2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly
= 1;
80 int sysctl_tcp_window_scaling __read_mostly
= 1;
81 int sysctl_tcp_sack __read_mostly
= 1;
82 int sysctl_tcp_fack __read_mostly
= 1;
83 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
84 int sysctl_tcp_max_reordering __read_mostly
= 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering
);
86 int sysctl_tcp_dsack __read_mostly
= 1;
87 int sysctl_tcp_app_win __read_mostly
= 31;
88 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit
= 100;
94 int sysctl_tcp_stdurg __read_mostly
;
95 int sysctl_tcp_rfc1337 __read_mostly
;
96 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
97 int sysctl_tcp_frto __read_mostly
= 2;
98 int sysctl_tcp_min_rtt_wlen __read_mostly
= 300;
100 int sysctl_tcp_thin_dupack __read_mostly
;
102 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
103 int sysctl_tcp_early_retrans __read_mostly
= 3;
104 int sysctl_tcp_invalid_ratelimit __read_mostly
= HZ
/2;
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
114 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
115 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
116 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
117 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
119 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
121 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
124 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
129 /* Adapt the MSS value used to make delayed ack decision to the
132 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
134 struct inet_connection_sock
*icsk
= inet_csk(sk
);
135 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
138 icsk
->icsk_ack
.last_seg_size
= 0;
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
143 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
144 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
145 icsk
->icsk_ack
.rcv_mss
= len
;
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
150 * "len" is invariant segment length, including TCP header.
152 len
+= skb
->data
- skb_transport_header(skb
);
153 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
159 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
160 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
165 len
-= tcp_sk(sk
)->tcp_header_len
;
166 icsk
->icsk_ack
.last_seg_size
= len
;
168 icsk
->icsk_ack
.rcv_mss
= len
;
172 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
173 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
174 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
178 static void tcp_incr_quickack(struct sock
*sk
)
180 struct inet_connection_sock
*icsk
= inet_csk(sk
);
181 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
185 if (quickacks
> icsk
->icsk_ack
.quick
)
186 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
189 static void tcp_enter_quickack_mode(struct sock
*sk
)
191 struct inet_connection_sock
*icsk
= inet_csk(sk
);
192 tcp_incr_quickack(sk
);
193 icsk
->icsk_ack
.pingpong
= 0;
194 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
197 /* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
201 static bool tcp_in_quickack_mode(struct sock
*sk
)
203 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
204 const struct dst_entry
*dst
= __sk_dst_get(sk
);
206 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
207 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
210 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
212 if (tp
->ecn_flags
& TCP_ECN_OK
)
213 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
216 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
218 if (tcp_hdr(skb
)->cwr
)
219 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
222 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
224 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
227 static void __tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
229 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
230 case INET_ECN_NOT_ECT
:
231 /* Funny extension: if ECT is not set on a segment,
232 * and we already seen ECT on a previous segment,
233 * it is probably a retransmit.
235 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
236 tcp_enter_quickack_mode((struct sock
*)tp
);
239 if (tcp_ca_needs_ecn((struct sock
*)tp
))
240 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_IS_CE
);
242 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
243 /* Better not delay acks, sender can have a very low cwnd */
244 tcp_enter_quickack_mode((struct sock
*)tp
);
245 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
247 tp
->ecn_flags
|= TCP_ECN_SEEN
;
250 if (tcp_ca_needs_ecn((struct sock
*)tp
))
251 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_NO_CE
);
252 tp
->ecn_flags
|= TCP_ECN_SEEN
;
257 static void tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
259 if (tp
->ecn_flags
& TCP_ECN_OK
)
260 __tcp_ecn_check_ce(tp
, skb
);
263 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
265 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
266 tp
->ecn_flags
&= ~TCP_ECN_OK
;
269 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
271 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
272 tp
->ecn_flags
&= ~TCP_ECN_OK
;
275 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
277 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
282 /* Buffer size and advertised window tuning.
284 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287 static void tcp_sndbuf_expand(struct sock
*sk
)
289 const struct tcp_sock
*tp
= tcp_sk(sk
);
293 /* Worst case is non GSO/TSO : each frame consumes one skb
294 * and skb->head is kmalloced using power of two area of memory
296 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
298 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
300 per_mss
= roundup_pow_of_two(per_mss
) +
301 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
303 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
304 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
306 /* Fast Recovery (RFC 5681 3.2) :
307 * Cubic needs 1.7 factor, rounded to 2 to include
308 * extra cushion (application might react slowly to POLLOUT)
310 sndmem
= 2 * nr_segs
* per_mss
;
312 if (sk
->sk_sndbuf
< sndmem
)
313 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
316 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
318 * All tcp_full_space() is split to two parts: "network" buffer, allocated
319 * forward and advertised in receiver window (tp->rcv_wnd) and
320 * "application buffer", required to isolate scheduling/application
321 * latencies from network.
322 * window_clamp is maximal advertised window. It can be less than
323 * tcp_full_space(), in this case tcp_full_space() - window_clamp
324 * is reserved for "application" buffer. The less window_clamp is
325 * the smoother our behaviour from viewpoint of network, but the lower
326 * throughput and the higher sensitivity of the connection to losses. 8)
328 * rcv_ssthresh is more strict window_clamp used at "slow start"
329 * phase to predict further behaviour of this connection.
330 * It is used for two goals:
331 * - to enforce header prediction at sender, even when application
332 * requires some significant "application buffer". It is check #1.
333 * - to prevent pruning of receive queue because of misprediction
334 * of receiver window. Check #2.
336 * The scheme does not work when sender sends good segments opening
337 * window and then starts to feed us spaghetti. But it should work
338 * in common situations. Otherwise, we have to rely on queue collapsing.
341 /* Slow part of check#2. */
342 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
344 struct tcp_sock
*tp
= tcp_sk(sk
);
346 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
347 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
349 while (tp
->rcv_ssthresh
<= window
) {
350 if (truesize
<= skb
->len
)
351 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
359 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
361 struct tcp_sock
*tp
= tcp_sk(sk
);
364 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
365 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
366 !tcp_under_memory_pressure(sk
)) {
369 /* Check #2. Increase window, if skb with such overhead
370 * will fit to rcvbuf in future.
372 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
373 incr
= 2 * tp
->advmss
;
375 incr
= __tcp_grow_window(sk
, skb
);
378 incr
= max_t(int, incr
, 2 * skb
->len
);
379 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
381 inet_csk(sk
)->icsk_ack
.quick
|= 1;
386 /* 3. Tuning rcvbuf, when connection enters established state. */
387 static void tcp_fixup_rcvbuf(struct sock
*sk
)
389 u32 mss
= tcp_sk(sk
)->advmss
;
392 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
393 tcp_default_init_rwnd(mss
);
395 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
396 * Allow enough cushion so that sender is not limited by our window
398 if (sysctl_tcp_moderate_rcvbuf
)
401 if (sk
->sk_rcvbuf
< rcvmem
)
402 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
405 /* 4. Try to fixup all. It is made immediately after connection enters
408 void tcp_init_buffer_space(struct sock
*sk
)
410 struct tcp_sock
*tp
= tcp_sk(sk
);
413 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
414 tcp_fixup_rcvbuf(sk
);
415 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
416 tcp_sndbuf_expand(sk
);
418 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
419 tp
->rcvq_space
.time
= tcp_time_stamp
;
420 tp
->rcvq_space
.seq
= tp
->copied_seq
;
422 maxwin
= tcp_full_space(sk
);
424 if (tp
->window_clamp
>= maxwin
) {
425 tp
->window_clamp
= maxwin
;
427 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
428 tp
->window_clamp
= max(maxwin
-
429 (maxwin
>> sysctl_tcp_app_win
),
433 /* Force reservation of one segment. */
434 if (sysctl_tcp_app_win
&&
435 tp
->window_clamp
> 2 * tp
->advmss
&&
436 tp
->window_clamp
+ tp
->advmss
> maxwin
)
437 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
439 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
440 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
443 /* 5. Recalculate window clamp after socket hit its memory bounds. */
444 static void tcp_clamp_window(struct sock
*sk
)
446 struct tcp_sock
*tp
= tcp_sk(sk
);
447 struct inet_connection_sock
*icsk
= inet_csk(sk
);
449 icsk
->icsk_ack
.quick
= 0;
451 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
452 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
453 !tcp_under_memory_pressure(sk
) &&
454 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
455 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
458 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
459 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
462 /* Initialize RCV_MSS value.
463 * RCV_MSS is an our guess about MSS used by the peer.
464 * We haven't any direct information about the MSS.
465 * It's better to underestimate the RCV_MSS rather than overestimate.
466 * Overestimations make us ACKing less frequently than needed.
467 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
469 void tcp_initialize_rcv_mss(struct sock
*sk
)
471 const struct tcp_sock
*tp
= tcp_sk(sk
);
472 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
474 hint
= min(hint
, tp
->rcv_wnd
/ 2);
475 hint
= min(hint
, TCP_MSS_DEFAULT
);
476 hint
= max(hint
, TCP_MIN_MSS
);
478 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
480 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
482 /* Receiver "autotuning" code.
484 * The algorithm for RTT estimation w/o timestamps is based on
485 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
486 * <http://public.lanl.gov/radiant/pubs.html#DRS>
488 * More detail on this code can be found at
489 * <http://staff.psc.edu/jheffner/>,
490 * though this reference is out of date. A new paper
493 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
495 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
501 if (new_sample
!= 0) {
502 /* If we sample in larger samples in the non-timestamp
503 * case, we could grossly overestimate the RTT especially
504 * with chatty applications or bulk transfer apps which
505 * are stalled on filesystem I/O.
507 * Also, since we are only going for a minimum in the
508 * non-timestamp case, we do not smooth things out
509 * else with timestamps disabled convergence takes too
513 m
-= (new_sample
>> 3);
521 /* No previous measure. */
525 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
526 tp
->rcv_rtt_est
.rtt
= new_sample
;
529 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
531 if (tp
->rcv_rtt_est
.time
== 0)
533 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
535 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
538 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
539 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
542 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
543 const struct sk_buff
*skb
)
545 struct tcp_sock
*tp
= tcp_sk(sk
);
546 if (tp
->rx_opt
.rcv_tsecr
&&
547 (TCP_SKB_CB(skb
)->end_seq
-
548 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
549 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
553 * This function should be called every time data is copied to user space.
554 * It calculates the appropriate TCP receive buffer space.
556 void tcp_rcv_space_adjust(struct sock
*sk
)
558 struct tcp_sock
*tp
= tcp_sk(sk
);
562 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
563 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
566 /* Number of bytes copied to user in last RTT */
567 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
568 if (copied
<= tp
->rcvq_space
.space
)
572 * copied = bytes received in previous RTT, our base window
573 * To cope with packet losses, we need a 2x factor
574 * To cope with slow start, and sender growing its cwin by 100 %
575 * every RTT, we need a 4x factor, because the ACK we are sending
576 * now is for the next RTT, not the current one :
577 * <prev RTT . ><current RTT .. ><next RTT .... >
580 if (sysctl_tcp_moderate_rcvbuf
&&
581 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
582 int rcvwin
, rcvmem
, rcvbuf
;
584 /* minimal window to cope with packet losses, assuming
585 * steady state. Add some cushion because of small variations.
587 rcvwin
= (copied
<< 1) + 16 * tp
->advmss
;
589 /* If rate increased by 25%,
590 * assume slow start, rcvwin = 3 * copied
591 * If rate increased by 50%,
592 * assume sender can use 2x growth, rcvwin = 4 * copied
595 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 2)) {
597 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 1))
600 rcvwin
+= (rcvwin
>> 1);
603 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
604 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
607 rcvbuf
= min(rcvwin
/ tp
->advmss
* rcvmem
, sysctl_tcp_rmem
[2]);
608 if (rcvbuf
> sk
->sk_rcvbuf
) {
609 sk
->sk_rcvbuf
= rcvbuf
;
611 /* Make the window clamp follow along. */
612 tp
->window_clamp
= rcvwin
;
615 tp
->rcvq_space
.space
= copied
;
618 tp
->rcvq_space
.seq
= tp
->copied_seq
;
619 tp
->rcvq_space
.time
= tcp_time_stamp
;
622 /* There is something which you must keep in mind when you analyze the
623 * behavior of the tp->ato delayed ack timeout interval. When a
624 * connection starts up, we want to ack as quickly as possible. The
625 * problem is that "good" TCP's do slow start at the beginning of data
626 * transmission. The means that until we send the first few ACK's the
627 * sender will sit on his end and only queue most of his data, because
628 * he can only send snd_cwnd unacked packets at any given time. For
629 * each ACK we send, he increments snd_cwnd and transmits more of his
632 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
634 struct tcp_sock
*tp
= tcp_sk(sk
);
635 struct inet_connection_sock
*icsk
= inet_csk(sk
);
638 inet_csk_schedule_ack(sk
);
640 tcp_measure_rcv_mss(sk
, skb
);
642 tcp_rcv_rtt_measure(tp
);
644 now
= tcp_time_stamp
;
646 if (!icsk
->icsk_ack
.ato
) {
647 /* The _first_ data packet received, initialize
648 * delayed ACK engine.
650 tcp_incr_quickack(sk
);
651 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
653 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
655 if (m
<= TCP_ATO_MIN
/ 2) {
656 /* The fastest case is the first. */
657 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
658 } else if (m
< icsk
->icsk_ack
.ato
) {
659 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
660 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
661 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
662 } else if (m
> icsk
->icsk_rto
) {
663 /* Too long gap. Apparently sender failed to
664 * restart window, so that we send ACKs quickly.
666 tcp_incr_quickack(sk
);
670 icsk
->icsk_ack
.lrcvtime
= now
;
672 tcp_ecn_check_ce(tp
, skb
);
675 tcp_grow_window(sk
, skb
);
678 /* Called to compute a smoothed rtt estimate. The data fed to this
679 * routine either comes from timestamps, or from segments that were
680 * known _not_ to have been retransmitted [see Karn/Partridge
681 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
682 * piece by Van Jacobson.
683 * NOTE: the next three routines used to be one big routine.
684 * To save cycles in the RFC 1323 implementation it was better to break
685 * it up into three procedures. -- erics
687 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
689 struct tcp_sock
*tp
= tcp_sk(sk
);
690 long m
= mrtt_us
; /* RTT */
691 u32 srtt
= tp
->srtt_us
;
693 /* The following amusing code comes from Jacobson's
694 * article in SIGCOMM '88. Note that rtt and mdev
695 * are scaled versions of rtt and mean deviation.
696 * This is designed to be as fast as possible
697 * m stands for "measurement".
699 * On a 1990 paper the rto value is changed to:
700 * RTO = rtt + 4 * mdev
702 * Funny. This algorithm seems to be very broken.
703 * These formulae increase RTO, when it should be decreased, increase
704 * too slowly, when it should be increased quickly, decrease too quickly
705 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
706 * does not matter how to _calculate_ it. Seems, it was trap
707 * that VJ failed to avoid. 8)
710 m
-= (srtt
>> 3); /* m is now error in rtt est */
711 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
713 m
= -m
; /* m is now abs(error) */
714 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
715 /* This is similar to one of Eifel findings.
716 * Eifel blocks mdev updates when rtt decreases.
717 * This solution is a bit different: we use finer gain
718 * for mdev in this case (alpha*beta).
719 * Like Eifel it also prevents growth of rto,
720 * but also it limits too fast rto decreases,
721 * happening in pure Eifel.
726 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
728 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
729 if (tp
->mdev_us
> tp
->mdev_max_us
) {
730 tp
->mdev_max_us
= tp
->mdev_us
;
731 if (tp
->mdev_max_us
> tp
->rttvar_us
)
732 tp
->rttvar_us
= tp
->mdev_max_us
;
734 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
735 if (tp
->mdev_max_us
< tp
->rttvar_us
)
736 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
737 tp
->rtt_seq
= tp
->snd_nxt
;
738 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
741 /* no previous measure. */
742 srtt
= m
<< 3; /* take the measured time to be rtt */
743 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
744 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
745 tp
->mdev_max_us
= tp
->rttvar_us
;
746 tp
->rtt_seq
= tp
->snd_nxt
;
748 tp
->srtt_us
= max(1U, srtt
);
751 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
752 * Note: TCP stack does not yet implement pacing.
753 * FQ packet scheduler can be used to implement cheap but effective
754 * TCP pacing, to smooth the burst on large writes when packets
755 * in flight is significantly lower than cwnd (or rwin)
757 int sysctl_tcp_pacing_ss_ratio __read_mostly
= 200;
758 int sysctl_tcp_pacing_ca_ratio __read_mostly
= 120;
760 static void tcp_update_pacing_rate(struct sock
*sk
)
762 const struct tcp_sock
*tp
= tcp_sk(sk
);
765 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
766 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
768 /* current rate is (cwnd * mss) / srtt
769 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
770 * In Congestion Avoidance phase, set it to 120 % the current rate.
772 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
773 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
774 * end of slow start and should slow down.
776 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
777 rate
*= sysctl_tcp_pacing_ss_ratio
;
779 rate
*= sysctl_tcp_pacing_ca_ratio
;
781 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
783 if (likely(tp
->srtt_us
))
784 do_div(rate
, tp
->srtt_us
);
786 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
787 * without any lock. We want to make sure compiler wont store
788 * intermediate values in this location.
790 ACCESS_ONCE(sk
->sk_pacing_rate
) = min_t(u64
, rate
,
791 sk
->sk_max_pacing_rate
);
794 /* Calculate rto without backoff. This is the second half of Van Jacobson's
795 * routine referred to above.
797 static void tcp_set_rto(struct sock
*sk
)
799 const struct tcp_sock
*tp
= tcp_sk(sk
);
800 /* Old crap is replaced with new one. 8)
803 * 1. If rtt variance happened to be less 50msec, it is hallucination.
804 * It cannot be less due to utterly erratic ACK generation made
805 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
806 * to do with delayed acks, because at cwnd>2 true delack timeout
807 * is invisible. Actually, Linux-2.4 also generates erratic
808 * ACKs in some circumstances.
810 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
812 /* 2. Fixups made earlier cannot be right.
813 * If we do not estimate RTO correctly without them,
814 * all the algo is pure shit and should be replaced
815 * with correct one. It is exactly, which we pretend to do.
818 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
819 * guarantees that rto is higher.
