:
556 f2fs_unlock_op(sbi);
557 return;
561 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
562 * f2fs_map_blocks structure.
563 * If original data blocks are allocated, then give them to blockdev.
564 * Otherwise,
565 * a. preallocate requested block addresses
566 * b. do not use extent cache for better performance
567 * c. give the block addresses to blockdev
569 static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
570 int create, int flag)
572 unsigned int maxblocks = map->m_len;
573 struct dnode_of_data dn;
574 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
575 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
576 pgoff_t pgofs, end_offset;
577 int err = 0, ofs = 1;
578 struct extent_info ei;
579 bool allocated = false;
581 map->m_len = 0;
582 map->m_flags = 0;
584 /* it only supports block size == page size */
585 pgofs = (pgoff_t)map->m_lblk;
587 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
588 map->m_pblk = ei.blk + pgofs - ei.fofs;
589 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
590 map->m_flags = F2FS_MAP_MAPPED;
591 goto out;
594 if (create)
595 f2fs_lock_op(F2FS_I_SB(inode));
597 /* When reading holes, we need its node page */
598 set_new_dnode(&dn, inode, NULL, NULL, 0);
599 err = get_dnode_of_data(&dn, pgofs, mode);
600 if (err) {
601 if (err == -ENOENT)
602 err = 0;
603 goto unlock_out;
606 if (dn.data_blkaddr == NEW_ADDR || dn.data_blkaddr == NULL_ADDR) {
607 if (create) {
608 if (unlikely(f2fs_cp_error(sbi))) {
609 err = -EIO;
610 goto put_out;
612 err = __allocate_data_block(&dn);
613 if (err)
614 goto put_out;
615 allocated = true;
616 map->m_flags = F2FS_MAP_NEW;
617 } else {
618 if (flag != F2FS_GET_BLOCK_FIEMAP ||
619 dn.data_blkaddr != NEW_ADDR) {
620 if (flag == F2FS_GET_BLOCK_BMAP)
621 err = -ENOENT;
622 goto put_out;
626 * preallocated unwritten block should be mapped
627 * for fiemap.
629 if (dn.data_blkaddr == NEW_ADDR)
630 map->m_flags = F2FS_MAP_UNWRITTEN;
634 map->m_flags |= F2FS_MAP_MAPPED;
635 map->m_pblk = dn.data_blkaddr;
636 map->m_len = 1;
638 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
639 dn.ofs_in_node++;
640 pgofs++;
642 get_next:
643 if (dn.ofs_in_node >= end_offset) {
644 if (allocated)
645 sync_inode_page(&dn);
646 allocated = false;
647 f2fs_put_dnode(&dn);
649 set_new_dnode(&dn, inode, NULL, NULL, 0);
650 err = get_dnode_of_data(&dn, pgofs, mode);
651 if (err) {
652 if (err == -ENOENT)
653 err = 0;
654 goto unlock_out;
657 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
660 if (maxblocks > map->m_len) {
661 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
663 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
664 if (create) {
665 if (unlikely(f2fs_cp_error(sbi))) {
666 err = -EIO;
667 goto sync_out;
669 err = __allocate_data_block(&dn);
670 if (err)
671 goto sync_out;
672 allocated = true;
673 map->m_flags |= F2FS_MAP_NEW;
674 blkaddr = dn.data_blkaddr;
675 } else {
677 * we only merge preallocated unwritten blocks
678 * for fiemap.
