irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / fs / xfs / xfs_log.c
blobf52c72a1a06f28c8438dc9248040fe6682ad6843
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
38 kmem_zone_t *xfs_log_ticket_zone;
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 void *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
138 static void
139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
147 do {
148 int cycle, space;
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
164 static void
165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
173 do {
174 int tmp;
175 int cycle, space;
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
193 STATIC void
194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
202 STATIC void
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
206 struct xlog_ticket *tic;
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
214 static inline int
215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
231 STATIC bool
232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
237 struct xlog_ticket *tic;
238 int need_bytes;
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
250 return true;
253 STATIC int
254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
261 list_add_tail(&tic->t_queue, &head->waiters);
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return -EIO;
290 * Atomically get the log space required for a log ticket.
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
306 STATIC int
307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
313 int free_bytes;
314 int error = 0;
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
340 return error;
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
368 * Replenish the byte reservation required by moving the grant write head.
371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return -EIO;
382 XFS_STATS_INC(mp, xs_try_logspace);
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
390 tic->t_tid++;
392 xlog_grant_push_ail(log, tic->t_unit_res);
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
397 if (tic->t_cnt > 0)
398 return 0;
400 trace_xfs_log_regrant(log, tic);
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
412 out_error:
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
424 * Reserve log space and return a ticket corresponding the reservation.
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 __uint8_t client,
438 bool permanent,
439 uint t_type)
441 struct xlog *log = mp->m_log;
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448 if (XLOG_FORCED_SHUTDOWN(log))
449 return -EIO;
451 XFS_STATS_INC(mp, xs_try_logspace);
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
457 return -ENOMEM;
459 tic->t_trans_type = t_type;
460 *ticp = tic;
462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 : tic->t_unit_res);
465 trace_xfs_log_reserve(log, tic);
467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 &need_bytes);
469 if (error)
470 goto out_error;
472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 trace_xfs_log_reserve_exit(log, tic);
475 xlog_verify_grant_tail(log);
476 return 0;
478 out_error:
480 * If we are failing, make sure the ticket doesn't have any current
481 * reservations. We don't want to add this back when the ticket/
482 * transaction gets cancelled.
484 tic->t_curr_res = 0;
485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486 return error;
491 * NOTES:
493 * 1. currblock field gets updated at startup and after in-core logs
494 * marked as with WANT_SYNC.
498 * This routine is called when a user of a log manager ticket is done with
499 * the reservation. If the ticket was ever used, then a commit record for
500 * the associated transaction is written out as a log operation header with
501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
502 * a given ticket. If the ticket was one with a permanent reservation, then
503 * a few operations are done differently. Permanent reservation tickets by
504 * default don't release the reservation. They just commit the current
505 * transaction with the belief that the reservation is still needed. A flag
506 * must be passed in before permanent reservations are actually released.
507 * When these type of tickets are not released, they need to be set into
508 * the inited state again. By doing this, a start record will be written
509 * out when the next write occurs.
511 xfs_lsn_t
512 xfs_log_done(
513 struct xfs_mount *mp,
514 struct xlog_ticket *ticket,
515 struct xlog_in_core **iclog,
516 bool regrant)
518 struct xlog *log = mp->m_log;
519 xfs_lsn_t lsn = 0;
521 if (XLOG_FORCED_SHUTDOWN(log) ||
523 * If nothing was ever written, don't write out commit record.
524 * If we get an error, just continue and give back the log ticket.
526 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 lsn = (xfs_lsn_t) -1;
529 regrant = false;
533 if (!regrant) {
534 trace_xfs_log_done_nonperm(log, ticket);
537 * Release ticket if not permanent reservation or a specific
538 * request has been made to release a permanent reservation.
540 xlog_ungrant_log_space(log, ticket);
541 } else {
542 trace_xfs_log_done_perm(log, ticket);
544 xlog_regrant_reserve_log_space(log, ticket);
545 /* If this ticket was a permanent reservation and we aren't
546 * trying to release it, reset the inited flags; so next time
547 * we write, a start record will be written out.
549 ticket->t_flags |= XLOG_TIC_INITED;
552 xfs_log_ticket_put(ticket);
553 return lsn;
557 * Attaches a new iclog I/O completion callback routine during
558 * transaction commit. If the log is in error state, a non-zero
559 * return code is handed back and the caller is responsible for
560 * executing the callback at an appropriate time.
563 xfs_log_notify(
564 struct xfs_mount *mp,
565 struct xlog_in_core *iclog,
566 xfs_log_callback_t *cb)
568 int abortflg;
570 spin_lock(&iclog->ic_callback_lock);
571 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
572 if (!abortflg) {
573 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
574 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
575 cb->cb_next = NULL;
576 *(iclog->ic_callback_tail) = cb;
577 iclog->ic_callback_tail = &(cb->cb_next);
579 spin_unlock(&iclog->ic_callback_lock);
580 return abortflg;
584 xfs_log_release_iclog(
585 struct xfs_mount *mp,
586 struct xlog_in_core *iclog)
588 if (xlog_state_release_iclog(mp->m_log, iclog)) {
589 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
590 return -EIO;
593 return 0;
597 * Mount a log filesystem
599 * mp - ubiquitous xfs mount point structure
600 * log_target - buftarg of on-disk log device
601 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
602 * num_bblocks - Number of BBSIZE blocks in on-disk log
604 * Return error or zero.
607 xfs_log_mount(
608 xfs_mount_t *mp,
609 xfs_buftarg_t *log_target,
610 xfs_daddr_t blk_offset,
611 int num_bblks)
613 int error = 0;
614 int min_logfsbs;
616 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617 xfs_notice(mp, "Mounting V%d Filesystem",
618 XFS_SB_VERSION_NUM(&mp->m_sb));
619 } else {
620 xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 XFS_SB_VERSION_NUM(&mp->m_sb));
623 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
626 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627 if (IS_ERR(mp->m_log)) {
628 error = PTR_ERR(mp->m_log);
629 goto out;
633 * Validate the given log space and drop a critical message via syslog
634 * if the log size is too small that would lead to some unexpected
635 * situations in transaction log space reservation stage.
637 * Note: we can't just reject the mount if the validation fails. This
638 * would mean that people would have to downgrade their kernel just to
639 * remedy the situation as there is no way to grow the log (short of
640 * black magic surgery with xfs_db).
642 * We can, however, reject mounts for CRC format filesystems, as the
643 * mkfs binary being used to make the filesystem should never create a
644 * filesystem with a log that is too small.
646 min_logfsbs = xfs_log_calc_minimum_size(mp);
648 if (mp->m_sb.sb_logblocks < min_logfsbs) {
649 xfs_warn(mp,
650 "Log size %d blocks too small, minimum size is %d blocks",
651 mp->m_sb.sb_logblocks, min_logfsbs);
652 error = -EINVAL;
653 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654 xfs_warn(mp,
655 "Log size %d blocks too large, maximum size is %lld blocks",
656 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657 error = -EINVAL;
658 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659 xfs_warn(mp,
660 "log size %lld bytes too large, maximum size is %lld bytes",
661 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662 XFS_MAX_LOG_BYTES);
663 error = -EINVAL;
665 if (error) {
666 if (xfs_sb_version_hascrc(&mp->m_sb)) {
667 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
668 ASSERT(0);
669 goto out_free_log;
671 xfs_crit(mp, "Log size out of supported range.");
672 xfs_crit(mp,
673 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
677 * Initialize the AIL now we have a log.
679 error = xfs_trans_ail_init(mp);
680 if (error) {
681 xfs_warn(mp, "AIL initialisation failed: error %d", error);
682 goto out_free_log;
684 mp->m_log->l_ailp = mp->m_ail;
687 * skip log recovery on a norecovery mount. pretend it all
688 * just worked.
690 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
691 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
693 if (readonly)
694 mp->m_flags &= ~XFS_MOUNT_RDONLY;
696 error = xlog_recover(mp->m_log);
698 if (readonly)
699 mp->m_flags |= XFS_MOUNT_RDONLY;
700 if (error) {
701 xfs_warn(mp, "log mount/recovery failed: error %d",
702 error);
703 xlog_recover_cancel(mp->m_log);
704 goto out_destroy_ail;
708 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
709 "log");
710 if (error)
711 goto out_destroy_ail;
713 /* Normal transactions can now occur */
714 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
717 * Now the log has been fully initialised and we know were our
718 * space grant counters are, we can initialise the permanent ticket
719 * needed for delayed logging to work.
721 xlog_cil_init_post_recovery(mp->m_log);
723 return 0;
725 out_destroy_ail:
726 xfs_trans_ail_destroy(mp);
727 out_free_log:
728 xlog_dealloc_log(mp->m_log);
729 out:
730 return error;
734 * Finish the recovery of the file system. This is separate from the
735 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
736 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
737 * here.
739 * If we finish recovery successfully, start the background log work. If we are
740 * not doing recovery, then we have a RO filesystem and we don't need to start
741 * it.
744 xfs_log_mount_finish(
745 struct xfs_mount *mp)
747 int error = 0;
749 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751 return 0;
754 error = xlog_recover_finish(mp->m_log);
755 if (!error)
756 xfs_log_work_queue(mp);
758 return error;
762 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
763 * the log.
766 xfs_log_mount_cancel(
767 struct xfs_mount *mp)
769 int error;
771 error = xlog_recover_cancel(mp->m_log);
772 xfs_log_unmount(mp);
774 return error;
778 * Final log writes as part of unmount.
780 * Mark the filesystem clean as unmount happens. Note that during relocation
781 * this routine needs to be executed as part of source-bag while the
782 * deallocation must not be done until source-end.
786 * Unmount record used to have a string "Unmount filesystem--" in the
787 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
788 * We just write the magic number now since that particular field isn't
789 * currently architecture converted and "Unmount" is a bit foo.
790 * As far as I know, there weren't any dependencies on the old behaviour.
794 xfs_log_unmount_write(xfs_mount_t *mp)
796 struct xlog *log = mp->m_log;
797 xlog_in_core_t *iclog;
798 #ifdef DEBUG
799 xlog_in_core_t *first_iclog;
800 #endif
801 xlog_ticket_t *tic = NULL;
802 xfs_lsn_t lsn;
803 int error;
806 * Don't write out unmount record on read-only mounts.
807 * Or, if we are doing a forced umount (typically because of IO errors).
809 if (mp->m_flags & XFS_MOUNT_RDONLY)
810 return 0;
812 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
813 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
815 #ifdef DEBUG
816 first_iclog = iclog = log->l_iclog;
817 do {
818 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
819 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
820 ASSERT(iclog->ic_offset == 0);
822 iclog = iclog->ic_next;
823 } while (iclog != first_iclog);
824 #endif
825 if (! (XLOG_FORCED_SHUTDOWN(log))) {
826 error = xfs_log_reserve(mp, 600, 1, &tic,
827 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
828 if (!error) {
829 /* the data section must be 32 bit size aligned */
830 struct {
831 __uint16_t magic;
832 __uint16_t pad1;
833 __uint32_t pad2; /* may as well make it 64 bits */
834 } magic = {
835 .magic = XLOG_UNMOUNT_TYPE,
837 struct xfs_log_iovec reg = {
838 .i_addr = &magic,
839 .i_len = sizeof(magic),
840 .i_type = XLOG_REG_TYPE_UNMOUNT,
842 struct xfs_log_vec vec = {
843 .lv_niovecs = 1,
844 .lv_iovecp = &reg,
847 /* remove inited flag, and account for space used */
848 tic->t_flags = 0;
849 tic->t_curr_res -= sizeof(magic);
850 error = xlog_write(log, &vec, tic, &lsn,
851 NULL, XLOG_UNMOUNT_TRANS);
853 * At this point, we're umounting anyway,
854 * so there's no point in transitioning log state
855 * to IOERROR. Just continue...
859 if (error)
860 xfs_alert(mp, "%s: unmount record failed", __func__);
863 spin_lock(&log->l_icloglock);
864 iclog = log->l_iclog;
865 atomic_inc(&iclog->ic_refcnt);
866 xlog_state_want_sync(log, iclog);
867 spin_unlock(&log->l_icloglock);
868 error = xlog_state_release_iclog(log, iclog);
870 spin_lock(&log->l_icloglock);
871 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
872 iclog->ic_state == XLOG_STATE_DIRTY)) {
873 if (!XLOG_FORCED_SHUTDOWN(log)) {
874 xlog_wait(&iclog->ic_force_wait,
875 &log->l_icloglock);
876 } else {
877 spin_unlock(&log->l_icloglock);
879 } else {
880 spin_unlock(&log->l_icloglock);
882 if (tic) {
883 trace_xfs_log_umount_write(log, tic);
884 xlog_ungrant_log_space(log, tic);
885 xfs_log_ticket_put(tic);
887 } else {
889 * We're already in forced_shutdown mode, couldn't
890 * even attempt to write out the unmount transaction.
892 * Go through the motions of sync'ing and releasing
893 * the iclog, even though no I/O will actually happen,
894 * we need to wait for other log I/Os that may already
895 * be in progress. Do this as a separate section of
896 * code so we'll know if we ever get stuck here that
897 * we're in this odd situation of trying to unmount
898 * a file system that went into forced_shutdown as
899 * the result of an unmount..
