irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / fs / jbd2 / revoke.c
blob705ae577882b104d438957e0760a4608d93ceeb2
1 /*
2 * linux/fs/jbd2/revoke.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks. The revoke mechanism is used in two separate places:
19 * + Commit: during commit we write the entire list of the current
20 * transaction's revoked blocks to the journal
22 * + Recovery: during recovery we record the transaction ID of all
23 * revoked blocks. If there are multiple revoke records in the log
24 * for a single block, only the last one counts, and if there is a log
25 * entry for a block beyond the last revoke, then that log entry still
26 * gets replayed.
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
31 * Block is revoked and then journaled:
32 * The desired end result is the journaling of the new block, so we
33 * cancel the revoke before the transaction commits.
35 * Block is journaled and then revoked:
36 * The revoke must take precedence over the write of the block, so we
37 * need either to cancel the journal entry or to write the revoke
38 * later in the log than the log block. In this case, we choose the
39 * latter: journaling a block cancels any revoke record for that block
40 * in the current transaction, so any revoke for that block in the
41 * transaction must have happened after the block was journaled and so
42 * the revoke must take precedence.
44 * Block is revoked and then written as data:
45 * The data write is allowed to succeed, but the revoke is _not_
46 * cancelled. We still need to prevent old log records from
47 * overwriting the new data. We don't even need to clear the revoke
48 * bit here.
50 * We cache revoke status of a buffer in the current transaction in b_states
51 * bits. As the name says, revokevalid flag indicates that the cached revoke
52 * status of a buffer is valid and we can rely on the cached status.
54 * Revoke information on buffers is a tri-state value:
56 * RevokeValid clear: no cached revoke status, need to look it up
57 * RevokeValid set, Revoked clear:
58 * buffer has not been revoked, and cancel_revoke
59 * need do nothing.
60 * RevokeValid set, Revoked set:
61 * buffer has been revoked.
63 * Locking rules:
64 * We keep two hash tables of revoke records. One hashtable belongs to the
65 * running transaction (is pointed to by journal->j_revoke), the other one
66 * belongs to the committing transaction. Accesses to the second hash table
67 * happen only from the kjournald and no other thread touches this table. Also
68 * journal_switch_revoke_table() which switches which hashtable belongs to the
69 * running and which to the committing transaction is called only from
70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
71 * to the committing transaction.
73 * All users operating on the hash table belonging to the running transaction
74 * have a handle to the transaction. Therefore they are safe from kjournald
75 * switching hash tables under them. For operations on the lists of entries in
76 * the hash table j_revoke_lock is used.
78 * Finally, also replay code uses the hash tables but at this moment no one else
79 * can touch them (filesystem isn't mounted yet) and hence no locking is
80 * needed.
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd2.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #include <linux/log2.h>
95 #include <linux/hash.h>
96 #endif
98 static struct kmem_cache *jbd2_revoke_record_cache;
99 static struct kmem_cache *jbd2_revoke_table_cache;
101 /* Each revoke record represents one single revoked block. During
102 journal replay, this involves recording the transaction ID of the
103 last transaction to revoke this block. */
105 struct jbd2_revoke_record_s
107 struct list_head hash;
108 tid_t sequence; /* Used for recovery only */
109 unsigned long long blocknr;
113 /* The revoke table is just a simple hash table of revoke records. */
114 struct jbd2_revoke_table_s
116 /* It is conceivable that we might want a larger hash table
117 * for recovery. Must be a power of two. */
118 int hash_size;
119 int hash_shift;
120 struct list_head *hash_table;
124 #ifdef __KERNEL__
125 static void write_one_revoke_record(journal_t *, transaction_t *,
126 struct list_head *,
127 struct buffer_head **, int *,
128 struct jbd2_revoke_record_s *, int);
129 static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
130 #endif
132 /* Utility functions to maintain the revoke table */
134 static inline int hash(journal_t *journal, unsigned long long block)
136 return hash_64(block, journal->j_revoke->hash_shift);
139 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140 tid_t seq)
142 struct list_head *hash_list;
143 struct jbd2_revoke_record_s *record;
144 gfp_t gfp_mask = GFP_NOFS;
146 if (journal_oom_retry)
147 gfp_mask |= __GFP_NOFAIL;