680 if (flag != F2FS_GET_BLOCK_FIEMAP ||
681 blkaddr != NEW_ADDR)
682 goto sync_out;
686 /* Give more consecutive addresses for the readahead */
687 if ((map->m_pblk != NEW_ADDR &&
688 blkaddr == (map->m_pblk + ofs)) ||
689 (map->m_pblk == NEW_ADDR &&
690 blkaddr == NEW_ADDR)) {
691 ofs++;
692 dn.ofs_in_node++;
693 pgofs++;
694 map->m_len++;
695 goto get_next;
698 sync_out:
699 if (allocated)
700 sync_inode_page(&dn);
701 put_out:
702 f2fs_put_dnode(&dn);
703 unlock_out:
704 if (create)
705 f2fs_unlock_op(F2FS_I_SB(inode));
706 out:
707 trace_f2fs_map_blocks(inode, map, err);
708 return err;
711 static int __get_data_block(struct inode *inode, sector_t iblock,
712 struct buffer_head *bh, int create, int flag)
714 struct f2fs_map_blocks map;
715 int ret;
717 map.m_lblk = iblock;
718 map.m_len = bh->b_size >> inode->i_blkbits;
720 ret = f2fs_map_blocks(inode, &map, create, flag);
721 if (!ret) {
722 map_bh(bh, inode->i_sb, map.m_pblk);
723 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
724 bh->b_size = map.m_len << inode->i_blkbits;
726 return ret;
729 static int get_data_block(struct inode *inode, sector_t iblock,
730 struct buffer_head *bh_result, int create, int flag)
732 return __get_data_block(inode, iblock, bh_result, create, flag);
735 static int get_data_block_dio(struct inode *inode, sector_t iblock,
736 struct buffer_head *bh_result, int create)
738 return __get_data_block(inode, iblock, bh_result, create,
739 F2FS_GET_BLOCK_DIO);
742 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
743 struct buffer_head *bh_result, int create)
745 return __get_data_block(inode, iblock, bh_result, create,
746 F2FS_GET_BLOCK_BMAP);
749 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
751 return (offset >> inode->i_blkbits);
754 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
756 return (blk << inode->i_blkbits);
759 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
760 u64 start, u64 len)
762 struct buffer_head map_bh;
763 sector_t start_blk, last_blk;
764 loff_t isize = i_size_read(inode);
765 u64 logical = 0, phys = 0, size = 0;
766 u32 flags = 0;
767 bool past_eof = false, whole_file = false;
768 int ret = 0;
770 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
771 if (ret)
772 return ret;
774 if (f2fs_has_inline_data(inode)) {
775 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
776 if (ret != -EAGAIN)
777 return ret;
780 mutex_lock(&inode->i_mutex);
782 if (len >= isize) {
783 whole_file = true;
784 len = isize;
787 if (logical_to_blk(inode, len) == 0)
788 len = blk_to_logical(inode, 1);
790 start_blk = logical_to_blk(inode, start);
791 last_blk = logical_to_blk(inode, start + len - 1);
792 next:
793 memset(&map_bh, 0, sizeof(struct buffer_head));
794 map_bh.b_size = len;
796 ret = get_data_block(inode, start_blk, &map_bh, 0,
797 F2FS_GET_BLOCK_FIEMAP);
798 if (ret)
799 goto out;
801 /* HOLE */
802 if (!buffer_mapped(&map_bh)) {
803 start_blk++;
805 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
806 past_eof = 1;
808 if (past_eof && size) {
809 flags |= FIEMAP_EXTENT_LAST;
810 ret = fiemap_fill_next_extent(fieinfo, logical,
811 phys, size, flags);
812 } else if (size) {
813 ret = fiemap_fill_next_extent(fieinfo, logical,
814 phys, size, flags);
815 size = 0;
818 /* if we have holes up to/past EOF then we're done */
819 if (start_blk > last_blk || past_eof || ret)
820 goto out;
821 } else {
822 if (start_blk > last_blk && !whole_file) {
823 ret = fiemap_fill_next_extent(fieinfo, logical,
824 phys, size, flags);
825 goto out;
829 * if size != 0 then we know we already have an extent
830 * to add, so add it.