901 spin_lock(&log->l_icloglock);
902 iclog = log->l_iclog;
903 atomic_inc(&iclog->ic_refcnt);
905 xlog_state_want_sync(log, iclog);
906 spin_unlock(&log->l_icloglock);
907 error = xlog_state_release_iclog(log, iclog);
909 spin_lock(&log->l_icloglock);
911 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
912 || iclog->ic_state == XLOG_STATE_DIRTY
913 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
915 xlog_wait(&iclog->ic_force_wait,
916 &log->l_icloglock);
917 } else {
918 spin_unlock(&log->l_icloglock);
922 return error;
923 } /* xfs_log_unmount_write */
926 * Empty the log for unmount/freeze.
928 * To do this, we first need to shut down the background log work so it is not
929 * trying to cover the log as we clean up. We then need to unpin all objects in
930 * the log so we can then flush them out. Once they have completed their IO and
931 * run the callbacks removing themselves from the AIL, we can write the unmount
932 * record.
934 void
935 xfs_log_quiesce(
936 struct xfs_mount *mp)
938 cancel_delayed_work_sync(&mp->m_log->l_work);
939 xfs_log_force(mp, XFS_LOG_SYNC);
942 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
943 * will push it, xfs_wait_buftarg() will not wait for it. Further,
944 * xfs_buf_iowait() cannot be used because it was pushed with the
945 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
946 * the IO to complete.
948 xfs_ail_push_all_sync(mp->m_ail);
949 xfs_wait_buftarg(mp->m_ddev_targp);
950 xfs_buf_lock(mp->m_sb_bp);
951 xfs_buf_unlock(mp->m_sb_bp);
953 xfs_log_unmount_write(mp);
957 * Shut down and release the AIL and Log.
959 * During unmount, we need to ensure we flush all the dirty metadata objects
960 * from the AIL so that the log is empty before we write the unmount record to
961 * the log. Once this is done, we can tear down the AIL and the log.
963 void
964 xfs_log_unmount(
965 struct xfs_mount *mp)
967 xfs_log_quiesce(mp);
969 xfs_trans_ail_destroy(mp);
971 xfs_sysfs_del(&mp->m_log->l_kobj);
973 xlog_dealloc_log(mp->m_log);
976 void
977 xfs_log_item_init(
978 struct xfs_mount *mp,
979 struct xfs_log_item *item,
980 int type,
981 const struct xfs_item_ops *ops)
983 item->li_mountp = mp;
984 item->li_ailp = mp->m_ail;
985 item->li_type = type;
986 item->li_ops = ops;
987 item->li_lv = NULL;
989 INIT_LIST_HEAD(&item->li_ail);
990 INIT_LIST_HEAD(&item->li_cil);
994 * Wake up processes waiting for log space after we have moved the log tail.
996 void
997 xfs_log_space_wake(
998 struct xfs_mount *mp)
1000 struct xlog *log = mp->m_log;
1001 int free_bytes;
1003 if (XLOG_FORCED_SHUTDOWN(log))
1004 return;
1006 if (!list_empty_careful(&log->l_write_head.waiters)) {
1007 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1009 spin_lock(&log->l_write_head.lock);
1010 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1011 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1012 spin_unlock(&log->l_write_head.lock);
1015 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1016 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1018 spin_lock(&log->l_reserve_head.lock);
1019 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1020 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1021 spin_unlock(&log->l_reserve_head.lock);
1026 * Determine if we have a transaction that has gone to disk that needs to be
1027 * covered. To begin the transition to the idle state firstly the log needs to
1028 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1029 * we start attempting to cover the log.
1031 * Only if we are then in a state where covering is needed, the caller is
1032 * informed that dummy transactions are required to move the log into the idle
1033 * state.
1035 * If there are any items in the AIl or CIL, then we do not want to attempt to
1036 * cover the log as we may be in a situation where there isn't log space
1037 * available to run a dummy transaction and this can lead to deadlocks when the
1038 * tail of the log is pinned by an item that is modified in the CIL. Hence
1039 * there's no point in running a dummy transaction at this point because we
1040 * can't start trying to idle the log until both the CIL and AIL are empty.
1043 xfs_log_need_covered(xfs_mount_t *mp)
1045 struct xlog *log = mp->m_log;
1046 int needed = 0;
1048 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1049 return 0;
1051 if (!xlog_cil_empty(log))
1052 return 0;
1054 spin_lock(&log->l_icloglock);
1055 switch (log->l_covered_state) {
1056 case XLOG_STATE_COVER_DONE:
1057 case XLOG_STATE_COVER_DONE2:
1058 case XLOG_STATE_COVER_IDLE:
1059 break;
1060 case XLOG_STATE_COVER_NEED:
1061 case XLOG_STATE_COVER_NEED2:
1062 if (xfs_ail_min_lsn(log->l_ailp))
1063 break;
1064 if (!xlog_iclogs_empty(log))
1065 break;
1067 needed = 1;
1068 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1069 log->l_covered_state = XLOG_STATE_COVER_DONE;
1070 else
1071 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1072 break;
1073 default:
1074 needed = 1;
1075 break;
1077 spin_unlock(&log->l_icloglock);
1078 return needed;
1082 * We may be holding the log iclog lock upon entering this routine.
1084 xfs_lsn_t
1085 xlog_assign_tail_lsn_locked(
1086 struct xfs_mount *mp)
1088 struct xlog *log = mp->m_log;
1089 struct xfs_log_item *lip;
1090 xfs_lsn_t tail_lsn;
1092 assert_spin_locked(&mp->m_ail->xa_lock);
1095 * To make sure we always have a valid LSN for the log tail we keep
1096 * track of the last LSN which was committed in log->l_last_sync_lsn,
1097 * and use that when the AIL was empty.
1099 lip = xfs_ail_min(mp->m_ail);
1100 if (lip)
1101 tail_lsn = lip->li_lsn;
1102 else
1103 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1104 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1105 atomic64_set(&log->l_tail_lsn, tail_lsn);
1106 return tail_lsn;
1109 xfs_lsn_t
1110 xlog_assign_tail_lsn(
1111 struct xfs_mount *mp)
1113 xfs_lsn_t tail_lsn;
1115 spin_lock(&mp->m_ail->xa_lock);
1116 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1117 spin_unlock(&mp->m_ail->xa_lock);
1119 return tail_lsn;
1123 * Return the space in the log between the tail and the head. The head
1124 * is passed in the cycle/bytes formal parms. In the special case where
1125 * the reserve head has wrapped passed the tail, this calculation is no
1126 * longer valid. In this case, just return 0 which means there is no space
1127 * in the log. This works for all places where this function is called
1128 * with the reserve head. Of course, if the write head were to ever
1129 * wrap the tail, we should blow up. Rather than catch this case here,
1130 * we depend on other ASSERTions in other parts of the code. XXXmiken
1132 * This code also handles the case where the reservation head is behind
1133 * the tail. The details of this case are described below, but the end
1134 * result is that we return the size of the log as the amount of space left.
1136 STATIC int
1137 xlog_space_left(
1138 struct xlog *log,
1139 atomic64_t *head)
1141 int free_bytes;
1142 int tail_bytes;
1143 int tail_cycle;
1144 int head_cycle;
1145 int head_bytes;
1147 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1148 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1149 tail_bytes = BBTOB(tail_bytes);
1150 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1151 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1152 else if (tail_cycle + 1 < head_cycle)
1153 return 0;
1154 else if (tail_cycle < head_cycle) {
1155 ASSERT(tail_cycle == (head_cycle - 1));
1156 free_bytes = tail_bytes - head_bytes;
1157 } else {
1159 * The reservation head is behind the tail.
1160 * In this case we just want to return the size of the
1161 * log as the amount of space left.
1163 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1164 xfs_alert(log->l_mp,
1165 " tail_cycle = %d, tail_bytes = %d",
1166 tail_cycle, tail_bytes);
1167 xfs_alert(log->l_mp,
1168 " GH cycle = %d, GH bytes = %d",
1169 head_cycle, head_bytes);
1170 ASSERT(0);
1171 free_bytes = log->l_logsize;
1173 return free_bytes;
1178 * Log function which is called when an io completes.
1180 * The log manager needs its own routine, in order to control what
1181 * happens with the buffer after the write completes.
1183 void
1184 xlog_iodone(xfs_buf_t *bp)
1186 struct xlog_in_core *iclog = bp->b_fspriv;
1187 struct xlog *l = iclog->ic_log;
1188 int aborted = 0;
1191 * Race to shutdown the filesystem if we see an error.
1193 if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1194 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1195 xfs_buf_ioerror_alert(bp, __func__);
1196 xfs_buf_stale(bp);
1197 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1199 * This flag will be propagated to the trans-committed
1200 * callback routines to let them know that the log-commit
1201 * didn't succeed.
1203 aborted = XFS_LI_ABORTED;
1204 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1205 aborted = XFS_LI_ABORTED;
1208 /* log I/O is always issued ASYNC */
1209 ASSERT(XFS_BUF_ISASYNC(bp));
1210 xlog_state_done_syncing(iclog, aborted);
1213 * drop the buffer lock now that we are done. Nothing references
1214 * the buffer after this, so an unmount waiting on this lock can now
1215 * tear it down safely. As such, it is unsafe to reference the buffer
1216 * (bp) after the unlock as we could race with it being freed.
1218 xfs_buf_unlock(bp);
1222 * Return size of each in-core log record buffer.
1224 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1226 * If the filesystem blocksize is too large, we may need to choose a
1227 * larger size since the directory code currently logs entire blocks.
1230 STATIC void
1231 xlog_get_iclog_buffer_size(
1232 struct xfs_mount *mp,
1233 struct xlog *log)
1235 int size;
1236 int xhdrs;
1238 if (mp->m_logbufs <= 0)
1239 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1240 else
1241 log->l_iclog_bufs = mp->m_logbufs;
1244 * Buffer size passed in from mount system call.
1246 if (mp->m_logbsize > 0) {
1247 size = log->l_iclog_size = mp->m_logbsize;
1248 log->l_iclog_size_log = 0;
1249 while (size != 1) {
1250 log->l_iclog_size_log++;
1251 size >>= 1;
1254 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1255 /* # headers = size / 32k
1256 * one header holds cycles from 32k of data
1259 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1260 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1261 xhdrs++;
1262 log->l_iclog_hsize = xhdrs << BBSHIFT;
1263 log->l_iclog_heads = xhdrs;
1264 } else {
1265 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1266 log->l_iclog_hsize = BBSIZE;
1267 log->l_iclog_heads = 1;
1269 goto done;
1272 /* All machines use 32kB buffers by default. */
1273 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1274 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1276 /* the default log size is 16k or 32k which is one header sector */
1277 log->l_iclog_hsize = BBSIZE;
1278 log->l_iclog_heads = 1;
1280 done:
1281 /* are we being asked to make the sizes selected above visible? */
1282 if (mp->m_logbufs == 0)
1283 mp->m_logbufs = log->l_iclog_bufs;
1284 if (mp->m_logbsize == 0)
1285 mp->m_logbsize = log->l_iclog_size;
1286 } /* xlog_get_iclog_buffer_size */
1289 void
1290 xfs_log_work_queue(
1291 struct xfs_mount *mp)
1293 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1294 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1298 * Every sync period we need to unpin all items in the AIL and push them to
1299 * disk. If there is nothing dirty, then we might need to cover the log to
1300 * indicate that the filesystem is idle.
1302 void
1303 xfs_log_worker(
1304 struct work_struct *work)
1306 struct xlog *log = container_of(to_delayed_work(work),
1307 struct xlog, l_work);
1308 struct xfs_mount *mp = log->l_mp;
1310 /* dgc: errors ignored - not fatal and nowhere to report them */
1311 if (xfs_log_need_covered(mp)) {
1313 * Dump a transaction into the log that contains no real change.
1314 * This is needed to stamp the current tail LSN into the log
1315 * during the covering operation.
1317 * We cannot use an inode here for this - that will push dirty
1318 * state back up into the VFS and then periodic inode flushing
1319 * will prevent log covering from making progress. Hence we
1320 * synchronously log the superblock instead to ensure the
1321 * superblock is immediately unpinned and can be written back.
1323 xfs_sync_sb(mp, true);
1324 } else
1325 xfs_log_force(mp, 0);
1327 /* start pushing all the metadata that is currently dirty */
1328 xfs_ail_push_all(mp->m_ail);
1330 /* queue us up again */
1331 xfs_log_work_queue(mp);
1335 * This routine initializes some of the log structure for a given mount point.
1336 * Its primary purpose is to fill in enough, so recovery can occur. However,
1337 * some other stuff may be filled in too.
