2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly
= 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly
= UINT_MAX
;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat
);
68 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
69 int push_one
, gfp_t gfp
);
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock
*sk
, const struct sk_buff
*skb
)
74 struct inet_connection_sock
*icsk
= inet_csk(sk
);
75 struct tcp_sock
*tp
= tcp_sk(sk
);
76 unsigned int prior_packets
= tp
->packets_out
;
78 tcp_advance_send_head(sk
, skb
);
79 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
81 tp
->packets_out
+= tcp_skb_pcount(skb
);
82 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
83 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
87 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
97 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
99 const struct tcp_sock
*tp
= tcp_sk(sk
);
101 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
))
104 return tcp_wnd_end(tp
);
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
121 static __u16
tcp_advertise_mss(struct sock
*sk
)
123 struct tcp_sock
*tp
= tcp_sk(sk
);
124 const struct dst_entry
*dst
= __sk_dst_get(sk
);
125 int mss
= tp
->advmss
;
128 unsigned int metric
= dst_metric_advmss(dst
);
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
142 void tcp_cwnd_restart(struct sock
*sk
, s32 delta
)
144 struct tcp_sock
*tp
= tcp_sk(sk
);
145 u32 restart_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
146 u32 cwnd
= tp
->snd_cwnd
;
148 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
150 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
151 restart_cwnd
= min(restart_cwnd
, cwnd
);
153 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
155 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
156 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
157 tp
->snd_cwnd_used
= 0;
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock
*tp
,
164 struct inet_connection_sock
*icsk
= inet_csk(sk
);
165 const u32 now
= tcp_time_stamp
;
167 if (tcp_packets_in_flight(tp
) == 0)
168 tcp_ca_event(sk
, CA_EVENT_TX_START
);
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
175 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
176 icsk
->icsk_ack
.pingpong
= 1;
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
182 tcp_dec_quickack_mode(sk
, pkts
);
183 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
187 u32
tcp_default_init_rwnd(u32 mss
)
189 /* Initial receive window should be twice of TCP_INIT_CWND to
190 * enable proper sending of new unsent data during fast recovery
191 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
192 * limit when mss is larger than 1460.
194 u32 init_rwnd
= TCP_INIT_CWND
* 2;
197 init_rwnd
= max((1460 * init_rwnd
) / mss
, 2U);
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
208 void tcp_select_initial_window(int __space
, __u32 mss
,
209 __u32
*rcv_wnd
, __u32
*window_clamp
,
210 int wscale_ok
, __u8
*rcv_wscale
,
213 unsigned int space
= (__space
< 0 ? 0 : __space
);
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (*window_clamp
== 0)
217 (*window_clamp
) = (65535 << 14);
218 space
= min(*window_clamp
, space
);
220 /* Quantize space offering to a multiple of mss if possible. */
222 space
= (space
/ mss
) * mss
;
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
232 if (sysctl_tcp_workaround_signed_windows
)
233 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
239 /* Set window scaling on max possible window
240 * See RFC1323 for an explanation of the limit to 14
242 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
243 space
= min_t(u32
, space
, *window_clamp
);
244 while (space
> 65535 && (*rcv_wscale
) < 14) {
250 if (mss
> (1 << *rcv_wscale
)) {
251 if (!init_rcv_wnd
) /* Use default unless specified otherwise */
252 init_rcv_wnd
= tcp_default_init_rwnd(mss
);
253 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
256 /* Set the clamp no higher than max representable value */
257 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
259 EXPORT_SYMBOL(tcp_select_initial_window
);
261 /* Chose a new window to advertise, update state in tcp_sock for the
262 * socket, and return result with RFC1323 scaling applied. The return
263 * value can be stuffed directly into th->window for an outgoing
266 static u16
tcp_select_window(struct sock
*sk
)
268 struct tcp_sock
*tp
= tcp_sk(sk
);
269 u32 old_win
= tp
->rcv_wnd
;
270 u32 cur_win
= tcp_receive_window(tp
);
271 u32 new_win
= __tcp_select_window(sk
);
273 /* Never shrink the offered window */
274 if (new_win
< cur_win
) {
275 /* Danger Will Robinson!
276 * Don't update rcv_wup/rcv_wnd here or else
277 * we will not be able to advertise a zero
278 * window in time. --DaveM
280 * Relax Will Robinson.
283 NET_INC_STATS(sock_net(sk
),
284 LINUX_MIB_TCPWANTZEROWINDOWADV
);
285 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
287 tp
->rcv_wnd
= new_win
;
288 tp
->rcv_wup
= tp
->rcv_nxt
;
290 /* Make sure we do not exceed the maximum possible
293 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
294 new_win
= min(new_win
, MAX_TCP_WINDOW
);
296 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
298 /* RFC1323 scaling applied */
299 new_win
>>= tp
->rx_opt
.rcv_wscale
;
301 /* If we advertise zero window, disable fast path. */
305 NET_INC_STATS(sock_net(sk
),
306 LINUX_MIB_TCPTOZEROWINDOWADV
);
307 } else if (old_win
== 0) {
308 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
314 /* Packet ECN state for a SYN-ACK */
315 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
317 const struct tcp_sock
*tp
= tcp_sk(sk
);
319 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
320 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
321 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
322 else if (tcp_ca_needs_ecn(sk
))
326 /* Packet ECN state for a SYN. */
327 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
329 struct tcp_sock
*tp
= tcp_sk(sk
);
330 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
331 tcp_ca_needs_ecn(sk
);
334 const struct dst_entry
*dst
= __sk_dst_get(sk
);
336 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
343 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
344 tp
->ecn_flags
= TCP_ECN_OK
;
345 if (tcp_ca_needs_ecn(sk
))
350 static void tcp_ecn_clear_syn(struct sock
*sk
, struct sk_buff
*skb
)
352 if (sock_net(sk
)->ipv4
.sysctl_tcp_ecn_fallback
)
353 /* tp->ecn_flags are cleared at a later point in time when
354 * SYN ACK is ultimatively being received.
356 TCP_SKB_CB(skb
)->tcp_flags
&= ~(TCPHDR_ECE
| TCPHDR_CWR
);
360 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
)
362 if (inet_rsk(req
)->ecn_ok
)
366 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
369 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
372 struct tcp_sock
*tp
= tcp_sk(sk
);
374 if (tp
->ecn_flags
& TCP_ECN_OK
) {
375 /* Not-retransmitted data segment: set ECT and inject CWR. */
376 if (skb
->len
!= tcp_header_len
&&
377 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
379 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
380 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
381 tcp_hdr(skb
)->cwr
= 1;
382 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
384 } else if (!tcp_ca_needs_ecn(sk
)) {
385 /* ACK or retransmitted segment: clear ECT|CE */
386 INET_ECN_dontxmit(sk
);
388 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
389 tcp_hdr(skb
)->ece
= 1;
393 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
394 * auto increment end seqno.
396 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
398 skb
->ip_summed
= CHECKSUM_PARTIAL
;
401 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
402 TCP_SKB_CB(skb
)->sacked
= 0;
404 tcp_skb_pcount_set(skb
, 1);
406 TCP_SKB_CB(skb
)->seq
= seq
;
407 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
409 TCP_SKB_CB(skb
)->end_seq
= seq
;
412 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
414 return tp
->snd_una
!= tp
->snd_up
;
417 #define OPTION_SACK_ADVERTISE (1 << 0)
418 #define OPTION_TS (1 << 1)
419 #define OPTION_MD5 (1 << 2)
420 #define OPTION_WSCALE (1 << 3)
421 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
423 struct tcp_out_options
{
424 u16 options
; /* bit field of OPTION_* */
425 u16 mss
; /* 0 to disable */
426 u8 ws
; /* window scale, 0 to disable */
427 u8 num_sack_blocks
; /* number of SACK blocks to include */
428 u8 hash_size
; /* bytes in hash_location */
429 __u8
*hash_location
; /* temporary pointer, overloaded */
430 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
431 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
434 /* Write previously computed TCP options to the packet.
436 * Beware: Something in the Internet is very sensitive to the ordering of
437 * TCP options, we learned this through the hard way, so be careful here.
438 * Luckily we can at least blame others for their non-compliance but from
439 * inter-operability perspective it seems that we're somewhat stuck with
440 * the ordering which we have been using if we want to keep working with
441 * those broken things (not that it currently hurts anybody as there isn't
442 * particular reason why the ordering would need to be changed).
444 * At least SACK_PERM as the first option is known to lead to a disaster
445 * (but it may well be that other scenarios fail similarly).