832 if (size) {
833 ret = fiemap_fill_next_extent(fieinfo, logical,
834 phys, size, flags);
835 if (ret)
836 goto out;
839 logical = blk_to_logical(inode, start_blk);
840 phys = blk_to_logical(inode, map_bh.b_blocknr);
841 size = map_bh.b_size;
842 flags = 0;
843 if (buffer_unwritten(&map_bh))
844 flags = FIEMAP_EXTENT_UNWRITTEN;
846 start_blk += logical_to_blk(inode, size);
849 * If we are past the EOF, then we need to make sure as
850 * soon as we find a hole that the last extent we found
851 * is marked with FIEMAP_EXTENT_LAST
853 if (!past_eof && logical + size >= isize)
854 past_eof = true;
856 cond_resched();
857 if (fatal_signal_pending(current))
858 ret = -EINTR;
859 else
860 goto next;
861 out:
862 if (ret == 1)
863 ret = 0;
865 mutex_unlock(&inode->i_mutex);
866 return ret;
870 * This function was originally taken from fs/mpage.c, and customized for f2fs.
871 * Major change was from block_size == page_size in f2fs by default.
873 static int f2fs_mpage_readpages(struct address_space *mapping,
874 struct list_head *pages, struct page *page,
875 unsigned nr_pages)
877 struct bio *bio = NULL;
878 unsigned page_idx;
879 sector_t last_block_in_bio = 0;
880 struct inode *inode = mapping->host;
881 const unsigned blkbits = inode->i_blkbits;
882 const unsigned blocksize = 1 << blkbits;
883 sector_t block_in_file;
884 sector_t last_block;
885 sector_t last_block_in_file;
886 sector_t block_nr;
887 struct block_device *bdev = inode->i_sb->s_bdev;
888 struct f2fs_map_blocks map;
890 map.m_pblk = 0;
891 map.m_lblk = 0;
892 map.m_len = 0;
893 map.m_flags = 0;
895 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
897 prefetchw(&page->flags);
898 if (pages) {
899 page = list_entry(pages->prev, struct page, lru);
900 list_del(&page->lru);
901 if (add_to_page_cache_lru(page, mapping,
902 page->index, GFP_KERNEL))
903 goto next_page;
906 block_in_file = (sector_t)page->index;
907 last_block = block_in_file + nr_pages;
908 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
909 blkbits;
910 if (last_block > last_block_in_file)
911 last_block = last_block_in_file;
914 * Map blocks using the previous result first.
916 if ((map.m_flags & F2FS_MAP_MAPPED) &&
917 block_in_file > map.m_lblk &&
918 block_in_file < (map.m_lblk + map.m_len))
919 goto got_it;
922 * Then do more f2fs_map_blocks() calls until we are
923 * done with this page.
925 map.m_flags = 0;
927 if (block_in_file < last_block) {
928 map.m_lblk = block_in_file;
929 map.m_len = last_block - block_in_file;
931 if (f2fs_map_blocks(inode, &map, 0,
932 F2FS_GET_BLOCK_READ))
933 goto set_error_page;
935 got_it:
936 if ((map.m_flags & F2FS_MAP_MAPPED)) {
937 block_nr = map.m_pblk + block_in_file - map.m_lblk;
938 SetPageMappedToDisk(page);
940 if (!PageUptodate(page) && !cleancache_get_page(page)) {
941 SetPageUptodate(page);
942 goto confused;
944 } else {
945 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
946 SetPageUptodate(page);
947 unlock_page(page);
948 goto next_page;
952 * This page will go to BIO. Do we need to send this
953 * BIO off first?