1339 STATIC struct xlog *
1340 xlog_alloc_log(
1341 struct xfs_mount *mp,
1342 struct xfs_buftarg *log_target,
1343 xfs_daddr_t blk_offset,
1344 int num_bblks)
1346 struct xlog *log;
1347 xlog_rec_header_t *head;
1348 xlog_in_core_t **iclogp;
1349 xlog_in_core_t *iclog, *prev_iclog=NULL;
1350 xfs_buf_t *bp;
1351 int i;
1352 int error = -ENOMEM;
1353 uint log2_size = 0;
1355 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1356 if (!log) {
1357 xfs_warn(mp, "Log allocation failed: No memory!");
1358 goto out;
1361 log->l_mp = mp;
1362 log->l_targ = log_target;
1363 log->l_logsize = BBTOB(num_bblks);
1364 log->l_logBBstart = blk_offset;
1365 log->l_logBBsize = num_bblks;
1366 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1367 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1368 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1370 log->l_prev_block = -1;
1371 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1372 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1373 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1374 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1376 xlog_grant_head_init(&log->l_reserve_head);
1377 xlog_grant_head_init(&log->l_write_head);
1379 error = -EFSCORRUPTED;
1380 if (xfs_sb_version_hassector(&mp->m_sb)) {
1381 log2_size = mp->m_sb.sb_logsectlog;
1382 if (log2_size < BBSHIFT) {
1383 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1384 log2_size, BBSHIFT);
1385 goto out_free_log;
1388 log2_size -= BBSHIFT;
1389 if (log2_size > mp->m_sectbb_log) {
1390 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1391 log2_size, mp->m_sectbb_log);
1392 goto out_free_log;
1395 /* for larger sector sizes, must have v2 or external log */
1396 if (log2_size && log->l_logBBstart > 0 &&
1397 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1398 xfs_warn(mp,
1399 "log sector size (0x%x) invalid for configuration.",
1400 log2_size);
1401 goto out_free_log;
1404 log->l_sectBBsize = 1 << log2_size;
1406 xlog_get_iclog_buffer_size(mp, log);
1409 * Use a NULL block for the extra log buffer used during splits so that
1410 * it will trigger errors if we ever try to do IO on it without first
1411 * having set it up properly.
1413 error = -ENOMEM;
1414 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1415 BTOBB(log->l_iclog_size), 0);
1416 if (!bp)
1417 goto out_free_log;
1420 * The iclogbuf buffer locks are held over IO but we are not going to do
1421 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1422 * when appropriately.
1424 ASSERT(xfs_buf_islocked(bp));
1425 xfs_buf_unlock(bp);
1427 /* use high priority wq for log I/O completion */
1428 bp->b_ioend_wq = mp->m_log_workqueue;
1429 bp->b_iodone = xlog_iodone;
1430 log->l_xbuf = bp;
1432 spin_lock_init(&log->l_icloglock);
1433 init_waitqueue_head(&log->l_flush_wait);
1435 iclogp = &log->l_iclog;
1437 * The amount of memory to allocate for the iclog structure is
1438 * rather funky due to the way the structure is defined. It is
1439 * done this way so that we can use different sizes for machines
1440 * with different amounts of memory. See the definition of
1441 * xlog_in_core_t in xfs_log_priv.h for details.
1443 ASSERT(log->l_iclog_size >= 4096);
1444 for (i=0; i < log->l_iclog_bufs; i++) {
1445 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1446 if (!*iclogp)
1447 goto out_free_iclog;
1449 iclog = *iclogp;
1450 iclog->ic_prev = prev_iclog;
1451 prev_iclog = iclog;
1453 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1454 BTOBB(log->l_iclog_size), 0);
1455 if (!bp)
1456 goto out_free_iclog;
1458 ASSERT(xfs_buf_islocked(bp));
1459 xfs_buf_unlock(bp);
1461 /* use high priority wq for log I/O completion */
1462 bp->b_ioend_wq = mp->m_log_workqueue;
1463 bp->b_iodone = xlog_iodone;
1464 iclog->ic_bp = bp;
1465 iclog->ic_data = bp->b_addr;
1466 #ifdef DEBUG
1467 log->l_iclog_bak[i] = &iclog->ic_header;
1468 #endif
1469 head = &iclog->ic_header;
1470 memset(head, 0, sizeof(xlog_rec_header_t));
1471 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1472 head->h_version = cpu_to_be32(
1473 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1474 head->h_size = cpu_to_be32(log->l_iclog_size);
1475 /* new fields */
1476 head->h_fmt = cpu_to_be32(XLOG_FMT);
1477 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1479 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1480 iclog->ic_state = XLOG_STATE_ACTIVE;
1481 iclog->ic_log = log;
1482 atomic_set(&iclog->ic_refcnt, 0);
1483 spin_lock_init(&iclog->ic_callback_lock);
1484 iclog->ic_callback_tail = &(iclog->ic_callback);
1485 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1487 init_waitqueue_head(&iclog->ic_force_wait);
1488 init_waitqueue_head(&iclog->ic_write_wait);
1490 iclogp = &iclog->ic_next;
1492 *iclogp = log->l_iclog; /* complete ring */
1493 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1495 error = xlog_cil_init(log);
1496 if (error)
1497 goto out_free_iclog;
1498 return log;
1500 out_free_iclog:
1501 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1502 prev_iclog = iclog->ic_next;
1503 if (iclog->ic_bp)
1504 xfs_buf_free(iclog->ic_bp);
1505 kmem_free(iclog);
1507 spinlock_destroy(&log->l_icloglock);
1508 xfs_buf_free(log->l_xbuf);
1509 out_free_log:
1510 kmem_free(log);
1511 out:
1512 return ERR_PTR(error);
1513 } /* xlog_alloc_log */
1517 * Write out the commit record of a transaction associated with the given
1518 * ticket. Return the lsn of the commit record.
1520 STATIC int
1521 xlog_commit_record(
1522 struct xlog *log,
1523 struct xlog_ticket *ticket,
1524 struct xlog_in_core **iclog,
1525 xfs_lsn_t *commitlsnp)
1527 struct xfs_mount *mp = log->l_mp;
1528 int error;
1529 struct xfs_log_iovec reg = {
1530 .i_addr = NULL,
1531 .i_len = 0,
1532 .i_type = XLOG_REG_TYPE_COMMIT,
1534 struct xfs_log_vec vec = {
1535 .lv_niovecs = 1,
1536 .lv_iovecp = &reg,
1539 ASSERT_ALWAYS(iclog);
1540 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1541 XLOG_COMMIT_TRANS);
1542 if (error)
1543 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1544 return error;
1548 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1549 * log space. This code pushes on the lsn which would supposedly free up
1550 * the 25% which we want to leave free. We may need to adopt a policy which
1551 * pushes on an lsn which is further along in the log once we reach the high
1552 * water mark. In this manner, we would be creating a low water mark.
1554 STATIC void
1555 xlog_grant_push_ail(
1556 struct xlog *log,
1557 int need_bytes)
1559 xfs_lsn_t threshold_lsn = 0;
1560 xfs_lsn_t last_sync_lsn;
1561 int free_blocks;
1562 int free_bytes;
1563 int threshold_block;
1564 int threshold_cycle;
1565 int free_threshold;
1567 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1569 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1570 free_blocks = BTOBBT(free_bytes);
1573 * Set the threshold for the minimum number of free blocks in the
1574 * log to the maximum of what the caller needs, one quarter of the
1575 * log, and 256 blocks.
1577 free_threshold = BTOBB(need_bytes);
1578 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1579 free_threshold = MAX(free_threshold, 256);
1580 if (free_blocks >= free_threshold)
1581 return;
1583 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1584 &threshold_block);
1585 threshold_block += free_threshold;
1586 if (threshold_block >= log->l_logBBsize) {
1587 threshold_block -= log->l_logBBsize;
1588 threshold_cycle += 1;
1590 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1591 threshold_block);
1593 * Don't pass in an lsn greater than the lsn of the last
1594 * log record known to be on disk. Use a snapshot of the last sync lsn
1595 * so that it doesn't change between the compare and the set.
1597 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1598 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1599 threshold_lsn = last_sync_lsn;
1602 * Get the transaction layer to kick the dirty buffers out to
1603 * disk asynchronously. No point in trying to do this if
1604 * the filesystem is shutting down.
1606 if (!XLOG_FORCED_SHUTDOWN(log))
1607 xfs_ail_push(log->l_ailp, threshold_lsn);
1611 * Stamp cycle number in every block
1613 STATIC void
1614 xlog_pack_data(
1615 struct xlog *log,
1616 struct xlog_in_core *iclog,
1617 int roundoff)
1619 int i, j, k;
1620 int size = iclog->ic_offset + roundoff;
1621 __be32 cycle_lsn;
1622 char *dp;
1624 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1626 dp = iclog->ic_datap;
1627 for (i = 0; i < BTOBB(size); i++) {
1628 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1629 break;
1630 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1631 *(__be32 *)dp = cycle_lsn;
1632 dp += BBSIZE;
1635 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1636 xlog_in_core_2_t *xhdr = iclog->ic_data;
1638 for ( ; i < BTOBB(size); i++) {
1639 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1640 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1641 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1642 *(__be32 *)dp = cycle_lsn;
1643 dp += BBSIZE;
1646 for (i = 1; i < log->l_iclog_heads; i++)
1647 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1652 * Calculate the checksum for a log buffer.
1654 * This is a little more complicated than it should be because the various
1655 * headers and the actual data are non-contiguous.
1657 __le32
1658 xlog_cksum(
1659 struct xlog *log,
1660 struct xlog_rec_header *rhead,
1661 char *dp,
1662 int size)
1664 __uint32_t crc;
1666 /* first generate the crc for the record header ... */
1667 crc = xfs_start_cksum((char *)rhead,
1668 sizeof(struct xlog_rec_header),
1669 offsetof(struct xlog_rec_header, h_crc));
1671 /* ... then for additional cycle data for v2 logs ... */
1672 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1673 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1674 int i;
1675 int xheads;
1677 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1678 if (size % XLOG_HEADER_CYCLE_SIZE)
1679 xheads++;
1681 for (i = 1; i < xheads; i++) {
1682 crc = crc32c(crc, &xhdr[i].hic_xheader,
1683 sizeof(struct xlog_rec_ext_header));
1687 /* ... and finally for the payload */
1688 crc = crc32c(crc, dp, size);
1690 return xfs_end_cksum(crc);
1694 * The bdstrat callback function for log bufs. This gives us a central
1695 * place to trap bufs in case we get hit by a log I/O error and need to
1696 * shutdown. Actually, in practice, even when we didn't get a log error,
1697 * we transition the iclogs to IOERROR state *after* flushing all existing
1698 * iclogs to disk. This is because we don't want anymore new transactions to be
1699 * started or completed afterwards.
1701 * We lock the iclogbufs here so that we can serialise against IO completion
1702 * during unmount. We might be processing a shutdown triggered during unmount,
1703 * and that can occur asynchronously to the unmount thread, and hence we need to
1704 * ensure that completes before tearing down the iclogbufs. Hence we need to
1705 * hold the buffer lock across the log IO to acheive that.
1707 STATIC int
1708 xlog_bdstrat(
1709 struct xfs_buf *bp)
1711 struct xlog_in_core *iclog = bp->b_fspriv;
1713 xfs_buf_lock(bp);
1714 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1715 xfs_buf_ioerror(bp, -EIO);
1716 xfs_buf_stale(bp);
1717 xfs_buf_ioend(bp);
1719 * It would seem logical to return EIO here, but we rely on
1720 * the log state machine to propagate I/O errors instead of
1721 * doing it here. Similarly, IO completion will unlock the
1722 * buffer, so we don't do it here.
1724 return 0;
1727 xfs_buf_submit(bp);
1728 return 0;
1732 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1733 * fashion. Previously, we should have moved the current iclog
1734 * ptr in the log to point to the next available iclog. This allows further
1735 * write to continue while this code syncs out an iclog ready to go.
1736 * Before an in-core log can be written out, the data section must be scanned
1737 * to save away the 1st word of each BBSIZE block into the header. We replace
1738 * it with the current cycle count. Each BBSIZE block is tagged with the
1739 * cycle count because there in an implicit assumption that drives will
1740 * guarantee that entire 512 byte blocks get written at once. In other words,
1741 * we can't have part of a 512 byte block written and part not written. By
1742 * tagging each block, we will know which blocks are valid when recovering
1743 * after an unclean shutdown.
1745 * This routine is single threaded on the iclog. No other thread can be in
1746 * this routine with the same iclog. Changing contents of iclog can there-
1747 * fore be done without grabbing the state machine lock. Updating the global
1748 * log will require grabbing the lock though.
1750 * The entire log manager uses a logical block numbering scheme. Only
1751 * log_sync (and then only bwrite()) know about the fact that the log may
1752 * not start with block zero on a given device. The log block start offset
1753 * is added immediately before calling bwrite().