824 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
826 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
829 cwnd
= TCP_INIT_CWND
;
830 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
834 * Packet counting of FACK is based on in-order assumptions, therefore TCP
835 * disables it when reordering is detected
837 void tcp_disable_fack(struct tcp_sock
*tp
)
839 /* RFC3517 uses different metric in lost marker => reset on change */
841 tp
->lost_skb_hint
= NULL
;
842 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
845 /* Take a notice that peer is sending D-SACKs */
846 static void tcp_dsack_seen(struct tcp_sock
*tp
)
848 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
851 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
854 struct tcp_sock
*tp
= tcp_sk(sk
);
855 if (metric
> tp
->reordering
) {
858 tp
->reordering
= min(sysctl_tcp_max_reordering
, metric
);
860 /* This exciting event is worth to be remembered. 8) */
862 mib_idx
= LINUX_MIB_TCPTSREORDER
;
863 else if (tcp_is_reno(tp
))
864 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
865 else if (tcp_is_fack(tp
))
866 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
868 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
870 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
871 #if FASTRETRANS_DEBUG > 1
872 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
873 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
877 tp
->undo_marker
? tp
->undo_retrans
: 0);
879 tcp_disable_fack(tp
);
883 tcp_disable_early_retrans(tp
);
887 /* This must be called before lost_out is incremented */
888 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
890 if (!tp
->retransmit_skb_hint
||
891 before(TCP_SKB_CB(skb
)->seq
,
892 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
893 tp
->retransmit_skb_hint
= skb
;
896 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
897 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
900 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
902 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
903 tcp_verify_retransmit_hint(tp
, skb
);
905 tp
->lost_out
+= tcp_skb_pcount(skb
);
906 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
910 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
912 tcp_verify_retransmit_hint(tp
, skb
);
914 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
915 tp
->lost_out
+= tcp_skb_pcount(skb
);
916 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
920 /* This procedure tags the retransmission queue when SACKs arrive.
922 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
923 * Packets in queue with these bits set are counted in variables
924 * sacked_out, retrans_out and lost_out, correspondingly.
926 * Valid combinations are:
927 * Tag InFlight Description
928 * 0 1 - orig segment is in flight.
929 * S 0 - nothing flies, orig reached receiver.
930 * L 0 - nothing flies, orig lost by net.
931 * R 2 - both orig and retransmit are in flight.
932 * L|R 1 - orig is lost, retransmit is in flight.
933 * S|R 1 - orig reached receiver, retrans is still in flight.
934 * (L|S|R is logically valid, it could occur when L|R is sacked,
935 * but it is equivalent to plain S and code short-curcuits it to S.
936 * L|S is logically invalid, it would mean -1 packet in flight 8))
938 * These 6 states form finite state machine, controlled by the following events:
939 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
940 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
941 * 3. Loss detection event of two flavors:
942 * A. Scoreboard estimator decided the packet is lost.
943 * A'. Reno "three dupacks" marks head of queue lost.
944 * A''. Its FACK modification, head until snd.fack is lost.
945 * B. SACK arrives sacking SND.NXT at the moment, when the
946 * segment was retransmitted.
947 * 4. D-SACK added new rule: D-SACK changes any tag to S.
949 * It is pleasant to note, that state diagram turns out to be commutative,
950 * so that we are allowed not to be bothered by order of our actions,
951 * when multiple events arrive simultaneously. (see the function below).
953 * Reordering detection.
954 * --------------------
955 * Reordering metric is maximal distance, which a packet can be displaced
956 * in packet stream. With SACKs we can estimate it:
958 * 1. SACK fills old hole and the corresponding segment was not
959 * ever retransmitted -> reordering. Alas, we cannot use it
960 * when segment was retransmitted.
961 * 2. The last flaw is solved with D-SACK. D-SACK arrives
962 * for retransmitted and already SACKed segment -> reordering..
963 * Both of these heuristics are not used in Loss state, when we cannot
964 * account for retransmits accurately.
966 * SACK block validation.
967 * ----------------------
969 * SACK block range validation checks that the received SACK block fits to
970 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
971 * Note that SND.UNA is not included to the range though being valid because
972 * it means that the receiver is rather inconsistent with itself reporting
973 * SACK reneging when it should advance SND.UNA. Such SACK block this is
974 * perfectly valid, however, in light of RFC2018 which explicitly states
975 * that "SACK block MUST reflect the newest segment. Even if the newest
976 * segment is going to be discarded ...", not that it looks very clever
977 * in case of head skb. Due to potentional receiver driven attacks, we
978 * choose to avoid immediate execution of a walk in write queue due to
979 * reneging and defer head skb's loss recovery to standard loss recovery
980 * procedure that will eventually trigger (nothing forbids us doing this).
982 * Implements also blockage to start_seq wrap-around. Problem lies in the
983 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
984 * there's no guarantee that it will be before snd_nxt (n). The problem
985 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
988 * <- outs wnd -> <- wrapzone ->
989 * u e n u_w e_w s n_w
991 * |<------------+------+----- TCP seqno space --------------+---------->|
992 * ...-- <2^31 ->| |<--------...
993 * ...---- >2^31 ------>| |<--------...
995 * Current code wouldn't be vulnerable but it's better still to discard such
996 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
997 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
998 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
999 * equal to the ideal case (infinite seqno space without wrap caused issues).
1001 * With D-SACK the lower bound is extended to cover sequence space below
1002 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1003 * again, D-SACK block must not to go across snd_una (for the same reason as
1004 * for the normal SACK blocks, explained above). But there all simplicity
1005 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1006 * fully below undo_marker they do not affect behavior in anyway and can
1007 * therefore be safely ignored. In rare cases (which are more or less
1008 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1009 * fragmentation and packet reordering past skb's retransmission. To consider
1010 * them correctly, the acceptable range must be extended even more though
1011 * the exact amount is rather hard to quantify. However, tp->max_window can
1012 * be used as an exaggerated estimate.
1014 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1015 u32 start_seq
, u32 end_seq
)
1017 /* Too far in future, or reversed (interpretation is ambiguous) */
1018 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1021 /* Nasty start_seq wrap-around check (see comments above) */
1022 if (!before(start_seq
, tp
->snd_nxt
))
1025 /* In outstanding window? ...This is valid exit for D-SACKs too.
1026 * start_seq == snd_una is non-sensical (see comments above)
1028 if (after(start_seq
, tp
->snd_una
))
1031 if (!is_dsack
|| !tp
->undo_marker
)
1034 /* ...Then it's D-SACK, and must reside below snd_una completely */
1035 if (after(end_seq
, tp
->snd_una
))
1038 if (!before(start_seq
, tp
->undo_marker
))
1042 if (!after(end_seq
, tp
->undo_marker
))
1045 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1046 * start_seq < undo_marker and end_seq >= undo_marker.
1048 return !before(start_seq
, end_seq
- tp
->max_window
);
1051 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1052 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1055 struct tcp_sock
*tp
= tcp_sk(sk
);
1056 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1057 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1058 bool dup_sack
= false;
1060 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1063 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1064 } else if (num_sacks
> 1) {
1065 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1066 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1068 if (!after(end_seq_0
, end_seq_1
) &&
1069 !before(start_seq_0
, start_seq_1
)) {
1072 NET_INC_STATS_BH(sock_net(sk
),
1073 LINUX_MIB_TCPDSACKOFORECV
);
1077 /* D-SACK for already forgotten data... Do dumb counting. */
1078 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1079 !after(end_seq_0
, prior_snd_una
) &&
1080 after(end_seq_0
, tp
->undo_marker
))
1086 struct tcp_sacktag_state
{
1089 /* Timestamps for earliest and latest never-retransmitted segment
1090 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1091 * but congestion control should still get an accurate delay signal.
1093 struct skb_mstamp first_sackt
;
1094 struct skb_mstamp last_sackt
;
1098 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1099 * the incoming SACK may not exactly match but we can find smaller MSS
1100 * aligned portion of it that matches. Therefore we might need to fragment
1101 * which may fail and creates some hassle (caller must handle error case
1104 * FIXME: this could be merged to shift decision code
1106 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1107 u32 start_seq
, u32 end_seq
)
1111 unsigned int pkt_len
;
1114 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1115 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1117 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1118 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1119 mss
= tcp_skb_mss(skb
);
1120 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1123 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1127 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1132 /* Round if necessary so that SACKs cover only full MSSes
1133 * and/or the remaining small portion (if present)
1135 if (pkt_len
> mss
) {
1136 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1137 if (!in_sack
&& new_len
< pkt_len
) {
1139 if (new_len
>= skb
->len
)
1144 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
, GFP_ATOMIC
);
1152 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1153 static u8
tcp_sacktag_one(struct sock
*sk
,
1154 struct tcp_sacktag_state
*state
, u8 sacked
,
1155 u32 start_seq
, u32 end_seq
,
1156 int dup_sack
, int pcount
,
1157 const struct skb_mstamp
*xmit_time
)
1159 struct tcp_sock
*tp
= tcp_sk(sk
);
1160 int fack_count
= state
->fack_count
;
1162 /* Account D-SACK for retransmitted packet. */
1163 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1164 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1165 after(end_seq
, tp
->undo_marker
))
1167 if (sacked
& TCPCB_SACKED_ACKED
)
1168 state
->reord
= min(fack_count
, state
->reord
);
1171 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1172 if (!after(end_seq
, tp
->snd_una
))
1175 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1176 tcp_rack_advance(tp
, xmit_time
, sacked
);
1178 if (sacked
& TCPCB_SACKED_RETRANS
) {
1179 /* If the segment is not tagged as lost,
1180 * we do not clear RETRANS, believing
1181 * that retransmission is still in flight.
1183 if (sacked
& TCPCB_LOST
) {
1184 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1185 tp
->lost_out
-= pcount
;
1186 tp
->retrans_out
-= pcount
;
1189 if (!(sacked
& TCPCB_RETRANS
)) {
1190 /* New sack for not retransmitted frame,
1191 * which was in hole. It is reordering.
1193 if (before(start_seq
,
1194 tcp_highest_sack_seq(tp
)))
1195 state
->reord
= min(fack_count
,
1197 if (!after(end_seq
, tp
->high_seq
))
1198 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1199 if (state
->first_sackt
.v64
== 0)
1200 state
->first_sackt
= *xmit_time
;
1201 state
->last_sackt
= *xmit_time
;
1204 if (sacked
& TCPCB_LOST
) {
1205 sacked
&= ~TCPCB_LOST
;
1206 tp
->lost_out
-= pcount
;
1210 sacked
|= TCPCB_SACKED_ACKED
;
1211 state
->flag
|= FLAG_DATA_SACKED
;
1212 tp
->sacked_out
+= pcount
;
1214 fack_count
+= pcount
;
1216 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1217 if (!tcp_is_fack(tp
) && tp
->lost_skb_hint
&&
1218 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1219 tp
->lost_cnt_hint
+= pcount
;
1221 if (fack_count
> tp
->fackets_out
)
1222 tp
->fackets_out
= fack_count
;
1225 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1226 * frames and clear it. undo_retrans is decreased above, L|R frames
1227 * are accounted above as well.
1229 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1230 sacked
&= ~TCPCB_SACKED_RETRANS
;
1231 tp
->retrans_out
-= pcount
;
1237 /* Shift newly-SACKed bytes from this skb to the immediately previous
1238 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1240 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1241 struct tcp_sacktag_state
*state
,
1242 unsigned int pcount
, int shifted
, int mss
,
1245 struct tcp_sock
*tp
= tcp_sk(sk
);
1246 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1247 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1248 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1252 /* Adjust counters and hints for the newly sacked sequence
1253 * range but discard the return value since prev is already
1254 * marked. We must tag the range first because the seq
1255 * advancement below implicitly advances
1256 * tcp_highest_sack_seq() when skb is highest_sack.
1258 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1259 start_seq
, end_seq
, dup_sack
, pcount
,
1262 if (skb
== tp
->lost_skb_hint
)
1263 tp
->lost_cnt_hint
+= pcount
;
1265 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1266 TCP_SKB_CB(skb
)->seq
+= shifted
;
1268 tcp_skb_pcount_add(prev
, pcount
);
1269 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1270 tcp_skb_pcount_add(skb
, -pcount
);
1272 /* When we're adding to gso_segs == 1, gso_size will be zero,
1273 * in theory this shouldn't be necessary but as long as DSACK
1274 * code can come after this skb later on it's better to keep
1275 * setting gso_size to something.
1277 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1278 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1280 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1281 if (tcp_skb_pcount(skb
) <= 1)
1282 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1284 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1285 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1288 BUG_ON(!tcp_skb_pcount(skb
));
1289 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1293 /* Whole SKB was eaten :-) */
1295 if (skb
== tp
->retransmit_skb_hint
)
1296 tp
->retransmit_skb_hint
= prev
;
1297 if (skb
== tp
->lost_skb_hint
) {
1298 tp
->lost_skb_hint
= prev
;
1299 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1302 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1303 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1304 TCP_SKB_CB(prev
)->end_seq
++;
1306 if (skb
== tcp_highest_sack(sk
))
1307 tcp_advance_highest_sack(sk
, skb
);
1309 tcp_unlink_write_queue(skb
, sk
);
1310 sk_wmem_free_skb(sk
, skb
);
1312 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1317 /* I wish gso_size would have a bit more sane initialization than
1318 * something-or-zero which complicates things
1320 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1322 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1325 /* Shifting pages past head area doesn't work */
1326 static int skb_can_shift(const struct sk_buff
*skb
)
1328 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1331 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1334 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1335 struct tcp_sacktag_state
*state
,
1336 u32 start_seq
, u32 end_seq
,
1339 struct tcp_sock
*tp
= tcp_sk(sk
);
1340 struct sk_buff
*prev
;
1346 if (!sk_can_gso(sk
))
1349 /* Normally R but no L won't result in plain S */
1351 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1353 if (!skb_can_shift(skb
))
1355 /* This frame is about to be dropped (was ACKed). */
1356 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1359 /* Can only happen with delayed DSACK + discard craziness */
1360 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1362 prev
= tcp_write_queue_prev(sk
, skb
);
1364 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1367 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1368 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1372 pcount
= tcp_skb_pcount(skb
);
1373 mss
= tcp_skb_seglen(skb
);
1375 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1376 * drop this restriction as unnecessary
1378 if (mss
!= tcp_skb_seglen(prev
))
1381 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1383 /* CHECKME: This is non-MSS split case only?, this will
1384 * cause skipped skbs due to advancing loop btw, original
1385 * has that feature too
1387 if (tcp_skb_pcount(skb
) <= 1)
1390 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1392 /* TODO: head merge to next could be attempted here
1393 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1394 * though it might not be worth of the additional hassle
1396 * ...we can probably just fallback to what was done
1397 * previously. We could try merging non-SACKed ones
1398 * as well but it probably isn't going to buy off
1399 * because later SACKs might again split them, and
1400 * it would make skb timestamp tracking considerably
1406 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1408 BUG_ON(len
> skb
->len
);
1410 /* MSS boundaries should be honoured or else pcount will
1411 * severely break even though it makes things bit trickier.
1412 * Optimize common case to avoid most of the divides
1414 mss
= tcp_skb_mss(skb
);
1416 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1417 * drop this restriction as unnecessary
1419 if (mss
!= tcp_skb_seglen(prev
))
1424 } else if (len
< mss
) {
1432 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1433 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1436 if (!skb_shift(prev
, skb
, len
))
1438 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1441 /* Hole filled allows collapsing with the next as well, this is very
1442 * useful when hole on every nth skb pattern happens
1444 if (prev
== tcp_write_queue_tail(sk
))
1446 skb
= tcp_write_queue_next(sk
, prev
);
1448 if (!skb_can_shift(skb
) ||
1449 (skb
== tcp_send_head(sk
)) ||
1450 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1451 (mss
!= tcp_skb_seglen(skb
)))
1455 if (skb_shift(prev
, skb
, len
)) {
1456 pcount
+= tcp_skb_pcount(skb
);
1457 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1461 state
->fack_count
+= pcount
;
1468 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1472 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1473 struct tcp_sack_block
*next_dup
,
1474 struct tcp_sacktag_state
*state
,
1475 u32 start_seq
, u32 end_seq
,
1478 struct tcp_sock
*tp
= tcp_sk(sk
);
1479 struct sk_buff
*tmp
;
1481 tcp_for_write_queue_from(skb
, sk
) {
1483 bool dup_sack
= dup_sack_in
;
1485 if (skb
== tcp_send_head(sk
))
1488 /* queue is in-order => we can short-circuit the walk early */
1489 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1493 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1494 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1495 next_dup
->start_seq
,
1501 /* skb reference here is a bit tricky to get right, since
1502 * shifting can eat and free both this skb and the next,
1503 * so not even _safe variant of the loop is enough.
1506 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1507 start_seq
, end_seq
, dup_sack
);
1516 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1522 if (unlikely(in_sack
< 0))
1526 TCP_SKB_CB(skb
)->sacked
=
1529 TCP_SKB_CB(skb
)->sacked
,
1530 TCP_SKB_CB(skb
)->seq
,
1531 TCP_SKB_CB(skb
)->end_seq
,
1533 tcp_skb_pcount(skb
),
1536 if (!before(TCP_SKB_CB(skb
)->seq
,
1537 tcp_highest_sack_seq(tp
)))
1538 tcp_advance_highest_sack(sk
, skb
);
1541 state
->fack_count
+= tcp_skb_pcount(skb
);
1546 /* Avoid all extra work that is being done by sacktag while walking in
1549 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1550 struct tcp_sacktag_state
*state
,
1553 tcp_for_write_queue_from(skb
, sk
) {
1554 if (skb
== tcp_send_head(sk
))
1557 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1560 state
->fack_count
+= tcp_skb_pcount(skb
);
1565 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1567 struct tcp_sack_block
*next_dup
,
1568 struct tcp_sacktag_state
*state
,
1574 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1575 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1576 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1577 next_dup
->start_seq
, next_dup
->end_seq
,
1584 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1586 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1590 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1591 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1593 struct tcp_sock
*tp
= tcp_sk(sk
);
1594 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1595 TCP_SKB_CB(ack_skb
)->sacked
);
1596 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1597 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1598 struct tcp_sack_block
*cache
;
1599 struct sk_buff
*skb
;
1600 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1602 bool found_dup_sack
= false;
1604 int first_sack_index
;
1607 state
->reord
= tp
->packets_out
;
1609 if (!tp
->sacked_out
) {
1610 if (WARN_ON(tp
->fackets_out
))
1611 tp
->fackets_out
= 0;
1612 tcp_highest_sack_reset(sk
);
1615 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1616 num_sacks
, prior_snd_una
);
1618 state
->flag
|= FLAG_DSACKING_ACK
;
1620 /* Eliminate too old ACKs, but take into
1621 * account more or less fresh ones, they can
1622 * contain valid SACK info.