447 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
448 struct tcp_out_options
*opts
)
450 u16 options
= opts
->options
; /* mungable copy */
452 if (unlikely(OPTION_MD5
& options
)) {
453 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
454 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
455 /* overload cookie hash location */
456 opts
->hash_location
= (__u8
*)ptr
;
460 if (unlikely(opts
->mss
)) {
461 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
462 (TCPOLEN_MSS
<< 16) |
466 if (likely(OPTION_TS
& options
)) {
467 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
468 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
469 (TCPOLEN_SACK_PERM
<< 16) |
470 (TCPOPT_TIMESTAMP
<< 8) |
472 options
&= ~OPTION_SACK_ADVERTISE
;
474 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
476 (TCPOPT_TIMESTAMP
<< 8) |
479 *ptr
++ = htonl(opts
->tsval
);
480 *ptr
++ = htonl(opts
->tsecr
);
483 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
484 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
486 (TCPOPT_SACK_PERM
<< 8) |
490 if (unlikely(OPTION_WSCALE
& options
)) {
491 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
492 (TCPOPT_WINDOW
<< 16) |
493 (TCPOLEN_WINDOW
<< 8) |
497 if (unlikely(opts
->num_sack_blocks
)) {
498 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
499 tp
->duplicate_sack
: tp
->selective_acks
;
502 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
505 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
506 TCPOLEN_SACK_PERBLOCK
)));
508 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
510 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
511 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
514 tp
->rx_opt
.dsack
= 0;
517 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
518 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
520 u32 len
; /* Fast Open option length */
523 len
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
524 *ptr
= htonl((TCPOPT_EXP
<< 24) | (len
<< 16) |
525 TCPOPT_FASTOPEN_MAGIC
);
526 p
+= TCPOLEN_EXP_FASTOPEN_BASE
;
528 len
= TCPOLEN_FASTOPEN_BASE
+ foc
->len
;
529 *p
++ = TCPOPT_FASTOPEN
;
533 memcpy(p
, foc
->val
, foc
->len
);
534 if ((len
& 3) == 2) {
535 p
[foc
->len
] = TCPOPT_NOP
;
536 p
[foc
->len
+ 1] = TCPOPT_NOP
;
538 ptr
+= (len
+ 3) >> 2;
542 /* Compute TCP options for SYN packets. This is not the final
543 * network wire format yet.
545 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
546 struct tcp_out_options
*opts
,
547 struct tcp_md5sig_key
**md5
)
549 struct tcp_sock
*tp
= tcp_sk(sk
);
550 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
551 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
553 #ifdef CONFIG_TCP_MD5SIG
554 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
556 opts
->options
|= OPTION_MD5
;
557 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
563 /* We always get an MSS option. The option bytes which will be seen in
564 * normal data packets should timestamps be used, must be in the MSS
565 * advertised. But we subtract them from tp->mss_cache so that
566 * calculations in tcp_sendmsg are simpler etc. So account for this
567 * fact here if necessary. If we don't do this correctly, as a
568 * receiver we won't recognize data packets as being full sized when we
569 * should, and thus we won't abide by the delayed ACK rules correctly.
570 * SACKs don't matter, we never delay an ACK when we have any of those
572 opts
->mss
= tcp_advertise_mss(sk
);
573 remaining
-= TCPOLEN_MSS_ALIGNED
;
575 if (likely(sysctl_tcp_timestamps
&& !*md5
)) {
576 opts
->options
|= OPTION_TS
;
577 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
578 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
579 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
581 if (likely(sysctl_tcp_window_scaling
)) {
582 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
583 opts
->options
|= OPTION_WSCALE
;
584 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
586 if (likely(sysctl_tcp_sack
)) {
587 opts
->options
|= OPTION_SACK_ADVERTISE
;
588 if (unlikely(!(OPTION_TS
& opts
->options
)))
589 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
592 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
593 u32 need
= fastopen
->cookie
.len
;
595 need
+= fastopen
->cookie
.exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
596 TCPOLEN_FASTOPEN_BASE
;
597 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
598 if (remaining
>= need
) {
599 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
600 opts
->fastopen_cookie
= &fastopen
->cookie
;
602 tp
->syn_fastopen
= 1;
603 tp
->syn_fastopen_exp
= fastopen
->cookie
.exp
? 1 : 0;
607 return MAX_TCP_OPTION_SPACE
- remaining
;
610 /* Set up TCP options for SYN-ACKs. */
611 static unsigned int tcp_synack_options(struct request_sock
*req
,
612 unsigned int mss
, struct sk_buff
*skb
,
613 struct tcp_out_options
*opts
,
614 const struct tcp_md5sig_key
*md5
,
615 struct tcp_fastopen_cookie
*foc
)
617 struct inet_request_sock
*ireq
= inet_rsk(req
);
618 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
620 #ifdef CONFIG_TCP_MD5SIG
622 opts
->options
|= OPTION_MD5
;
623 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
625 /* We can't fit any SACK blocks in a packet with MD5 + TS
626 * options. There was discussion about disabling SACK
627 * rather than TS in order to fit in better with old,
628 * buggy kernels, but that was deemed to be unnecessary.
630 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
634 /* We always send an MSS option. */
636 remaining
-= TCPOLEN_MSS_ALIGNED
;
638 if (likely(ireq
->wscale_ok
)) {
639 opts
->ws
= ireq
->rcv_wscale
;
640 opts
->options
|= OPTION_WSCALE
;
641 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
643 if (likely(ireq
->tstamp_ok
)) {
644 opts
->options
|= OPTION_TS
;
645 opts
->tsval
= tcp_skb_timestamp(skb
);
646 opts
->tsecr
= req
->ts_recent
;
647 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
649 if (likely(ireq
->sack_ok
)) {
650 opts
->options
|= OPTION_SACK_ADVERTISE
;
651 if (unlikely(!ireq
->tstamp_ok
))
652 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
654 if (foc
!= NULL
&& foc
->len
>= 0) {
657 need
+= foc
->exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
658 TCPOLEN_FASTOPEN_BASE
;
659 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
660 if (remaining
>= need
) {
661 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
662 opts
->fastopen_cookie
= foc
;
667 return MAX_TCP_OPTION_SPACE
- remaining
;
670 /* Compute TCP options for ESTABLISHED sockets. This is not the
671 * final wire format yet.
673 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
674 struct tcp_out_options
*opts
,
675 struct tcp_md5sig_key
**md5
)
677 struct tcp_sock
*tp
= tcp_sk(sk
);
678 unsigned int size
= 0;
679 unsigned int eff_sacks
;
683 #ifdef CONFIG_TCP_MD5SIG
684 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
685 if (unlikely(*md5
)) {
686 opts
->options
|= OPTION_MD5
;
687 size
+= TCPOLEN_MD5SIG_ALIGNED
;
693 if (likely(tp
->rx_opt
.tstamp_ok
)) {
694 opts
->options
|= OPTION_TS
;
695 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
696 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
697 size
+= TCPOLEN_TSTAMP_ALIGNED
;
700 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
701 if (unlikely(eff_sacks
)) {
702 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
703 opts
->num_sack_blocks
=
704 min_t(unsigned int, eff_sacks
,
705 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
706 TCPOLEN_SACK_PERBLOCK
);
707 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
708 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
715 /* TCP SMALL QUEUES (TSQ)
717 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
718 * to reduce RTT and bufferbloat.
719 * We do this using a special skb destructor (tcp_wfree).
721 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
722 * needs to be reallocated in a driver.
723 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
725 * Since transmit from skb destructor is forbidden, we use a tasklet
726 * to process all sockets that eventually need to send more skbs.
727 * We use one tasklet per cpu, with its own queue of sockets.
730 struct tasklet_struct tasklet
;
731 struct list_head head
; /* queue of tcp sockets */
733 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
735 static void tcp_tsq_handler(struct sock
*sk
)
737 if ((1 << sk
->sk_state
) &
738 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
739 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
))
740 tcp_write_xmit(sk
, tcp_current_mss(sk
), tcp_sk(sk
)->nonagle
,
744 * One tasklet per cpu tries to send more skbs.
745 * We run in tasklet context but need to disable irqs when
746 * transferring tsq->head because tcp_wfree() might
747 * interrupt us (non NAPI drivers)
749 static void tcp_tasklet_func(unsigned long data
)
751 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
754 struct list_head
*q
, *n
;
758 local_irq_save(flags
);
759 list_splice_init(&tsq
->head
, &list
);
760 local_irq_restore(flags
);
762 list_for_each_safe(q
, n
, &list
) {
763 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
764 list_del(&tp
->tsq_node
);
766 sk
= (struct sock
*)tp
;
769 if (!sock_owned_by_user(sk
)) {
772 /* defer the work to tcp_release_cb() */
773 set_bit(TCP_TSQ_DEFERRED
, &tp
->tsq_flags
);
777 clear_bit(TSQ_QUEUED
, &tp
->tsq_flags
);
782 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
783 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
784 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
785 (1UL << TCP_MTU_REDUCED_DEFERRED))
787 * tcp_release_cb - tcp release_sock() callback
790 * called from release_sock() to perform protocol dependent
791 * actions before socket release.