1756 STATIC int
1757 xlog_sync(
1758 struct xlog *log,
1759 struct xlog_in_core *iclog)
1761 xfs_buf_t *bp;
1762 int i;
1763 uint count; /* byte count of bwrite */
1764 uint count_init; /* initial count before roundup */
1765 int roundoff; /* roundoff to BB or stripe */
1766 int split = 0; /* split write into two regions */
1767 int error;
1768 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1769 int size;
1771 XFS_STATS_INC(log->l_mp, xs_log_writes);
1772 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1774 /* Add for LR header */
1775 count_init = log->l_iclog_hsize + iclog->ic_offset;
1777 /* Round out the log write size */
1778 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1779 /* we have a v2 stripe unit to use */
1780 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1781 } else {
1782 count = BBTOB(BTOBB(count_init));
1784 roundoff = count - count_init;
1785 ASSERT(roundoff >= 0);
1786 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1787 roundoff < log->l_mp->m_sb.sb_logsunit)
1789 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1790 roundoff < BBTOB(1)));
1792 /* move grant heads by roundoff in sync */
1793 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1794 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1796 /* put cycle number in every block */
1797 xlog_pack_data(log, iclog, roundoff);
1799 /* real byte length */
1800 size = iclog->ic_offset;
1801 if (v2)
1802 size += roundoff;
1803 iclog->ic_header.h_len = cpu_to_be32(size);
1805 bp = iclog->ic_bp;
1806 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1808 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1810 /* Do we need to split this write into 2 parts? */
1811 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1812 char *dptr;
1814 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1815 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1816 iclog->ic_bwritecnt = 2;
1819 * Bump the cycle numbers at the start of each block in the
1820 * part of the iclog that ends up in the buffer that gets
1821 * written to the start of the log.
1823 * Watch out for the header magic number case, though.
1825 dptr = (char *)&iclog->ic_header + count;
1826 for (i = 0; i < split; i += BBSIZE) {
1827 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1828 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1829 cycle++;
1830 *(__be32 *)dptr = cpu_to_be32(cycle);
1832 dptr += BBSIZE;
1834 } else {
1835 iclog->ic_bwritecnt = 1;
1838 /* calculcate the checksum */
1839 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1840 iclog->ic_datap, size);
1842 bp->b_io_length = BTOBB(count);
1843 bp->b_fspriv = iclog;
1844 XFS_BUF_ZEROFLAGS(bp);
1845 XFS_BUF_ASYNC(bp);
1846 bp->b_flags |= XBF_SYNCIO;
1848 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1849 bp->b_flags |= XBF_FUA;
1852 * Flush the data device before flushing the log to make
1853 * sure all meta data written back from the AIL actually made
1854 * it to disk before stamping the new log tail LSN into the
1855 * log buffer. For an external log we need to issue the
1856 * flush explicitly, and unfortunately synchronously here;
1857 * for an internal log we can simply use the block layer
1858 * state machine for preflushes.
1860 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1861 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1862 else
1863 bp->b_flags |= XBF_FLUSH;
1866 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1867 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1869 xlog_verify_iclog(log, iclog, count, true);
1871 /* account for log which doesn't start at block #0 */
1872 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1874 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1875 * is shutting down.
1877 XFS_BUF_WRITE(bp);
1879 error = xlog_bdstrat(bp);
1880 if (error) {
1881 xfs_buf_ioerror_alert(bp, "xlog_sync");
1882 return error;
1884 if (split) {
1885 bp = iclog->ic_log->l_xbuf;
1886 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1887 xfs_buf_associate_memory(bp,
1888 (char *)&iclog->ic_header + count, split);
1889 bp->b_fspriv = iclog;
1890 XFS_BUF_ZEROFLAGS(bp);
1891 XFS_BUF_ASYNC(bp);
1892 bp->b_flags |= XBF_SYNCIO;
1893 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1894 bp->b_flags |= XBF_FUA;
1896 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1897 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1899 /* account for internal log which doesn't start at block #0 */
1900 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1901 XFS_BUF_WRITE(bp);
1902 error = xlog_bdstrat(bp);
1903 if (error) {
1904 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1905 return error;
1908 return 0;
1909 } /* xlog_sync */
1912 * Deallocate a log structure
1914 STATIC void
1915 xlog_dealloc_log(
1916 struct xlog *log)
1918 xlog_in_core_t *iclog, *next_iclog;
1919 int i;
1921 xlog_cil_destroy(log);
1924 * Cycle all the iclogbuf locks to make sure all log IO completion
1925 * is done before we tear down these buffers.
1927 iclog = log->l_iclog;
1928 for (i = 0; i < log->l_iclog_bufs; i++) {
1929 xfs_buf_lock(iclog->ic_bp);
1930 xfs_buf_unlock(iclog->ic_bp);
1931 iclog = iclog->ic_next;
1935 * Always need to ensure that the extra buffer does not point to memory
1936 * owned by another log buffer before we free it. Also, cycle the lock
1937 * first to ensure we've completed IO on it.
1939 xfs_buf_lock(log->l_xbuf);
1940 xfs_buf_unlock(log->l_xbuf);
1941 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1942 xfs_buf_free(log->l_xbuf);
1944 iclog = log->l_iclog;
1945 for (i = 0; i < log->l_iclog_bufs; i++) {
1946 xfs_buf_free(iclog->ic_bp);
1947 next_iclog = iclog->ic_next;
1948 kmem_free(iclog);
1949 iclog = next_iclog;
1951 spinlock_destroy(&log->l_icloglock);
1953 log->l_mp->m_log = NULL;
1954 kmem_free(log);
1955 } /* xlog_dealloc_log */
1958 * Update counters atomically now that memcpy is done.
1960 /* ARGSUSED */
1961 static inline void
1962 xlog_state_finish_copy(
1963 struct xlog *log,
1964 struct xlog_in_core *iclog,
1965 int record_cnt,
1966 int copy_bytes)
1968 spin_lock(&log->l_icloglock);
1970 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1971 iclog->ic_offset += copy_bytes;
1973 spin_unlock(&log->l_icloglock);
1974 } /* xlog_state_finish_copy */
1980 * print out info relating to regions written which consume
1981 * the reservation
1983 void
1984 xlog_print_tic_res(
1985 struct xfs_mount *mp,
1986 struct xlog_ticket *ticket)
1988 uint i;
1989 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1991 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1992 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1993 "bformat",
1994 "bchunk",
1995 "efi_format",
1996 "efd_format",
1997 "iformat",
1998 "icore",
1999 "iext",
2000 "ibroot",
2001 "ilocal",
2002 "iattr_ext",
2003 "iattr_broot",
2004 "iattr_local",
2005 "qformat",
2006 "dquot",
2007 "quotaoff",
2008 "LR header",
2009 "unmount",
2010 "commit",
2011 "trans header"
2013 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
2014 "SETATTR_NOT_SIZE",
2015 "SETATTR_SIZE",
2016 "INACTIVE",
2017 "CREATE",
2018 "CREATE_TRUNC",
2019 "TRUNCATE_FILE",
2020 "REMOVE",
2021 "LINK",
2022 "RENAME",
2023 "MKDIR",
2024 "RMDIR",
2025 "SYMLINK",
2026 "SET_DMATTRS",
2027 "GROWFS",
2028 "STRAT_WRITE",
2029 "DIOSTRAT",
2030 "WRITE_SYNC",
2031 "WRITEID",
2032 "ADDAFORK",
2033 "ATTRINVAL",
2034 "ATRUNCATE",
2035 "ATTR_SET",
2036 "ATTR_RM",
2037 "ATTR_FLAG",
2038 "CLEAR_AGI_BUCKET",
2039 "QM_SBCHANGE",
2040 "DUMMY1",
2041 "DUMMY2",
2042 "QM_QUOTAOFF",
2043 "QM_DQALLOC",
2044 "QM_SETQLIM",
2045 "QM_DQCLUSTER",
2046 "QM_QINOCREATE",
2047 "QM_QUOTAOFF_END",
2048 "SB_UNIT",
2049 "FSYNC_TS",
2050 "GROWFSRT_ALLOC",
2051 "GROWFSRT_ZERO",
2052 "GROWFSRT_FREE",
2053 "SWAPEXT"
2056 xfs_warn(mp, "xlog_write: reservation summary:");
2057 xfs_warn(mp, " trans type = %s (%u)",
2058 ((ticket->t_trans_type <= 0 ||
2059 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2060 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2061 ticket->t_trans_type);
2062 xfs_warn(mp, " unit res = %d bytes",
2063 ticket->t_unit_res);
2064 xfs_warn(mp, " current res = %d bytes",
2065 ticket->t_curr_res);
2066 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2067 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2068 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2069 ticket->t_res_num_ophdrs, ophdr_spc);
2070 xfs_warn(mp, " ophdr + reg = %u bytes",
2071 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2072 xfs_warn(mp, " num regions = %u",
2073 ticket->t_res_num);
2075 for (i = 0; i < ticket->t_res_num; i++) {
2076 uint r_type = ticket->t_res_arr[i].r_type;
2077 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2078 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2079 "bad-rtype" : res_type_str[r_type-1]),
2080 ticket->t_res_arr[i].r_len);
2083 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2084 "xlog_write: reservation ran out. Need to up reservation");
2085 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2089 * Calculate the potential space needed by the log vector. Each region gets
2090 * its own xlog_op_header_t and may need to be double word aligned.
2092 static int
2093 xlog_write_calc_vec_length(
2094 struct xlog_ticket *ticket,
2095 struct xfs_log_vec *log_vector)
2097 struct xfs_log_vec *lv;
2098 int headers = 0;
2099 int len = 0;
2100 int i;
2102 /* acct for start rec of xact */
2103 if (ticket->t_flags & XLOG_TIC_INITED)
2104 headers++;
2106 for (lv = log_vector; lv; lv = lv->lv_next) {
2107 /* we don't write ordered log vectors */
2108 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2109 continue;
2111 headers += lv->lv_niovecs;
2113 for (i = 0; i < lv->lv_niovecs; i++) {
2114 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2116 len += vecp->i_len;
2117 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2121 ticket->t_res_num_ophdrs += headers;
2122 len += headers * sizeof(struct xlog_op_header);
2124 return len;
2128 * If first write for transaction, insert start record We can't be trying to
2129 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2131 static int
2132 xlog_write_start_rec(
2133 struct xlog_op_header *ophdr,
2134 struct xlog_ticket *ticket)
2136 if (!(ticket->t_flags & XLOG_TIC_INITED))
2137 return 0;
2139 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2140 ophdr->oh_clientid = ticket->t_clientid;
2141 ophdr->oh_len = 0;
2142 ophdr->oh_flags = XLOG_START_TRANS;
2143 ophdr->oh_res2 = 0;
2145 ticket->t_flags &= ~XLOG_TIC_INITED;
2147 return sizeof(struct xlog_op_header);
2150 static xlog_op_header_t *
2151 xlog_write_setup_ophdr(
2152 struct xlog *log,
2153 struct xlog_op_header *ophdr,
2154 struct xlog_ticket *ticket,
2155 uint flags)
2157 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2158 ophdr->oh_clientid = ticket->t_clientid;
2159 ophdr->oh_res2 = 0;
2161 /* are we copying a commit or unmount record? */
2162 ophdr->oh_flags = flags;
2165 * We've seen logs corrupted with bad transaction client ids. This
2166 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2167 * and shut down the filesystem.
2169 switch (ophdr->oh_clientid) {
2170 case XFS_TRANSACTION:
2171 case XFS_VOLUME:
2172 case XFS_LOG:
2173 break;
2174 default:
2175 xfs_warn(log->l_mp,
2176 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2177 ophdr->oh_clientid, ticket);
2178 return NULL;
2181 return ophdr;
2185 * Set up the parameters of the region copy into the log. This has
2186 * to handle region write split across multiple log buffers - this
2187 * state is kept external to this function so that this code can
2188 * be written in an obvious, self documenting manner.
2190 static int
2191 xlog_write_setup_copy(
2192 struct xlog_ticket *ticket,
2193 struct xlog_op_header *ophdr,
2194 int space_available,
2195 int space_required,
2196 int *copy_off,
2197 int *copy_len,
2198 int *last_was_partial_copy,
2199 int *bytes_consumed)
2201 int still_to_copy;
2203 still_to_copy = space_required - *bytes_consumed;
2204 *copy_off = *bytes_consumed;
2206 if (still_to_copy <= space_available) {
2207 /* write of region completes here */
2208 *copy_len = still_to_copy;
2209 ophdr->oh_len = cpu_to_be32(*copy_len);
2210 if (*last_was_partial_copy)
2211 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2212 *last_was_partial_copy = 0;
2213 *bytes_consumed = 0;
2214 return 0;
2217 /* partial write of region, needs extra log op header reservation */
2218 *copy_len = space_available;
2219 ophdr->oh_len = cpu_to_be32(*copy_len);
2220 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2221 if (*last_was_partial_copy)
2222 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2223 *bytes_consumed += *copy_len;
2224 (*last_was_partial_copy)++;
2226 /* account for new log op header */
2227 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2228 ticket->t_res_num_ophdrs++;
2230 return sizeof(struct xlog_op_header);
2233 static int
2234 xlog_write_copy_finish(
2235 struct xlog *log,
2236 struct xlog_in_core *iclog,
2237 uint flags,
2238 int *record_cnt,
2239 int *data_cnt,
2240 int *partial_copy,
2241 int *partial_copy_len,
2242 int log_offset,
2243 struct xlog_in_core **commit_iclog)
2245 if (*partial_copy) {
2247 * This iclog has already been marked WANT_SYNC by
2248 * xlog_state_get_iclog_space.