1624 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1627 if (!tp
->packets_out
)
1631 first_sack_index
= 0;
1632 for (i
= 0; i
< num_sacks
; i
++) {
1633 bool dup_sack
= !i
&& found_dup_sack
;
1635 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1636 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1638 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1639 sp
[used_sacks
].start_seq
,
1640 sp
[used_sacks
].end_seq
)) {
1644 if (!tp
->undo_marker
)
1645 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1647 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1649 /* Don't count olds caused by ACK reordering */
1650 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1651 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1653 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1656 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1658 first_sack_index
= -1;
1662 /* Ignore very old stuff early */
1663 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1669 /* order SACK blocks to allow in order walk of the retrans queue */
1670 for (i
= used_sacks
- 1; i
> 0; i
--) {
1671 for (j
= 0; j
< i
; j
++) {
1672 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1673 swap(sp
[j
], sp
[j
+ 1]);
1675 /* Track where the first SACK block goes to */
1676 if (j
== first_sack_index
)
1677 first_sack_index
= j
+ 1;
1682 skb
= tcp_write_queue_head(sk
);
1683 state
->fack_count
= 0;
1686 if (!tp
->sacked_out
) {
1687 /* It's already past, so skip checking against it */
1688 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1690 cache
= tp
->recv_sack_cache
;
1691 /* Skip empty blocks in at head of the cache */
1692 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1697 while (i
< used_sacks
) {
1698 u32 start_seq
= sp
[i
].start_seq
;
1699 u32 end_seq
= sp
[i
].end_seq
;
1700 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1701 struct tcp_sack_block
*next_dup
= NULL
;
1703 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1704 next_dup
= &sp
[i
+ 1];
1706 /* Skip too early cached blocks */
1707 while (tcp_sack_cache_ok(tp
, cache
) &&
1708 !before(start_seq
, cache
->end_seq
))
1711 /* Can skip some work by looking recv_sack_cache? */
1712 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1713 after(end_seq
, cache
->start_seq
)) {
1716 if (before(start_seq
, cache
->start_seq
)) {
1717 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1719 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1726 /* Rest of the block already fully processed? */
1727 if (!after(end_seq
, cache
->end_seq
))
1730 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1734 /* ...tail remains todo... */
1735 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1736 /* ...but better entrypoint exists! */
1737 skb
= tcp_highest_sack(sk
);
1740 state
->fack_count
= tp
->fackets_out
;
1745 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1746 /* Check overlap against next cached too (past this one already) */
1751 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1752 skb
= tcp_highest_sack(sk
);
1755 state
->fack_count
= tp
->fackets_out
;
1757 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1760 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1761 start_seq
, end_seq
, dup_sack
);
1767 /* Clear the head of the cache sack blocks so we can skip it next time */
1768 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1769 tp
->recv_sack_cache
[i
].start_seq
= 0;
1770 tp
->recv_sack_cache
[i
].end_seq
= 0;
1772 for (j
= 0; j
< used_sacks
; j
++)
1773 tp
->recv_sack_cache
[i
++] = sp
[j
];
1775 if ((state
->reord
< tp
->fackets_out
) &&
1776 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1777 tcp_update_reordering(sk
, tp
->fackets_out
- state
->reord
, 0);
1779 tcp_verify_left_out(tp
);
1782 #if FASTRETRANS_DEBUG > 0
1783 WARN_ON((int)tp
->sacked_out
< 0);
1784 WARN_ON((int)tp
->lost_out
< 0);
1785 WARN_ON((int)tp
->retrans_out
< 0);
1786 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1791 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1792 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1794 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1798 holes
= max(tp
->lost_out
, 1U);
1799 holes
= min(holes
, tp
->packets_out
);
1801 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1802 tp
->sacked_out
= tp
->packets_out
- holes
;
1808 /* If we receive more dupacks than we expected counting segments
1809 * in assumption of absent reordering, interpret this as reordering.
1810 * The only another reason could be bug in receiver TCP.
1812 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1814 struct tcp_sock
*tp
= tcp_sk(sk
);
1815 if (tcp_limit_reno_sacked(tp
))
1816 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1819 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1821 static void tcp_add_reno_sack(struct sock
*sk
)
1823 struct tcp_sock
*tp
= tcp_sk(sk
);
1825 tcp_check_reno_reordering(sk
, 0);
1826 tcp_verify_left_out(tp
);
1829 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1831 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1833 struct tcp_sock
*tp
= tcp_sk(sk
);
1836 /* One ACK acked hole. The rest eat duplicate ACKs. */
1837 if (acked
- 1 >= tp
->sacked_out
)
1840 tp
->sacked_out
-= acked
- 1;
1842 tcp_check_reno_reordering(sk
, acked
);
1843 tcp_verify_left_out(tp
);
1846 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1851 void tcp_clear_retrans(struct tcp_sock
*tp
)
1853 tp
->retrans_out
= 0;
1855 tp
->undo_marker
= 0;
1856 tp
->undo_retrans
= -1;
1857 tp
->fackets_out
= 0;
1861 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1863 tp
->undo_marker
= tp
->snd_una
;
1864 /* Retransmission still in flight may cause DSACKs later. */
1865 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1868 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1869 * and reset tags completely, otherwise preserve SACKs. If receiver
1870 * dropped its ofo queue, we will know this due to reneging detection.
1872 void tcp_enter_loss(struct sock
*sk
)
1874 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1875 struct tcp_sock
*tp
= tcp_sk(sk
);
1876 struct sk_buff
*skb
;
1877 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1878 bool is_reneg
; /* is receiver reneging on SACKs? */
1880 /* Reduce ssthresh if it has not yet been made inside this window. */
1881 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1882 !after(tp
->high_seq
, tp
->snd_una
) ||
1883 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1884 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1885 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1886 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1890 tp
->snd_cwnd_cnt
= 0;
1891 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1893 tp
->retrans_out
= 0;
1896 if (tcp_is_reno(tp
))
1897 tcp_reset_reno_sack(tp
);
1899 skb
= tcp_write_queue_head(sk
);
1900 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1902 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1904 tp
->fackets_out
= 0;
1906 tcp_clear_all_retrans_hints(tp
);
1908 tcp_for_write_queue(skb
, sk
) {
1909 if (skb
== tcp_send_head(sk
))
1912 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1913 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || is_reneg
) {
1914 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1915 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1916 tp
->lost_out
+= tcp_skb_pcount(skb
);
1917 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1920 tcp_verify_left_out(tp
);
1922 /* Timeout in disordered state after receiving substantial DUPACKs
1923 * suggests that the degree of reordering is over-estimated.
1925 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1926 tp
->sacked_out
>= sysctl_tcp_reordering
)
1927 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1928 sysctl_tcp_reordering
);
1929 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1930 tp
->high_seq
= tp
->snd_nxt
;
1931 tcp_ecn_queue_cwr(tp
);
1933 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1934 * loss recovery is underway except recurring timeout(s) on
1935 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1937 tp
->frto
= sysctl_tcp_frto
&&
1938 (new_recovery
|| icsk
->icsk_retransmits
) &&
1939 !inet_csk(sk
)->icsk_mtup
.probe_size
;
1942 /* If ACK arrived pointing to a remembered SACK, it means that our
1943 * remembered SACKs do not reflect real state of receiver i.e.
1944 * receiver _host_ is heavily congested (or buggy).
1946 * To avoid big spurious retransmission bursts due to transient SACK
1947 * scoreboard oddities that look like reneging, we give the receiver a
1948 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1949 * restore sanity to the SACK scoreboard. If the apparent reneging
1950 * persists until this RTO then we'll clear the SACK scoreboard.
1952 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
1954 if (flag
& FLAG_SACK_RENEGING
) {
1955 struct tcp_sock
*tp
= tcp_sk(sk
);
1956 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
1957 msecs_to_jiffies(10));
1959 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1960 delay
, TCP_RTO_MAX
);
1966 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
1968 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
1971 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1972 * counter when SACK is enabled (without SACK, sacked_out is used for
1975 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1976 * segments up to the highest received SACK block so far and holes in
1979 * With reordering, holes may still be in flight, so RFC3517 recovery
1980 * uses pure sacked_out (total number of SACKed segments) even though
1981 * it violates the RFC that uses duplicate ACKs, often these are equal
1982 * but when e.g. out-of-window ACKs or packet duplication occurs,
1983 * they differ. Since neither occurs due to loss, TCP should really
1986 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
1988 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
1991 static bool tcp_pause_early_retransmit(struct sock
*sk
, int flag
)
1993 struct tcp_sock
*tp
= tcp_sk(sk
);
1994 unsigned long delay
;
1996 /* Delay early retransmit and entering fast recovery for
1997 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1998 * available, or RTO is scheduled to fire first.
2000 if (sysctl_tcp_early_retrans
< 2 || sysctl_tcp_early_retrans
> 3 ||
2001 (flag
& FLAG_ECE
) || !tp
->srtt_us
)
2004 delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 5),
2005 msecs_to_jiffies(2));
2007 if (!time_after(inet_csk(sk
)->icsk_timeout
, (jiffies
+ delay
)))
2010 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_EARLY_RETRANS
, delay
,
2015 /* Linux NewReno/SACK/FACK/ECN state machine.
2016 * --------------------------------------
2018 * "Open" Normal state, no dubious events, fast path.
2019 * "Disorder" In all the respects it is "Open",
2020 * but requires a bit more attention. It is entered when
2021 * we see some SACKs or dupacks. It is split of "Open"
2022 * mainly to move some processing from fast path to slow one.
2023 * "CWR" CWND was reduced due to some Congestion Notification event.
2024 * It can be ECN, ICMP source quench, local device congestion.
2025 * "Recovery" CWND was reduced, we are fast-retransmitting.
2026 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2028 * tcp_fastretrans_alert() is entered:
2029 * - each incoming ACK, if state is not "Open"
2030 * - when arrived ACK is unusual, namely:
2035 * Counting packets in flight is pretty simple.
2037 * in_flight = packets_out - left_out + retrans_out
2039 * packets_out is SND.NXT-SND.UNA counted in packets.
2041 * retrans_out is number of retransmitted segments.
2043 * left_out is number of segments left network, but not ACKed yet.
2045 * left_out = sacked_out + lost_out
2047 * sacked_out: Packets, which arrived to receiver out of order
2048 * and hence not ACKed. With SACKs this number is simply
2049 * amount of SACKed data. Even without SACKs
2050 * it is easy to give pretty reliable estimate of this number,
2051 * counting duplicate ACKs.
2053 * lost_out: Packets lost by network. TCP has no explicit
2054 * "loss notification" feedback from network (for now).
2055 * It means that this number can be only _guessed_.
2056 * Actually, it is the heuristics to predict lossage that
2057 * distinguishes different algorithms.
2059 * F.e. after RTO, when all the queue is considered as lost,
2060 * lost_out = packets_out and in_flight = retrans_out.
2062 * Essentially, we have now two algorithms counting
2065 * FACK: It is the simplest heuristics. As soon as we decided
2066 * that something is lost, we decide that _all_ not SACKed
2067 * packets until the most forward SACK are lost. I.e.
2068 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2069 * It is absolutely correct estimate, if network does not reorder
2070 * packets. And it loses any connection to reality when reordering
2071 * takes place. We use FACK by default until reordering
2072 * is suspected on the path to this destination.
2074 * NewReno: when Recovery is entered, we assume that one segment
2075 * is lost (classic Reno). While we are in Recovery and
2076 * a partial ACK arrives, we assume that one more packet
2077 * is lost (NewReno). This heuristics are the same in NewReno
2080 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2081 * deflation etc. CWND is real congestion window, never inflated, changes
2082 * only according to classic VJ rules.
2084 * Really tricky (and requiring careful tuning) part of algorithm
2085 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2086 * The first determines the moment _when_ we should reduce CWND and,
2087 * hence, slow down forward transmission. In fact, it determines the moment
2088 * when we decide that hole is caused by loss, rather than by a reorder.
2090 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2091 * holes, caused by lost packets.
2093 * And the most logically complicated part of algorithm is undo
2094 * heuristics. We detect false retransmits due to both too early
2095 * fast retransmit (reordering) and underestimated RTO, analyzing
2096 * timestamps and D-SACKs. When we detect that some segments were
2097 * retransmitted by mistake and CWND reduction was wrong, we undo
2098 * window reduction and abort recovery phase. This logic is hidden
2099 * inside several functions named tcp_try_undo_<something>.
2102 /* This function decides, when we should leave Disordered state
2103 * and enter Recovery phase, reducing congestion window.
2105 * Main question: may we further continue forward transmission
2106 * with the same cwnd?
2108 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2110 struct tcp_sock
*tp
= tcp_sk(sk
);
2113 /* Trick#1: The loss is proven. */
2117 /* Not-A-Trick#2 : Classic rule... */
2118 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2121 /* Trick#4: It is still not OK... But will it be useful to delay
2124 packets_out
= tp
->packets_out
;
2125 if (packets_out
<= tp
->reordering
&&
2126 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2127 !tcp_may_send_now(sk
)) {
2128 /* We have nothing to send. This connection is limited
2129 * either by receiver window or by application.
2134 /* If a thin stream is detected, retransmit after first
2135 * received dupack. Employ only if SACK is supported in order
2136 * to avoid possible corner-case series of spurious retransmissions
2137 * Use only if there are no unsent data.
2139 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2140 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2141 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2144 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2145 * retransmissions due to small network reorderings, we implement
2146 * Mitigation A.3 in the RFC and delay the retransmission for a short
2147 * interval if appropriate.
2149 if (tp
->do_early_retrans
&& !tp
->retrans_out
&& tp
->sacked_out
&&
2150 (tp
->packets_out
>= (tp
->sacked_out
+ 1) && tp
->packets_out
< 4) &&
2151 !tcp_may_send_now(sk
))
2152 return !tcp_pause_early_retransmit(sk
, flag
);
2157 /* Detect loss in event "A" above by marking head of queue up as lost.
2158 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2159 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2160 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2161 * the maximum SACKed segments to pass before reaching this limit.
2163 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2165 struct tcp_sock
*tp
= tcp_sk(sk
);
2166 struct sk_buff
*skb
;
2170 /* Use SACK to deduce losses of new sequences sent during recovery */
2171 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2173 WARN_ON(packets
> tp
->packets_out
);
2174 if (tp
->lost_skb_hint
) {
2175 skb
= tp
->lost_skb_hint
;
2176 cnt
= tp
->lost_cnt_hint
;
2177 /* Head already handled? */
2178 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2181 skb
= tcp_write_queue_head(sk
);
2185 tcp_for_write_queue_from(skb
, sk
) {
2186 if (skb
== tcp_send_head(sk
))
2188 /* TODO: do this better */
2189 /* this is not the most efficient way to do this... */
2190 tp
->lost_skb_hint
= skb
;
2191 tp
->lost_cnt_hint
= cnt
;
2193 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2197 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2198 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2199 cnt
+= tcp_skb_pcount(skb
);
2201 if (cnt
> packets
) {
2202 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2203 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2204 (oldcnt
>= packets
))
2207 mss
= tcp_skb_mss(skb
);
2208 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
,
2215 tcp_skb_mark_lost(tp
, skb
);
2220 tcp_verify_left_out(tp
);
2223 /* Account newly detected lost packet(s) */
2225 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2227 struct tcp_sock
*tp
= tcp_sk(sk
);
2229 if (tcp_is_reno(tp
)) {
2230 tcp_mark_head_lost(sk
, 1, 1);
2231 } else if (tcp_is_fack(tp
)) {
2232 int lost
= tp
->fackets_out
- tp
->reordering
;
2235 tcp_mark_head_lost(sk
, lost
, 0);
2237 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2238 if (sacked_upto
>= 0)
2239 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2240 else if (fast_rexmit
)
2241 tcp_mark_head_lost(sk
, 1, 1);
2245 /* CWND moderation, preventing bursts due to too big ACKs
2246 * in dubious situations.
2248 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2250 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2251 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2252 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2255 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2257 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2258 before(tp
->rx_opt
.rcv_tsecr
, when
);
2261 /* skb is spurious retransmitted if the returned timestamp echo
2262 * reply is prior to the skb transmission time
2264 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2265 const struct sk_buff
*skb
)
2267 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2268 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2271 /* Nothing was retransmitted or returned timestamp is less
2272 * than timestamp of the first retransmission.
2274 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2276 return !tp
->retrans_stamp
||
2277 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2280 /* Undo procedures. */
2282 /* We can clear retrans_stamp when there are no retransmissions in the
2283 * window. It would seem that it is trivially available for us in
2284 * tp->retrans_out, however, that kind of assumptions doesn't consider
2285 * what will happen if errors occur when sending retransmission for the
2286 * second time. ...It could the that such segment has only
2287 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2288 * the head skb is enough except for some reneging corner cases that
2289 * are not worth the effort.
2291 * Main reason for all this complexity is the fact that connection dying
2292 * time now depends on the validity of the retrans_stamp, in particular,
2293 * that successive retransmissions of a segment must not advance
2294 * retrans_stamp under any conditions.