793 void tcp_release_cb(struct sock
*sk
)
795 struct tcp_sock
*tp
= tcp_sk(sk
);
796 unsigned long flags
, nflags
;
798 /* perform an atomic operation only if at least one flag is set */
800 flags
= tp
->tsq_flags
;
801 if (!(flags
& TCP_DEFERRED_ALL
))
803 nflags
= flags
& ~TCP_DEFERRED_ALL
;
804 } while (cmpxchg(&tp
->tsq_flags
, flags
, nflags
) != flags
);
806 if (flags
& (1UL << TCP_TSQ_DEFERRED
))
809 /* Here begins the tricky part :
810 * We are called from release_sock() with :
812 * 2) sk_lock.slock spinlock held
813 * 3) socket owned by us (sk->sk_lock.owned == 1)
815 * But following code is meant to be called from BH handlers,
816 * so we should keep BH disabled, but early release socket ownership
818 sock_release_ownership(sk
);
820 if (flags
& (1UL << TCP_WRITE_TIMER_DEFERRED
)) {
821 tcp_write_timer_handler(sk
);
824 if (flags
& (1UL << TCP_DELACK_TIMER_DEFERRED
)) {
825 tcp_delack_timer_handler(sk
);
828 if (flags
& (1UL << TCP_MTU_REDUCED_DEFERRED
)) {
829 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
833 EXPORT_SYMBOL(tcp_release_cb
);
835 void __init
tcp_tasklet_init(void)
839 for_each_possible_cpu(i
) {
840 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
842 INIT_LIST_HEAD(&tsq
->head
);
843 tasklet_init(&tsq
->tasklet
,
850 * Write buffer destructor automatically called from kfree_skb.
851 * We can't xmit new skbs from this context, as we might already
854 void tcp_wfree(struct sk_buff
*skb
)
856 struct sock
*sk
= skb
->sk
;
857 struct tcp_sock
*tp
= tcp_sk(sk
);
860 /* Keep one reference on sk_wmem_alloc.
861 * Will be released by sk_free() from here or tcp_tasklet_func()
863 wmem
= atomic_sub_return(skb
->truesize
- 1, &sk
->sk_wmem_alloc
);
865 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
866 * Wait until our queues (qdisc + devices) are drained.
868 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
869 * - chance for incoming ACK (processed by another cpu maybe)
870 * to migrate this flow (skb->ooo_okay will be eventually set)
872 if (wmem
>= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
875 if (test_and_clear_bit(TSQ_THROTTLED
, &tp
->tsq_flags
) &&
876 !test_and_set_bit(TSQ_QUEUED
, &tp
->tsq_flags
)) {
878 struct tsq_tasklet
*tsq
;
880 /* queue this socket to tasklet queue */
881 local_irq_save(flags
);
882 tsq
= this_cpu_ptr(&tsq_tasklet
);
883 list_add(&tp
->tsq_node
, &tsq
->head
);
884 tasklet_schedule(&tsq
->tasklet
);
885 local_irq_restore(flags
);
892 /* This routine actually transmits TCP packets queued in by
893 * tcp_do_sendmsg(). This is used by both the initial
894 * transmission and possible later retransmissions.
895 * All SKB's seen here are completely headerless. It is our
896 * job to build the TCP header, and pass the packet down to
897 * IP so it can do the same plus pass the packet off to the
900 * We are working here with either a clone of the original
901 * SKB, or a fresh unique copy made by the retransmit engine.
903 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
906 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
907 struct inet_sock
*inet
;
909 struct tcp_skb_cb
*tcb
;
910 struct tcp_out_options opts
;
911 unsigned int tcp_options_size
, tcp_header_size
;
912 struct tcp_md5sig_key
*md5
;
916 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
919 skb_mstamp_get(&skb
->skb_mstamp
);
921 if (unlikely(skb_cloned(skb
)))
922 skb
= pskb_copy(skb
, gfp_mask
);
924 skb
= skb_clone(skb
, gfp_mask
);
931 tcb
= TCP_SKB_CB(skb
);
932 memset(&opts
, 0, sizeof(opts
));
934 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
))
935 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
937 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
939 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
941 /* if no packet is in qdisc/device queue, then allow XPS to select
942 * another queue. We can be called from tcp_tsq_handler()
943 * which holds one reference to sk_wmem_alloc.
945 * TODO: Ideally, in-flight pure ACK packets should not matter here.
946 * One way to get this would be to set skb->truesize = 2 on them.
948 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
950 skb_push(skb
, tcp_header_size
);
951 skb_reset_transport_header(skb
);
955 skb
->destructor
= skb_is_tcp_pure_ack(skb
) ? sock_wfree
: tcp_wfree
;
956 skb_set_hash_from_sk(skb
, sk
);
957 atomic_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
959 /* Build TCP header and checksum it. */
961 th
->source
= inet
->inet_sport
;
962 th
->dest
= inet
->inet_dport
;
963 th
->seq
= htonl(tcb
->seq
);
964 th
->ack_seq
= htonl(tp
->rcv_nxt
);
965 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
968 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
)) {
969 /* RFC1323: The window in SYN & SYN/ACK segments
972 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
974 th
->window
= htons(tcp_select_window(sk
));
979 /* The urg_mode check is necessary during a below snd_una win probe */
980 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
981 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
982 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
984 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
985 th
->urg_ptr
= htons(0xFFFF);
990 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
991 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
992 if (likely((tcb
->tcp_flags
& TCPHDR_SYN
) == 0))
993 tcp_ecn_send(sk
, skb
, tcp_header_size
);
995 #ifdef CONFIG_TCP_MD5SIG
996 /* Calculate the MD5 hash, as we have all we need now */
998 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
999 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
1004 icsk
->icsk_af_ops
->send_check(sk
, skb
);
1006 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
1007 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
1009 if (skb
->len
!= tcp_header_size
)
1010 tcp_event_data_sent(tp
, sk
);
1012 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1013 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1014 tcp_skb_pcount(skb
));
1016 tp
->segs_out
+= tcp_skb_pcount(skb
);
1017 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1018 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1019 skb_shinfo(skb
)->gso_size
= tcp_skb_mss(skb
);
1021 /* Our usage of tstamp should remain private */
1022 skb
->tstamp
.tv64
= 0;
1024 /* Cleanup our debris for IP stacks */
1025 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1026 sizeof(struct inet6_skb_parm
)));
1028 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1030 if (likely(err
<= 0))
1035 return net_xmit_eval(err
);
1038 /* This routine just queues the buffer for sending.
1040 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1041 * otherwise socket can stall.
1043 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1045 struct tcp_sock
*tp
= tcp_sk(sk
);
1047 /* Advance write_seq and place onto the write_queue. */
1048 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
1049 __skb_header_release(skb
);
1050 tcp_add_write_queue_tail(sk
, skb
);
1051 sk
->sk_wmem_queued
+= skb
->truesize
;
1052 sk_mem_charge(sk
, skb
->truesize
);
1055 /* Initialize TSO segments for a packet. */
1056 static void tcp_set_skb_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1058 if (skb
->len
<= mss_now
|| skb
->ip_summed
== CHECKSUM_NONE
) {
1059 /* Avoid the costly divide in the normal
1062 tcp_skb_pcount_set(skb
, 1);
1063 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1065 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1066 TCP_SKB_CB(skb
)->tcp_gso_size
= mss_now
;
1070 /* When a modification to fackets out becomes necessary, we need to check
1071 * skb is counted to fackets_out or not.
1073 static void tcp_adjust_fackets_out(struct sock
*sk
, const struct sk_buff
*skb
,
1076 struct tcp_sock
*tp
= tcp_sk(sk
);
1078 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
1081 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
1082 tp
->fackets_out
-= decr
;
1085 /* Pcount in the middle of the write queue got changed, we need to do various
1086 * tweaks to fix counters
1088 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1090 struct tcp_sock
*tp
= tcp_sk(sk
);
1092 tp
->packets_out
-= decr
;
1094 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1095 tp
->sacked_out
-= decr
;
1096 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1097 tp
->retrans_out
-= decr
;
1098 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1099 tp
->lost_out
-= decr
;
1101 /* Reno case is special. Sigh... */
1102 if (tcp_is_reno(tp
) && decr
> 0)
1103 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1105 tcp_adjust_fackets_out(sk
, skb
, decr
);
1107 if (tp
->lost_skb_hint
&&
1108 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1109 (tcp_is_fack(tp
) || (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)))
1110 tp
->lost_cnt_hint
-= decr
;
1112 tcp_verify_left_out(tp
);
1115 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1117 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1119 if (unlikely(shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
) &&
1120 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1121 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1122 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1124 shinfo
->tx_flags
&= ~tsflags
;
1125 shinfo2
->tx_flags
|= tsflags
;
1126 swap(shinfo
->tskey
, shinfo2
->tskey
);
1130 /* Function to create two new TCP segments. Shrinks the given segment
1131 * to the specified size and appends a new segment with the rest of the
1132 * packet to the list. This won't be called frequently, I hope.