2250 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2251 *record_cnt = 0;
2252 *data_cnt = 0;
2253 return xlog_state_release_iclog(log, iclog);
2256 *partial_copy = 0;
2257 *partial_copy_len = 0;
2259 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2260 /* no more space in this iclog - push it. */
2261 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2262 *record_cnt = 0;
2263 *data_cnt = 0;
2265 spin_lock(&log->l_icloglock);
2266 xlog_state_want_sync(log, iclog);
2267 spin_unlock(&log->l_icloglock);
2269 if (!commit_iclog)
2270 return xlog_state_release_iclog(log, iclog);
2271 ASSERT(flags & XLOG_COMMIT_TRANS);
2272 *commit_iclog = iclog;
2275 return 0;
2279 * Write some region out to in-core log
2281 * This will be called when writing externally provided regions or when
2282 * writing out a commit record for a given transaction.
2284 * General algorithm:
2285 * 1. Find total length of this write. This may include adding to the
2286 * lengths passed in.
2287 * 2. Check whether we violate the tickets reservation.
2288 * 3. While writing to this iclog
2289 * A. Reserve as much space in this iclog as can get
2290 * B. If this is first write, save away start lsn
2291 * C. While writing this region:
2292 * 1. If first write of transaction, write start record
2293 * 2. Write log operation header (header per region)
2294 * 3. Find out if we can fit entire region into this iclog
2295 * 4. Potentially, verify destination memcpy ptr
2296 * 5. Memcpy (partial) region
2297 * 6. If partial copy, release iclog; otherwise, continue
2298 * copying more regions into current iclog
2299 * 4. Mark want sync bit (in simulation mode)
2300 * 5. Release iclog for potential flush to on-disk log.
2302 * ERRORS:
2303 * 1. Panic if reservation is overrun. This should never happen since
2304 * reservation amounts are generated internal to the filesystem.
2305 * NOTES:
2306 * 1. Tickets are single threaded data structures.
2307 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2308 * syncing routine. When a single log_write region needs to span
2309 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2310 * on all log operation writes which don't contain the end of the
2311 * region. The XLOG_END_TRANS bit is used for the in-core log
2312 * operation which contains the end of the continued log_write region.
2313 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2314 * we don't really know exactly how much space will be used. As a result,
2315 * we don't update ic_offset until the end when we know exactly how many
2316 * bytes have been written out.
2319 xlog_write(
2320 struct xlog *log,
2321 struct xfs_log_vec *log_vector,
2322 struct xlog_ticket *ticket,
2323 xfs_lsn_t *start_lsn,
2324 struct xlog_in_core **commit_iclog,
2325 uint flags)
2327 struct xlog_in_core *iclog = NULL;
2328 struct xfs_log_iovec *vecp;
2329 struct xfs_log_vec *lv;
2330 int len;
2331 int index;
2332 int partial_copy = 0;
2333 int partial_copy_len = 0;
2334 int contwr = 0;
2335 int record_cnt = 0;
2336 int data_cnt = 0;
2337 int error;
2339 *start_lsn = 0;
2341 len = xlog_write_calc_vec_length(ticket, log_vector);
2344 * Region headers and bytes are already accounted for.
2345 * We only need to take into account start records and
2346 * split regions in this function.
2348 if (ticket->t_flags & XLOG_TIC_INITED)
2349 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2352 * Commit record headers need to be accounted for. These
2353 * come in as separate writes so are easy to detect.
2355 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2356 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2358 if (ticket->t_curr_res < 0)
2359 xlog_print_tic_res(log->l_mp, ticket);
2361 index = 0;
2362 lv = log_vector;
2363 vecp = lv->lv_iovecp;
2364 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2365 void *ptr;
2366 int log_offset;
2368 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2369 &contwr, &log_offset);
2370 if (error)
2371 return error;
2373 ASSERT(log_offset <= iclog->ic_size - 1);
2374 ptr = iclog->ic_datap + log_offset;
2376 /* start_lsn is the first lsn written to. That's all we need. */
2377 if (!*start_lsn)
2378 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2381 * This loop writes out as many regions as can fit in the amount
2382 * of space which was allocated by xlog_state_get_iclog_space().
2384 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2385 struct xfs_log_iovec *reg;
2386 struct xlog_op_header *ophdr;
2387 int start_rec_copy;
2388 int copy_len;
2389 int copy_off;
2390 bool ordered = false;
2392 /* ordered log vectors have no regions to write */
2393 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2394 ASSERT(lv->lv_niovecs == 0);
2395 ordered = true;
2396 goto next_lv;
2399 reg = &vecp[index];
2400 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2401 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2403 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2404 if (start_rec_copy) {
2405 record_cnt++;
2406 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2407 start_rec_copy);
2410 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2411 if (!ophdr)
2412 return -EIO;
2414 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2415 sizeof(struct xlog_op_header));
2417 len += xlog_write_setup_copy(ticket, ophdr,
2418 iclog->ic_size-log_offset,
2419 reg->i_len,
2420 &copy_off, &copy_len,
2421 &partial_copy,
2422 &partial_copy_len);
2423 xlog_verify_dest_ptr(log, ptr);
2426 * Copy region.
2428 * Unmount records just log an opheader, so can have
2429 * empty payloads with no data region to copy. Hence we
2430 * only copy the payload if the vector says it has data
2431 * to copy.
2433 ASSERT(copy_len >= 0);
2434 if (copy_len > 0) {
2435 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2436 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2437 copy_len);
2439 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2440 record_cnt++;
2441 data_cnt += contwr ? copy_len : 0;
2443 error = xlog_write_copy_finish(log, iclog, flags,
2444 &record_cnt, &data_cnt,
2445 &partial_copy,
2446 &partial_copy_len,
2447 log_offset,
2448 commit_iclog);
2449 if (error)
2450 return error;
2453 * if we had a partial copy, we need to get more iclog
2454 * space but we don't want to increment the region
2455 * index because there is still more is this region to
2456 * write.
2458 * If we completed writing this region, and we flushed
2459 * the iclog (indicated by resetting of the record
2460 * count), then we also need to get more log space. If
2461 * this was the last record, though, we are done and
2462 * can just return.
2464 if (partial_copy)
2465 break;
2467 if (++index == lv->lv_niovecs) {
2468 next_lv:
2469 lv = lv->lv_next;
2470 index = 0;
2471 if (lv)
2472 vecp = lv->lv_iovecp;
2474 if (record_cnt == 0 && ordered == false) {
2475 if (!lv)
2476 return 0;
2477 break;
2482 ASSERT(len == 0);
2484 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2485 if (!commit_iclog)
2486 return xlog_state_release_iclog(log, iclog);
2488 ASSERT(flags & XLOG_COMMIT_TRANS);
2489 *commit_iclog = iclog;
2490 return 0;
2494 /*****************************************************************************
2496 * State Machine functions
2498 *****************************************************************************
2501 /* Clean iclogs starting from the head. This ordering must be
2502 * maintained, so an iclog doesn't become ACTIVE beyond one that
2503 * is SYNCING. This is also required to maintain the notion that we use
2504 * a ordered wait queue to hold off would be writers to the log when every
2505 * iclog is trying to sync to disk.
2507 * State Change: DIRTY -> ACTIVE
2509 STATIC void
2510 xlog_state_clean_log(
2511 struct xlog *log)
2513 xlog_in_core_t *iclog;
2514 int changed = 0;
2516 iclog = log->l_iclog;
2517 do {
2518 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2519 iclog->ic_state = XLOG_STATE_ACTIVE;
2520 iclog->ic_offset = 0;
2521 ASSERT(iclog->ic_callback == NULL);
2523 * If the number of ops in this iclog indicate it just
2524 * contains the dummy transaction, we can
2525 * change state into IDLE (the second time around).
2526 * Otherwise we should change the state into
2527 * NEED a dummy.
2528 * We don't need to cover the dummy.
2530 if (!changed &&
2531 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2532 XLOG_COVER_OPS)) {
2533 changed = 1;
2534 } else {
2536 * We have two dirty iclogs so start over
2537 * This could also be num of ops indicates
2538 * this is not the dummy going out.
2540 changed = 2;
2542 iclog->ic_header.h_num_logops = 0;
2543 memset(iclog->ic_header.h_cycle_data, 0,
2544 sizeof(iclog->ic_header.h_cycle_data));
2545 iclog->ic_header.h_lsn = 0;
2546 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2547 /* do nothing */;
2548 else
2549 break; /* stop cleaning */
2550 iclog = iclog->ic_next;
2551 } while (iclog != log->l_iclog);
2553 /* log is locked when we are called */
2555 * Change state for the dummy log recording.
2556 * We usually go to NEED. But we go to NEED2 if the changed indicates
2557 * we are done writing the dummy record.
2558 * If we are done with the second dummy recored (DONE2), then
2559 * we go to IDLE.
2561 if (changed) {
2562 switch (log->l_covered_state) {
2563 case XLOG_STATE_COVER_IDLE:
2564 case XLOG_STATE_COVER_NEED:
2565 case XLOG_STATE_COVER_NEED2:
2566 log->l_covered_state = XLOG_STATE_COVER_NEED;
2567 break;
2569 case XLOG_STATE_COVER_DONE:
2570 if (changed == 1)
2571 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2572 else
2573 log->l_covered_state = XLOG_STATE_COVER_NEED;
2574 break;
2576 case XLOG_STATE_COVER_DONE2:
2577 if (changed == 1)
2578 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2579 else
2580 log->l_covered_state = XLOG_STATE_COVER_NEED;
2581 break;
2583 default:
2584 ASSERT(0);
2587 } /* xlog_state_clean_log */
2589 STATIC xfs_lsn_t
2590 xlog_get_lowest_lsn(
2591 struct xlog *log)
2593 xlog_in_core_t *lsn_log;
2594 xfs_lsn_t lowest_lsn, lsn;
2596 lsn_log = log->l_iclog;
2597 lowest_lsn = 0;
2598 do {
2599 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2600 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2601 if ((lsn && !lowest_lsn) ||
2602 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2603 lowest_lsn = lsn;
2606 lsn_log = lsn_log->ic_next;
2607 } while (lsn_log != log->l_iclog);
2608 return lowest_lsn;
2612 STATIC void
2613 xlog_state_do_callback(
2614 struct xlog *log,
2615 int aborted,
2616 struct xlog_in_core *ciclog)
2618 xlog_in_core_t *iclog;
2619 xlog_in_core_t *first_iclog; /* used to know when we've
2620 * processed all iclogs once */
2621 xfs_log_callback_t *cb, *cb_next;
2622 int flushcnt = 0;
2623 xfs_lsn_t lowest_lsn;
2624 int ioerrors; /* counter: iclogs with errors */
2625 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2626 int funcdidcallbacks; /* flag: function did callbacks */
2627 int repeats; /* for issuing console warnings if
2628 * looping too many times */
2629 int wake = 0;
2631 spin_lock(&log->l_icloglock);
2632 first_iclog = iclog = log->l_iclog;
2633 ioerrors = 0;
2634 funcdidcallbacks = 0;
2635 repeats = 0;
2637 do {
2639 * Scan all iclogs starting with the one pointed to by the
2640 * log. Reset this starting point each time the log is
2641 * unlocked (during callbacks).
2643 * Keep looping through iclogs until one full pass is made
2644 * without running any callbacks.
2646 first_iclog = log->l_iclog;
2647 iclog = log->l_iclog;
2648 loopdidcallbacks = 0;
2649 repeats++;
2651 do {
2653 /* skip all iclogs in the ACTIVE & DIRTY states */
2654 if (iclog->ic_state &
2655 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2656 iclog = iclog->ic_next;
2657 continue;
2661 * Between marking a filesystem SHUTDOWN and stopping
2662 * the log, we do flush all iclogs to disk (if there
2663 * wasn't a log I/O error). So, we do want things to
2664 * go smoothly in case of just a SHUTDOWN w/o a
2665 * LOG_IO_ERROR.
2667 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2669 * Can only perform callbacks in order. Since
2670 * this iclog is not in the DONE_SYNC/
2671 * DO_CALLBACK state, we skip the rest and
2672 * just try to clean up. If we set our iclog
2673 * to DO_CALLBACK, we will not process it when
2674 * we retry since a previous iclog is in the
2675 * CALLBACK and the state cannot change since
2676 * we are holding the l_icloglock.
2678 if (!(iclog->ic_state &
2679 (XLOG_STATE_DONE_SYNC |
2680 XLOG_STATE_DO_CALLBACK))) {
2681 if (ciclog && (ciclog->ic_state ==
2682 XLOG_STATE_DONE_SYNC)) {
2683 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2685 break;
2688 * We now have an iclog that is in either the
2689 * DO_CALLBACK or DONE_SYNC states. The other
2690 * states (WANT_SYNC, SYNCING, or CALLBACK were
2691 * caught by the above if and are going to
2692 * clean (i.e. we aren't doing their callbacks)
2693 * see the above if.
2697 * We will do one more check here to see if we
2698 * have chased our tail around.