955 if (bio && (last_block_in_bio != block_nr - 1)) {
956 submit_and_realloc:
957 submit_bio(READ, bio);
958 bio = NULL;
960 if (bio == NULL) {
961 struct f2fs_crypto_ctx *ctx = NULL;
963 if (f2fs_encrypted_inode(inode) &&
964 S_ISREG(inode->i_mode)) {
966 ctx = f2fs_get_crypto_ctx(inode);
967 if (IS_ERR(ctx))
968 goto set_error_page;
970 /* wait the page to be moved by cleaning */
971 f2fs_wait_on_encrypted_page_writeback(
972 F2FS_I_SB(inode), block_nr);
975 bio = bio_alloc(GFP_KERNEL,
976 min_t(int, nr_pages, BIO_MAX_PAGES));
977 if (!bio) {
978 if (ctx)
979 f2fs_release_crypto_ctx(ctx);
980 goto set_error_page;
982 bio->bi_bdev = bdev;
983 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
984 bio->bi_end_io = f2fs_read_end_io;
985 bio->bi_private = ctx;
988 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
989 goto submit_and_realloc;
991 last_block_in_bio = block_nr;
992 goto next_page;
993 set_error_page:
994 SetPageError(page);
995 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
996 unlock_page(page);
997 goto next_page;
998 confused:
999 if (bio) {
1000 submit_bio(READ, bio);
1001 bio = NULL;
1003 unlock_page(page);
1004 next_page:
1005 if (pages)
1006 page_cache_release(page);
1008 BUG_ON(pages && !list_empty(pages));
1009 if (bio)
1010 submit_bio(READ, bio);
1011 return 0;
1014 static int f2fs_read_data_page(struct file *file, struct page *page)
1016 struct inode *inode = page->mapping->host;
1017 int ret = -EAGAIN;
1019 trace_f2fs_readpage(page, DATA);
1021 /* If the file has inline data, try to read it directly */
1022 if (f2fs_has_inline_data(inode))
1023 ret = f2fs_read_inline_data(inode, page);
1024 if (ret == -EAGAIN)
1025 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1026 return ret;
1029 static int f2fs_read_data_pages(struct file *file,
1030 struct address_space *mapping,
1031 struct list_head *pages, unsigned nr_pages)
1033 struct inode *inode = file->f_mapping->host;
1034 struct page *page = list_entry(pages->prev, struct page, lru);
1036 trace_f2fs_readpages(inode, page, nr_pages);
1038 /* If the file has inline data, skip readpages */
1039 if (f2fs_has_inline_data(inode))
1040 return 0;
1042 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1045 int do_write_data_page(struct f2fs_io_info *fio)
1047 struct page *page = fio->page;
1048 struct inode *inode = page->mapping->host;
1049 struct dnode_of_data dn;
1050 int err = 0;
1052 set_new_dnode(&dn, inode, NULL, NULL, 0);
1053 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1054 if (err)
1055 return err;
1057 fio->blk_addr = dn.data_blkaddr;
1059 /* This page is already truncated */
1060 if (fio->blk_addr == NULL_ADDR) {
1061 ClearPageUptodate(page);
1062 goto out_writepage;
1065 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1067 /* wait for GCed encrypted page writeback */
1068 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1069 fio->blk_addr);
1071 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1072 if (IS_ERR(fio->encrypted_page)) {
1073 err = PTR_ERR(fio->encrypted_page);
1074 goto out_writepage;
1078 set_page_writeback(page);
1081 * If current allocation needs SSR,
1082 * it had better in-place writes for updated data.
1084 if (unlikely(fio->blk_addr != NEW_ADDR &&
1085 !is_cold_data(page) &&
1086 need_inplace_update(inode))) {
1087 rewrite_data_page(fio);
1088 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1089 trace_f2fs_do_write_data_page(page, IPU);
1090 } else {
1091 write_data_page(&dn, fio);
1092 set_data_blkaddr(&dn);
1093 f2fs_update_extent_cache(&dn);
1094 trace_f2fs_do_write_data_page(page, OPU);
1095 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1096 if (page->index == 0)
1097 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1099 out_writepage:
1100 f2fs_put_dnode(&dn);
1101 return err;
1104 static int f2fs_write_data_page(struct page *page,
1105 struct writeback_control *wbc)
1107 struct inode *inode = page->mapping->host;
1108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1109 loff_t i_size = i_size_read(inode);
1110 const pgoff_t end_index = ((unsigned long long) i_size)
1111 >> PAGE_CACHE_SHIFT;
1112 unsigned offset = 0;
1113 bool need_balance_fs = false;
1114 int err = 0;
1115 struct f2fs_io_info fio = {
1116 .sbi = sbi,
1117 .type = DATA,
1118 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1119 .page = page,
1120 .encrypted_page = NULL,
1123 trace_f2fs_writepage(page, DATA);
1125 if (page->index < end_index)
1126 goto write;
1129 * If the offset is out-of-range of file size,
1130 * this page does not have to be written to disk.