1133 * Remember, these are still headerless SKBs at this point.
1135 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
1136 unsigned int mss_now
, gfp_t gfp
)
1138 struct tcp_sock
*tp
= tcp_sk(sk
);
1139 struct sk_buff
*buff
;
1140 int nsize
, old_factor
;
1144 if (WARN_ON(len
> skb
->len
))
1147 nsize
= skb_headlen(skb
) - len
;
1151 if (skb_unclone(skb
, gfp
))
1154 /* Get a new skb... force flag on. */
1155 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
, true);
1157 return -ENOMEM
; /* We'll just try again later. */
1159 sk
->sk_wmem_queued
+= buff
->truesize
;
1160 sk_mem_charge(sk
, buff
->truesize
);
1161 nlen
= skb
->len
- len
- nsize
;
1162 buff
->truesize
+= nlen
;
1163 skb
->truesize
-= nlen
;
1165 /* Correct the sequence numbers. */
1166 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1167 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1168 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1170 /* PSH and FIN should only be set in the second packet. */
1171 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1172 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1173 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1174 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1176 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
1177 /* Copy and checksum data tail into the new buffer. */
1178 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
1179 skb_put(buff
, nsize
),
1184 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
1186 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1187 skb_split(skb
, buff
, len
);
1190 buff
->ip_summed
= skb
->ip_summed
;
1192 buff
->tstamp
= skb
->tstamp
;
1193 tcp_fragment_tstamp(skb
, buff
);
1195 old_factor
= tcp_skb_pcount(skb
);
1197 /* Fix up tso_factor for both original and new SKB. */
1198 tcp_set_skb_tso_segs(skb
, mss_now
);
1199 tcp_set_skb_tso_segs(buff
, mss_now
);
1201 /* If this packet has been sent out already, we must
1202 * adjust the various packet counters.
1204 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1205 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1206 tcp_skb_pcount(buff
);
1209 tcp_adjust_pcount(sk
, skb
, diff
);
1212 /* Link BUFF into the send queue. */
1213 __skb_header_release(buff
);
1214 tcp_insert_write_queue_after(skb
, buff
, sk
);
1219 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1220 * eventually). The difference is that pulled data not copied, but
1221 * immediately discarded.
1223 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
1225 struct skb_shared_info
*shinfo
;
1228 eat
= min_t(int, len
, skb_headlen(skb
));
1230 __skb_pull(skb
, eat
);
1237 shinfo
= skb_shinfo(skb
);
1238 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1239 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1242 skb_frag_unref(skb
, i
);
1245 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1247 shinfo
->frags
[k
].page_offset
+= eat
;
1248 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1254 shinfo
->nr_frags
= k
;
1256 skb_reset_tail_pointer(skb
);
1257 skb
->data_len
-= len
;
1258 skb
->len
= skb
->data_len
;
1261 /* Remove acked data from a packet in the transmit queue. */
1262 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1264 if (skb_unclone(skb
, GFP_ATOMIC
))
1267 __pskb_trim_head(skb
, len
);
1269 TCP_SKB_CB(skb
)->seq
+= len
;
1270 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1272 skb
->truesize
-= len
;
1273 sk
->sk_wmem_queued
-= len
;
1274 sk_mem_uncharge(sk
, len
);
1275 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1277 /* Any change of skb->len requires recalculation of tso factor. */
1278 if (tcp_skb_pcount(skb
) > 1)
1279 tcp_set_skb_tso_segs(skb
, tcp_skb_mss(skb
));
1284 /* Calculate MSS not accounting any TCP options. */
1285 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1287 const struct tcp_sock
*tp
= tcp_sk(sk
);
1288 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1291 /* Calculate base mss without TCP options:
1292 It is MMS_S - sizeof(tcphdr) of rfc1122
1294 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1296 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1297 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1298 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1300 if (dst
&& dst_allfrag(dst
))
1301 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1304 /* Clamp it (mss_clamp does not include tcp options) */
1305 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1306 mss_now
= tp
->rx_opt
.mss_clamp
;
1308 /* Now subtract optional transport overhead */
1309 mss_now
-= icsk
->icsk_ext_hdr_len
;
1311 /* Then reserve room for full set of TCP options and 8 bytes of data */
1317 /* Calculate MSS. Not accounting for SACKs here. */
1318 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1320 /* Subtract TCP options size, not including SACKs */
1321 return __tcp_mtu_to_mss(sk
, pmtu
) -
1322 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1325 /* Inverse of above */
1326 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1328 const struct tcp_sock
*tp
= tcp_sk(sk
);
1329 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1333 tp
->tcp_header_len
+
1334 icsk
->icsk_ext_hdr_len
+
1335 icsk
->icsk_af_ops
->net_header_len
;
1337 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1338 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1339 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1341 if (dst
&& dst_allfrag(dst
))
1342 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1347 /* MTU probing init per socket */
1348 void tcp_mtup_init(struct sock
*sk
)
1350 struct tcp_sock
*tp
= tcp_sk(sk
);
1351 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1352 struct net
*net
= sock_net(sk
);
1354 icsk
->icsk_mtup
.enabled
= net
->ipv4
.sysctl_tcp_mtu_probing
> 1;
1355 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1356 icsk
->icsk_af_ops
->net_header_len
;
1357 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, net
->ipv4
.sysctl_tcp_base_mss
);
1358 icsk
->icsk_mtup
.probe_size
= 0;
1359 if (icsk
->icsk_mtup
.enabled
)
1360 icsk
->icsk_mtup
.probe_timestamp
= tcp_time_stamp
;
1362 EXPORT_SYMBOL(tcp_mtup_init
);
1364 /* This function synchronize snd mss to current pmtu/exthdr set.
1366 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1367 for TCP options, but includes only bare TCP header.
1369 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1370 It is minimum of user_mss and mss received with SYN.
1371 It also does not include TCP options.
1373 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1375 tp->mss_cache is current effective sending mss, including
1376 all tcp options except for SACKs. It is evaluated,
1377 taking into account current pmtu, but never exceeds
1378 tp->rx_opt.mss_clamp.
1380 NOTE1. rfc1122 clearly states that advertised MSS
1381 DOES NOT include either tcp or ip options.
1383 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1384 are READ ONLY outside this function. --ANK (980731)
1386 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1388 struct tcp_sock
*tp
= tcp_sk(sk
);
1389 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1392 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1393 icsk
->icsk_mtup
.search_high
= pmtu
;
1395 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1396 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1398 /* And store cached results */
1399 icsk
->icsk_pmtu_cookie
= pmtu
;
1400 if (icsk
->icsk_mtup
.enabled
)
1401 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1402 tp
->mss_cache
= mss_now
;
1406 EXPORT_SYMBOL(tcp_sync_mss
);
1408 /* Compute the current effective MSS, taking SACKs and IP options,
1409 * and even PMTU discovery events into account.
1411 unsigned int tcp_current_mss(struct sock
*sk
)
1413 const struct tcp_sock
*tp
= tcp_sk(sk
);
1414 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1416 unsigned int header_len
;
1417 struct tcp_out_options opts
;
1418 struct tcp_md5sig_key
*md5
;
1420 mss_now
= tp
->mss_cache
;
1423 u32 mtu
= dst_mtu(dst
);
1424 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1425 mss_now
= tcp_sync_mss(sk
, mtu
);
1428 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1429 sizeof(struct tcphdr
);
1430 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1431 * some common options. If this is an odd packet (because we have SACK
1432 * blocks etc) then our calculated header_len will be different, and
1433 * we have to adjust mss_now correspondingly */
1434 if (header_len
!= tp
->tcp_header_len
) {
1435 int delta
= (int) header_len
- tp
->tcp_header_len
;
1442 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1443 * As additional protections, we do not touch cwnd in retransmission phases,
1444 * and if application hit its sndbuf limit recently.
1446 static void tcp_cwnd_application_limited(struct sock
*sk
)
1448 struct tcp_sock
*tp
= tcp_sk(sk
);
1450 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1451 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1452 /* Limited by application or receiver window. */
1453 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1454 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1455 if (win_used
< tp
->snd_cwnd
) {
1456 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1457 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1459 tp
->snd_cwnd_used
= 0;
1461 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1464 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1466 struct tcp_sock
*tp
= tcp_sk(sk
);
1468 /* Track the maximum number of outstanding packets in each
1469 * window, and remember whether we were cwnd-limited then.