2701 lowest_lsn = xlog_get_lowest_lsn(log);
2702 if (lowest_lsn &&
2703 XFS_LSN_CMP(lowest_lsn,
2704 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2705 iclog = iclog->ic_next;
2706 continue; /* Leave this iclog for
2707 * another thread */
2710 iclog->ic_state = XLOG_STATE_CALLBACK;
2714 * Completion of a iclog IO does not imply that
2715 * a transaction has completed, as transactions
2716 * can be large enough to span many iclogs. We
2717 * cannot change the tail of the log half way
2718 * through a transaction as this may be the only
2719 * transaction in the log and moving th etail to
2720 * point to the middle of it will prevent
2721 * recovery from finding the start of the
2722 * transaction. Hence we should only update the
2723 * last_sync_lsn if this iclog contains
2724 * transaction completion callbacks on it.
2726 * We have to do this before we drop the
2727 * icloglock to ensure we are the only one that
2728 * can update it.
2730 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2731 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2732 if (iclog->ic_callback)
2733 atomic64_set(&log->l_last_sync_lsn,
2734 be64_to_cpu(iclog->ic_header.h_lsn));
2736 } else
2737 ioerrors++;
2739 spin_unlock(&log->l_icloglock);
2742 * Keep processing entries in the callback list until
2743 * we come around and it is empty. We need to
2744 * atomically see that the list is empty and change the
2745 * state to DIRTY so that we don't miss any more
2746 * callbacks being added.
2748 spin_lock(&iclog->ic_callback_lock);
2749 cb = iclog->ic_callback;
2750 while (cb) {
2751 iclog->ic_callback_tail = &(iclog->ic_callback);
2752 iclog->ic_callback = NULL;
2753 spin_unlock(&iclog->ic_callback_lock);
2755 /* perform callbacks in the order given */
2756 for (; cb; cb = cb_next) {
2757 cb_next = cb->cb_next;
2758 cb->cb_func(cb->cb_arg, aborted);
2760 spin_lock(&iclog->ic_callback_lock);
2761 cb = iclog->ic_callback;
2764 loopdidcallbacks++;
2765 funcdidcallbacks++;
2767 spin_lock(&log->l_icloglock);
2768 ASSERT(iclog->ic_callback == NULL);
2769 spin_unlock(&iclog->ic_callback_lock);
2770 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2771 iclog->ic_state = XLOG_STATE_DIRTY;
2774 * Transition from DIRTY to ACTIVE if applicable.
2775 * NOP if STATE_IOERROR.
2777 xlog_state_clean_log(log);
2779 /* wake up threads waiting in xfs_log_force() */
2780 wake_up_all(&iclog->ic_force_wait);
2782 iclog = iclog->ic_next;
2783 } while (first_iclog != iclog);
2785 if (repeats > 5000) {
2786 flushcnt += repeats;
2787 repeats = 0;
2788 xfs_warn(log->l_mp,
2789 "%s: possible infinite loop (%d iterations)",
2790 __func__, flushcnt);
2792 } while (!ioerrors && loopdidcallbacks);
2795 * make one last gasp attempt to see if iclogs are being left in
2796 * limbo..
2798 #ifdef DEBUG
2799 if (funcdidcallbacks) {
2800 first_iclog = iclog = log->l_iclog;
2801 do {
2802 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2804 * Terminate the loop if iclogs are found in states
2805 * which will cause other threads to clean up iclogs.
2807 * SYNCING - i/o completion will go through logs
2808 * DONE_SYNC - interrupt thread should be waiting for
2809 * l_icloglock
2810 * IOERROR - give up hope all ye who enter here
2812 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2813 iclog->ic_state == XLOG_STATE_SYNCING ||
2814 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2815 iclog->ic_state == XLOG_STATE_IOERROR )
2816 break;
2817 iclog = iclog->ic_next;
2818 } while (first_iclog != iclog);
2820 #endif
2822 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2823 wake = 1;
2824 spin_unlock(&log->l_icloglock);
2826 if (wake)
2827 wake_up_all(&log->l_flush_wait);
2832 * Finish transitioning this iclog to the dirty state.
2834 * Make sure that we completely execute this routine only when this is
2835 * the last call to the iclog. There is a good chance that iclog flushes,
2836 * when we reach the end of the physical log, get turned into 2 separate
2837 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2838 * routine. By using the reference count bwritecnt, we guarantee that only
2839 * the second completion goes through.
2841 * Callbacks could take time, so they are done outside the scope of the
2842 * global state machine log lock.
2844 STATIC void
2845 xlog_state_done_syncing(
2846 xlog_in_core_t *iclog,
2847 int aborted)
2849 struct xlog *log = iclog->ic_log;
2851 spin_lock(&log->l_icloglock);
2853 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2854 iclog->ic_state == XLOG_STATE_IOERROR);
2855 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2856 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2860 * If we got an error, either on the first buffer, or in the case of
2861 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2862 * and none should ever be attempted to be written to disk
2863 * again.
2865 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2866 if (--iclog->ic_bwritecnt == 1) {
2867 spin_unlock(&log->l_icloglock);
2868 return;
2870 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2874 * Someone could be sleeping prior to writing out the next
2875 * iclog buffer, we wake them all, one will get to do the
2876 * I/O, the others get to wait for the result.
2878 wake_up_all(&iclog->ic_write_wait);
2879 spin_unlock(&log->l_icloglock);
2880 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2881 } /* xlog_state_done_syncing */
2885 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2886 * sleep. We wait on the flush queue on the head iclog as that should be
2887 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2888 * we will wait here and all new writes will sleep until a sync completes.
2890 * The in-core logs are used in a circular fashion. They are not used
2891 * out-of-order even when an iclog past the head is free.
2893 * return:
2894 * * log_offset where xlog_write() can start writing into the in-core
2895 * log's data space.
2896 * * in-core log pointer to which xlog_write() should write.
2897 * * boolean indicating this is a continued write to an in-core log.
2898 * If this is the last write, then the in-core log's offset field
2899 * needs to be incremented, depending on the amount of data which
2900 * is copied.
2902 STATIC int
2903 xlog_state_get_iclog_space(
2904 struct xlog *log,
2905 int len,
2906 struct xlog_in_core **iclogp,
2907 struct xlog_ticket *ticket,
2908 int *continued_write,
2909 int *logoffsetp)
2911 int log_offset;
2912 xlog_rec_header_t *head;
2913 xlog_in_core_t *iclog;
2914 int error;
2916 restart:
2917 spin_lock(&log->l_icloglock);
2918 if (XLOG_FORCED_SHUTDOWN(log)) {
2919 spin_unlock(&log->l_icloglock);
2920 return -EIO;
2923 iclog = log->l_iclog;
2924 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2925 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2927 /* Wait for log writes to have flushed */
2928 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2929 goto restart;
2932 head = &iclog->ic_header;
2934 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2935 log_offset = iclog->ic_offset;
2937 /* On the 1st write to an iclog, figure out lsn. This works
2938 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2939 * committing to. If the offset is set, that's how many blocks
2940 * must be written.
2942 if (log_offset == 0) {
2943 ticket->t_curr_res -= log->l_iclog_hsize;
2944 xlog_tic_add_region(ticket,
2945 log->l_iclog_hsize,
2946 XLOG_REG_TYPE_LRHEADER);
2947 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2948 head->h_lsn = cpu_to_be64(
2949 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2950 ASSERT(log->l_curr_block >= 0);
2953 /* If there is enough room to write everything, then do it. Otherwise,
2954 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2955 * bit is on, so this will get flushed out. Don't update ic_offset
2956 * until you know exactly how many bytes get copied. Therefore, wait
2957 * until later to update ic_offset.
2959 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2960 * can fit into remaining data section.
2962 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2963 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2966 * If I'm the only one writing to this iclog, sync it to disk.
2967 * We need to do an atomic compare and decrement here to avoid
2968 * racing with concurrent atomic_dec_and_lock() calls in
2969 * xlog_state_release_iclog() when there is more than one
2970 * reference to the iclog.
2972 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2973 /* we are the only one */
2974 spin_unlock(&log->l_icloglock);
2975 error = xlog_state_release_iclog(log, iclog);
2976 if (error)
2977 return error;
2978 } else {
2979 spin_unlock(&log->l_icloglock);
2981 goto restart;
2984 /* Do we have enough room to write the full amount in the remainder
2985 * of this iclog? Or must we continue a write on the next iclog and
2986 * mark this iclog as completely taken? In the case where we switch
2987 * iclogs (to mark it taken), this particular iclog will release/sync
2988 * to disk in xlog_write().
2990 if (len <= iclog->ic_size - iclog->ic_offset) {
2991 *continued_write = 0;
2992 iclog->ic_offset += len;
2993 } else {
2994 *continued_write = 1;
2995 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2997 *iclogp = iclog;
2999 ASSERT(iclog->ic_offset <= iclog->ic_size);
3000 spin_unlock(&log->l_icloglock);
3002 *logoffsetp = log_offset;
3003 return 0;
3004 } /* xlog_state_get_iclog_space */
3006 /* The first cnt-1 times through here we don't need to
3007 * move the grant write head because the permanent
3008 * reservation has reserved cnt times the unit amount.
3009 * Release part of current permanent unit reservation and
3010 * reset current reservation to be one units worth. Also
3011 * move grant reservation head forward.
3013 STATIC void
3014 xlog_regrant_reserve_log_space(
3015 struct xlog *log,
3016 struct xlog_ticket *ticket)
3018 trace_xfs_log_regrant_reserve_enter(log, ticket);
3020 if (ticket->t_cnt > 0)
3021 ticket->t_cnt--;
3023 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3024 ticket->t_curr_res);
3025 xlog_grant_sub_space(log, &log->l_write_head.grant,
3026 ticket->t_curr_res);
3027 ticket->t_curr_res = ticket->t_unit_res;
3028 xlog_tic_reset_res(ticket);
3030 trace_xfs_log_regrant_reserve_sub(log, ticket);
3032 /* just return if we still have some of the pre-reserved space */
3033 if (ticket->t_cnt > 0)
3034 return;
3036 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3037 ticket->t_unit_res);
3039 trace_xfs_log_regrant_reserve_exit(log, ticket);
3041 ticket->t_curr_res = ticket->t_unit_res;
3042 xlog_tic_reset_res(ticket);
3043 } /* xlog_regrant_reserve_log_space */
3047 * Give back the space left from a reservation.
3049 * All the information we need to make a correct determination of space left
3050 * is present. For non-permanent reservations, things are quite easy. The
3051 * count should have been decremented to zero. We only need to deal with the
3052 * space remaining in the current reservation part of the ticket. If the
3053 * ticket contains a permanent reservation, there may be left over space which
3054 * needs to be released. A count of N means that N-1 refills of the current
3055 * reservation can be done before we need to ask for more space. The first
3056 * one goes to fill up the first current reservation. Once we run out of
3057 * space, the count will stay at zero and the only space remaining will be
3058 * in the current reservation field.
3060 STATIC void
3061 xlog_ungrant_log_space(
3062 struct xlog *log,
3063 struct xlog_ticket *ticket)
3065 int bytes;
3067 if (ticket->t_cnt > 0)
3068 ticket->t_cnt--;
3070 trace_xfs_log_ungrant_enter(log, ticket);
3071 trace_xfs_log_ungrant_sub(log, ticket);
3074 * If this is a permanent reservation ticket, we may be able to free
3075 * up more space based on the remaining count.
3077 bytes = ticket->t_curr_res;
3078 if (ticket->t_cnt > 0) {
3079 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3080 bytes += ticket->t_unit_res*ticket->t_cnt;
3083 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3084 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3086 trace_xfs_log_ungrant_exit(log, ticket);
3088 xfs_log_space_wake(log->l_mp);
3092 * Flush iclog to disk if this is the last reference to the given iclog and
3093 * the WANT_SYNC bit is set.
3095 * When this function is entered, the iclog is not necessarily in the
3096 * WANT_SYNC state. It may be sitting around waiting to get filled.
3100 STATIC int
3101 xlog_state_release_iclog(
3102 struct xlog *log,
3103 struct xlog_in_core *iclog)
3105 int sync = 0; /* do we sync? */
3107 if (iclog->ic_state & XLOG_STATE_IOERROR)
3108 return -EIO;
3110 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3111 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3112 return 0;
3114 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3115 spin_unlock(&log->l_icloglock);
3116 return -EIO;
3118 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3119 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3121 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3122 /* update tail before writing to iclog */
3123 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3124 sync++;
3125 iclog->ic_state = XLOG_STATE_SYNCING;
3126 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3127 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3128 /* cycle incremented when incrementing curr_block */
3130 spin_unlock(&log->l_icloglock);
3133 * We let the log lock go, so it's possible that we hit a log I/O
3134 * error or some other SHUTDOWN condition that marks the iclog
3135 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3136 * this iclog has consistent data, so we ignore IOERROR
3137 * flags after this point.
3139 if (sync)
3140 return xlog_sync(log, iclog);
3141 return 0;
3142 } /* xlog_state_release_iclog */
3146 * This routine will mark the current iclog in the ring as WANT_SYNC
3147 * and move the current iclog pointer to the next iclog in the ring.
3148 * When this routine is called from xlog_state_get_iclog_space(), the
3149 * exact size of the iclog has not yet been determined. All we know is
3150 * that every data block. We have run out of space in this log record.