1132 offset = i_size & (PAGE_CACHE_SIZE - 1);
1133 if ((page->index >= end_index + 1) || !offset)
1134 goto out;
1136 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1137 write:
1138 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1139 goto redirty_out;
1140 if (f2fs_is_drop_cache(inode))
1141 goto out;
1142 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1143 available_free_memory(sbi, BASE_CHECK))
1144 goto redirty_out;
1146 /* Dentry blocks are controlled by checkpoint */
1147 if (S_ISDIR(inode->i_mode)) {
1148 if (unlikely(f2fs_cp_error(sbi)))
1149 goto redirty_out;
1150 err = do_write_data_page(&fio);
1151 goto done;
1154 /* we should bypass data pages to proceed the kworkder jobs */
1155 if (unlikely(f2fs_cp_error(sbi))) {
1156 SetPageError(page);
1157 goto out;
1160 if (!wbc->for_reclaim)
1161 need_balance_fs = true;
1162 else if (has_not_enough_free_secs(sbi, 0))
1163 goto redirty_out;
1165 err = -EAGAIN;
1166 f2fs_lock_op(sbi);
1167 if (f2fs_has_inline_data(inode))
1168 err = f2fs_write_inline_data(inode, page);
1169 if (err == -EAGAIN)
1170 err = do_write_data_page(&fio);
1171 f2fs_unlock_op(sbi);
1172 done:
1173 if (err && err != -ENOENT)
1174 goto redirty_out;
1176 clear_cold_data(page);
1177 out:
1178 inode_dec_dirty_pages(inode);
1179 if (err)
1180 ClearPageUptodate(page);
1181 unlock_page(page);
1182 if (need_balance_fs)
1183 f2fs_balance_fs(sbi);
1184 if (wbc->for_reclaim)
1185 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1186 return 0;
1188 redirty_out:
1189 redirty_page_for_writepage(wbc, page);
1190 return AOP_WRITEPAGE_ACTIVATE;
1193 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1194 void *data)
1196 struct address_space *mapping = data;
1197 int ret = mapping->a_ops->writepage(page, wbc);
1198 mapping_set_error(mapping, ret);
1199 return ret;
1203 * This function was copied from write_cche_pages from mm/page-writeback.c.
1204 * The major change is making write step of cold data page separately from
1205 * warm/hot data page.