1471 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1472 tp
->packets_out
> tp
->max_packets_out
) {
1473 tp
->max_packets_out
= tp
->packets_out
;
1474 tp
->max_packets_seq
= tp
->snd_nxt
;
1475 tp
->is_cwnd_limited
= is_cwnd_limited
;
1478 if (tcp_is_cwnd_limited(sk
)) {
1479 /* Network is feed fully. */
1480 tp
->snd_cwnd_used
= 0;
1481 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1483 /* Network starves. */
1484 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1485 tp
->snd_cwnd_used
= tp
->packets_out
;
1487 if (sysctl_tcp_slow_start_after_idle
&&
1488 (s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
1489 tcp_cwnd_application_limited(sk
);
1493 /* Minshall's variant of the Nagle send check. */
1494 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1496 return after(tp
->snd_sml
, tp
->snd_una
) &&
1497 !after(tp
->snd_sml
, tp
->snd_nxt
);
1500 /* Update snd_sml if this skb is under mss
1501 * Note that a TSO packet might end with a sub-mss segment
1502 * The test is really :
1503 * if ((skb->len % mss) != 0)
1504 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1505 * But we can avoid doing the divide again given we already have
1506 * skb_pcount = skb->len / mss_now
1508 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1509 const struct sk_buff
*skb
)
1511 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1512 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1515 /* Return false, if packet can be sent now without violation Nagle's rules:
1516 * 1. It is full sized. (provided by caller in %partial bool)
1517 * 2. Or it contains FIN. (already checked by caller)
1518 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1519 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1520 * With Minshall's modification: all sent small packets are ACKed.
1522 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1526 ((nonagle
& TCP_NAGLE_CORK
) ||
1527 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1530 /* Return how many segs we'd like on a TSO packet,
1531 * to send one TSO packet per ms
1533 static u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
)
1537 bytes
= min(sk
->sk_pacing_rate
>> 10,
1538 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1540 /* Goal is to send at least one packet per ms,
1541 * not one big TSO packet every 100 ms.
1542 * This preserves ACK clocking and is consistent
1543 * with tcp_tso_should_defer() heuristic.
1545 segs
= max_t(u32
, bytes
/ mss_now
, sysctl_tcp_min_tso_segs
);
1547 return min_t(u32
, segs
, sk
->sk_gso_max_segs
);
1550 /* Returns the portion of skb which can be sent right away */
1551 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1552 const struct sk_buff
*skb
,
1553 unsigned int mss_now
,
1554 unsigned int max_segs
,
1557 const struct tcp_sock
*tp
= tcp_sk(sk
);
1558 u32 partial
, needed
, window
, max_len
;
1560 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1561 max_len
= mss_now
* max_segs
;
1563 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1566 needed
= min(skb
->len
, window
);
1568 if (max_len
<= needed
)
1571 partial
= needed
% mss_now
;
1572 /* If last segment is not a full MSS, check if Nagle rules allow us
1573 * to include this last segment in this skb.
1574 * Otherwise, we'll split the skb at last MSS boundary
1576 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1577 return needed
- partial
;
1582 /* Can at least one segment of SKB be sent right now, according to the
1583 * congestion window rules? If so, return how many segments are allowed.
1585 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1586 const struct sk_buff
*skb
)
1588 u32 in_flight
, cwnd
, halfcwnd
;
1590 /* Don't be strict about the congestion window for the final FIN. */
1591 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1592 tcp_skb_pcount(skb
) == 1)
1595 in_flight
= tcp_packets_in_flight(tp
);
1596 cwnd
= tp
->snd_cwnd
;
1597 if (in_flight
>= cwnd
)
1600 /* For better scheduling, ensure we have at least
1601 * 2 GSO packets in flight.
1603 halfcwnd
= max(cwnd
>> 1, 1U);
1604 return min(halfcwnd
, cwnd
- in_flight
);
1607 /* Initialize TSO state of a skb.
1608 * This must be invoked the first time we consider transmitting
1609 * SKB onto the wire.
1611 static int tcp_init_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1613 int tso_segs
= tcp_skb_pcount(skb
);
1615 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1616 tcp_set_skb_tso_segs(skb
, mss_now
);
1617 tso_segs
= tcp_skb_pcount(skb
);
1623 /* Return true if the Nagle test allows this packet to be
1626 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1627 unsigned int cur_mss
, int nonagle
)
1629 /* Nagle rule does not apply to frames, which sit in the middle of the
1630 * write_queue (they have no chances to get new data).
1632 * This is implemented in the callers, where they modify the 'nonagle'
1633 * argument based upon the location of SKB in the send queue.
1635 if (nonagle
& TCP_NAGLE_PUSH
)
1638 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1639 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1642 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1648 /* Does at least the first segment of SKB fit into the send window? */
1649 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1650 const struct sk_buff
*skb
,
1651 unsigned int cur_mss
)
1653 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1655 if (skb
->len
> cur_mss
)
1656 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1658 return !after(end_seq
, tcp_wnd_end(tp
));
1661 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1662 * should be put on the wire right now. If so, it returns the number of
1663 * packets allowed by the congestion window.
1665 static unsigned int tcp_snd_test(const struct sock
*sk
, struct sk_buff
*skb
,
1666 unsigned int cur_mss
, int nonagle
)
1668 const struct tcp_sock
*tp
= tcp_sk(sk
);
1669 unsigned int cwnd_quota
;
1671 tcp_init_tso_segs(skb
, cur_mss
);
1673 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1676 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1677 if (cwnd_quota
&& !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1683 /* Test if sending is allowed right now. */
1684 bool tcp_may_send_now(struct sock
*sk
)
1686 const struct tcp_sock
*tp
= tcp_sk(sk
);
1687 struct sk_buff
*skb
= tcp_send_head(sk
);
1690 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
),
1691 (tcp_skb_is_last(sk
, skb
) ?
1692 tp
->nonagle
: TCP_NAGLE_PUSH
));
1695 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1696 * which is put after SKB on the list. It is very much like
1697 * tcp_fragment() except that it may make several kinds of assumptions
1698 * in order to speed up the splitting operation. In particular, we
1699 * know that all the data is in scatter-gather pages, and that the
1700 * packet has never been sent out before (and thus is not cloned).
1702 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1703 unsigned int mss_now
, gfp_t gfp
)
1705 struct sk_buff
*buff
;
1706 int nlen
= skb
->len
- len
;
1709 /* All of a TSO frame must be composed of paged data. */
1710 if (skb
->len
!= skb
->data_len
)
1711 return tcp_fragment(sk
, skb
, len
, mss_now
, gfp
);
1713 buff
= sk_stream_alloc_skb(sk
, 0, gfp
, true);
1714 if (unlikely(!buff
))
1717 sk
->sk_wmem_queued
+= buff
->truesize
;
1718 sk_mem_charge(sk
, buff
->truesize
);
1719 buff
->truesize
+= nlen
;
1720 skb
->truesize
-= nlen
;
1722 /* Correct the sequence numbers. */
1723 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1724 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1725 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1727 /* PSH and FIN should only be set in the second packet. */
1728 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1729 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1730 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1732 /* This packet was never sent out yet, so no SACK bits. */
1733 TCP_SKB_CB(buff
)->sacked
= 0;
1735 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1736 skb_split(skb
, buff
, len
);
1737 tcp_fragment_tstamp(skb
, buff
);
1739 /* Fix up tso_factor for both original and new SKB. */
1740 tcp_set_skb_tso_segs(skb
, mss_now
);
1741 tcp_set_skb_tso_segs(buff
, mss_now
);
1743 /* Link BUFF into the send queue. */
1744 __skb_header_release(buff
);
1745 tcp_insert_write_queue_after(skb
, buff
, sk
);
1750 /* Try to defer sending, if possible, in order to minimize the amount
1751 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1753 * This algorithm is from John Heffner.
1755 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1756 bool *is_cwnd_limited
, u32 max_segs
)
1758 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1759 u32 age
, send_win
, cong_win
, limit
, in_flight
;
1760 struct tcp_sock
*tp
= tcp_sk(sk
);
1761 struct skb_mstamp now
;
1762 struct sk_buff
*head
;
1765 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1768 if (icsk
->icsk_ca_state
>= TCP_CA_Recovery
)
1771 /* Avoid bursty behavior by allowing defer
1772 * only if the last write was recent.