148 record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
149 if (!record)
150 return -ENOMEM;
152 record->sequence = seq;
153 record->blocknr = blocknr;
154 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
155 spin_lock(&journal->j_revoke_lock);
156 list_add(&record->hash, hash_list);
157 spin_unlock(&journal->j_revoke_lock);
158 return 0;
161 /* Find a revoke record in the journal's hash table. */
163 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
164 unsigned long long blocknr)
166 struct list_head *hash_list;
167 struct jbd2_revoke_record_s *record;
169 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
171 spin_lock(&journal->j_revoke_lock);
172 record = (struct jbd2_revoke_record_s *) hash_list->next;
173 while (&(record->hash) != hash_list) {
174 if (record->blocknr == blocknr) {
175 spin_unlock(&journal->j_revoke_lock);
176 return record;
178 record = (struct jbd2_revoke_record_s *) record->hash.next;
180 spin_unlock(&journal->j_revoke_lock);
181 return NULL;
184 void jbd2_journal_destroy_revoke_caches(void)
186 if (jbd2_revoke_record_cache) {
187 kmem_cache_destroy(jbd2_revoke_record_cache);
188 jbd2_revoke_record_cache = NULL;
190 if (jbd2_revoke_table_cache) {
191 kmem_cache_destroy(jbd2_revoke_table_cache);
192 jbd2_revoke_table_cache = NULL;
196 int __init jbd2_journal_init_revoke_caches(void)
198 J_ASSERT(!jbd2_revoke_record_cache);
199 J_ASSERT(!jbd2_revoke_table_cache);
201 jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
202 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
203 if (!jbd2_revoke_record_cache)
204 goto record_cache_failure;
206 jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
207 SLAB_TEMPORARY);
208 if (!jbd2_revoke_table_cache)
209 goto table_cache_failure;
210 return 0;
211 table_cache_failure:
212 jbd2_journal_destroy_revoke_caches();
213 record_cache_failure:
214 return -ENOMEM;
217 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
219 int shift = 0;
220 int tmp = hash_size;
221 struct jbd2_revoke_table_s *table;
223 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
224 if (!table)
225 goto out;
227 while((tmp >>= 1UL) != 0UL)
228 shift++;
230 table->hash_size = hash_size;
231 table->hash_shift = shift;
232 table->hash_table =
233 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
234 if (!table->hash_table) {
235 kmem_cache_free(jbd2_revoke_table_cache, table);
236 table = NULL;
237 goto out;
240 for (tmp = 0; tmp < hash_size; tmp++)
241 INIT_LIST_HEAD(&table->hash_table[tmp]);
243 out:
244 return table;
247 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
249 int i;
250 struct list_head *hash_list;
252 for (i = 0; i < table->hash_size; i++) {
253 hash_list = &table->hash_table[i];
254 J_ASSERT(list_empty(hash_list));
257 kfree(table->hash_table);
258 kmem_cache_free(jbd2_revoke_table_cache, table);
261 /* Initialise the revoke table for a given journal to a given size. */
262 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
264 J_ASSERT(journal->j_revoke_table[0] == NULL);
265 J_ASSERT(is_power_of_2(hash_size));
267 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
268 if (!journal->j_revoke_table[0])
269 goto fail0;
271 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
272 if (!journal->j_revoke_table[1])
273 goto fail1;
275 journal->j_revoke = journal->j_revoke_table[1];
277 spin_lock_init(&journal->j_revoke_lock);
279 return 0;
281 fail1:
282 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
283 fail0:
284 return -ENOMEM;
287 /* Destroy a journal's revoke table. The table must already be empty! */
288 void jbd2_journal_destroy_revoke(journal_t *journal)
290 journal->j_revoke = NULL;
291 if (journal->j_revoke_table[0])
292 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
293 if (journal->j_revoke_table[1])
294 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
298 #ifdef __KERNEL__
301 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This
302 * prevents the block from being replayed during recovery if we take a
303 * crash after this current transaction commits. Any subsequent
304 * metadata writes of the buffer in this transaction cancel the
305 * revoke.
307 * Note that this call may block --- it is up to the caller to make
308 * sure that there are no further calls to journal_write_metadata
309 * before the revoke is complete. In ext3, this implies calling the
310 * revoke before clearing the block bitmap when we are deleting
311 * metadata.
313 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
314 * parameter, but does _not_ forget the buffer_head if the bh was only
315 * found implicitly.
317 * bh_in may not be a journalled buffer - it may have come off
318 * the hash tables without an attached journal_head.
320 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
321 * by one.