1207 static int f2fs_write_cache_pages(struct address_space *mapping,
1208 struct writeback_control *wbc, writepage_t writepage,
1209 void *data)
1211 int ret = 0;
1212 int done = 0;
1213 struct pagevec pvec;
1214 int nr_pages;
1215 pgoff_t uninitialized_var(writeback_index);
1216 pgoff_t index;
1217 pgoff_t end; /* Inclusive */
1218 pgoff_t done_index;
1219 int cycled;
1220 int range_whole = 0;
1221 int tag;
1222 int step = 0;
1224 pagevec_init(&pvec, 0);
1225 next:
1226 if (wbc->range_cyclic) {
1227 writeback_index = mapping->writeback_index; /* prev offset */
1228 index = writeback_index;
1229 if (index == 0)
1230 cycled = 1;
1231 else
1232 cycled = 0;
1233 end = -1;
1234 } else {
1235 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1236 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1237 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1238 range_whole = 1;
1239 cycled = 1; /* ignore range_cyclic tests */
1241 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1242 tag = PAGECACHE_TAG_TOWRITE;
1243 else
1244 tag = PAGECACHE_TAG_DIRTY;
1245 retry:
1246 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1247 tag_pages_for_writeback(mapping, index, end);
1248 done_index = index;
1249 while (!done && (index <= end)) {
1250 int i;
1252 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1253 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1254 if (nr_pages == 0)
1255 break;
1257 for (i = 0; i < nr_pages; i++) {
1258 struct page *page = pvec.pages[i];
1260 if (page->index > end) {
1261 done = 1;
1262 break;
1265 done_index = page->index;
1267 lock_page(page);
1269 if (unlikely(page->mapping != mapping)) {
1270 continue_unlock:
1271 unlock_page(page);
1272 continue;
1275 if (!PageDirty(page)) {
1276 /* someone wrote it for us */
1277 goto continue_unlock;
1280 if (step == is_cold_data(page))
1281 goto continue_unlock;
1283 if (PageWriteback(page)) {
1284 if (wbc->sync_mode != WB_SYNC_NONE)
1285 f2fs_wait_on_page_writeback(page, DATA);
1286 else
1287 goto continue_unlock;
1290 BUG_ON(PageWriteback(page));
1291 if (!clear_page_dirty_for_io(page))
1292 goto continue_unlock;
1294 ret = (*writepage)(page, wbc, data);
1295 if (unlikely(ret)) {
1296 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1297 unlock_page(page);
1298 ret = 0;
1299 } else {
1300 done_index = page->index + 1;
1301 done = 1;
1302 break;
1306 if (--wbc->nr_to_write <= 0 &&
1307 wbc->sync_mode == WB_SYNC_NONE) {
1308 done = 1;
1309 break;
1312 pagevec_release(&pvec);
1313 cond_resched();
1316 if (step < 1) {
1317 step++;
1318 goto next;
1321 if (!cycled && !done) {
1322 cycled = 1;
1323 index = 0;
1324 end = writeback_index - 1;
1325 goto retry;
1327 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1328 mapping->writeback_index = done_index;
1330 return ret;
1333 static int f2fs_write_data_pages(struct address_space *mapping,
1334 struct writeback_control *wbc)
1336 struct inode *inode = mapping->host;
1337 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1338 bool locked = false;
1339 int ret;
1340 long diff;
1342 trace_f2fs_writepages(mapping->host, wbc, DATA);
1344 /* deal with chardevs and other special file */
1345 if (!mapping->a_ops->writepage)
1346 return 0;
1348 /* skip writing if there is no dirty page in this inode */
1349 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1350 return 0;
1352 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1353 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1354 available_free_memory(sbi, DIRTY_DENTS))
1355 goto skip_write;
1357 /* during POR, we don't need to trigger writepage at all. */
1358 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1359 goto skip_write;
1361 diff = nr_pages_to_write(sbi, DATA, wbc);
1363 if (!S_ISDIR(inode->i_mode)) {
1364 mutex_lock(&sbi->writepages);
1365 locked = true;
1367 ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1368 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1369 if (locked)
1370 mutex_unlock(&sbi->writepages);