1774 if ((s32
)(tcp_time_stamp
- tp
->lsndtime
) > 0)
1777 in_flight
= tcp_packets_in_flight(tp
);
1779 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1781 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1783 /* From in_flight test above, we know that cwnd > in_flight. */
1784 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1786 limit
= min(send_win
, cong_win
);
1788 /* If a full-sized TSO skb can be sent, do it. */
1789 if (limit
>= max_segs
* tp
->mss_cache
)
1792 /* Middle in queue won't get any more data, full sendable already? */
1793 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1796 win_divisor
= ACCESS_ONCE(sysctl_tcp_tso_win_divisor
);
1798 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1800 /* If at least some fraction of a window is available,
1803 chunk
/= win_divisor
;
1807 /* Different approach, try not to defer past a single
1808 * ACK. Receiver should ACK every other full sized
1809 * frame, so if we have space for more than 3 frames
1812 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
1816 head
= tcp_write_queue_head(sk
);
1817 skb_mstamp_get(&now
);
1818 age
= skb_mstamp_us_delta(&now
, &head
->skb_mstamp
);
1819 /* If next ACK is likely to come too late (half srtt), do not defer */
1820 if (age
< (tp
->srtt_us
>> 4))
1823 /* Ok, it looks like it is advisable to defer. */
1825 if (cong_win
< send_win
&& cong_win
<= skb
->len
)
1826 *is_cwnd_limited
= true;
1834 static inline void tcp_mtu_check_reprobe(struct sock
*sk
)
1836 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1837 struct tcp_sock
*tp
= tcp_sk(sk
);
1838 struct net
*net
= sock_net(sk
);
1842 interval
= net
->ipv4
.sysctl_tcp_probe_interval
;
1843 delta
= tcp_time_stamp
- icsk
->icsk_mtup
.probe_timestamp
;
1844 if (unlikely(delta
>= interval
* HZ
)) {
1845 int mss
= tcp_current_mss(sk
);
1847 /* Update current search range */
1848 icsk
->icsk_mtup
.probe_size
= 0;
1849 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+
1850 sizeof(struct tcphdr
) +
1851 icsk
->icsk_af_ops
->net_header_len
;
1852 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, mss
);
1854 /* Update probe time stamp */
1855 icsk
->icsk_mtup
.probe_timestamp
= tcp_time_stamp
;
1859 /* Create a new MTU probe if we are ready.
1860 * MTU probe is regularly attempting to increase the path MTU by
1861 * deliberately sending larger packets. This discovers routing
1862 * changes resulting in larger path MTUs.
1864 * Returns 0 if we should wait to probe (no cwnd available),
1865 * 1 if a probe was sent,
1868 static int tcp_mtu_probe(struct sock
*sk
)
1870 struct tcp_sock
*tp
= tcp_sk(sk
);
1871 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1872 struct sk_buff
*skb
, *nskb
, *next
;
1873 struct net
*net
= sock_net(sk
);
1881 /* Not currently probing/verifying,
1883 * have enough cwnd, and
1884 * not SACKing (the variable headers throw things off) */
1885 if (!icsk
->icsk_mtup
.enabled
||
1886 icsk
->icsk_mtup
.probe_size
||
1887 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1888 tp
->snd_cwnd
< 11 ||
1889 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
)
1892 /* Use binary search for probe_size between tcp_mss_base,
1893 * and current mss_clamp. if (search_high - search_low)
1894 * smaller than a threshold, backoff from probing.
1896 mss_now
= tcp_current_mss(sk
);
1897 probe_size
= tcp_mtu_to_mss(sk
, (icsk
->icsk_mtup
.search_high
+
1898 icsk
->icsk_mtup
.search_low
) >> 1);
1899 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
1900 interval
= icsk
->icsk_mtup
.search_high
- icsk
->icsk_mtup
.search_low
;
1901 /* When misfortune happens, we are reprobing actively,
1902 * and then reprobe timer has expired. We stick with current
1903 * probing process by not resetting search range to its orignal.
1905 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
) ||
1906 interval
< net
->ipv4
.sysctl_tcp_probe_threshold
) {
1907 /* Check whether enough time has elaplased for
1908 * another round of probing.
1910 tcp_mtu_check_reprobe(sk
);
1914 /* Have enough data in the send queue to probe? */
1915 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
1918 if (tp
->snd_wnd
< size_needed
)
1920 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
1923 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1924 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
1925 if (!tcp_packets_in_flight(tp
))
1931 /* We're allowed to probe. Build it now. */
1932 nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
, false);
1935 sk
->sk_wmem_queued
+= nskb
->truesize
;
1936 sk_mem_charge(sk
, nskb
->truesize
);
1938 skb
= tcp_send_head(sk
);
1940 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1941 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1942 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
1943 TCP_SKB_CB(nskb
)->sacked
= 0;
1945 nskb
->ip_summed
= skb
->ip_summed
;
1947 tcp_insert_write_queue_before(nskb
, skb
, sk
);
1950 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
1951 copy
= min_t(int, skb
->len
, probe_size
- len
);
1952 if (nskb
->ip_summed
)
1953 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1955 nskb
->csum
= skb_copy_and_csum_bits(skb
, 0,
1956 skb_put(nskb
, copy
),
1959 if (skb
->len
<= copy
) {
1960 /* We've eaten all the data from this skb.
1962 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1963 tcp_unlink_write_queue(skb
, sk
);
1964 sk_wmem_free_skb(sk
, skb
);
1966 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
1967 ~(TCPHDR_FIN
|TCPHDR_PSH
);
1968 if (!skb_shinfo(skb
)->nr_frags
) {
1969 skb_pull(skb
, copy
);
1970 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1971 skb
->csum
= csum_partial(skb
->data
,
1974 __pskb_trim_head(skb
, copy
);
1975 tcp_set_skb_tso_segs(skb
, mss_now
);
1977 TCP_SKB_CB(skb
)->seq
+= copy
;
1982 if (len
>= probe_size
)
1985 tcp_init_tso_segs(nskb
, nskb
->len
);
1987 /* We're ready to send. If this fails, the probe will
1988 * be resegmented into mss-sized pieces by tcp_write_xmit().
1990 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
1991 /* Decrement cwnd here because we are sending
1992 * effectively two packets. */
1994 tcp_event_new_data_sent(sk
, nskb
);
1996 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
1997 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
1998 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
2006 /* This routine writes packets to the network. It advances the
2007 * send_head. This happens as incoming acks open up the remote
2010 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2011 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2012 * account rare use of URG, this is not a big flaw.
2014 * Send at most one packet when push_one > 0. Temporarily ignore
2015 * cwnd limit to force at most one packet out when push_one == 2.
2017 * Returns true, if no segments are in flight and we have queued segments,
2018 * but cannot send anything now because of SWS or another problem.
2020 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
2021 int push_one
, gfp_t gfp
)
2023 struct tcp_sock
*tp
= tcp_sk(sk
);
2024 struct sk_buff
*skb
;
2025 unsigned int tso_segs
, sent_pkts
;
2028 bool is_cwnd_limited
= false;
2034 /* Do MTU probing. */
2035 result
= tcp_mtu_probe(sk
);
2038 } else if (result
> 0) {
2043 max_segs
= tcp_tso_autosize(sk
, mss_now
);
2044 while ((skb
= tcp_send_head(sk
))) {
2047 tso_segs
= tcp_init_tso_segs(skb
, mss_now
);
2050 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2051 /* "skb_mstamp" is used as a start point for the retransmit timer */
2052 skb_mstamp_get(&skb
->skb_mstamp
);
2053 goto repair
; /* Skip network transmission */
2056 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2059 /* Force out a loss probe pkt. */
2065 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
2068 if (tso_segs
== 1) {
2069 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2070 (tcp_skb_is_last(sk
, skb
) ?
2071 nonagle
: TCP_NAGLE_PUSH
))))
2075 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2081 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
2082 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2088 if (skb
->len
> limit
&&
2089 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
, gfp
)))
2092 /* TCP Small Queues :
2093 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2095 * - better RTT estimation and ACK scheduling
2098 * Alas, some drivers / subsystems require a fair amount
2099 * of queued bytes to ensure line rate.
2100 * One example is wifi aggregation (802.11 AMPDU)
2102 limit
= max(2 * skb
->truesize
, sk
->sk_pacing_rate
>> 10);
2103 limit
= min_t(u32
, limit
, sysctl_tcp_limit_output_bytes
);
2105 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
) {
2106 set_bit(TSQ_THROTTLED
, &tp
->tsq_flags
);
2107 /* It is possible TX completion already happened
2108 * before we set TSQ_THROTTLED, so we must
2109 * test again the condition.
2111 smp_mb__after_atomic();
2112 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
)
2116 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2120 /* Advance the send_head. This one is sent out.
2121 * This call will increment packets_out.
2123 tcp_event_new_data_sent(sk
, skb
);
2125 tcp_minshall_update(tp
, mss_now
, skb
);
2126 sent_pkts
+= tcp_skb_pcount(skb
);
2132 if (likely(sent_pkts
)) {
2133 if (tcp_in_cwnd_reduction(sk
))
2134 tp
->prr_out
+= sent_pkts
;
2136 /* Send one loss probe per tail loss episode. */
2138 tcp_schedule_loss_probe(sk
);
2139 is_cwnd_limited
|= (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
);
2140 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2143 return !tp
->packets_out
&& tcp_send_head(sk
);
2146 bool tcp_schedule_loss_probe(struct sock
*sk
)
2148 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2149 struct tcp_sock
*tp
= tcp_sk(sk
);
2150 u32 timeout
, tlp_time_stamp
, rto_time_stamp
;
2151 u32 rtt
= usecs_to_jiffies(tp
->srtt_us
>> 3);
2153 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
))
2155 /* No consecutive loss probes. */
2156 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)) {
2160 /* Don't do any loss probe on a Fast Open connection before 3WHS
2163 if (tp
->fastopen_rsk
)
2166 /* TLP is only scheduled when next timer event is RTO. */
2167 if (icsk
->icsk_pending
!= ICSK_TIME_RETRANS
)
2170 /* Schedule a loss probe in 2*RTT for SACK capable connections
2171 * in Open state, that are either limited by cwnd or application.