3152 STATIC void
3153 xlog_state_switch_iclogs(
3154 struct xlog *log,
3155 struct xlog_in_core *iclog,
3156 int eventual_size)
3158 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3159 if (!eventual_size)
3160 eventual_size = iclog->ic_offset;
3161 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3162 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3163 log->l_prev_block = log->l_curr_block;
3164 log->l_prev_cycle = log->l_curr_cycle;
3166 /* roll log?: ic_offset changed later */
3167 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3169 /* Round up to next log-sunit */
3170 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3171 log->l_mp->m_sb.sb_logsunit > 1) {
3172 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3173 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3176 if (log->l_curr_block >= log->l_logBBsize) {
3178 * Rewind the current block before the cycle is bumped to make
3179 * sure that the combined LSN never transiently moves forward
3180 * when the log wraps to the next cycle. This is to support the
3181 * unlocked sample of these fields from xlog_valid_lsn(). Most
3182 * other cases should acquire l_icloglock.
3184 log->l_curr_block -= log->l_logBBsize;
3185 ASSERT(log->l_curr_block >= 0);
3186 smp_wmb();
3187 log->l_curr_cycle++;
3188 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3189 log->l_curr_cycle++;
3191 ASSERT(iclog == log->l_iclog);
3192 log->l_iclog = iclog->ic_next;
3193 } /* xlog_state_switch_iclogs */
3196 * Write out all data in the in-core log as of this exact moment in time.
3198 * Data may be written to the in-core log during this call. However,
3199 * we don't guarantee this data will be written out. A change from past
3200 * implementation means this routine will *not* write out zero length LRs.
3202 * Basically, we try and perform an intelligent scan of the in-core logs.
3203 * If we determine there is no flushable data, we just return. There is no
3204 * flushable data if:
3206 * 1. the current iclog is active and has no data; the previous iclog
3207 * is in the active or dirty state.
3208 * 2. the current iclog is drity, and the previous iclog is in the
3209 * active or dirty state.
3211 * We may sleep if:
3213 * 1. the current iclog is not in the active nor dirty state.
3214 * 2. the current iclog dirty, and the previous iclog is not in the
3215 * active nor dirty state.
3216 * 3. the current iclog is active, and there is another thread writing
3217 * to this particular iclog.
3218 * 4. a) the current iclog is active and has no other writers
3219 * b) when we return from flushing out this iclog, it is still
3220 * not in the active nor dirty state.
3223 _xfs_log_force(
3224 struct xfs_mount *mp,
3225 uint flags,
3226 int *log_flushed)
3228 struct xlog *log = mp->m_log;
3229 struct xlog_in_core *iclog;
3230 xfs_lsn_t lsn;
3232 XFS_STATS_INC(mp, xs_log_force);
3234 xlog_cil_force(log);
3236 spin_lock(&log->l_icloglock);
3238 iclog = log->l_iclog;
3239 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3240 spin_unlock(&log->l_icloglock);
3241 return -EIO;
3244 /* If the head iclog is not active nor dirty, we just attach
3245 * ourselves to the head and go to sleep.
3247 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3248 iclog->ic_state == XLOG_STATE_DIRTY) {
3250 * If the head is dirty or (active and empty), then
3251 * we need to look at the previous iclog. If the previous
3252 * iclog is active or dirty we are done. There is nothing
3253 * to sync out. Otherwise, we attach ourselves to the
3254 * previous iclog and go to sleep.
3256 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3257 (atomic_read(&iclog->ic_refcnt) == 0
3258 && iclog->ic_offset == 0)) {
3259 iclog = iclog->ic_prev;
3260 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3261 iclog->ic_state == XLOG_STATE_DIRTY)
3262 goto no_sleep;
3263 else
3264 goto maybe_sleep;
3265 } else {
3266 if (atomic_read(&iclog->ic_refcnt) == 0) {
3267 /* We are the only one with access to this
3268 * iclog. Flush it out now. There should
3269 * be a roundoff of zero to show that someone
3270 * has already taken care of the roundoff from
3271 * the previous sync.
3273 atomic_inc(&iclog->ic_refcnt);
3274 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3275 xlog_state_switch_iclogs(log, iclog, 0);
3276 spin_unlock(&log->l_icloglock);
3278 if (xlog_state_release_iclog(log, iclog))
3279 return -EIO;
3281 if (log_flushed)
3282 *log_flushed = 1;
3283 spin_lock(&log->l_icloglock);
3284 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3285 iclog->ic_state != XLOG_STATE_DIRTY)
3286 goto maybe_sleep;
3287 else
3288 goto no_sleep;
3289 } else {
3290 /* Someone else is writing to this iclog.
3291 * Use its call to flush out the data. However,
3292 * the other thread may not force out this LR,
3293 * so we mark it WANT_SYNC.
3295 xlog_state_switch_iclogs(log, iclog, 0);
3296 goto maybe_sleep;
3301 /* By the time we come around again, the iclog could've been filled
3302 * which would give it another lsn. If we have a new lsn, just
3303 * return because the relevant data has been flushed.
3305 maybe_sleep:
3306 if (flags & XFS_LOG_SYNC) {
3308 * We must check if we're shutting down here, before
3309 * we wait, while we're holding the l_icloglock.
3310 * Then we check again after waking up, in case our
3311 * sleep was disturbed by a bad news.
3313 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3314 spin_unlock(&log->l_icloglock);
3315 return -EIO;
3317 XFS_STATS_INC(mp, xs_log_force_sleep);
3318 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3320 * No need to grab the log lock here since we're
3321 * only deciding whether or not to return EIO
3322 * and the memory read should be atomic.
3324 if (iclog->ic_state & XLOG_STATE_IOERROR)
3325 return -EIO;
3326 if (log_flushed)
3327 *log_flushed = 1;
3328 } else {
3330 no_sleep:
3331 spin_unlock(&log->l_icloglock);
3333 return 0;
3337 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3338 * about errors or whether the log was flushed or not. This is the normal
3339 * interface to use when trying to unpin items or move the log forward.
3341 void
3342 xfs_log_force(
3343 xfs_mount_t *mp,
3344 uint flags)
3346 int error;
3348 trace_xfs_log_force(mp, 0);
3349 error = _xfs_log_force(mp, flags, NULL);
3350 if (error)
3351 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3355 * Force the in-core log to disk for a specific LSN.
3357 * Find in-core log with lsn.
3358 * If it is in the DIRTY state, just return.
3359 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3360 * state and go to sleep or return.
3361 * If it is in any other state, go to sleep or return.
3363 * Synchronous forces are implemented with a signal variable. All callers
3364 * to force a given lsn to disk will wait on a the sv attached to the
3365 * specific in-core log. When given in-core log finally completes its
3366 * write to disk, that thread will wake up all threads waiting on the
3367 * sv.
3370 _xfs_log_force_lsn(
3371 struct xfs_mount *mp,
3372 xfs_lsn_t lsn,
3373 uint flags,
3374 int *log_flushed)
3376 struct xlog *log = mp->m_log;
3377 struct xlog_in_core *iclog;
3378 int already_slept = 0;
3380 ASSERT(lsn != 0);
3382 XFS_STATS_INC(mp, xs_log_force);
3384 lsn = xlog_cil_force_lsn(log, lsn);
3385 if (lsn == NULLCOMMITLSN)
3386 return 0;
3388 try_again:
3389 spin_lock(&log->l_icloglock);
3390 iclog = log->l_iclog;
3391 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3392 spin_unlock(&log->l_icloglock);
3393 return -EIO;
3396 do {
3397 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3398 iclog = iclog->ic_next;
3399 continue;
3402 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3403 spin_unlock(&log->l_icloglock);
3404 return 0;
3407 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3409 * We sleep here if we haven't already slept (e.g.
3410 * this is the first time we've looked at the correct
3411 * iclog buf) and the buffer before us is going to
3412 * be sync'ed. The reason for this is that if we
3413 * are doing sync transactions here, by waiting for
3414 * the previous I/O to complete, we can allow a few
3415 * more transactions into this iclog before we close
3416 * it down.
3418 * Otherwise, we mark the buffer WANT_SYNC, and bump
3419 * up the refcnt so we can release the log (which
3420 * drops the ref count). The state switch keeps new
3421 * transaction commits from using this buffer. When
3422 * the current commits finish writing into the buffer,
3423 * the refcount will drop to zero and the buffer will
3424 * go out then.
3426 if (!already_slept &&
3427 (iclog->ic_prev->ic_state &
3428 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3429 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3431 XFS_STATS_INC(mp, xs_log_force_sleep);
3433 xlog_wait(&iclog->ic_prev->ic_write_wait,
3434 &log->l_icloglock);
3435 if (log_flushed)
3436 *log_flushed = 1;
3437 already_slept = 1;
3438 goto try_again;
3440 atomic_inc(&iclog->ic_refcnt);
3441 xlog_state_switch_iclogs(log, iclog, 0);
3442 spin_unlock(&log->l_icloglock);
3443 if (xlog_state_release_iclog(log, iclog))
3444 return -EIO;
3445 if (log_flushed)
3446 *log_flushed = 1;
3447 spin_lock(&log->l_icloglock);
3450 if ((flags & XFS_LOG_SYNC) && /* sleep */
3451 !(iclog->ic_state &
3452 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3454 * Don't wait on completion if we know that we've
3455 * gotten a log write error.
3457 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3458 spin_unlock(&log->l_icloglock);
3459 return -EIO;
3461 XFS_STATS_INC(mp, xs_log_force_sleep);
3462 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3464 * No need to grab the log lock here since we're
3465 * only deciding whether or not to return EIO
3466 * and the memory read should be atomic.
3468 if (iclog->ic_state & XLOG_STATE_IOERROR)
3469 return -EIO;
3471 if (log_flushed)
3472 *log_flushed = 1;
3473 } else { /* just return */
3474 spin_unlock(&log->l_icloglock);
3477 return 0;
3478 } while (iclog != log->l_iclog);
3480 spin_unlock(&log->l_icloglock);
3481 return 0;
3485 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3486 * about errors or whether the log was flushed or not. This is the normal
3487 * interface to use when trying to unpin items or move the log forward.
3489 void
3490 xfs_log_force_lsn(
3491 xfs_mount_t *mp,
3492 xfs_lsn_t lsn,
3493 uint flags)
3495 int error;
3497 trace_xfs_log_force(mp, lsn);
3498 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3499 if (error)
3500 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3504 * Called when we want to mark the current iclog as being ready to sync to
3505 * disk.
3507 STATIC void
3508 xlog_state_want_sync(
3509 struct xlog *log,
3510 struct xlog_in_core *iclog)
3512 assert_spin_locked(&log->l_icloglock);
3514 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3515 xlog_state_switch_iclogs(log, iclog, 0);
3516 } else {
3517 ASSERT(iclog->ic_state &
3518 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3523 /*****************************************************************************
3525 * TICKET functions
3527 *****************************************************************************
3531 * Free a used ticket when its refcount falls to zero.
3533 void
3534 xfs_log_ticket_put(
3535 xlog_ticket_t *ticket)
3537 ASSERT(atomic_read(&ticket->t_ref) > 0);
3538 if (atomic_dec_and_test(&ticket->t_ref))
3539 kmem_zone_free(xfs_log_ticket_zone, ticket);
3542 xlog_ticket_t *
3543 xfs_log_ticket_get(
3544 xlog_ticket_t *ticket)
3546 ASSERT(atomic_read(&ticket->t_ref) > 0);
3547 atomic_inc(&ticket->t_ref);
3548 return ticket;
3552 * Figure out the total log space unit (in bytes) that would be
3553 * required for a log ticket.
3556 xfs_log_calc_unit_res(
3557 struct xfs_mount *mp,
3558 int unit_bytes)
3560 struct xlog *log = mp->m_log;
3561 int iclog_space;
3562 uint num_headers;
3565 * Permanent reservations have up to 'cnt'-1 active log operations
3566 * in the log. A unit in this case is the amount of space for one
3567 * of these log operations. Normal reservations have a cnt of 1
3568 * and their unit amount is the total amount of space required.
3570 * The following lines of code account for non-transaction data
3571 * which occupy space in the on-disk log.
3573 * Normal form of a transaction is:
3574 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3575 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3577 * We need to account for all the leadup data and trailer data
3578 * around the transaction data.
3579 * And then we need to account for the worst case in terms of using
3580 * more space.
3581 * The worst case will happen if:
3582 * - the placement of the transaction happens to be such that the
3583 * roundoff is at its maximum
3584 * - the transaction data is synced before the commit record is synced
3585 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3586 * Therefore the commit record is in its own Log Record.
3587 * This can happen as the commit record is called with its
3588 * own region to xlog_write().
3589 * This then means that in the worst case, roundoff can happen for
3590 * the commit-rec as well.
3591 * The commit-rec is smaller than padding in this scenario and so it is
3592 * not added separately.
3595 /* for trans header */
3596 unit_bytes += sizeof(xlog_op_header_t);
3597 unit_bytes += sizeof(xfs_trans_header_t);
3599 /* for start-rec */
3600 unit_bytes += sizeof(xlog_op_header_t);
3603 * for LR headers - the space for data in an iclog is the size minus
3604 * the space used for the headers. If we use the iclog size, then we
3605 * undercalculate the number of headers required.