1372 remove_dirty_dir_inode(inode);
1374 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1375 return ret;
1377 skip_write:
1378 wbc->pages_skipped += get_dirty_pages(inode);
1379 return 0;
1382 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1384 struct inode *inode = mapping->host;
1386 if (to > inode->i_size) {
1387 truncate_pagecache(inode, inode->i_size);
1388 truncate_blocks(inode, inode->i_size, true);
1392 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1393 loff_t pos, unsigned len, unsigned flags,
1394 struct page **pagep, void **fsdata)
1396 struct inode *inode = mapping->host;
1397 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1398 struct page *page = NULL;
1399 struct page *ipage;
1400 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1401 struct dnode_of_data dn;
1402 int err = 0;
1404 trace_f2fs_write_begin(inode, pos, len, flags);
1406 f2fs_balance_fs(sbi);
1409 * We should check this at this moment to avoid deadlock on inode page
1410 * and #0 page. The locking rule for inline_data conversion should be:
1411 * lock_page(page #0) -> lock_page(inode_page)
1413 if (index != 0) {
1414 err = f2fs_convert_inline_inode(inode);
1415 if (err)
1416 goto fail;
1418 repeat:
1419 page = grab_cache_page_write_begin(mapping, index, flags);
1420 if (!page) {
1421 err = -ENOMEM;
1422 goto fail;
1425 *pagep = page;
1427 f2fs_lock_op(sbi);
1429 /* check inline_data */
1430 ipage = get_node_page(sbi, inode->i_ino);
1431 if (IS_ERR(ipage)) {
1432 err = PTR_ERR(ipage);
1433 goto unlock_fail;
1436 set_new_dnode(&dn, inode, ipage, ipage, 0);
1438 if (f2fs_has_inline_data(inode)) {
1439 if (pos + len <= MAX_INLINE_DATA) {
1440 read_inline_data(page, ipage);
1441 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1442 sync_inode_page(&dn);
1443 goto put_next;
1445 err = f2fs_convert_inline_page(&dn, page);
1446 if (err)
1447 goto put_fail;
1450 err = f2fs_get_block(&dn, index);
1451 if (err)
1452 goto put_fail;
1453 put_next:
1454 f2fs_put_dnode(&dn);
1455 f2fs_unlock_op(sbi);
1457 f2fs_wait_on_page_writeback(page, DATA);
1459 /* wait for GCed encrypted page writeback */
1460 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1461 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
1463 if (len == PAGE_CACHE_SIZE)
1464 goto out_update;
1465 if (PageUptodate(page))
1466 goto out_clear;
1468 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1469 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1470 unsigned end = start + len;
1472 /* Reading beyond i_size is simple: memset to zero */
1473 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1474 goto out_update;
1477 if (dn.data_blkaddr == NEW_ADDR) {
1478 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1479 } else {
1480 struct f2fs_io_info fio = {
1481 .sbi = sbi,
1482 .type = DATA,
1483 .rw = READ_SYNC,
1484 .blk_addr = dn.data_blkaddr,
1485 .page = page,
1486 .encrypted_page = NULL,
1488 err = f2fs_submit_page_bio(&fio);
1489 if (err)
1490 goto fail;
1492 lock_page(page);
1493 if (unlikely(!PageUptodate(page))) {
1494 err = -EIO;
1495 goto fail;
1497 if (unlikely(page->mapping != mapping)) {
1498 f2fs_put_page(page, 1);
1499 goto repeat;
1502 /* avoid symlink page */
1503 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1504 err = f2fs_decrypt_one(inode, page);
1505 if (err)
1506 goto fail;
1509 out_update:
1510 SetPageUptodate(page);
1511 out_clear:
1512 clear_cold_data(page);
1513 return 0;
1515 put_fail:
1516 f2fs_put_dnode(&dn);
1517 unlock_fail:
1518 f2fs_unlock_op(sbi);
1519 fail:
1520 f2fs_put_page(page, 1);
1521 f2fs_write_failed(mapping, pos + len);
1522 return err;
1525 static int f2fs_write_end(struct file *file,
1526 struct address_space *mapping,
1527 loff_t pos, unsigned len, unsigned copied,
1528 struct page *page, void *fsdata)
1530 struct inode *inode = page->mapping->host;
1532 trace_f2fs_write_end(inode, pos, len, copied);
1534 set_page_dirty(page);
1536 if (pos + copied > i_size_read(inode)) {