2173 if (sysctl_tcp_early_retrans
< 3 || !tp
->packets_out
||
2174 !tcp_is_sack(tp
) || inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2177 if ((tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) &&
2181 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2182 * for delayed ack when there's one outstanding packet. If no RTT
2183 * sample is available then probe after TCP_TIMEOUT_INIT.
2185 timeout
= rtt
<< 1 ? : TCP_TIMEOUT_INIT
;
2186 if (tp
->packets_out
== 1)
2187 timeout
= max_t(u32
, timeout
,
2188 (rtt
+ (rtt
>> 1) + TCP_DELACK_MAX
));
2189 timeout
= max_t(u32
, timeout
, msecs_to_jiffies(10));
2191 /* If RTO is shorter, just schedule TLP in its place. */
2192 tlp_time_stamp
= tcp_time_stamp
+ timeout
;
2193 rto_time_stamp
= (u32
)inet_csk(sk
)->icsk_timeout
;
2194 if ((s32
)(tlp_time_stamp
- rto_time_stamp
) > 0) {
2195 s32 delta
= rto_time_stamp
- tcp_time_stamp
;
2200 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2205 /* Thanks to skb fast clones, we can detect if a prior transmit of
2206 * a packet is still in a qdisc or driver queue.
2207 * In this case, there is very little point doing a retransmit !
2208 * Note: This is called from BH context only.
2210 static bool skb_still_in_host_queue(const struct sock
*sk
,
2211 const struct sk_buff
*skb
)
2213 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2214 NET_INC_STATS_BH(sock_net(sk
),
2215 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2221 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2222 * retransmit the last segment.
2224 void tcp_send_loss_probe(struct sock
*sk
)
2226 struct tcp_sock
*tp
= tcp_sk(sk
);
2227 struct sk_buff
*skb
;
2229 int mss
= tcp_current_mss(sk
);
2231 skb
= tcp_send_head(sk
);
2233 if (tcp_snd_wnd_test(tp
, skb
, mss
)) {
2234 pcount
= tp
->packets_out
;
2235 tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2236 if (tp
->packets_out
> pcount
)
2240 skb
= tcp_write_queue_prev(sk
, skb
);
2242 skb
= tcp_write_queue_tail(sk
);
2245 /* At most one outstanding TLP retransmission. */
2246 if (tp
->tlp_high_seq
)
2249 /* Retransmit last segment. */
2253 if (skb_still_in_host_queue(sk
, skb
))
2256 pcount
= tcp_skb_pcount(skb
);
2257 if (WARN_ON(!pcount
))
2260 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2261 if (unlikely(tcp_fragment(sk
, skb
, (pcount
- 1) * mss
, mss
,
2264 skb
= tcp_write_queue_next(sk
, skb
);
2267 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2270 if (__tcp_retransmit_skb(sk
, skb
))
2273 /* Record snd_nxt for loss detection. */
2274 tp
->tlp_high_seq
= tp
->snd_nxt
;
2277 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSPROBES
);
2278 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2279 inet_csk(sk
)->icsk_pending
= 0;
2284 /* Push out any pending frames which were held back due to
2285 * TCP_CORK or attempt at coalescing tiny packets.
2286 * The socket must be locked by the caller.
2288 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2291 /* If we are closed, the bytes will have to remain here.
2292 * In time closedown will finish, we empty the write queue and
2293 * all will be happy.
2295 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2298 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2299 sk_gfp_atomic(sk
, GFP_ATOMIC
)))
2300 tcp_check_probe_timer(sk
);
2303 /* Send _single_ skb sitting at the send head. This function requires
2304 * true push pending frames to setup probe timer etc.
2306 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2308 struct sk_buff
*skb
= tcp_send_head(sk
);
2310 BUG_ON(!skb
|| skb
->len
< mss_now
);
2312 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2315 /* This function returns the amount that we can raise the
2316 * usable window based on the following constraints
2318 * 1. The window can never be shrunk once it is offered (RFC 793)
2319 * 2. We limit memory per socket
2322 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2323 * RECV.NEXT + RCV.WIN fixed until:
2324 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2326 * i.e. don't raise the right edge of the window until you can raise
2327 * it at least MSS bytes.
2329 * Unfortunately, the recommended algorithm breaks header prediction,
2330 * since header prediction assumes th->window stays fixed.
2332 * Strictly speaking, keeping th->window fixed violates the receiver
2333 * side SWS prevention criteria. The problem is that under this rule
2334 * a stream of single byte packets will cause the right side of the
2335 * window to always advance by a single byte.
2337 * Of course, if the sender implements sender side SWS prevention
2338 * then this will not be a problem.
2340 * BSD seems to make the following compromise:
2342 * If the free space is less than the 1/4 of the maximum
2343 * space available and the free space is less than 1/2 mss,
2344 * then set the window to 0.
2345 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2346 * Otherwise, just prevent the window from shrinking
2347 * and from being larger than the largest representable value.
2349 * This prevents incremental opening of the window in the regime
2350 * where TCP is limited by the speed of the reader side taking
2351 * data out of the TCP receive queue. It does nothing about
2352 * those cases where the window is constrained on the sender side
2353 * because the pipeline is full.
2355 * BSD also seems to "accidentally" limit itself to windows that are a
2356 * multiple of MSS, at least until the free space gets quite small.
2357 * This would appear to be a side effect of the mbuf implementation.
2358 * Combining these two algorithms results in the observed behavior
2359 * of having a fixed window size at almost all times.
2361 * Below we obtain similar behavior by forcing the offered window to
2362 * a multiple of the mss when it is feasible to do so.
2364 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2365 * Regular options like TIMESTAMP are taken into account.
2367 u32
__tcp_select_window(struct sock
*sk
)
2369 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2370 struct tcp_sock
*tp
= tcp_sk(sk
);
2371 /* MSS for the peer's data. Previous versions used mss_clamp
2372 * here. I don't know if the value based on our guesses
2373 * of peer's MSS is better for the performance. It's more correct
2374 * but may be worse for the performance because of rcv_mss
2375 * fluctuations. --SAW 1998/11/1
2377 int mss
= icsk
->icsk_ack
.rcv_mss
;
2378 int free_space
= tcp_space(sk
);
2379 int allowed_space
= tcp_full_space(sk
);
2380 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2383 if (mss
> full_space
)
2386 if (free_space
< (full_space
>> 1)) {
2387 icsk
->icsk_ack
.quick
= 0;
2389 if (tcp_under_memory_pressure(sk
))
2390 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2393 /* free_space might become our new window, make sure we don't
2394 * increase it due to wscale.
2396 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2398 /* if free space is less than mss estimate, or is below 1/16th
2399 * of the maximum allowed, try to move to zero-window, else
2400 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2401 * new incoming data is dropped due to memory limits.
2402 * With large window, mss test triggers way too late in order
2403 * to announce zero window in time before rmem limit kicks in.
2405 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2409 if (free_space
> tp
->rcv_ssthresh
)
2410 free_space
= tp
->rcv_ssthresh
;
2412 /* Don't do rounding if we are using window scaling, since the
2413 * scaled window will not line up with the MSS boundary anyway.
2415 window
= tp
->rcv_wnd
;
2416 if (tp
->rx_opt
.rcv_wscale
) {
2417 window
= free_space
;
2419 /* Advertise enough space so that it won't get scaled away.
2420 * Import case: prevent zero window announcement if
2421 * 1<<rcv_wscale > mss.
2423 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
2424 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
2425 << tp
->rx_opt
.rcv_wscale
);
2427 /* Get the largest window that is a nice multiple of mss.
2428 * Window clamp already applied above.
2429 * If our current window offering is within 1 mss of the
2430 * free space we just keep it. This prevents the divide
2431 * and multiply from happening most of the time.
2432 * We also don't do any window rounding when the free space
2435 if (window
<= free_space
- mss
|| window
> free_space
)
2436 window
= (free_space
/ mss
) * mss
;
2437 else if (mss
== full_space
&&
2438 free_space
> window
+ (full_space
>> 1))
2439 window
= free_space
;
2445 /* Collapses two adjacent SKB's during retransmission. */
2446 static void tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2448 struct tcp_sock
*tp
= tcp_sk(sk
);
2449 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
2450 int skb_size
, next_skb_size
;
2452 skb_size
= skb
->len
;
2453 next_skb_size
= next_skb
->len
;
2455 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2457 tcp_highest_sack_combine(sk
, next_skb
, skb
);
2459 tcp_unlink_write_queue(next_skb
, sk
);
2461 skb_copy_from_linear_data(next_skb
, skb_put(skb
, next_skb_size
),
2464 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
2465 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2467 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2468 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
2470 /* Update sequence range on original skb. */
2471 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2473 /* Merge over control information. This moves PSH/FIN etc. over */
2474 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2476 /* All done, get rid of second SKB and account for it so
2477 * packet counting does not break.