2296 static bool tcp_any_retrans_done(const struct sock
*sk
)
2298 const struct tcp_sock
*tp
= tcp_sk(sk
);
2299 struct sk_buff
*skb
;
2301 if (tp
->retrans_out
)
2304 skb
= tcp_write_queue_head(sk
);
2305 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2311 #if FASTRETRANS_DEBUG > 1
2312 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2314 struct tcp_sock
*tp
= tcp_sk(sk
);
2315 struct inet_sock
*inet
= inet_sk(sk
);
2317 if (sk
->sk_family
== AF_INET
) {
2318 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2320 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2321 tp
->snd_cwnd
, tcp_left_out(tp
),
2322 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2325 #if IS_ENABLED(CONFIG_IPV6)
2326 else if (sk
->sk_family
== AF_INET6
) {
2327 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2328 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2330 &np
->daddr
, ntohs(inet
->inet_dport
),
2331 tp
->snd_cwnd
, tcp_left_out(tp
),
2332 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2338 #define DBGUNDO(x...) do { } while (0)
2341 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2343 struct tcp_sock
*tp
= tcp_sk(sk
);
2346 struct sk_buff
*skb
;
2348 tcp_for_write_queue(skb
, sk
) {
2349 if (skb
== tcp_send_head(sk
))
2351 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2354 tcp_clear_all_retrans_hints(tp
);
2357 if (tp
->prior_ssthresh
) {
2358 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2360 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2361 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2363 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2365 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2366 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2367 tcp_ecn_withdraw_cwr(tp
);
2370 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2372 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2373 tp
->undo_marker
= 0;
2376 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2378 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2381 /* People celebrate: "We love our President!" */
2382 static bool tcp_try_undo_recovery(struct sock
*sk
)
2384 struct tcp_sock
*tp
= tcp_sk(sk
);
2386 if (tcp_may_undo(tp
)) {
2389 /* Happy end! We did not retransmit anything
2390 * or our original transmission succeeded.
2392 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2393 tcp_undo_cwnd_reduction(sk
, false);
2394 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2395 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2397 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2399 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2401 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2402 /* Hold old state until something *above* high_seq
2403 * is ACKed. For Reno it is MUST to prevent false
2404 * fast retransmits (RFC2582). SACK TCP is safe. */
2405 tcp_moderate_cwnd(tp
);
2406 if (!tcp_any_retrans_done(sk
))
2407 tp
->retrans_stamp
= 0;
2410 tcp_set_ca_state(sk
, TCP_CA_Open
);
2414 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2415 static bool tcp_try_undo_dsack(struct sock
*sk
)
2417 struct tcp_sock
*tp
= tcp_sk(sk
);
2419 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2420 DBGUNDO(sk
, "D-SACK");
2421 tcp_undo_cwnd_reduction(sk
, false);
2422 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2428 /* Undo during loss recovery after partial ACK or using F-RTO. */
2429 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2431 struct tcp_sock
*tp
= tcp_sk(sk
);
2433 if (frto_undo
|| tcp_may_undo(tp
)) {
2434 tcp_undo_cwnd_reduction(sk
, true);
2436 DBGUNDO(sk
, "partial loss");
2437 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2439 NET_INC_STATS_BH(sock_net(sk
),
2440 LINUX_MIB_TCPSPURIOUSRTOS
);
2441 inet_csk(sk
)->icsk_retransmits
= 0;
2442 if (frto_undo
|| tcp_is_sack(tp
))
2443 tcp_set_ca_state(sk
, TCP_CA_Open
);
2449 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2450 * It computes the number of packets to send (sndcnt) based on packets newly
2452 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2453 * cwnd reductions across a full RTT.
2454 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2455 * But when the retransmits are acked without further losses, PRR
2456 * slow starts cwnd up to ssthresh to speed up the recovery.
2458 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2460 struct tcp_sock
*tp
= tcp_sk(sk
);
2462 tp
->high_seq
= tp
->snd_nxt
;
2463 tp
->tlp_high_seq
= 0;
2464 tp
->snd_cwnd_cnt
= 0;
2465 tp
->prior_cwnd
= tp
->snd_cwnd
;
2466 tp
->prr_delivered
= 0;
2468 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2469 tcp_ecn_queue_cwr(tp
);
2472 static void tcp_cwnd_reduction(struct sock
*sk
, const int prior_unsacked
,
2473 int fast_rexmit
, int flag
)
2475 struct tcp_sock
*tp
= tcp_sk(sk
);
2477 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2478 int newly_acked_sacked
= prior_unsacked
-
2479 (tp
->packets_out
- tp
->sacked_out
);
2481 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2484 tp
->prr_delivered
+= newly_acked_sacked
;
2486 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2488 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2489 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2490 !(flag
& FLAG_LOST_RETRANS
)) {
2491 sndcnt
= min_t(int, delta
,
2492 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2493 newly_acked_sacked
) + 1);
2495 sndcnt
= min(delta
, newly_acked_sacked
);
2497 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
2498 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2501 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2503 struct tcp_sock
*tp
= tcp_sk(sk
);
2505 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2506 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
||
2507 (tp
->undo_marker
&& tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
)) {
2508 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2509 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2511 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2514 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2515 void tcp_enter_cwr(struct sock
*sk
)
2517 struct tcp_sock
*tp
= tcp_sk(sk
);
2519 tp
->prior_ssthresh
= 0;
2520 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2521 tp
->undo_marker
= 0;
2522 tcp_init_cwnd_reduction(sk
);
2523 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2526 EXPORT_SYMBOL(tcp_enter_cwr
);
2528 static void tcp_try_keep_open(struct sock
*sk
)
2530 struct tcp_sock
*tp
= tcp_sk(sk
);
2531 int state
= TCP_CA_Open
;
2533 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2534 state
= TCP_CA_Disorder
;
2536 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2537 tcp_set_ca_state(sk
, state
);
2538 tp
->high_seq
= tp
->snd_nxt
;
2542 static void tcp_try_to_open(struct sock
*sk
, int flag
, const int prior_unsacked
)
2544 struct tcp_sock
*tp
= tcp_sk(sk
);
2546 tcp_verify_left_out(tp
);
2548 if (!tcp_any_retrans_done(sk
))
2549 tp
->retrans_stamp
= 0;
2551 if (flag
& FLAG_ECE
)
2554 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2555 tcp_try_keep_open(sk
);
2557 tcp_cwnd_reduction(sk
, prior_unsacked
, 0, flag
);
2561 static void tcp_mtup_probe_failed(struct sock
*sk
)
2563 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2565 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2566 icsk
->icsk_mtup
.probe_size
= 0;
2567 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2570 static void tcp_mtup_probe_success(struct sock
*sk
)
2572 struct tcp_sock
*tp
= tcp_sk(sk
);
2573 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2575 /* FIXME: breaks with very large cwnd */
2576 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2577 tp
->snd_cwnd
= tp
->snd_cwnd
*
2578 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2579 icsk
->icsk_mtup
.probe_size
;
2580 tp
->snd_cwnd_cnt
= 0;
2581 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2582 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2584 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2585 icsk
->icsk_mtup
.probe_size
= 0;
2586 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2587 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2590 /* Do a simple retransmit without using the backoff mechanisms in
2591 * tcp_timer. This is used for path mtu discovery.
2592 * The socket is already locked here.
2594 void tcp_simple_retransmit(struct sock
*sk
)
2596 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2597 struct tcp_sock
*tp
= tcp_sk(sk
);
2598 struct sk_buff
*skb
;
2599 unsigned int mss
= tcp_current_mss(sk
);
2600 u32 prior_lost
= tp
->lost_out
;
2602 tcp_for_write_queue(skb
, sk
) {
2603 if (skb
== tcp_send_head(sk
))
2605 if (tcp_skb_seglen(skb
) > mss
&&
2606 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2607 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2608 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2609 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2611 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2615 tcp_clear_retrans_hints_partial(tp
);
2617 if (prior_lost
== tp
->lost_out
)
2620 if (tcp_is_reno(tp
))
2621 tcp_limit_reno_sacked(tp
);
2623 tcp_verify_left_out(tp
);
2625 /* Don't muck with the congestion window here.
2626 * Reason is that we do not increase amount of _data_
2627 * in network, but units changed and effective
2628 * cwnd/ssthresh really reduced now.
2630 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2631 tp
->high_seq
= tp
->snd_nxt
;
2632 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2633 tp
->prior_ssthresh
= 0;
2634 tp
->undo_marker
= 0;
2635 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2637 tcp_xmit_retransmit_queue(sk
);
2639 EXPORT_SYMBOL(tcp_simple_retransmit
);
2641 static void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2643 struct tcp_sock
*tp
= tcp_sk(sk
);
2646 if (tcp_is_reno(tp
))
2647 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2649 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2651 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2653 tp
->prior_ssthresh
= 0;
2656 if (!tcp_in_cwnd_reduction(sk
)) {
2658 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2659 tcp_init_cwnd_reduction(sk
);
2661 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2664 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2665 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2667 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
)
2669 struct tcp_sock
*tp
= tcp_sk(sk
);
2670 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2672 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2673 tcp_try_undo_loss(sk
, false))
2676 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2677 /* Step 3.b. A timeout is spurious if not all data are
2678 * lost, i.e., never-retransmitted data are (s)acked.
2680 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2681 tcp_try_undo_loss(sk
, true))
2684 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2685 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2686 tp
->frto
= 0; /* Step 3.a. loss was real */
2687 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2688 tp
->high_seq
= tp
->snd_nxt
;
2689 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
2691 if (after(tp
->snd_nxt
, tp
->high_seq
))
2692 return; /* Step 2.b */
2698 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2699 tcp_try_undo_recovery(sk
);
2702 if (tcp_is_reno(tp
)) {
2703 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2704 * delivered. Lower inflight to clock out (re)tranmissions.
2706 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2707 tcp_add_reno_sack(sk
);
2708 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2709 tcp_reset_reno_sack(tp
);
2711 tcp_xmit_retransmit_queue(sk
);
2714 /* Undo during fast recovery after partial ACK. */
2715 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
,
2716 const int prior_unsacked
, int flag
)
2718 struct tcp_sock
*tp
= tcp_sk(sk
);
2720 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2721 /* Plain luck! Hole if filled with delayed
2722 * packet, rather than with a retransmit.
2724 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2726 /* We are getting evidence that the reordering degree is higher
2727 * than we realized. If there are no retransmits out then we
2728 * can undo. Otherwise we clock out new packets but do not
2729 * mark more packets lost or retransmit more.
2731 if (tp
->retrans_out
) {
2732 tcp_cwnd_reduction(sk
, prior_unsacked
, 0, flag
);
2736 if (!tcp_any_retrans_done(sk
))
2737 tp
->retrans_stamp
= 0;
2739 DBGUNDO(sk
, "partial recovery");
2740 tcp_undo_cwnd_reduction(sk
, true);
2741 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2742 tcp_try_keep_open(sk
);
2748 /* Process an event, which can update packets-in-flight not trivially.
2749 * Main goal of this function is to calculate new estimate for left_out,
2750 * taking into account both packets sitting in receiver's buffer and
2751 * packets lost by network.
2753 * Besides that it does CWND reduction, when packet loss is detected
2754 * and changes state of machine.
2756 * It does _not_ decide what to send, it is made in function
2757 * tcp_xmit_retransmit_queue().
2759 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2760 const int prior_unsacked
,
2761 bool is_dupack
, int flag
)
2763 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2764 struct tcp_sock
*tp
= tcp_sk(sk
);
2765 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2766 (tcp_fackets_out(tp
) > tp
->reordering
));
2767 int fast_rexmit
= 0;
2769 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2771 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2772 tp
->fackets_out
= 0;
2774 /* Now state machine starts.
2775 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2776 if (flag
& FLAG_ECE
)
2777 tp
->prior_ssthresh
= 0;
2779 /* B. In all the states check for reneging SACKs. */
2780 if (tcp_check_sack_reneging(sk
, flag
))
2783 /* C. Check consistency of the current state. */
2784 tcp_verify_left_out(tp
);
2786 /* D. Check state exit conditions. State can be terminated
2787 * when high_seq is ACKed. */
2788 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2789 WARN_ON(tp
->retrans_out
!= 0);
2790 tp
->retrans_stamp
= 0;
2791 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2792 switch (icsk
->icsk_ca_state
) {
2794 /* CWR is to be held something *above* high_seq
2795 * is ACKed for CWR bit to reach receiver. */
2796 if (tp
->snd_una
!= tp
->high_seq
) {
2797 tcp_end_cwnd_reduction(sk
);
2798 tcp_set_ca_state(sk
, TCP_CA_Open
);
2802 case TCP_CA_Recovery
:
2803 if (tcp_is_reno(tp
))
2804 tcp_reset_reno_sack(tp
);
2805 if (tcp_try_undo_recovery(sk
))
2807 tcp_end_cwnd_reduction(sk
);
2812 /* Use RACK to detect loss */
2813 if (sysctl_tcp_recovery
& TCP_RACK_LOST_RETRANS
&&
2814 tcp_rack_mark_lost(sk
))
2815 flag
|= FLAG_LOST_RETRANS
;
2817 /* E. Process state. */
2818 switch (icsk
->icsk_ca_state
) {
2819 case TCP_CA_Recovery
:
2820 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2821 if (tcp_is_reno(tp
) && is_dupack
)
2822 tcp_add_reno_sack(sk
);
2824 if (tcp_try_undo_partial(sk
, acked
, prior_unsacked
, flag
))
2826 /* Partial ACK arrived. Force fast retransmit. */
2827 do_lost
= tcp_is_reno(tp
) ||
2828 tcp_fackets_out(tp
) > tp
->reordering
;
2830 if (tcp_try_undo_dsack(sk
)) {
2831 tcp_try_keep_open(sk
);
2836 tcp_process_loss(sk
, flag
, is_dupack
);
2837 if (icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2838 !(flag
& FLAG_LOST_RETRANS
))
2840 /* Change state if cwnd is undone or retransmits are lost */
2842 if (tcp_is_reno(tp
)) {
2843 if (flag
& FLAG_SND_UNA_ADVANCED
)
2844 tcp_reset_reno_sack(tp
);
2846 tcp_add_reno_sack(sk
);
2849 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2850 tcp_try_undo_dsack(sk
);
2852 if (!tcp_time_to_recover(sk
, flag
)) {
2853 tcp_try_to_open(sk
, flag
, prior_unsacked
);
2857 /* MTU probe failure: don't reduce cwnd */
2858 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2859 icsk
->icsk_mtup
.probe_size
&&
2860 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2861 tcp_mtup_probe_failed(sk
);
2862 /* Restores the reduction we did in tcp_mtup_probe() */
2864 tcp_simple_retransmit(sk
);
2868 /* Otherwise enter Recovery state */
2869 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2874 tcp_update_scoreboard(sk
, fast_rexmit
);
2875 tcp_cwnd_reduction(sk
, prior_unsacked
, fast_rexmit
, flag
);
2876 tcp_xmit_retransmit_queue(sk
);
2879 /* Kathleen Nichols' algorithm for tracking the minimum value of
2880 * a data stream over some fixed time interval. (E.g., the minimum
2881 * RTT over the past five minutes.) It uses constant space and constant
2882 * time per update yet almost always delivers the same minimum as an
2883 * implementation that has to keep all the data in the window.
2885 * The algorithm keeps track of the best, 2nd best & 3rd best min
2886 * values, maintaining an invariant that the measurement time of the
2887 * n'th best >= n-1'th best. It also makes sure that the three values
2888 * are widely separated in the time window since that bounds the worse
2889 * case error when that data is monotonically increasing over the window.
2891 * Upon getting a new min, we can forget everything earlier because it
2892 * has no value - the new min is <= everything else in the window by
2893 * definition and it's the most recent. So we restart fresh on every new min
2894 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2897 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
)
2899 const u32 now
= tcp_time_stamp
, wlen
= sysctl_tcp_min_rtt_wlen
* HZ
;
2900 struct rtt_meas
*m
= tcp_sk(sk
)->rtt_min
;
2901 struct rtt_meas rttm
= { .rtt
= (rtt_us
? : 1), .ts
= now
};
2904 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2905 if (unlikely(rttm
.rtt
<= m
[0].rtt
))
2906 m
[0] = m
[1] = m
[2] = rttm
;
2907 else if (rttm
.rtt
<= m
[1].rtt
)
2909 else if (rttm
.rtt
<= m
[2].rtt
)
2912 elapsed
= now
- m
[0].ts
;
2913 if (unlikely(elapsed
> wlen
)) {
2914 /* Passed entire window without a new min so make 2nd choice
2915 * the new min & 3rd choice the new 2nd. So forth and so on.
2920 if (now
- m
[0].ts
> wlen
) {
2923 if (now
- m
[0].ts
> wlen
)
2926 } else if (m
[1].ts
== m
[0].ts
&& elapsed
> wlen
/ 4) {
2927 /* Passed a quarter of the window without a new min so
2928 * take 2nd choice from the 2nd quarter of the window.
2931 } else if (m
[2].ts
== m
[1].ts
&& elapsed
> wlen
/ 2) {
2932 /* Passed half the window without a new min so take the 3rd
2933 * choice from the last half of the window.
2939 static inline bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2940 long seq_rtt_us
, long sack_rtt_us
,
2943 const struct tcp_sock
*tp
= tcp_sk(sk
);
2945 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2946 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2947 * Karn's algorithm forbids taking RTT if some retransmitted data
2948 * is acked (RFC6298).
2951 seq_rtt_us
= sack_rtt_us
;
2953 /* RTTM Rule: A TSecr value received in a segment is used to
2954 * update the averaged RTT measurement only if the segment
2955 * acknowledges some new data, i.e., only if it advances the
2956 * left edge of the send window.
2957 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2959 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2961 seq_rtt_us
= ca_rtt_us
= jiffies_to_usecs(tcp_time_stamp
-
2962 tp
->rx_opt
.rcv_tsecr
);
2966 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2967 * always taken together with ACK, SACK, or TS-opts. Any negative
2968 * values will be skipped with the seq_rtt_us < 0 check above.
2970 tcp_update_rtt_min(sk
, ca_rtt_us
);
2971 tcp_rtt_estimator(sk
, seq_rtt_us
);
2974 /* RFC6298: only reset backoff on valid RTT measurement. */
2975 inet_csk(sk
)->icsk_backoff
= 0;
2979 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2980 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2984 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
.v64
) {
2985 struct skb_mstamp now
;
2987 skb_mstamp_get(&now
);
2988 rtt_us
= skb_mstamp_us_delta(&now
, &tcp_rsk(req
)->snt_synack
);
2991 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
);
2995 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2997 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2999 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
3000 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3003 /* Restart timer after forward progress on connection.
3004 * RFC2988 recommends to restart timer to now+rto.
3006 void tcp_rearm_rto(struct sock
*sk
)
3008 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3009 struct tcp_sock
*tp
= tcp_sk(sk
);
3011 /* If the retrans timer is currently being used by Fast Open
3012 * for SYN-ACK retrans purpose, stay put.