1537 i_size_write(inode, pos + copied);
1538 mark_inode_dirty(inode);
1539 update_inode_page(inode);
1542 f2fs_put_page(page, 1);
1543 return copied;
1546 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1547 loff_t offset)
1549 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1551 if (offset & blocksize_mask)
1552 return -EINVAL;
1554 if (iov_iter_alignment(iter) & blocksize_mask)
1555 return -EINVAL;
1557 return 0;
1560 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1561 loff_t offset)
1563 struct file *file = iocb->ki_filp;
1564 struct address_space *mapping = file->f_mapping;
1565 struct inode *inode = mapping->host;
1566 size_t count = iov_iter_count(iter);
1567 int err;
1569 /* we don't need to use inline_data strictly */
1570 if (f2fs_has_inline_data(inode)) {
1571 err = f2fs_convert_inline_inode(inode);
1572 if (err)
1573 return err;
1576 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1577 return 0;
1579 err = check_direct_IO(inode, iter, offset);
1580 if (err)
1581 return err;
1583 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1585 if (iov_iter_rw(iter) == WRITE) {
1586 __allocate_data_blocks(inode, offset, count);
1587 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1588 err = -EIO;
1589 goto out;
1593 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1594 out:
1595 if (err < 0 && iov_iter_rw(iter) == WRITE)
1596 f2fs_write_failed(mapping, offset + count);
1598 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1600 return err;
1603 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1604 unsigned int length)
1606 struct inode *inode = page->mapping->host;
1607 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1609 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1610 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1611 return;
1613 if (PageDirty(page)) {
1614 if (inode->i_ino == F2FS_META_INO(sbi))
1615 dec_page_count(sbi, F2FS_DIRTY_META);
1616 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1617 dec_page_count(sbi, F2FS_DIRTY_NODES);
1618 else
1619 inode_dec_dirty_pages(inode);
1622 /* This is atomic written page, keep Private */
1623 if (IS_ATOMIC_WRITTEN_PAGE(page))
1624 return;
1626 ClearPagePrivate(page);
1629 int f2fs_release_page(struct page *page, gfp_t wait)
1631 /* If this is dirty page, keep PagePrivate */
1632 if (PageDirty(page))
1633 return 0;
1635 /* This is atomic written page, keep Private */
1636 if (IS_ATOMIC_WRITTEN_PAGE(page))
1637 return 0;
1639 ClearPagePrivate(page);
1640 return 1;
1643 static int f2fs_set_data_page_dirty(struct page *page)
1645 struct address_space *mapping = page->mapping;
1646 struct inode *inode = mapping->host;
1648 trace_f2fs_set_page_dirty(page, DATA);
1650 SetPageUptodate(page);
1652 if (f2fs_is_atomic_file(inode)) {
1653 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1654 register_inmem_page(inode, page);
1655 return 1;
1658 * Previously, this page has been registered, we just
1659 * return here.
1661 return 0;
1664 if (!PageDirty(page)) {
1665 __set_page_dirty_nobuffers(page);
1666 update_dirty_page(inode, page);
1667 return 1;
1669 return 0;
1672 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1674 struct inode *inode = mapping->host;
1676 if (f2fs_has_inline_data(inode))
1677 return 0;
1679 /* make sure allocating whole blocks */
1680 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1681 filemap_write_and_wait(mapping);
1683 return generic_block_bmap(mapping, block, get_data_block_bmap);
1686 const struct address_space_operations f2fs_dblock_aops = {
1687 .readpage = f2fs_read_data_page,
1688 .readpages = f2fs_read_data_pages,
1689 .writepage = f2fs_write_data_page,
1690 .writepages = f2fs_write_data_pages,
1691 .write_begin = f2fs_write_begin,
1692 .write_end = f2fs_write_end,
1693 .set_page_dirty = f2fs_set_data_page_dirty,
1694 .invalidatepage = f2fs_invalidate_page,
1695 .releasepage = f2fs_release_page,
1696 .direct_IO = f2fs_direct_IO,
1697 .bmap = f2fs_bmap,