324 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
325 struct buffer_head *bh_in)
327 struct buffer_head *bh = NULL;
328 journal_t *journal;
329 struct block_device *bdev;
330 int err;
332 might_sleep();
333 if (bh_in)
334 BUFFER_TRACE(bh_in, "enter");
336 journal = handle->h_transaction->t_journal;
337 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
338 J_ASSERT (!"Cannot set revoke feature!");
339 return -EINVAL;
342 bdev = journal->j_fs_dev;
343 bh = bh_in;
345 if (!bh) {
346 bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
347 if (bh)
348 BUFFER_TRACE(bh, "found on hash");
350 #ifdef JBD2_EXPENSIVE_CHECKING
351 else {
352 struct buffer_head *bh2;
354 /* If there is a different buffer_head lying around in
355 * memory anywhere... */
356 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
357 if (bh2) {
358 /* ... and it has RevokeValid status... */
359 if (bh2 != bh && buffer_revokevalid(bh2))
360 /* ...then it better be revoked too,
361 * since it's illegal to create a revoke
362 * record against a buffer_head which is
363 * not marked revoked --- that would
364 * risk missing a subsequent revoke
365 * cancel. */
366 J_ASSERT_BH(bh2, buffer_revoked(bh2));
367 put_bh(bh2);
370 #endif
372 /* We really ought not ever to revoke twice in a row without
373 first having the revoke cancelled: it's illegal to free a
374 block twice without allocating it in between! */
375 if (bh) {
376 if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
377 "inconsistent data on disk")) {
378 if (!bh_in)
379 brelse(bh);
380 return -EIO;
382 set_buffer_revoked(bh);
383 set_buffer_revokevalid(bh);
384 if (bh_in) {
385 BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
386 jbd2_journal_forget(handle, bh_in);
387 } else {
388 BUFFER_TRACE(bh, "call brelse");
389 __brelse(bh);
393 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
394 err = insert_revoke_hash(journal, blocknr,
395 handle->h_transaction->t_tid);
396 BUFFER_TRACE(bh_in, "exit");
397 return err;
401 * Cancel an outstanding revoke. For use only internally by the
402 * journaling code (called from jbd2_journal_get_write_access).
404 * We trust buffer_revoked() on the buffer if the buffer is already
405 * being journaled: if there is no revoke pending on the buffer, then we
406 * don't do anything here.
408 * This would break if it were possible for a buffer to be revoked and
409 * discarded, and then reallocated within the same transaction. In such
410 * a case we would have lost the revoked bit, but when we arrived here
411 * the second time we would still have a pending revoke to cancel. So,
412 * do not trust the Revoked bit on buffers unless RevokeValid is also
413 * set.
415 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
417 struct jbd2_revoke_record_s *record;
418 journal_t *journal = handle->h_transaction->t_journal;
419 int need_cancel;
420 int did_revoke = 0; /* akpm: debug */
421 struct buffer_head *bh = jh2bh(jh);
423 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
425 /* Is the existing Revoke bit valid? If so, we trust it, and
426 * only perform the full cancel if the revoke bit is set. If
427 * not, we can't trust the revoke bit, and we need to do the
428 * full search for a revoke record. */
429 if (test_set_buffer_revokevalid(bh)) {
430 need_cancel = test_clear_buffer_revoked(bh);
431 } else {
432 need_cancel = 1;
433 clear_buffer_revoked(bh);
436 if (need_cancel) {
437 record = find_revoke_record(journal, bh->b_blocknr);
438 if (record) {
439 jbd_debug(4, "cancelled existing revoke on "
440 "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
441 spin_lock(&journal->j_revoke_lock);
442 list_del(&record->hash);
443 spin_unlock(&journal->j_revoke_lock);
444 kmem_cache_free(jbd2_revoke_record_cache, record);
445 did_revoke = 1;
449 #ifdef JBD2_EXPENSIVE_CHECKING
450 /* There better not be one left behind by now! */
451 record = find_revoke_record(journal, bh->b_blocknr);
452 J_ASSERT_JH(jh, record == NULL);
453 #endif
455 /* Finally, have we just cleared revoke on an unhashed
456 * buffer_head? If so, we'd better make sure we clear the
457 * revoked status on any hashed alias too, otherwise the revoke
458 * state machine will get very upset later on. */
459 if (need_cancel) {
460 struct buffer_head *bh2;
461 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
462 if (bh2) {
463 if (bh2 != bh)
464 clear_buffer_revoked(bh2);
465 __brelse(bh2);
468 return did_revoke;
472 * journal_clear_revoked_flag clears revoked flag of buffers in
473 * revoke table to reflect there is no revoked buffers in the next
474 * transaction which is going to be started.