3014 if (tp
->fastopen_rsk
)
3017 if (!tp
->packets_out
) {
3018 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3020 u32 rto
= inet_csk(sk
)->icsk_rto
;
3021 /* Offset the time elapsed after installing regular RTO */
3022 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3023 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3024 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
3025 const u32 rto_time_stamp
=
3026 tcp_skb_timestamp(skb
) + rto
;
3027 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3028 /* delta may not be positive if the socket is locked
3029 * when the retrans timer fires and is rescheduled.
3034 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3039 /* This function is called when the delayed ER timer fires. TCP enters
3040 * fast recovery and performs fast-retransmit.
3042 void tcp_resume_early_retransmit(struct sock
*sk
)
3044 struct tcp_sock
*tp
= tcp_sk(sk
);
3048 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3049 if (!tp
->do_early_retrans
)
3052 tcp_enter_recovery(sk
, false);
3053 tcp_update_scoreboard(sk
, 1);
3054 tcp_xmit_retransmit_queue(sk
);
3057 /* If we get here, the whole TSO packet has not been acked. */
3058 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3060 struct tcp_sock
*tp
= tcp_sk(sk
);
3063 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3065 packets_acked
= tcp_skb_pcount(skb
);
3066 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3068 packets_acked
-= tcp_skb_pcount(skb
);
3070 if (packets_acked
) {
3071 BUG_ON(tcp_skb_pcount(skb
) == 0);
3072 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3075 return packets_acked
;
3078 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3081 const struct skb_shared_info
*shinfo
;
3083 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3084 if (likely(!(sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_ACK
)))
3087 shinfo
= skb_shinfo(skb
);
3088 if ((shinfo
->tx_flags
& SKBTX_ACK_TSTAMP
) &&
3089 between(shinfo
->tskey
, prior_snd_una
, tcp_sk(sk
)->snd_una
- 1))
3090 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3093 /* Remove acknowledged frames from the retransmission queue. If our packet
3094 * is before the ack sequence we can discard it as it's confirmed to have
3095 * arrived at the other end.
3097 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3099 struct tcp_sacktag_state
*sack
)
3101 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3102 struct skb_mstamp first_ackt
, last_ackt
, now
;
3103 struct tcp_sock
*tp
= tcp_sk(sk
);
3104 u32 prior_sacked
= tp
->sacked_out
;
3105 u32 reord
= tp
->packets_out
;
3106 bool fully_acked
= true;
3107 long sack_rtt_us
= -1L;
3108 long seq_rtt_us
= -1L;
3109 long ca_rtt_us
= -1L;
3110 struct sk_buff
*skb
;
3117 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3118 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3119 u8 sacked
= scb
->sacked
;
3122 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3124 /* Determine how many packets and what bytes were acked, tso and else */
3125 if (after(scb
->end_seq
, tp
->snd_una
)) {
3126 if (tcp_skb_pcount(skb
) == 1 ||
3127 !after(tp
->snd_una
, scb
->seq
))
3130 acked_pcount
= tcp_tso_acked(sk
, skb
);
3134 fully_acked
= false;
3136 /* Speedup tcp_unlink_write_queue() and next loop */
3137 prefetchw(skb
->next
);
3138 acked_pcount
= tcp_skb_pcount(skb
);
3141 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3142 if (sacked
& TCPCB_SACKED_RETRANS
)
3143 tp
->retrans_out
-= acked_pcount
;
3144 flag
|= FLAG_RETRANS_DATA_ACKED
;
3145 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3146 last_ackt
= skb
->skb_mstamp
;
3147 WARN_ON_ONCE(last_ackt
.v64
== 0);
3148 if (!first_ackt
.v64
)
3149 first_ackt
= last_ackt
;
3151 reord
= min(pkts_acked
, reord
);
3152 if (!after(scb
->end_seq
, tp
->high_seq
))
3153 flag
|= FLAG_ORIG_SACK_ACKED
;
3156 if (sacked
& TCPCB_SACKED_ACKED
)
3157 tp
->sacked_out
-= acked_pcount
;
3158 else if (tcp_is_sack(tp
) && !tcp_skb_spurious_retrans(tp
, skb
))
3159 tcp_rack_advance(tp
, &skb
->skb_mstamp
, sacked
);
3160 if (sacked
& TCPCB_LOST
)
3161 tp
->lost_out
-= acked_pcount
;
3163 tp
->packets_out
-= acked_pcount
;
3164 pkts_acked
+= acked_pcount
;
3166 /* Initial outgoing SYN's get put onto the write_queue
3167 * just like anything else we transmit. It is not
3168 * true data, and if we misinform our callers that
3169 * this ACK acks real data, we will erroneously exit
3170 * connection startup slow start one packet too
3171 * quickly. This is severely frowned upon behavior.
3173 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3174 flag
|= FLAG_DATA_ACKED
;
3176 flag
|= FLAG_SYN_ACKED
;
3177 tp
->retrans_stamp
= 0;
3183 tcp_unlink_write_queue(skb
, sk
);
3184 sk_wmem_free_skb(sk
, skb
);
3185 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3186 tp
->retransmit_skb_hint
= NULL
;
3187 if (unlikely(skb
== tp
->lost_skb_hint
))
3188 tp
->lost_skb_hint
= NULL
;
3191 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3192 tp
->snd_up
= tp
->snd_una
;
3194 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3195 flag
|= FLAG_SACK_RENEGING
;
3197 skb_mstamp_get(&now
);
3198 if (likely(first_ackt
.v64
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3199 seq_rtt_us
= skb_mstamp_us_delta(&now
, &first_ackt
);
3200 ca_rtt_us
= skb_mstamp_us_delta(&now
, &last_ackt
);
3202 if (sack
->first_sackt
.v64
) {
3203 sack_rtt_us
= skb_mstamp_us_delta(&now
, &sack
->first_sackt
);
3204 ca_rtt_us
= skb_mstamp_us_delta(&now
, &sack
->last_sackt
);
3207 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3210 if (flag
& FLAG_ACKED
) {
3212 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3213 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3214 tcp_mtup_probe_success(sk
);
3217 if (tcp_is_reno(tp
)) {
3218 tcp_remove_reno_sacks(sk
, pkts_acked
);
3222 /* Non-retransmitted hole got filled? That's reordering */
3223 if (reord
< prior_fackets
)
3224 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3226 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3227 prior_sacked
- tp
->sacked_out
;
3228 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3231 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3233 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3234 sack_rtt_us
> skb_mstamp_us_delta(&now
, &skb
->skb_mstamp
)) {
3235 /* Do not re-arm RTO if the sack RTT is measured from data sent
3236 * after when the head was last (re)transmitted. Otherwise the
3237 * timeout may continue to extend in loss recovery.
3242 if (icsk
->icsk_ca_ops
->pkts_acked
)
3243 icsk
->icsk_ca_ops
->pkts_acked(sk
, pkts_acked
, ca_rtt_us
);
3245 #if FASTRETRANS_DEBUG > 0
3246 WARN_ON((int)tp
->sacked_out
< 0);
3247 WARN_ON((int)tp
->lost_out
< 0);
3248 WARN_ON((int)tp
->retrans_out
< 0);
3249 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3250 icsk
= inet_csk(sk
);
3252 pr_debug("Leak l=%u %d\n",
3253 tp
->lost_out
, icsk
->icsk_ca_state
);
3256 if (tp
->sacked_out
) {
3257 pr_debug("Leak s=%u %d\n",
3258 tp
->sacked_out
, icsk
->icsk_ca_state
);
3261 if (tp
->retrans_out
) {
3262 pr_debug("Leak r=%u %d\n",
3263 tp
->retrans_out
, icsk
->icsk_ca_state
);
3264 tp
->retrans_out
= 0;
3271 static void tcp_ack_probe(struct sock
*sk
)
3273 const struct tcp_sock
*tp
= tcp_sk(sk
);
3274 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3276 /* Was it a usable window open? */
3278 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3279 icsk
->icsk_backoff
= 0;
3280 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3281 /* Socket must be waked up by subsequent tcp_data_snd_check().
3282 * This function is not for random using!
3285 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3287 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3292 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3294 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3295 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3298 /* Decide wheather to run the increase function of congestion control. */
3299 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3301 if (tcp_in_cwnd_reduction(sk
))
3304 /* If reordering is high then always grow cwnd whenever data is
3305 * delivered regardless of its ordering. Otherwise stay conservative
3306 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3307 * new SACK or ECE mark may first advance cwnd here and later reduce
3308 * cwnd in tcp_fastretrans_alert() based on more states.
3310 if (tcp_sk(sk
)->reordering
> sysctl_tcp_reordering
)
3311 return flag
& FLAG_FORWARD_PROGRESS
;
3313 return flag
& FLAG_DATA_ACKED
;
3316 /* Check that window update is acceptable.
3317 * The function assumes that snd_una<=ack<=snd_next.
3319 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3320 const u32 ack
, const u32 ack_seq
,
3323 return after(ack
, tp
->snd_una
) ||
3324 after(ack_seq
, tp
->snd_wl1
) ||
3325 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3328 /* If we update tp->snd_una, also update tp->bytes_acked */
3329 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3331 u32 delta
= ack
- tp
->snd_una
;
3333 u64_stats_update_begin(&tp
->syncp
);
3334 tp
->bytes_acked
+= delta
;
3335 u64_stats_update_end(&tp
->syncp
);
3339 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3340 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3342 u32 delta
= seq
- tp
->rcv_nxt
;
3344 u64_stats_update_begin(&tp
->syncp
);
3345 tp
->bytes_received
+= delta
;
3346 u64_stats_update_end(&tp
->syncp
);
3350 /* Update our send window.
3352 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3353 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3355 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3358 struct tcp_sock
*tp
= tcp_sk(sk
);
3360 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3362 if (likely(!tcp_hdr(skb
)->syn
))
3363 nwin
<<= tp
->rx_opt
.snd_wscale
;
3365 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3366 flag
|= FLAG_WIN_UPDATE
;
3367 tcp_update_wl(tp
, ack_seq
);
3369 if (tp
->snd_wnd
!= nwin
) {
3372 /* Note, it is the only place, where
3373 * fast path is recovered for sending TCP.
3376 tcp_fast_path_check(sk
);
3378 if (tcp_send_head(sk
))
3379 tcp_slow_start_after_idle_check(sk
);
3381 if (nwin
> tp
->max_window
) {
3382 tp
->max_window
= nwin
;
3383 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3388 tcp_snd_una_update(tp
, ack
);
3393 /* Return true if we're currently rate-limiting out-of-window ACKs and
3394 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3395 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3396 * attacks that send repeated SYNs or ACKs for the same connection. To
3397 * do this, we do not send a duplicate SYNACK or ACK if the remote
3398 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3400 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3401 int mib_idx
, u32
*last_oow_ack_time
)
3403 /* Data packets without SYNs are not likely part of an ACK loop. */
3404 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3406 goto not_rate_limited
;
3408 if (*last_oow_ack_time
) {
3409 s32 elapsed
= (s32
)(tcp_time_stamp
- *last_oow_ack_time
);
3411 if (0 <= elapsed
&& elapsed
< sysctl_tcp_invalid_ratelimit
) {
3412 NET_INC_STATS_BH(net
, mib_idx
);
3413 return true; /* rate-limited: don't send yet! */
3417 *last_oow_ack_time
= tcp_time_stamp
;
3420 return false; /* not rate-limited: go ahead, send dupack now! */
3423 /* RFC 5961 7 [ACK Throttling] */
3424 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3426 /* unprotected vars, we dont care of overwrites */
3427 static u32 challenge_timestamp
;
3428 static unsigned int challenge_count
;
3429 struct tcp_sock
*tp
= tcp_sk(sk
);
3432 /* First check our per-socket dupack rate limit. */
3433 if (tcp_oow_rate_limited(sock_net(sk
), skb
,
3434 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3435 &tp
->last_oow_ack_time
))
3438 /* Then check the check host-wide RFC 5961 rate limit. */
3440 if (now
!= challenge_timestamp
) {
3441 challenge_timestamp
= now
;
3442 challenge_count
= 0;
3444 if (++challenge_count
<= sysctl_tcp_challenge_ack_limit
) {
3445 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3450 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3452 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3453 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3456 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3458 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3459 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3460 * extra check below makes sure this can only happen
3461 * for pure ACK frames. -DaveM
3463 * Not only, also it occurs for expired timestamps.
3466 if (tcp_paws_check(&tp
->rx_opt
, 0))
3467 tcp_store_ts_recent(tp
);
3471 /* This routine deals with acks during a TLP episode.
3472 * We mark the end of a TLP episode on receiving TLP dupack or when
3473 * ack is after tlp_high_seq.
3474 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3476 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3478 struct tcp_sock
*tp
= tcp_sk(sk
);
3480 if (before(ack
, tp
->tlp_high_seq
))
3483 if (flag
& FLAG_DSACKING_ACK
) {
3484 /* This DSACK means original and TLP probe arrived; no loss */
3485 tp
->tlp_high_seq
= 0;
3486 } else if (after(ack
, tp
->tlp_high_seq
)) {
3487 /* ACK advances: there was a loss, so reduce cwnd. Reset
3488 * tlp_high_seq in tcp_init_cwnd_reduction()
3490 tcp_init_cwnd_reduction(sk
);
3491 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3492 tcp_end_cwnd_reduction(sk
);
3493 tcp_try_keep_open(sk
);
3494 NET_INC_STATS_BH(sock_net(sk
),
3495 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3496 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3497 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3498 /* Pure dupack: original and TLP probe arrived; no loss */
3499 tp
->tlp_high_seq
= 0;
3503 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3505 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3507 if (icsk
->icsk_ca_ops
->in_ack_event
)
3508 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3511 /* This routine deals with incoming acks, but not outgoing ones. */
3512 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3514 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3515 struct tcp_sock
*tp
= tcp_sk(sk
);
3516 struct tcp_sacktag_state sack_state
;
3517 u32 prior_snd_una
= tp
->snd_una
;
3518 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3519 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3520 bool is_dupack
= false;
3522 int prior_packets
= tp
->packets_out
;
3523 const int prior_unsacked
= tp
->packets_out
- tp
->sacked_out
;
3524 int acked
= 0; /* Number of packets newly acked */
3526 sack_state
.first_sackt
.v64
= 0;
3528 /* We very likely will need to access write queue head. */
3529 prefetchw(sk
->sk_write_queue
.next
);
3531 /* If the ack is older than previous acks
3532 * then we can probably ignore it.
3534 if (before(ack
, prior_snd_una
)) {
3535 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3536 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3537 tcp_send_challenge_ack(sk
, skb
);
3543 /* If the ack includes data we haven't sent yet, discard
3544 * this segment (RFC793 Section 3.9).
3546 if (after(ack
, tp
->snd_nxt
))
3549 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3550 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
3553 if (after(ack
, prior_snd_una
)) {
3554 flag
|= FLAG_SND_UNA_ADVANCED
;
3555 icsk
->icsk_retransmits
= 0;
3558 prior_fackets
= tp
->fackets_out
;
3560 /* ts_recent update must be made after we are sure that the packet
3563 if (flag
& FLAG_UPDATE_TS_RECENT
)
3564 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3566 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3567 /* Window is constant, pure forward advance.
3568 * No more checks are required.
3569 * Note, we use the fact that SND.UNA>=SND.WL2.
3571 tcp_update_wl(tp
, ack_seq
);
3572 tcp_snd_una_update(tp
, ack
);
3573 flag
|= FLAG_WIN_UPDATE
;
3575 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3577 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3579 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3581 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3584 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3586 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3588 if (TCP_SKB_CB(skb
)->sacked
)
3589 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3592 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3594 ack_ev_flags
|= CA_ACK_ECE
;
3597 if (flag
& FLAG_WIN_UPDATE
)
3598 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3600 tcp_in_ack_event(sk
, ack_ev_flags
);
3603 /* We passed data and got it acked, remove any soft error
3604 * log. Something worked...
3606 sk
->sk_err_soft
= 0;
3607 icsk
->icsk_probes_out
= 0;
3608 tp
->rcv_tstamp
= tcp_time_stamp
;
3612 /* See if we can take anything off of the retransmit queue. */
3613 acked
= tp
->packets_out
;
3614 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
,
3616 acked
-= tp
->packets_out
;
3618 if (tcp_ack_is_dubious(sk
, flag
)) {
3619 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3620 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3623 if (tp
->tlp_high_seq
)
3624 tcp_process_tlp_ack(sk
, ack
, flag
);
3626 /* Advance cwnd if state allows */
3627 if (tcp_may_raise_cwnd(sk
, flag
))
3628 tcp_cong_avoid(sk
, ack
, acked
);
3630 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
)) {
3631 struct dst_entry
*dst
= __sk_dst_get(sk
);
3636 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
)
3637 tcp_schedule_loss_probe(sk
);
3638 tcp_update_pacing_rate(sk
);
3642 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3643 if (flag
& FLAG_DSACKING_ACK
)
3644 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3646 /* If this ack opens up a zero window, clear backoff. It was
3647 * being used to time the probes, and is probably far higher than
3648 * it needs to be for normal retransmission.
3650 if (tcp_send_head(sk
))
3653 if (tp
->tlp_high_seq
)
3654 tcp_process_tlp_ack(sk
, ack
, flag
);
3658 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3662 /* If data was SACKed, tag it and see if we should send more data.
3663 * If data was DSACKed, see if we can undo a cwnd reduction.
3665 if (TCP_SKB_CB(skb
)->sacked
) {
3666 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3668 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3672 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3676 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3677 bool syn
, struct tcp_fastopen_cookie
*foc
,
3680 /* Valid only in SYN or SYN-ACK with an even length. */
3681 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3684 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3685 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3686 memcpy(foc
->val
, cookie
, len
);
3693 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3694 * But, this can also be called on packets in the established flow when
3695 * the fast version below fails.