3607 * Furthermore - the addition of op headers for split-recs might
3608 * increase the space required enough to require more log and op
3609 * headers, so take that into account too.
3611 * IMPORTANT: This reservation makes the assumption that if this
3612 * transaction is the first in an iclog and hence has the LR headers
3613 * accounted to it, then the remaining space in the iclog is
3614 * exclusively for this transaction. i.e. if the transaction is larger
3615 * than the iclog, it will be the only thing in that iclog.
3616 * Fundamentally, this means we must pass the entire log vector to
3617 * xlog_write to guarantee this.
3619 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3620 num_headers = howmany(unit_bytes, iclog_space);
3622 /* for split-recs - ophdrs added when data split over LRs */
3623 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3625 /* add extra header reservations if we overrun */
3626 while (!num_headers ||
3627 howmany(unit_bytes, iclog_space) > num_headers) {
3628 unit_bytes += sizeof(xlog_op_header_t);
3629 num_headers++;
3631 unit_bytes += log->l_iclog_hsize * num_headers;
3633 /* for commit-rec LR header - note: padding will subsume the ophdr */
3634 unit_bytes += log->l_iclog_hsize;
3636 /* for roundoff padding for transaction data and one for commit record */
3637 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3638 /* log su roundoff */
3639 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3640 } else {
3641 /* BB roundoff */
3642 unit_bytes += 2 * BBSIZE;
3645 return unit_bytes;
3649 * Allocate and initialise a new log ticket.
3651 struct xlog_ticket *
3652 xlog_ticket_alloc(
3653 struct xlog *log,
3654 int unit_bytes,
3655 int cnt,
3656 char client,
3657 bool permanent,
3658 xfs_km_flags_t alloc_flags)
3660 struct xlog_ticket *tic;
3661 int unit_res;
3663 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3664 if (!tic)
3665 return NULL;
3667 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3669 atomic_set(&tic->t_ref, 1);
3670 tic->t_task = current;
3671 INIT_LIST_HEAD(&tic->t_queue);
3672 tic->t_unit_res = unit_res;
3673 tic->t_curr_res = unit_res;
3674 tic->t_cnt = cnt;
3675 tic->t_ocnt = cnt;
3676 tic->t_tid = prandom_u32();
3677 tic->t_clientid = client;
3678 tic->t_flags = XLOG_TIC_INITED;
3679 tic->t_trans_type = 0;
3680 if (permanent)
3681 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3683 xlog_tic_reset_res(tic);
3685 return tic;
3689 /******************************************************************************
3691 * Log debug routines
3693 ******************************************************************************
3695 #if defined(DEBUG)
3697 * Make sure that the destination ptr is within the valid data region of
3698 * one of the iclogs. This uses backup pointers stored in a different
3699 * part of the log in case we trash the log structure.
3701 void
3702 xlog_verify_dest_ptr(
3703 struct xlog *log,
3704 void *ptr)
3706 int i;
3707 int good_ptr = 0;
3709 for (i = 0; i < log->l_iclog_bufs; i++) {
3710 if (ptr >= log->l_iclog_bak[i] &&
3711 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3712 good_ptr++;
3715 if (!good_ptr)
3716 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3720 * Check to make sure the grant write head didn't just over lap the tail. If
3721 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3722 * the cycles differ by exactly one and check the byte count.
3724 * This check is run unlocked, so can give false positives. Rather than assert
3725 * on failures, use a warn-once flag and a panic tag to allow the admin to
3726 * determine if they want to panic the machine when such an error occurs. For
3727 * debug kernels this will have the same effect as using an assert but, unlinke
3728 * an assert, it can be turned off at runtime.
3730 STATIC void
3731 xlog_verify_grant_tail(
3732 struct xlog *log)
3734 int tail_cycle, tail_blocks;
3735 int cycle, space;
3737 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3738 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3739 if (tail_cycle != cycle) {
3740 if (cycle - 1 != tail_cycle &&
3741 !(log->l_flags & XLOG_TAIL_WARN)) {
3742 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3743 "%s: cycle - 1 != tail_cycle", __func__);
3744 log->l_flags |= XLOG_TAIL_WARN;
3747 if (space > BBTOB(tail_blocks) &&
3748 !(log->l_flags & XLOG_TAIL_WARN)) {
3749 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3750 "%s: space > BBTOB(tail_blocks)", __func__);
3751 log->l_flags |= XLOG_TAIL_WARN;
3756 /* check if it will fit */
3757 STATIC void
3758 xlog_verify_tail_lsn(
3759 struct xlog *log,
3760 struct xlog_in_core *iclog,
3761 xfs_lsn_t tail_lsn)
3763 int blocks;
3765 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3766 blocks =
3767 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3768 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3769 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3770 } else {
3771 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3773 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3774 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3776 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3777 if (blocks < BTOBB(iclog->ic_offset) + 1)
3778 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3780 } /* xlog_verify_tail_lsn */
3783 * Perform a number of checks on the iclog before writing to disk.
3785 * 1. Make sure the iclogs are still circular
3786 * 2. Make sure we have a good magic number
3787 * 3. Make sure we don't have magic numbers in the data
3788 * 4. Check fields of each log operation header for:
3789 * A. Valid client identifier
3790 * B. tid ptr value falls in valid ptr space (user space code)
3791 * C. Length in log record header is correct according to the
3792 * individual operation headers within record.
3793 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3794 * log, check the preceding blocks of the physical log to make sure all
3795 * the cycle numbers agree with the current cycle number.
3797 STATIC void
3798 xlog_verify_iclog(
3799 struct xlog *log,
3800 struct xlog_in_core *iclog,
3801 int count,
3802 bool syncing)
3804 xlog_op_header_t *ophead;
3805 xlog_in_core_t *icptr;
3806 xlog_in_core_2_t *xhdr;
3807 void *base_ptr, *ptr, *p;
3808 ptrdiff_t field_offset;
3809 __uint8_t clientid;
3810 int len, i, j, k, op_len;
3811 int idx;
3813 /* check validity of iclog pointers */
3814 spin_lock(&log->l_icloglock);
3815 icptr = log->l_iclog;
3816 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3817 ASSERT(icptr);
3819 if (icptr != log->l_iclog)
3820 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3821 spin_unlock(&log->l_icloglock);
3823 /* check log magic numbers */
3824 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3825 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3827 base_ptr = ptr = &iclog->ic_header;
3828 p = &iclog->ic_header;
3829 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3830 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3831 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3832 __func__);
3835 /* check fields */
3836 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3837 base_ptr = ptr = iclog->ic_datap;
3838 ophead = ptr;
3839 xhdr = iclog->ic_data;
3840 for (i = 0; i < len; i++) {
3841 ophead = ptr;
3843 /* clientid is only 1 byte */
3844 p = &ophead->oh_clientid;
3845 field_offset = p - base_ptr;
3846 if (!syncing || (field_offset & 0x1ff)) {
3847 clientid = ophead->oh_clientid;
3848 } else {
3849 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3850 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3851 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3852 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3853 clientid = xlog_get_client_id(
3854 xhdr[j].hic_xheader.xh_cycle_data[k]);
3855 } else {
3856 clientid = xlog_get_client_id(
3857 iclog->ic_header.h_cycle_data[idx]);
3860 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3861 xfs_warn(log->l_mp,
3862 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3863 __func__, clientid, ophead,
3864 (unsigned long)field_offset);
3866 /* check length */
3867 p = &ophead->oh_len;
3868 field_offset = p - base_ptr;
3869 if (!syncing || (field_offset & 0x1ff)) {
3870 op_len = be32_to_cpu(ophead->oh_len);
3871 } else {
3872 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3873 (uintptr_t)iclog->ic_datap);
3874 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3875 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3876 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3877 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3878 } else {
3879 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3882 ptr += sizeof(xlog_op_header_t) + op_len;
3884 } /* xlog_verify_iclog */
3885 #endif
3888 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3890 STATIC int
3891 xlog_state_ioerror(
3892 struct xlog *log)
3894 xlog_in_core_t *iclog, *ic;
3896 iclog = log->l_iclog;
3897 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3899 * Mark all the incore logs IOERROR.
3900 * From now on, no log flushes will result.
3902 ic = iclog;
3903 do {
3904 ic->ic_state = XLOG_STATE_IOERROR;
3905 ic = ic->ic_next;
3906 } while (ic != iclog);
3907 return 0;
3910 * Return non-zero, if state transition has already happened.
3912 return 1;
3916 * This is called from xfs_force_shutdown, when we're forcibly
3917 * shutting down the filesystem, typically because of an IO error.
3918 * Our main objectives here are to make sure that:
3919 * a. if !logerror, flush the logs to disk. Anything modified
3920 * after this is ignored.
3921 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3922 * parties to find out, 'atomically'.
3923 * c. those who're sleeping on log reservations, pinned objects and
3924 * other resources get woken up, and be told the bad news.
3925 * d. nothing new gets queued up after (b) and (c) are done.
3927 * Note: for the !logerror case we need to flush the regions held in memory out
3928 * to disk first. This needs to be done before the log is marked as shutdown,
3929 * otherwise the iclog writes will fail.
3932 xfs_log_force_umount(
3933 struct xfs_mount *mp,
3934 int logerror)
3936 struct xlog *log;
3937 int retval;
3939 log = mp->m_log;
3942 * If this happens during log recovery, don't worry about
3943 * locking; the log isn't open for business yet.
3945 if (!log ||
3946 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3947 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3948 if (mp->m_sb_bp)
3949 XFS_BUF_DONE(mp->m_sb_bp);
3950 return 0;
3954 * Somebody could've already done the hard work for us.
3955 * No need to get locks for this.
3957 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3958 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3959 return 1;
3963 * Flush all the completed transactions to disk before marking the log
3964 * being shut down. We need to do it in this order to ensure that
3965 * completed operations are safely on disk before we shut down, and that
3966 * we don't have to issue any buffer IO after the shutdown flags are set
3967 * to guarantee this.
3969 if (!logerror)
3970 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3973 * mark the filesystem and the as in a shutdown state and wake
3974 * everybody up to tell them the bad news.
3976 spin_lock(&log->l_icloglock);
3977 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3978 if (mp->m_sb_bp)
3979 XFS_BUF_DONE(mp->m_sb_bp);
3982 * Mark the log and the iclogs with IO error flags to prevent any
3983 * further log IO from being issued or completed.
3985 log->l_flags |= XLOG_IO_ERROR;
3986 retval = xlog_state_ioerror(log);
3987 spin_unlock(&log->l_icloglock);
3990 * We don't want anybody waiting for log reservations after this. That
3991 * means we have to wake up everybody queued up on reserveq as well as
3992 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3993 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3994 * action is protected by the grant locks.
3996 xlog_grant_head_wake_all(&log->l_reserve_head);
3997 xlog_grant_head_wake_all(&log->l_write_head);
4000 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4001 * as if the log writes were completed. The abort handling in the log
4002 * item committed callback functions will do this again under lock to
4003 * avoid races.
4005 wake_up_all(&log->l_cilp->xc_commit_wait);
4006 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4008 #ifdef XFSERRORDEBUG
4010 xlog_in_core_t *iclog;
4012 spin_lock(&log->l_icloglock);
4013 iclog = log->l_iclog;
4014 do {
4015 ASSERT(iclog->ic_callback == 0);
4016 iclog = iclog->ic_next;
4017 } while (iclog != log->l_iclog);
4018 spin_unlock(&log->l_icloglock);
4020 #endif
4021 /* return non-zero if log IOERROR transition had already happened */
4022 return retval;
4025 STATIC int
4026 xlog_iclogs_empty(
4027 struct xlog *log)
4029 xlog_in_core_t *iclog;
4031 iclog = log->l_iclog;
4032 do {
4033 /* endianness does not matter here, zero is zero in
4034 * any language.
4036 if (iclog->ic_header.h_num_logops)
4037 return 0;
4038 iclog = iclog->ic_next;
4039 } while (iclog != log->l_iclog);
4040 return 1;
4044 * Verify that an LSN stamped into a piece of metadata is valid. This is
4045 * intended for use in read verifiers on v5 superblocks.
4047 bool
4048 xfs_log_check_lsn(
4049 struct xfs_mount *mp,
4050 xfs_lsn_t lsn)
4052 struct xlog *log = mp->m_log;
4053 bool valid;
4056 * norecovery mode skips mount-time log processing and unconditionally
4057 * resets the in-core LSN. We can't validate in this mode, but
4058 * modifications are not allowed anyways so just return true.
4060 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4061 return true;
4064 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4065 * handled by recovery and thus safe to ignore here.
4067 if (lsn == NULLCOMMITLSN)
4068 return true;
4070 valid = xlog_valid_lsn(mp->m_log, lsn);
4072 /* warn the user about what's gone wrong before verifier failure */
4073 if (!valid) {
4074 spin_lock(&log->l_icloglock);
4075 xfs_warn(mp,
4076 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4077 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4078 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4079 log->l_curr_cycle, log->l_curr_block);
4080 spin_unlock(&log->l_icloglock);
4083 return valid;