476 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
478 struct jbd2_revoke_table_s *revoke = journal->j_revoke;
479 int i = 0;
481 for (i = 0; i < revoke->hash_size; i++) {
482 struct list_head *hash_list;
483 struct list_head *list_entry;
484 hash_list = &revoke->hash_table[i];
486 list_for_each(list_entry, hash_list) {
487 struct jbd2_revoke_record_s *record;
488 struct buffer_head *bh;
489 record = (struct jbd2_revoke_record_s *)list_entry;
490 bh = __find_get_block(journal->j_fs_dev,
491 record->blocknr,
492 journal->j_blocksize);
493 if (bh) {
494 clear_buffer_revoked(bh);
495 __brelse(bh);
501 /* journal_switch_revoke table select j_revoke for next transaction
502 * we do not want to suspend any processing until all revokes are
503 * written -bzzz
505 void jbd2_journal_switch_revoke_table(journal_t *journal)
507 int i;
509 if (journal->j_revoke == journal->j_revoke_table[0])
510 journal->j_revoke = journal->j_revoke_table[1];
511 else
512 journal->j_revoke = journal->j_revoke_table[0];
514 for (i = 0; i < journal->j_revoke->hash_size; i++)
515 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
519 * Write revoke records to the journal for all entries in the current
520 * revoke hash, deleting the entries as we go.
522 void jbd2_journal_write_revoke_records(journal_t *journal,
523 transaction_t *transaction,
524 struct list_head *log_bufs,
525 int write_op)
527 struct buffer_head *descriptor;
528 struct jbd2_revoke_record_s *record;
529 struct jbd2_revoke_table_s *revoke;
530 struct list_head *hash_list;
531 int i, offset, count;
533 descriptor = NULL;
534 offset = 0;
535 count = 0;
537 /* select revoke table for committing transaction */
538 revoke = journal->j_revoke == journal->j_revoke_table[0] ?
539 journal->j_revoke_table[1] : journal->j_revoke_table[0];
541 for (i = 0; i < revoke->hash_size; i++) {
542 hash_list = &revoke->hash_table[i];
544 while (!list_empty(hash_list)) {
545 record = (struct jbd2_revoke_record_s *)
546 hash_list->next;
547 write_one_revoke_record(journal, transaction, log_bufs,
548 &descriptor, &offset,
549 record, write_op);
550 count++;
551 list_del(&record->hash);
552 kmem_cache_free(jbd2_revoke_record_cache, record);
555 if (descriptor)
556 flush_descriptor(journal, descriptor, offset, write_op);
557 jbd_debug(1, "Wrote %d revoke records\n", count);
561 * Write out one revoke record. We need to create a new descriptor
562 * block if the old one is full or if we have not already created one.
565 static void write_one_revoke_record(journal_t *journal,
566 transaction_t *transaction,
567 struct list_head *log_bufs,
568 struct buffer_head **descriptorp,
569 int *offsetp,
570 struct jbd2_revoke_record_s *record,
571 int write_op)
573 int csum_size = 0;
574 struct buffer_head *descriptor;
575 int sz, offset;
576 journal_header_t *header;
578 /* If we are already aborting, this all becomes a noop. We
579 still need to go round the loop in
580 jbd2_journal_write_revoke_records in order to free all of the
581 revoke records: only the IO to the journal is omitted. */
582 if (is_journal_aborted(journal))
583 return;
585 descriptor = *descriptorp;
586 offset = *offsetp;
588 /* Do we need to leave space at the end for a checksum? */
589 if (jbd2_journal_has_csum_v2or3(journal))
590 csum_size = sizeof(struct jbd2_journal_revoke_tail);
592 if (jbd2_has_feature_64bit(journal))
593 sz = 8;
594 else
595 sz = 4;
597 /* Make sure we have a descriptor with space left for the record */
598 if (descriptor) {
599 if (offset + sz > journal->j_blocksize - csum_size) {
600 flush_descriptor(journal, descriptor, offset, write_op);
601 descriptor = NULL;
605 if (!descriptor) {
606 descriptor = jbd2_journal_get_descriptor_buffer(journal);
607 if (!descriptor)
608 return;
609 header = (journal_header_t *)descriptor->b_data;
610 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
611 header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
612 header->h_sequence = cpu_to_be32(transaction->t_tid);