3697 void tcp_parse_options(const struct sk_buff
*skb
,
3698 struct tcp_options_received
*opt_rx
, int estab
,
3699 struct tcp_fastopen_cookie
*foc
)
3701 const unsigned char *ptr
;
3702 const struct tcphdr
*th
= tcp_hdr(skb
);
3703 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3705 ptr
= (const unsigned char *)(th
+ 1);
3706 opt_rx
->saw_tstamp
= 0;
3708 while (length
> 0) {
3709 int opcode
= *ptr
++;
3715 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3720 if (opsize
< 2) /* "silly options" */
3722 if (opsize
> length
)
3723 return; /* don't parse partial options */
3726 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3727 u16 in_mss
= get_unaligned_be16(ptr
);
3729 if (opt_rx
->user_mss
&&
3730 opt_rx
->user_mss
< in_mss
)
3731 in_mss
= opt_rx
->user_mss
;
3732 opt_rx
->mss_clamp
= in_mss
;
3737 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3738 !estab
&& sysctl_tcp_window_scaling
) {
3739 __u8 snd_wscale
= *(__u8
*)ptr
;
3740 opt_rx
->wscale_ok
= 1;
3741 if (snd_wscale
> 14) {
3742 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3747 opt_rx
->snd_wscale
= snd_wscale
;
3750 case TCPOPT_TIMESTAMP
:
3751 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3752 ((estab
&& opt_rx
->tstamp_ok
) ||
3753 (!estab
&& sysctl_tcp_timestamps
))) {
3754 opt_rx
->saw_tstamp
= 1;
3755 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3756 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3759 case TCPOPT_SACK_PERM
:
3760 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3761 !estab
&& sysctl_tcp_sack
) {
3762 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3763 tcp_sack_reset(opt_rx
);
3768 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3769 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3771 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3774 #ifdef CONFIG_TCP_MD5SIG
3777 * The MD5 Hash has already been
3778 * checked (see tcp_v{4,6}_do_rcv()).
3782 case TCPOPT_FASTOPEN
:
3783 tcp_parse_fastopen_option(
3784 opsize
- TCPOLEN_FASTOPEN_BASE
,
3785 ptr
, th
->syn
, foc
, false);
3789 /* Fast Open option shares code 254 using a
3790 * 16 bits magic number.
3792 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3793 get_unaligned_be16(ptr
) ==
3794 TCPOPT_FASTOPEN_MAGIC
)
3795 tcp_parse_fastopen_option(opsize
-
3796 TCPOLEN_EXP_FASTOPEN_BASE
,
3797 ptr
+ 2, th
->syn
, foc
, true);
3806 EXPORT_SYMBOL(tcp_parse_options
);
3808 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3810 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3812 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3813 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3814 tp
->rx_opt
.saw_tstamp
= 1;
3816 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3819 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3821 tp
->rx_opt
.rcv_tsecr
= 0;
3827 /* Fast parse options. This hopes to only see timestamps.
3828 * If it is wrong it falls back on tcp_parse_options().
3830 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3831 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3833 /* In the spirit of fast parsing, compare doff directly to constant
3834 * values. Because equality is used, short doff can be ignored here.
3836 if (th
->doff
== (sizeof(*th
) / 4)) {
3837 tp
->rx_opt
.saw_tstamp
= 0;
3839 } else if (tp
->rx_opt
.tstamp_ok
&&
3840 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3841 if (tcp_parse_aligned_timestamp(tp
, th
))
3845 tcp_parse_options(skb
, &tp
->rx_opt
, 1, NULL
);
3846 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3847 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3852 #ifdef CONFIG_TCP_MD5SIG
3854 * Parse MD5 Signature option
3856 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3858 int length
= (th
->doff
<< 2) - sizeof(*th
);
3859 const u8
*ptr
= (const u8
*)(th
+ 1);
3861 /* If the TCP option is too short, we can short cut */
3862 if (length
< TCPOLEN_MD5SIG
)
3865 while (length
> 0) {
3866 int opcode
= *ptr
++;
3877 if (opsize
< 2 || opsize
> length
)
3879 if (opcode
== TCPOPT_MD5SIG
)
3880 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3887 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3890 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3892 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3893 * it can pass through stack. So, the following predicate verifies that
3894 * this segment is not used for anything but congestion avoidance or
3895 * fast retransmit. Moreover, we even are able to eliminate most of such
3896 * second order effects, if we apply some small "replay" window (~RTO)
3897 * to timestamp space.
3899 * All these measures still do not guarantee that we reject wrapped ACKs
3900 * on networks with high bandwidth, when sequence space is recycled fastly,
3901 * but it guarantees that such events will be very rare and do not affect
3902 * connection seriously. This doesn't look nice, but alas, PAWS is really
3905 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3906 * states that events when retransmit arrives after original data are rare.
3907 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3908 * the biggest problem on large power networks even with minor reordering.
3909 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3910 * up to bandwidth of 18Gigabit/sec. 8) ]
3913 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3915 const struct tcp_sock
*tp
= tcp_sk(sk
);
3916 const struct tcphdr
*th
= tcp_hdr(skb
);
3917 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3918 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3920 return (/* 1. Pure ACK with correct sequence number. */
3921 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3923 /* 2. ... and duplicate ACK. */
3924 ack
== tp
->snd_una
&&
3926 /* 3. ... and does not update window. */
3927 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3929 /* 4. ... and sits in replay window. */
3930 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3933 static inline bool tcp_paws_discard(const struct sock
*sk
,
3934 const struct sk_buff
*skb
)
3936 const struct tcp_sock
*tp
= tcp_sk(sk
);
3938 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3939 !tcp_disordered_ack(sk
, skb
);
3942 /* Check segment sequence number for validity.
3944 * Segment controls are considered valid, if the segment
3945 * fits to the window after truncation to the window. Acceptability
3946 * of data (and SYN, FIN, of course) is checked separately.
3947 * See tcp_data_queue(), for example.
3949 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3950 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3951 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3952 * (borrowed from freebsd)
3955 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3957 return !before(end_seq
, tp
->rcv_wup
) &&
3958 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3961 /* When we get a reset we do this. */
3962 void tcp_reset(struct sock
*sk
)
3964 /* We want the right error as BSD sees it (and indeed as we do). */
3965 switch (sk
->sk_state
) {
3967 sk
->sk_err
= ECONNREFUSED
;
3969 case TCP_CLOSE_WAIT
:
3975 sk
->sk_err
= ECONNRESET
;
3977 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3980 if (!sock_flag(sk
, SOCK_DEAD
))
3981 sk
->sk_error_report(sk
);
3987 * Process the FIN bit. This now behaves as it is supposed to work
3988 * and the FIN takes effect when it is validly part of sequence
3989 * space. Not before when we get holes.
3991 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3992 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3995 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3996 * close and we go into CLOSING (and later onto TIME-WAIT)
3998 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4000 static void tcp_fin(struct sock
*sk
)
4002 struct tcp_sock
*tp
= tcp_sk(sk
);
4004 inet_csk_schedule_ack(sk
);
4006 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4007 sock_set_flag(sk
, SOCK_DONE
);
4009 switch (sk
->sk_state
) {
4011 case TCP_ESTABLISHED
:
4012 /* Move to CLOSE_WAIT */
4013 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4014 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4017 case TCP_CLOSE_WAIT
:
4019 /* Received a retransmission of the FIN, do
4024 /* RFC793: Remain in the LAST-ACK state. */
4028 /* This case occurs when a simultaneous close
4029 * happens, we must ack the received FIN and
4030 * enter the CLOSING state.
4033 tcp_set_state(sk
, TCP_CLOSING
);
4036 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4038 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4041 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4042 * cases we should never reach this piece of code.
4044 pr_err("%s: Impossible, sk->sk_state=%d\n",
4045 __func__
, sk
->sk_state
);
4049 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4050 * Probably, we should reset in this case. For now drop them.
4052 __skb_queue_purge(&tp
->out_of_order_queue
);
4053 if (tcp_is_sack(tp
))
4054 tcp_sack_reset(&tp
->rx_opt
);
4057 if (!sock_flag(sk
, SOCK_DEAD
)) {
4058 sk
->sk_state_change(sk
);
4060 /* Do not send POLL_HUP for half duplex close. */
4061 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4062 sk
->sk_state
== TCP_CLOSE
)
4063 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4065 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4069 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4072 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4073 if (before(seq
, sp
->start_seq
))
4074 sp
->start_seq
= seq
;
4075 if (after(end_seq
, sp
->end_seq
))
4076 sp
->end_seq
= end_seq
;
4082 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4084 struct tcp_sock
*tp
= tcp_sk(sk
);
4086 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4089 if (before(seq
, tp
->rcv_nxt
))
4090 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4092 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4094 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4096 tp
->rx_opt
.dsack
= 1;
4097 tp
->duplicate_sack
[0].start_seq
= seq
;
4098 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4102 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4104 struct tcp_sock
*tp
= tcp_sk(sk
);
4106 if (!tp
->rx_opt
.dsack
)
4107 tcp_dsack_set(sk
, seq
, end_seq
);
4109 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4112 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4114 struct tcp_sock
*tp
= tcp_sk(sk
);
4116 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4117 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4118 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4119 tcp_enter_quickack_mode(sk
);
4121 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4122 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4124 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4125 end_seq
= tp
->rcv_nxt
;
4126 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4133 /* These routines update the SACK block as out-of-order packets arrive or
4134 * in-order packets close up the sequence space.
4136 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4139 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4140 struct tcp_sack_block
*swalk
= sp
+ 1;
4142 /* See if the recent change to the first SACK eats into
4143 * or hits the sequence space of other SACK blocks, if so coalesce.
4145 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4146 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4149 /* Zap SWALK, by moving every further SACK up by one slot.
4150 * Decrease num_sacks.
4152 tp
->rx_opt
.num_sacks
--;
4153 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4157 this_sack
++, swalk
++;
4161 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4163 struct tcp_sock
*tp
= tcp_sk(sk
);
4164 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4165 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4171 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4172 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4173 /* Rotate this_sack to the first one. */
4174 for (; this_sack
> 0; this_sack
--, sp
--)
4175 swap(*sp
, *(sp
- 1));
4177 tcp_sack_maybe_coalesce(tp
);
4182 /* Could not find an adjacent existing SACK, build a new one,
4183 * put it at the front, and shift everyone else down. We
4184 * always know there is at least one SACK present already here.
4186 * If the sack array is full, forget about the last one.
4188 if (this_sack
>= TCP_NUM_SACKS
) {
4190 tp
->rx_opt
.num_sacks
--;
4193 for (; this_sack
> 0; this_sack
--, sp
--)
4197 /* Build the new head SACK, and we're done. */
4198 sp
->start_seq
= seq
;
4199 sp
->end_seq
= end_seq
;
4200 tp
->rx_opt
.num_sacks
++;
4203 /* RCV.NXT advances, some SACKs should be eaten. */
4205 static void tcp_sack_remove(struct tcp_sock
*tp
)
4207 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4208 int num_sacks
= tp
->rx_opt
.num_sacks
;
4211 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4212 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4213 tp
->rx_opt
.num_sacks
= 0;
4217 for (this_sack
= 0; this_sack
< num_sacks
;) {
4218 /* Check if the start of the sack is covered by RCV.NXT. */
4219 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4222 /* RCV.NXT must cover all the block! */
4223 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4225 /* Zap this SACK, by moving forward any other SACKS. */
4226 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4227 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4234 tp
->rx_opt
.num_sacks
= num_sacks
;
4238 * tcp_try_coalesce - try to merge skb to prior one
4241 * @from: buffer to add in queue
4242 * @fragstolen: pointer to boolean
4244 * Before queueing skb @from after @to, try to merge them
4245 * to reduce overall memory use and queue lengths, if cost is small.
4246 * Packets in ofo or receive queues can stay a long time.
4247 * Better try to coalesce them right now to avoid future collapses.
4248 * Returns true if caller should free @from instead of queueing it
4250 static bool tcp_try_coalesce(struct sock
*sk
,
4252 struct sk_buff
*from
,
4257 *fragstolen
= false;
4259 /* Its possible this segment overlaps with prior segment in queue */
4260 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4263 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4266 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4267 sk_mem_charge(sk
, delta
);
4268 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4269 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4270 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4271 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4275 /* This one checks to see if we can put data from the
4276 * out_of_order queue into the receive_queue.
4278 static void tcp_ofo_queue(struct sock
*sk
)
4280 struct tcp_sock
*tp
= tcp_sk(sk
);
4281 __u32 dsack_high
= tp
->rcv_nxt
;
4282 struct sk_buff
*skb
, *tail
;
4283 bool fragstolen
, eaten
;
4285 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4286 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4289 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4290 __u32 dsack
= dsack_high
;
4291 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4292 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4293 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4296 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4297 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4298 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4302 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4303 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4304 TCP_SKB_CB(skb
)->end_seq
);
4306 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4307 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4308 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4310 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4311 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4314 kfree_skb_partial(skb
, fragstolen
);
4318 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4319 static int tcp_prune_queue(struct sock
*sk
);
4321 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4324 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4325 !sk_rmem_schedule(sk
, skb
, size
)) {
4327 if (tcp_prune_queue(sk
) < 0)
4330 if (!sk_rmem_schedule(sk
, skb
, size
)) {
4331 if (!tcp_prune_ofo_queue(sk
))
4334 if (!sk_rmem_schedule(sk
, skb
, size
))
4341 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4343 struct tcp_sock
*tp
= tcp_sk(sk
);
4344 struct sk_buff
*skb1
;
4347 tcp_ecn_check_ce(tp
, skb
);
4349 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4350 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4355 /* Disable header prediction. */
4357 inet_csk_schedule_ack(sk
);
4359 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4360 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4361 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4363 skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4365 /* Initial out of order segment, build 1 SACK. */
4366 if (tcp_is_sack(tp
)) {
4367 tp
->rx_opt
.num_sacks
= 1;
4368 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4369 tp
->selective_acks
[0].end_seq
=
4370 TCP_SKB_CB(skb
)->end_seq
;
4372 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4376 seq
= TCP_SKB_CB(skb
)->seq
;
4377 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4379 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4382 if (!tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4383 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4385 tcp_grow_window(sk
, skb
);
4386 kfree_skb_partial(skb
, fragstolen
);
4390 if (!tp
->rx_opt
.num_sacks
||
4391 tp
->selective_acks
[0].end_seq
!= seq
)
4394 /* Common case: data arrive in order after hole. */
4395 tp
->selective_acks
[0].end_seq
= end_seq
;
4399 /* Find place to insert this segment. */
4401 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4403 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4407 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4410 /* Do skb overlap to previous one? */
4411 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4412 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4413 /* All the bits are present. Drop. */
4414 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4417 tcp_dsack_set(sk
, seq
, end_seq
);
4420 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4421 /* Partial overlap. */
4422 tcp_dsack_set(sk
, seq
,
4423 TCP_SKB_CB(skb1
)->end_seq
);
4425 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4429 skb1
= skb_queue_prev(
4430 &tp
->out_of_order_queue
,
4435 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4437 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4439 /* And clean segments covered by new one as whole. */
4440 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4441 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4443 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4445 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4446 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4450 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4451 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4452 TCP_SKB_CB(skb1
)->end_seq
);
4453 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4458 if (tcp_is_sack(tp
))
4459 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4462 tcp_grow_window(sk
, skb
);
4463 skb_set_owner_r(skb
, sk
);
4467 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4471 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4473 __skb_pull(skb
, hdrlen
);
4475 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4476 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4478 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4479 skb_set_owner_r(skb
, sk
);
4484 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4486 struct sk_buff
*skb
;
4494 if (size
> PAGE_SIZE
) {
4495 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4497 data_len
= npages
<< PAGE_SHIFT
;
4498 size
= data_len
+ (size
& ~PAGE_MASK
);
4500 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4501 PAGE_ALLOC_COSTLY_ORDER
,
4502 &err
, sk
->sk_allocation
);
4506 skb_put(skb
, size
- data_len
);
4507 skb
->data_len
= data_len
;
4510 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4513 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4517 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4518 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4519 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4521 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4522 WARN_ON_ONCE(fragstolen
); /* should not happen */
4534 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4536 struct tcp_sock
*tp
= tcp_sk(sk
);
4538 bool fragstolen
= false;
4540 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4544 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4546 tcp_ecn_accept_cwr(tp
, skb
);
4548 tp
->rx_opt
.dsack
= 0;
4550 /* Queue data for delivery to the user.
4551 * Packets in sequence go to the receive queue.
4552 * Out of sequence packets to the out_of_order_queue.
4554 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4555 if (tcp_receive_window(tp
) == 0)
4558 /* Ok. In sequence. In window. */
4559 if (tp
->ucopy
.task
== current
&&
4560 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4561 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4562 int chunk
= min_t(unsigned int, skb
->len
,
4565 __set_current_state(TASK_RUNNING
);
4568 if (!skb_copy_datagram_msg(skb
, 0, tp
->ucopy
.msg
, chunk
)) {
4569 tp
->ucopy
.len
-= chunk
;
4570 tp
->copied_seq
+= chunk
;
4571 eaten
= (chunk
== skb
->len
);
4572 tcp_rcv_space_adjust(sk
);
4580 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4581 sk_forced_mem_schedule(sk
, skb
->truesize
);
4582 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4585 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4587 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4589 tcp_event_data_recv(sk
, skb
);
4590 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4593 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4596 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4597 * gap in queue is filled.
4599 if (skb_queue_empty(&tp
->out_of_order_queue
))
4600 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4603 if (tp
->rx_opt
.num_sacks
)
4604 tcp_sack_remove(tp
);
4606 tcp_fast_path_check(sk
);
4609 kfree_skb_partial(skb
, fragstolen
);
4610 if (!sock_flag(sk
, SOCK_DEAD
))
4611 sk
->sk_data_ready(sk
);
4615 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4616 /* A retransmit, 2nd most common case. Force an immediate ack. */
4617 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4618 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4621 tcp_enter_quickack_mode(sk
);
4622 inet_csk_schedule_ack(sk
);
4628 /* Out of window. F.e. zero window probe. */
4629 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4632 tcp_enter_quickack_mode(sk
);
4634 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4635 /* Partial packet, seq < rcv_next < end_seq */
4636 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4637 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4638 TCP_SKB_CB(skb
)->end_seq
);
4640 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4642 /* If window is closed, drop tail of packet. But after
4643 * remembering D-SACK for its head made in previous line.
4645 if (!tcp_receive_window(tp
))
4650 tcp_data_queue_ofo(sk
, skb
);
4653 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4654 struct sk_buff_head
*list
)
4656 struct sk_buff
*next
= NULL
;
4658 if (!skb_queue_is_last(list
, skb
))
4659 next
= skb_queue_next(list
, skb
);
4661 __skb_unlink(skb
, list
);
4663 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4668 /* Collapse contiguous sequence of skbs head..tail with
4669 * sequence numbers start..end.
4671 * If tail is NULL, this means until the end of the list.
4673 * Segments with FIN/SYN are not collapsed (only because this
4677 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4678 struct sk_buff
*head
, struct sk_buff
*tail
,
4681 struct sk_buff
*skb
, *n
;
4684 /* First, check that queue is collapsible and find
4685 * the point where collapsing can be useful. */
4689 skb_queue_walk_from_safe(list
, skb
, n
) {
4692 /* No new bits? It is possible on ofo queue. */
4693 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4694 skb
= tcp_collapse_one(sk
, skb
, list
);
4700 /* The first skb to collapse is:
4702 * - bloated or contains data before "start" or
4703 * overlaps to the next one.
4705 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4706 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4707 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4708 end_of_skbs
= false;
4712 if (!skb_queue_is_last(list
, skb
)) {
4713 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4715 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4716 end_of_skbs
= false;
4721 /* Decided to skip this, advance start seq. */
4722 start
= TCP_SKB_CB(skb
)->end_seq
;
4725 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4728 while (before(start
, end
)) {
4729 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4730 struct sk_buff
*nskb
;
4732 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4736 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4737 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4738 __skb_queue_before(list
, skb
, nskb
);
4739 skb_set_owner_r(nskb
, sk
);
4741 /* Copy data, releasing collapsed skbs. */
4743 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4744 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4748 size
= min(copy
, size
);
4749 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4751 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4755 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4756 skb
= tcp_collapse_one(sk
, skb
, list
);
4759 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4766 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4767 * and tcp_collapse() them until all the queue is collapsed.
4769 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4771 struct tcp_sock
*tp
= tcp_sk(sk
);
4772 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4773 struct sk_buff
*head
;
4779 start
= TCP_SKB_CB(skb
)->seq
;
4780 end
= TCP_SKB_CB(skb
)->end_seq
;
4784 struct sk_buff
*next
= NULL
;
4786 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4787 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4790 /* Segment is terminated when we see gap or when
4791 * we are at the end of all the queue. */
4793 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4794 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4795 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4796 head
, skb
, start
, end
);
4800 /* Start new segment */
4801 start
= TCP_SKB_CB(skb
)->seq
;
4802 end
= TCP_SKB_CB(skb
)->end_seq
;
4804 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4805 start
= TCP_SKB_CB(skb
)->seq
;
4806 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4807 end
= TCP_SKB_CB(skb
)->end_seq
;
4813 * Purge the out-of-order queue.
4814 * Return true if queue was pruned.
4816 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4818 struct tcp_sock
*tp
= tcp_sk(sk
);
4821 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4822 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4823 __skb_queue_purge(&tp
->out_of_order_queue
);
4825 /* Reset SACK state. A conforming SACK implementation will
4826 * do the same at a timeout based retransmit. When a connection
4827 * is in a sad state like this, we care only about integrity
4828 * of the connection not performance.
4830 if (tp
->rx_opt
.sack_ok
)
4831 tcp_sack_reset(&tp
->rx_opt
);
4838 /* Reduce allocated memory if we can, trying to get
4839 * the socket within its memory limits again.
4841 * Return less than zero if we should start dropping frames
4842 * until the socket owning process reads some of the data
4843 * to stabilize the situation.
4845 static int tcp_prune_queue(struct sock
*sk
)
4847 struct tcp_sock
*tp
= tcp_sk(sk
);
4849 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4851 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4853 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4854 tcp_clamp_window(sk
);
4855 else if (tcp_under_memory_pressure(sk
))
4856 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4858 tcp_collapse_ofo_queue(sk
);
4859 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4860 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4861 skb_peek(&sk
->sk_receive_queue
),
4863 tp
->copied_seq
, tp
->rcv_nxt
);
4866 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4869 /* Collapsing did not help, destructive actions follow.
4870 * This must not ever occur. */
4872 tcp_prune_ofo_queue(sk
);
4874 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4877 /* If we are really being abused, tell the caller to silently
4878 * drop receive data on the floor. It will get retransmitted
4879 * and hopefully then we'll have sufficient space.
4881 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4883 /* Massive buffer overcommit. */
4888 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4890 const struct tcp_sock
*tp
= tcp_sk(sk
);
4892 /* If the user specified a specific send buffer setting, do
4895 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4898 /* If we are under global TCP memory pressure, do not expand. */
4899 if (tcp_under_memory_pressure(sk
))
4902 /* If we are under soft global TCP memory pressure, do not expand. */
4903 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4906 /* If we filled the congestion window, do not expand. */
4907 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
4913 /* When incoming ACK allowed to free some skb from write_queue,
4914 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4915 * on the exit from tcp input handler.
4917 * PROBLEM: sndbuf expansion does not work well with largesend.
4919 static void tcp_new_space(struct sock
*sk
)
4921 struct tcp_sock
*tp
= tcp_sk(sk
);
4923 if (tcp_should_expand_sndbuf(sk
)) {
4924 tcp_sndbuf_expand(sk
);
4925 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4928 sk
->sk_write_space(sk
);
4931 static void tcp_check_space(struct sock
*sk
)
4933 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4934 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4935 /* pairs with tcp_poll() */
4936 smp_mb__after_atomic();
4937 if (sk
->sk_socket
&&
4938 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4943 static inline void tcp_data_snd_check(struct sock
*sk
)
4945 tcp_push_pending_frames(sk
);
4946 tcp_check_space(sk
);
4950 * Check if sending an ack is needed.
4952 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4954 struct tcp_sock
*tp
= tcp_sk(sk
);
4956 /* More than one full frame received... */
4957 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
4958 /* ... and right edge of window advances far enough.
4959 * (tcp_recvmsg() will send ACK otherwise). Or...
4961 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4962 /* We ACK each frame or... */
4963 tcp_in_quickack_mode(sk
) ||
4964 /* We have out of order data. */
4965 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4966 /* Then ack it now */
4969 /* Else, send delayed ack. */
4970 tcp_send_delayed_ack(sk
);
4974 static inline void tcp_ack_snd_check(struct sock
*sk
)
4976 if (!inet_csk_ack_scheduled(sk
)) {
4977 /* We sent a data segment already. */
4980 __tcp_ack_snd_check(sk
, 1);
4984 * This routine is only called when we have urgent data
4985 * signaled. Its the 'slow' part of tcp_urg. It could be
4986 * moved inline now as tcp_urg is only called from one
4987 * place. We handle URGent data wrong. We have to - as
4988 * BSD still doesn't use the correction from RFC961.
4989 * For 1003.1g we should support a new option TCP_STDURG to permit
4990 * either form (or just set the sysctl tcp_stdurg).
4993 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
4995 struct tcp_sock
*tp
= tcp_sk(sk
);
4996 u32 ptr
= ntohs(th
->urg_ptr
);
4998 if (ptr
&& !sysctl_tcp_stdurg
)
5000 ptr
+= ntohl(th
->seq
);
5002 /* Ignore urgent data that we've already seen and read. */
5003 if (after(tp
->copied_seq
, ptr
))
5006 /* Do not replay urg ptr.
5008 * NOTE: interesting situation not covered by specs.
5009 * Misbehaving sender may send urg ptr, pointing to segment,
5010 * which we already have in ofo queue. We are not able to fetch
5011 * such data and will stay in TCP_URG_NOTYET until will be eaten
5012 * by recvmsg(). Seems, we are not obliged to handle such wicked
5013 * situations. But it is worth to think about possibility of some
5014 * DoSes using some hypothetical application level deadlock.
5016 if (before(ptr
, tp
->rcv_nxt
))
5019 /* Do we already have a newer (or duplicate) urgent pointer? */
5020 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5023 /* Tell the world about our new urgent pointer. */
5026 /* We may be adding urgent data when the last byte read was
5027 * urgent. To do this requires some care. We cannot just ignore
5028 * tp->copied_seq since we would read the last urgent byte again
5029 * as data, nor can we alter copied_seq until this data arrives
5030 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5032 * NOTE. Double Dutch. Rendering to plain English: author of comment
5033 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5034 * and expect that both A and B disappear from stream. This is _wrong_.
5035 * Though this happens in BSD with high probability, this is occasional.
5036 * Any application relying on this is buggy. Note also, that fix "works"
5037 * only in this artificial test. Insert some normal data between A and B and we will
5038 * decline of BSD again. Verdict: it is better to remove to trap
5041 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5042 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5043 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5045 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5046 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5051 tp
->urg_data
= TCP_URG_NOTYET
;
5054 /* Disable header prediction. */
5058 /* This is the 'fast' part of urgent handling. */
5059 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5061 struct tcp_sock
*tp
= tcp_sk(sk
);
5063 /* Check if we get a new urgent pointer - normally not. */
5065 tcp_check_urg(sk
, th
);
5067 /* Do we wait for any urgent data? - normally not... */
5068 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5069 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5072 /* Is the urgent pointer pointing into this packet? */
5073 if (ptr
< skb
->len
) {
5075 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5077 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5078 if (!sock_flag(sk
, SOCK_DEAD
))
5079 sk
->sk_data_ready(sk
);
5084 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5086 struct tcp_sock
*tp
= tcp_sk(sk
);
5087 int chunk
= skb
->len
- hlen
;
5091 if (skb_csum_unnecessary(skb
))
5092 err
= skb_copy_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
, chunk
);
5094 err
= skb_copy_and_csum_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
);
5097 tp
->ucopy
.len
-= chunk
;
5098 tp
->copied_seq
+= chunk
;
5099 tcp_rcv_space_adjust(sk
);
5106 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5107 struct sk_buff
*skb
)
5111 if (sock_owned_by_user(sk
)) {
5113 result
= __tcp_checksum_complete(skb
);
5116 result
= __tcp_checksum_complete(skb
);
5121 static inline bool tcp_checksum_complete_user(struct sock
*sk
,
5122 struct sk_buff
*skb
)
5124 return !skb_csum_unnecessary(skb
) &&
5125 __tcp_checksum_complete_user(sk
, skb
);
5128 /* Does PAWS and seqno based validation of an incoming segment, flags will
5129 * play significant role here.
5131 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5132 const struct tcphdr
*th
, int syn_inerr
)
5134 struct tcp_sock
*tp
= tcp_sk(sk
);
5136 /* RFC1323: H1. Apply PAWS check first. */
5137 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5138 tcp_paws_discard(sk
, skb
)) {
5140 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5141 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5142 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5143 &tp
->last_oow_ack_time
))
5144 tcp_send_dupack(sk
, skb
);
5147 /* Reset is accepted even if it did not pass PAWS. */
5150 /* Step 1: check sequence number */
5151 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5152 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5153 * (RST) segments are validated by checking their SEQ-fields."
5154 * And page 69: "If an incoming segment is not acceptable,
5155 * an acknowledgment should be sent in reply (unless the RST
5156 * bit is set, if so drop the segment and return)".
5161 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5162 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5163 &tp
->last_oow_ack_time
))
5164 tcp_send_dupack(sk
, skb
);
5169 /* Step 2: check RST bit */
5172 * If sequence number exactly matches RCV.NXT, then
5173 * RESET the connection
5175 * Send a challenge ACK
5177 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
)
5180 tcp_send_challenge_ack(sk
, skb
);
5184 /* step 3: check security and precedence [ignored] */
5186 /* step 4: Check for a SYN
5187 * RFC 5961 4.2 : Send a challenge ack
5192 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5193 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5194 tcp_send_challenge_ack(sk
, skb
);
5206 * TCP receive function for the ESTABLISHED state.
5208 * It is split into a fast path and a slow path. The fast path is
5210 * - A zero window was announced from us - zero window probing
5211 * is only handled properly in the slow path.
5212 * - Out of order segments arrived.
5213 * - Urgent data is expected.
5214 * - There is no buffer space left
5215 * - Unexpected TCP flags/window values/header lengths are received
5216 * (detected by checking the TCP header against pred_flags)
5217 * - Data is sent in both directions. Fast path only supports pure senders
5218 * or pure receivers (this means either the sequence number or the ack
5219 * value must stay constant)
5220 * - Unexpected TCP option.
5222 * When these conditions are not satisfied it drops into a standard
5223 * receive procedure patterned after RFC793 to handle all cases.
5224 * The first three cases are guaranteed by proper pred_flags setting,
5225 * the rest is checked inline. Fast processing is turned on in
5226 * tcp_data_queue when everything is OK.
5228 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5229 const struct tcphdr
*th
, unsigned int len
)
5231 struct tcp_sock
*tp
= tcp_sk(sk
);
5233 if (unlikely(!sk
->sk_rx_dst
))
5234 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5236 * Header prediction.
5237 * The code loosely follows the one in the famous
5238 * "30 instruction TCP receive" Van Jacobson mail.
5240 * Van's trick is to deposit buffers into socket queue
5241 * on a device interrupt, to call tcp_recv function
5242 * on the receive process context and checksum and copy
5243 * the buffer to user space. smart...
5245 * Our current scheme is not silly either but we take the
5246 * extra cost of the net_bh soft interrupt processing...
5247 * We do checksum and copy also but from device to kernel.
5250 tp
->rx_opt
.saw_tstamp
= 0;
5252 /* pred_flags is 0xS?10 << 16 + snd_wnd
5253 * if header_prediction is to be made
5254 * 'S' will always be tp->tcp_header_len >> 2
5255 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5256 * turn it off (when there are holes in the receive
5257 * space for instance)
5258 * PSH flag is ignored.
5261 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5262 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5263 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5264 int tcp_header_len
= tp
->tcp_header_len
;
5266 /* Timestamp header prediction: tcp_header_len
5267 * is automatically equal to th->doff*4 due to pred_flags
5271 /* Check timestamp */
5272 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5273 /* No? Slow path! */
5274 if (!tcp_parse_aligned_timestamp(tp
, th
))
5277 /* If PAWS failed, check it more carefully in slow path */
5278 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5281 /* DO NOT update ts_recent here, if checksum fails
5282 * and timestamp was corrupted part, it will result
5283 * in a hung connection since we will drop all
5284 * future packets due to the PAWS test.
5288 if (len
<= tcp_header_len
) {
5289 /* Bulk data transfer: sender */
5290 if (len
== tcp_header_len
) {
5291 /* Predicted packet is in window by definition.
5292 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5293 * Hence, check seq<=rcv_wup reduces to:
5295 if (tcp_header_len
==
5296 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5297 tp
->rcv_nxt
== tp
->rcv_wup
)
5298 tcp_store_ts_recent(tp
);
5300 /* We know that such packets are checksummed
5303 tcp_ack(sk
, skb
, 0);
5305 tcp_data_snd_check(sk
);
5307 } else { /* Header too small */
5308 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5313 bool fragstolen
= false;
5315 if (tp
->ucopy
.task
== current
&&
5316 tp
->copied_seq
== tp
->rcv_nxt
&&
5317 len
- tcp_header_len
<= tp
->ucopy
.len
&&
5318 sock_owned_by_user(sk
)) {
5319 __set_current_state(TASK_RUNNING
);
5321 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
5322 /* Predicted packet is in window by definition.
5323 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5324 * Hence, check seq<=rcv_wup reduces to:
5326 if (tcp_header_len
==
5327 (sizeof(struct tcphdr
) +
5328 TCPOLEN_TSTAMP_ALIGNED
) &&
5329 tp
->rcv_nxt
== tp
->rcv_wup
)
5330 tcp_store_ts_recent(tp
);
5332 tcp_rcv_rtt_measure_ts(sk
, skb
);
5334 __skb_pull(skb
, tcp_header_len
);
5335 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
5336 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5341 if (tcp_checksum_complete_user(sk
, skb
))
5344 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5347 /* Predicted packet is in window by definition.
5348 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5349 * Hence, check seq<=rcv_wup reduces to:
5351 if (tcp_header_len
==
5352 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5353 tp
->rcv_nxt
== tp
->rcv_wup
)
5354 tcp_store_ts_recent(tp
);
5356 tcp_rcv_rtt_measure_ts(sk
, skb
);
5358 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5360 /* Bulk data transfer: receiver */
5361 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5365 tcp_event_data_recv(sk
, skb
);
5367 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5368 /* Well, only one small jumplet in fast path... */
5369 tcp_ack(sk
, skb
, FLAG_DATA
);
5370 tcp_data_snd_check(sk
);
5371 if (!inet_csk_ack_scheduled(sk
))
5375 __tcp_ack_snd_check(sk
, 0);
5378 kfree_skb_partial(skb
, fragstolen
);
5379 sk
->sk_data_ready(sk
);
5385 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5388 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5392 * Standard slow path.
5395 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5399 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5402 tcp_rcv_rtt_measure_ts(sk
, skb
);
5404 /* Process urgent data. */
5405 tcp_urg(sk
, skb
, th
);
5407 /* step 7: process the segment text */
5408 tcp_data_queue(sk
, skb
);
5410 tcp_data_snd_check(sk
);
5411 tcp_ack_snd_check(sk
);
5415 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5416 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5421 EXPORT_SYMBOL(tcp_rcv_established
);
5423 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5425 struct tcp_sock
*tp
= tcp_sk(sk
);
5426 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5428 tcp_set_state(sk
, TCP_ESTABLISHED
);
5431 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5432 security_inet_conn_established(sk
, skb
);
5435 /* Make sure socket is routed, for correct metrics. */
5436 icsk
->icsk_af_ops
->rebuild_header(sk
);
5438 tcp_init_metrics(sk
);
5440 tcp_init_congestion_control(sk
);
5442 /* Prevent spurious tcp_cwnd_restart() on first data
5445 tp
->lsndtime
= tcp_time_stamp
;
5447 tcp_init_buffer_space(sk
);
5449 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5450 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5452 if (!tp
->rx_opt
.snd_wscale
)
5453 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5457 if (!sock_flag(sk
, SOCK_DEAD
)) {
5458 sk
->sk_state_change(sk
);
5459 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5463 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5464 struct tcp_fastopen_cookie
*cookie
)
5466 struct tcp_sock
*tp
= tcp_sk(sk
);
5467 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5468 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5469 bool syn_drop
= false;
5471 if (mss
== tp
->rx_opt
.user_mss
) {
5472 struct tcp_options_received opt
;
5474 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5475 tcp_clear_options(&opt
);
5476 opt
.user_mss
= opt
.mss_clamp
= 0;
5477 tcp_parse_options(synack
, &opt
, 0, NULL
);
5478 mss
= opt
.mss_clamp
;
5481 if (!tp
->syn_fastopen
) {
5482 /* Ignore an unsolicited cookie */
5484 } else if (tp
->total_retrans
) {
5485 /* SYN timed out and the SYN-ACK neither has a cookie nor
5486 * acknowledges data. Presumably the remote received only
5487 * the retransmitted (regular) SYNs: either the original
5488 * SYN-data or the corresponding SYN-ACK was dropped.