614 /* Record it so that we can wait for IO completion later */
615 BUFFER_TRACE(descriptor, "file in log_bufs");
616 jbd2_file_log_bh(log_bufs, descriptor);
618 offset = sizeof(jbd2_journal_revoke_header_t);
619 *descriptorp = descriptor;
622 if (jbd2_has_feature_64bit(journal))
623 * ((__be64 *)(&descriptor->b_data[offset])) =
624 cpu_to_be64(record->blocknr);
625 else
626 * ((__be32 *)(&descriptor->b_data[offset])) =
627 cpu_to_be32(record->blocknr);
628 offset += sz;
630 *offsetp = offset;
633 static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
635 struct jbd2_journal_revoke_tail *tail;
636 __u32 csum;
638 if (!jbd2_journal_has_csum_v2or3(j))
639 return;
641 tail = (struct jbd2_journal_revoke_tail *)(bh->b_data + j->j_blocksize -
642 sizeof(struct jbd2_journal_revoke_tail));
643 tail->r_checksum = 0;
644 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
645 tail->r_checksum = cpu_to_be32(csum);
649 * Flush a revoke descriptor out to the journal. If we are aborting,
650 * this is a noop; otherwise we are generating a buffer which needs to
651 * be waited for during commit, so it has to go onto the appropriate
652 * journal buffer list.
655 static void flush_descriptor(journal_t *journal,
656 struct buffer_head *descriptor,
657 int offset, int write_op)
659 jbd2_journal_revoke_header_t *header;
661 if (is_journal_aborted(journal)) {
662 put_bh(descriptor);
663 return;
666 header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
667 header->r_count = cpu_to_be32(offset);
668 jbd2_revoke_csum_set(journal, descriptor);
670 set_buffer_jwrite(descriptor);
671 BUFFER_TRACE(descriptor, "write");
672 set_buffer_dirty(descriptor);
673 write_dirty_buffer(descriptor, write_op);
675 #endif
678 * Revoke support for recovery.
680 * Recovery needs to be able to:
682 * record all revoke records, including the tid of the latest instance
683 * of each revoke in the journal
685 * check whether a given block in a given transaction should be replayed
686 * (ie. has not been revoked by a revoke record in that or a subsequent
687 * transaction)
689 * empty the revoke table after recovery.
693 * First, setting revoke records. We create a new revoke record for
694 * every block ever revoked in the log as we scan it for recovery, and
695 * we update the existing records if we find multiple revokes for a
696 * single block.
699 int jbd2_journal_set_revoke(journal_t *journal,
700 unsigned long long blocknr,
701 tid_t sequence)
703 struct jbd2_revoke_record_s *record;
705 record = find_revoke_record(journal, blocknr);
706 if (record) {
707 /* If we have multiple occurrences, only record the
708 * latest sequence number in the hashed record */
709 if (tid_gt(sequence, record->sequence))
710 record->sequence = sequence;
711 return 0;
713 return insert_revoke_hash(journal, blocknr, sequence);
717 * Test revoke records. For a given block referenced in the log, has
718 * that block been revoked? A revoke record with a given transaction
719 * sequence number revokes all blocks in that transaction and earlier
720 * ones, but later transactions still need replayed.
723 int jbd2_journal_test_revoke(journal_t *journal,
724 unsigned long long blocknr,
725 tid_t sequence)
727 struct jbd2_revoke_record_s *record;
729 record = find_revoke_record(journal, blocknr);
730 if (!record)
731 return 0;
732 if (tid_gt(sequence, record->sequence))
733 return 0;
734 return 1;
738 * Finally, once recovery is over, we need to clear the revoke table so
739 * that it can be reused by the running filesystem.
742 void jbd2_journal_clear_revoke(journal_t *journal)
744 int i;
745 struct list_head *hash_list;
746 struct jbd2_revoke_record_s *record;
747 struct jbd2_revoke_table_s *revoke;
749 revoke = journal->j_revoke;
751 for (i = 0; i < revoke->hash_size; i++) {
752 hash_list = &revoke->hash_table[i];
753 while (!list_empty(hash_list)) {
754 record = (struct jbd2_revoke_record_s*) hash_list->next;
755 list_del(&record->hash);
756 kmem_cache_free(jbd2_revoke_record_cache, record);