5490 syn_drop
= (cookie
->len
< 0 && data
);
5491 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5492 /* We requested a cookie but didn't get it. If we did not use
5493 * the (old) exp opt format then try so next time (try_exp=1).
5494 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5496 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5499 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5501 if (data
) { /* Retransmit unacked data in SYN */
5502 tcp_for_write_queue_from(data
, sk
) {
5503 if (data
== tcp_send_head(sk
) ||
5504 __tcp_retransmit_skb(sk
, data
))
5508 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5511 tp
->syn_data_acked
= tp
->syn_data
;
5512 if (tp
->syn_data_acked
)
5513 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVE
);
5517 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5518 const struct tcphdr
*th
)
5520 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5521 struct tcp_sock
*tp
= tcp_sk(sk
);
5522 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5523 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5525 tcp_parse_options(skb
, &tp
->rx_opt
, 0, &foc
);
5526 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5527 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5531 * "If the state is SYN-SENT then
5532 * first check the ACK bit
5533 * If the ACK bit is set
5534 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5535 * a reset (unless the RST bit is set, if so drop
5536 * the segment and return)"
5538 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5539 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5540 goto reset_and_undo
;
5542 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5543 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5545 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5546 goto reset_and_undo
;
5549 /* Now ACK is acceptable.
5551 * "If the RST bit is set
5552 * If the ACK was acceptable then signal the user "error:
5553 * connection reset", drop the segment, enter CLOSED state,
5554 * delete TCB, and return."
5563 * "fifth, if neither of the SYN or RST bits is set then
5564 * drop the segment and return."
5570 goto discard_and_undo
;
5573 * "If the SYN bit is on ...
5574 * are acceptable then ...
5575 * (our SYN has been ACKed), change the connection
5576 * state to ESTABLISHED..."
5579 tcp_ecn_rcv_synack(tp
, th
);
5581 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5582 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5584 /* Ok.. it's good. Set up sequence numbers and
5585 * move to established.
5587 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5588 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5590 /* RFC1323: The window in SYN & SYN/ACK segments is
5593 tp
->snd_wnd
= ntohs(th
->window
);
5595 if (!tp
->rx_opt
.wscale_ok
) {
5596 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5597 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5600 if (tp
->rx_opt
.saw_tstamp
) {
5601 tp
->rx_opt
.tstamp_ok
= 1;
5602 tp
->tcp_header_len
=
5603 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5604 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5605 tcp_store_ts_recent(tp
);
5607 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5610 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5611 tcp_enable_fack(tp
);
5614 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5615 tcp_initialize_rcv_mss(sk
);
5617 /* Remember, tcp_poll() does not lock socket!
5618 * Change state from SYN-SENT only after copied_seq
5619 * is initialized. */
5620 tp
->copied_seq
= tp
->rcv_nxt
;
5624 tcp_finish_connect(sk
, skb
);
5626 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5627 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5630 if (sk
->sk_write_pending
||
5631 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5632 icsk
->icsk_ack
.pingpong
) {
5633 /* Save one ACK. Data will be ready after
5634 * several ticks, if write_pending is set.
5636 * It may be deleted, but with this feature tcpdumps
5637 * look so _wonderfully_ clever, that I was not able
5638 * to stand against the temptation 8) --ANK
5640 inet_csk_schedule_ack(sk
);
5641 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5642 tcp_enter_quickack_mode(sk
);
5643 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5644 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5655 /* No ACK in the segment */
5659 * "If the RST bit is set
5661 * Otherwise (no ACK) drop the segment and return."
5664 goto discard_and_undo
;
5668 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5669 tcp_paws_reject(&tp
->rx_opt
, 0))
5670 goto discard_and_undo
;
5673 /* We see SYN without ACK. It is attempt of
5674 * simultaneous connect with crossed SYNs.
5675 * Particularly, it can be connect to self.
5677 tcp_set_state(sk
, TCP_SYN_RECV
);
5679 if (tp
->rx_opt
.saw_tstamp
) {
5680 tp
->rx_opt
.tstamp_ok
= 1;
5681 tcp_store_ts_recent(tp
);
5682 tp
->tcp_header_len
=
5683 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5685 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5688 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5689 tp
->copied_seq
= tp
->rcv_nxt
;
5690 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5692 /* RFC1323: The window in SYN & SYN/ACK segments is
5695 tp
->snd_wnd
= ntohs(th
->window
);
5696 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5697 tp
->max_window
= tp
->snd_wnd
;
5699 tcp_ecn_rcv_syn(tp
, th
);
5702 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5703 tcp_initialize_rcv_mss(sk
);
5705 tcp_send_synack(sk
);
5707 /* Note, we could accept data and URG from this segment.
5708 * There are no obstacles to make this (except that we must
5709 * either change tcp_recvmsg() to prevent it from returning data
5710 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5712 * However, if we ignore data in ACKless segments sometimes,
5713 * we have no reasons to accept it sometimes.
5714 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5715 * is not flawless. So, discard packet for sanity.
5716 * Uncomment this return to process the data.
5723 /* "fifth, if neither of the SYN or RST bits is set then
5724 * drop the segment and return."
5728 tcp_clear_options(&tp
->rx_opt
);
5729 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5733 tcp_clear_options(&tp
->rx_opt
);
5734 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5739 * This function implements the receiving procedure of RFC 793 for
5740 * all states except ESTABLISHED and TIME_WAIT.
5741 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5742 * address independent.
5745 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5747 struct tcp_sock
*tp
= tcp_sk(sk
);
5748 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5749 const struct tcphdr
*th
= tcp_hdr(skb
);
5750 struct request_sock
*req
;
5754 tp
->rx_opt
.saw_tstamp
= 0;
5756 switch (sk
->sk_state
) {
5770 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5773 /* Now we have several options: In theory there is
5774 * nothing else in the frame. KA9Q has an option to
5775 * send data with the syn, BSD accepts data with the
5776 * syn up to the [to be] advertised window and
5777 * Solaris 2.1 gives you a protocol error. For now
5778 * we just ignore it, that fits the spec precisely
5779 * and avoids incompatibilities. It would be nice in
5780 * future to drop through and process the data.
5782 * Now that TTCP is starting to be used we ought to
5784 * But, this leaves one open to an easy denial of
5785 * service attack, and SYN cookies can't defend
5786 * against this problem. So, we drop the data
5787 * in the interest of security over speed unless
5788 * it's still in use.
5796 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5800 /* Do step6 onward by hand. */
5801 tcp_urg(sk
, skb
, th
);
5803 tcp_data_snd_check(sk
);
5807 req
= tp
->fastopen_rsk
;
5809 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5810 sk
->sk_state
!= TCP_FIN_WAIT1
);
5812 if (!tcp_check_req(sk
, skb
, req
, true))
5816 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5819 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5822 /* step 5: check the ACK field */
5823 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5824 FLAG_UPDATE_TS_RECENT
) > 0;
5826 switch (sk
->sk_state
) {
5832 tcp_synack_rtt_meas(sk
, req
);
5834 /* Once we leave TCP_SYN_RECV, we no longer need req
5838 tp
->total_retrans
= req
->num_retrans
;
5839 reqsk_fastopen_remove(sk
, req
, false);
5841 /* Make sure socket is routed, for correct metrics. */
5842 icsk
->icsk_af_ops
->rebuild_header(sk
);
5843 tcp_init_congestion_control(sk
);
5846 tp
->copied_seq
= tp
->rcv_nxt
;
5847 tcp_init_buffer_space(sk
);
5850 tcp_set_state(sk
, TCP_ESTABLISHED
);
5851 sk
->sk_state_change(sk
);
5853 /* Note, that this wakeup is only for marginal crossed SYN case.
5854 * Passively open sockets are not waked up, because
5855 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5858 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5860 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5861 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5862 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5864 if (tp
->rx_opt
.tstamp_ok
)
5865 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5868 /* Re-arm the timer because data may have been sent out.
5869 * This is similar to the regular data transmission case
5870 * when new data has just been ack'ed.
5872 * (TFO) - we could try to be more aggressive and
5873 * retransmitting any data sooner based on when they
5878 tcp_init_metrics(sk
);
5880 tcp_update_pacing_rate(sk
);
5882 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5883 tp
->lsndtime
= tcp_time_stamp
;
5885 tcp_initialize_rcv_mss(sk
);
5886 tcp_fast_path_on(tp
);
5889 case TCP_FIN_WAIT1
: {
5890 struct dst_entry
*dst
;
5893 /* If we enter the TCP_FIN_WAIT1 state and we are a
5894 * Fast Open socket and this is the first acceptable
5895 * ACK we have received, this would have acknowledged
5896 * our SYNACK so stop the SYNACK timer.
5899 /* Return RST if ack_seq is invalid.
5900 * Note that RFC793 only says to generate a
5901 * DUPACK for it but for TCP Fast Open it seems
5902 * better to treat this case like TCP_SYN_RECV
5907 /* We no longer need the request sock. */
5908 reqsk_fastopen_remove(sk
, req
, false);
5911 if (tp
->snd_una
!= tp
->write_seq
)
5914 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5915 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5917 dst
= __sk_dst_get(sk
);
5921 if (!sock_flag(sk
, SOCK_DEAD
)) {
5922 /* Wake up lingering close() */
5923 sk
->sk_state_change(sk
);
5927 if (tp
->linger2
< 0 ||
5928 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5929 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5931 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5935 tmo
= tcp_fin_time(sk
);
5936 if (tmo
> TCP_TIMEWAIT_LEN
) {
5937 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5938 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5939 /* Bad case. We could lose such FIN otherwise.
5940 * It is not a big problem, but it looks confusing
5941 * and not so rare event. We still can lose it now,
5942 * if it spins in bh_lock_sock(), but it is really
5945 inet_csk_reset_keepalive_timer(sk
, tmo
);
5947 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5954 if (tp
->snd_una
== tp
->write_seq
) {
5955 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5961 if (tp
->snd_una
== tp
->write_seq
) {
5962 tcp_update_metrics(sk
);
5969 /* step 6: check the URG bit */
5970 tcp_urg(sk
, skb
, th
);
5972 /* step 7: process the segment text */
5973 switch (sk
->sk_state
) {
5974 case TCP_CLOSE_WAIT
:
5977 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5981 /* RFC 793 says to queue data in these states,
5982 * RFC 1122 says we MUST send a reset.
5983 * BSD 4.4 also does reset.
5985 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5986 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5987 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5988 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5994 case TCP_ESTABLISHED
:
5995 tcp_data_queue(sk
, skb
);
6000 /* tcp_data could move socket to TIME-WAIT */
6001 if (sk
->sk_state
!= TCP_CLOSE
) {
6002 tcp_data_snd_check(sk
);
6003 tcp_ack_snd_check(sk
);
6012 EXPORT_SYMBOL(tcp_rcv_state_process
);
6014 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6016 struct inet_request_sock
*ireq
= inet_rsk(req
);
6018 if (family
== AF_INET
)
6019 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6020 &ireq
->ir_rmt_addr
, port
);
6021 #if IS_ENABLED(CONFIG_IPV6)
6022 else if (family
== AF_INET6
)
6023 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6024 &ireq
->ir_v6_rmt_addr
, port
);
6028 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6030 * If we receive a SYN packet with these bits set, it means a
6031 * network is playing bad games with TOS bits. In order to
6032 * avoid possible false congestion notifications, we disable
6033 * TCP ECN negotiation.
6035 * Exception: tcp_ca wants ECN. This is required for DCTCP
6036 * congestion control: Linux DCTCP asserts ECT on all packets,
6037 * including SYN, which is most optimal solution; however,
6038 * others, such as FreeBSD do not.
6040 static void tcp_ecn_create_request(struct request_sock
*req
,
6041 const struct sk_buff
*skb
,
6042 const struct sock
*listen_sk
,
6043 const struct dst_entry
*dst
)
6045 const struct tcphdr
*th
= tcp_hdr(skb
);
6046 const struct net
*net
= sock_net(listen_sk
);
6047 bool th_ecn
= th
->ece
&& th
->cwr
;
6054 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6055 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6056 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6058 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6059 (ecn_ok_dst
& DST_FEATURE_ECN_CA
))
6060 inet_rsk(req
)->ecn_ok
= 1;
6063 static void tcp_openreq_init(struct request_sock
*req
,
6064 const struct tcp_options_received
*rx_opt
,
6065 struct sk_buff
*skb
, const struct sock
*sk
)
6067 struct inet_request_sock
*ireq
= inet_rsk(req
);
6069 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6071 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6072 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6073 skb_mstamp_get(&tcp_rsk(req
)->snt_synack
);
6074 tcp_rsk(req
)->last_oow_ack_time
= 0;
6075 req
->mss
= rx_opt
->mss_clamp
;
6076 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6077 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6078 ireq
->sack_ok
= rx_opt
->sack_ok
;
6079 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6080 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6083 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6084 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6085 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6088 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6089 struct sock
*sk_listener
,
6090 bool attach_listener
)
6092 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6096 struct inet_request_sock
*ireq
= inet_rsk(req
);
6098 kmemcheck_annotate_bitfield(ireq
, flags
);
6100 atomic64_set(&ireq
->ir_cookie
, 0);
6101 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6102 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6103 ireq
->ireq_family
= sk_listener
->sk_family
;
6108 EXPORT_SYMBOL(inet_reqsk_alloc
);
6111 * Return true if a syncookie should be sent
6113 static bool tcp_syn_flood_action(const struct sock
*sk
,
6114 const struct sk_buff
*skb
,
6117 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6118 const char *msg
= "Dropping request";
6119 bool want_cookie
= false;
6121 #ifdef CONFIG_SYN_COOKIES
6122 if (sysctl_tcp_syncookies
) {
6123 msg
= "Sending cookies";
6125 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6128 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6130 if (!queue
->synflood_warned
&&
6131 sysctl_tcp_syncookies
!= 2 &&
6132 xchg(&queue
->synflood_warned
, 1) == 0)
6133 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6134 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6139 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6140 struct request_sock
*req
,
6141 const struct sk_buff
*skb
)
6143 if (tcp_sk(sk
)->save_syn
) {
6144 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6147 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6150 memcpy(©
[1], skb_network_header(skb
), len
);
6151 req
->saved_syn
= copy
;
6156 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6157 const struct tcp_request_sock_ops
*af_ops
,
6158 struct sock
*sk
, struct sk_buff
*skb
)
6160 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6161 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6162 struct tcp_options_received tmp_opt
;
6163 struct tcp_sock
*tp
= tcp_sk(sk
);
6164 struct sock
*fastopen_sk
= NULL
;
6165 struct dst_entry
*dst
= NULL
;
6166 struct request_sock
*req
;
6167 bool want_cookie
= false;
6170 /* TW buckets are converted to open requests without
6171 * limitations, they conserve resources and peer is
6172 * evidently real one.
6174 if ((sysctl_tcp_syncookies
== 2 ||
6175 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6176 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6182 /* Accept backlog is full. If we have already queued enough
6183 * of warm entries in syn queue, drop request. It is better than
6184 * clogging syn queue with openreqs with exponentially increasing
6187 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1) {
6188 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6192 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6196 tcp_rsk(req
)->af_specific
= af_ops
;
6198 tcp_clear_options(&tmp_opt
);
6199 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6200 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6201 tcp_parse_options(skb
, &tmp_opt
, 0, want_cookie
? NULL
: &foc
);
6203 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6204 tcp_clear_options(&tmp_opt
);
6206 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6207 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6209 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6210 inet_rsk(req
)->ir_iif
= sk
->sk_bound_dev_if
;
6212 af_ops
->init_req(req
, sk
, skb
);
6214 if (security_inet_conn_request(sk
, skb
, req
))
6217 if (!want_cookie
&& !isn
) {
6218 /* VJ's idea. We save last timestamp seen
6219 * from the destination in peer table, when entering
6220 * state TIME-WAIT, and check against it before
6221 * accepting new connection request.
6223 * If "isn" is not zero, this request hit alive
6224 * timewait bucket, so that all the necessary checks
6225 * are made in the function processing timewait state.
6227 if (tcp_death_row
.sysctl_tw_recycle
) {
6230 dst
= af_ops
->route_req(sk
, &fl
, req
, &strict
);
6232 if (dst
&& strict
&&
6233 !tcp_peer_is_proven(req
, dst
, true,
6234 tmp_opt
.saw_tstamp
)) {
6235 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
6236 goto drop_and_release
;
6239 /* Kill the following clause, if you dislike this way. */
6240 else if (!sysctl_tcp_syncookies
&&
6241 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6242 (sysctl_max_syn_backlog
>> 2)) &&
6243 !tcp_peer_is_proven(req
, dst
, false,
6244 tmp_opt
.saw_tstamp
)) {
6245 /* Without syncookies last quarter of
6246 * backlog is filled with destinations,
6247 * proven to be alive.
6248 * It means that we continue to communicate
6249 * to destinations, already remembered
6250 * to the moment of synflood.
6252 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6254 goto drop_and_release
;
6257 isn
= af_ops
->init_seq(skb
);
6260 dst
= af_ops
->route_req(sk
, &fl
, req
, NULL
);
6265 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6268 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6269 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6270 if (!tmp_opt
.tstamp_ok
)
6271 inet_rsk(req
)->ecn_ok
= 0;
6274 tcp_rsk(req
)->snt_isn
= isn
;
6275 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6276 tcp_openreq_init_rwin(req
, sk
, dst
);
6278 tcp_reqsk_record_syn(sk
, req
, skb
);
6279 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6282 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6284 /* Add the child socket directly into the accept queue */
6285 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6286 sk
->sk_data_ready(sk
);
6287 bh_unlock_sock(fastopen_sk
);
6288 sock_put(fastopen_sk
);
6290 tcp_rsk(req
)->tfo_listener
= false;
6292 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
6293 af_ops
->send_synack(sk
, dst
, &fl
, req
,
6294 &foc
, !want_cookie
);
6306 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENDROPS
);
6309 EXPORT_SYMBOL(tcp_conn_request
);