2479 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2481 /* changed transmit queue under us so clear hints */
2482 tcp_clear_retrans_hints_partial(tp
);
2483 if (next_skb
== tp
->retransmit_skb_hint
)
2484 tp
->retransmit_skb_hint
= skb
;
2486 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2488 sk_wmem_free_skb(sk
, next_skb
);
2491 /* Check if coalescing SKBs is legal. */
2492 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2494 if (tcp_skb_pcount(skb
) > 1)
2496 /* TODO: SACK collapsing could be used to remove this condition */
2497 if (skb_shinfo(skb
)->nr_frags
!= 0)
2499 if (skb_cloned(skb
))
2501 if (skb
== tcp_send_head(sk
))
2503 /* Some heurestics for collapsing over SACK'd could be invented */
2504 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2510 /* Collapse packets in the retransmit queue to make to create
2511 * less packets on the wire. This is only done on retransmission.
2513 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2516 struct tcp_sock
*tp
= tcp_sk(sk
);
2517 struct sk_buff
*skb
= to
, *tmp
;
2520 if (!sysctl_tcp_retrans_collapse
)
2522 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2525 tcp_for_write_queue_from_safe(skb
, tmp
, sk
) {
2526 if (!tcp_can_collapse(sk
, skb
))
2538 /* Punt if not enough space exists in the first SKB for
2539 * the data in the second
2541 if (skb
->len
> skb_availroom(to
))
2544 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2547 tcp_collapse_retrans(sk
, to
);
2551 /* This retransmits one SKB. Policy decisions and retransmit queue
2552 * state updates are done by the caller. Returns non-zero if an
2553 * error occurred which prevented the send.
2555 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2557 struct tcp_sock
*tp
= tcp_sk(sk
);
2558 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2559 unsigned int cur_mss
;
2562 /* Inconslusive MTU probe */
2563 if (icsk
->icsk_mtup
.probe_size
) {
2564 icsk
->icsk_mtup
.probe_size
= 0;
2567 /* Do not sent more than we queued. 1/4 is reserved for possible
2568 * copying overhead: fragmentation, tunneling, mangling etc.
2570 if (atomic_read(&sk
->sk_wmem_alloc
) >
2571 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
2574 if (skb_still_in_host_queue(sk
, skb
))
2577 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2578 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
2580 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2584 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2585 return -EHOSTUNREACH
; /* Routing failure or similar. */
2587 cur_mss
= tcp_current_mss(sk
);
2589 /* If receiver has shrunk his window, and skb is out of
2590 * new window, do not retransmit it. The exception is the
2591 * case, when window is shrunk to zero. In this case
2592 * our retransmit serves as a zero window probe.
2594 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2595 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
2598 if (skb
->len
> cur_mss
) {
2599 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
, GFP_ATOMIC
))
2600 return -ENOMEM
; /* We'll try again later. */
2602 int oldpcount
= tcp_skb_pcount(skb
);
2604 if (unlikely(oldpcount
> 1)) {
2605 if (skb_unclone(skb
, GFP_ATOMIC
))
2607 tcp_init_tso_segs(skb
, cur_mss
);
2608 tcp_adjust_pcount(sk
, skb
, oldpcount
- tcp_skb_pcount(skb
));
2612 /* RFC3168, section 6.1.1.1. ECN fallback */
2613 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN_ECN
) == TCPHDR_SYN_ECN
)
2614 tcp_ecn_clear_syn(sk
, skb
);
2616 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
2618 /* Make a copy, if the first transmission SKB clone we made
2619 * is still in somebody's hands, else make a clone.
2622 /* make sure skb->data is aligned on arches that require it
2623 * and check if ack-trimming & collapsing extended the headroom
2624 * beyond what csum_start can cover.
2626 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
2627 skb_headroom(skb
) >= 0xFFFF)) {
2628 struct sk_buff
*nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
,
2630 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
2633 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2637 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
2638 /* Update global TCP statistics. */
2639 TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
2640 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2641 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
2642 tp
->total_retrans
++;
2647 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2649 struct tcp_sock
*tp
= tcp_sk(sk
);
2650 int err
= __tcp_retransmit_skb(sk
, skb
);
2653 #if FASTRETRANS_DEBUG > 0
2654 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2655 net_dbg_ratelimited("retrans_out leaked\n");
2658 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
2659 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2661 /* Save stamp of the first retransmit. */
2662 if (!tp
->retrans_stamp
)
2663 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
2665 } else if (err
!= -EBUSY
) {
2666 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
);
2669 if (tp
->undo_retrans
< 0)
2670 tp
->undo_retrans
= 0;
2671 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
2675 /* Check if we forward retransmits are possible in the current
2676 * window/congestion state.
2678 static bool tcp_can_forward_retransmit(struct sock
*sk
)
2680 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2681 const struct tcp_sock
*tp
= tcp_sk(sk
);
2683 /* Forward retransmissions are possible only during Recovery. */
2684 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
2687 /* No forward retransmissions in Reno are possible. */
2688 if (tcp_is_reno(tp
))
2691 /* Yeah, we have to make difficult choice between forward transmission
2692 * and retransmission... Both ways have their merits...
2694 * For now we do not retransmit anything, while we have some new
2695 * segments to send. In the other cases, follow rule 3 for
2696 * NextSeg() specified in RFC3517.
2699 if (tcp_may_send_now(sk
))
2705 /* This gets called after a retransmit timeout, and the initially
2706 * retransmitted data is acknowledged. It tries to continue
2707 * resending the rest of the retransmit queue, until either
2708 * we've sent it all or the congestion window limit is reached.
2709 * If doing SACK, the first ACK which comes back for a timeout
2710 * based retransmit packet might feed us FACK information again.
2711 * If so, we use it to avoid unnecessarily retransmissions.
2713 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2715 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2716 struct tcp_sock
*tp
= tcp_sk(sk
);
2717 struct sk_buff
*skb
;
2718 struct sk_buff
*hole
= NULL
;
2721 int fwd_rexmitting
= 0;
2723 if (!tp
->packets_out
)
2727 tp
->retransmit_high
= tp
->snd_una
;
2729 if (tp
->retransmit_skb_hint
) {
2730 skb
= tp
->retransmit_skb_hint
;
2731 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2732 if (after(last_lost
, tp
->retransmit_high
))
2733 last_lost
= tp
->retransmit_high
;
2735 skb
= tcp_write_queue_head(sk
);
2736 last_lost
= tp
->snd_una
;
2739 tcp_for_write_queue_from(skb
, sk
) {
2740 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
2742 if (skb
== tcp_send_head(sk
))
2744 /* we could do better than to assign each time */
2746 tp
->retransmit_skb_hint
= skb
;
2748 /* Assume this retransmit will generate
2749 * only one packet for congestion window
2750 * calculation purposes. This works because
2751 * tcp_retransmit_skb() will chop up the
2752 * packet to be MSS sized and all the
2753 * packet counting works out.
2755 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
2758 if (fwd_rexmitting
) {
2760 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
2762 mib_idx
= LINUX_MIB_TCPFORWARDRETRANS
;
2764 } else if (!before(TCP_SKB_CB(skb
)->seq
, tp
->retransmit_high
)) {
2765 tp
->retransmit_high
= last_lost
;
2766 if (!tcp_can_forward_retransmit(sk
))
2768 /* Backtrack if necessary to non-L'ed skb */
2776 } else if (!(sacked
& TCPCB_LOST
)) {
2777 if (!hole
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
2782 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2783 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
2784 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
2786 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
2789 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
2792 if (tcp_retransmit_skb(sk
, skb
))
2795 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2797 if (tcp_in_cwnd_reduction(sk
))
2798 tp
->prr_out
+= tcp_skb_pcount(skb
);
2800 if (skb
== tcp_write_queue_head(sk
))
2801 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2802 inet_csk(sk
)->icsk_rto
,
2807 /* We allow to exceed memory limits for FIN packets to expedite
2808 * connection tear down and (memory) recovery.
2809 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2810 * or even be forced to close flow without any FIN.
2811 * In general, we want to allow one skb per socket to avoid hangs
2812 * with edge trigger epoll()
2814 void sk_forced_mem_schedule(struct sock
*sk
, int size
)
2818 if (size
<= sk
->sk_forward_alloc
)
2820 amt
= sk_mem_pages(size
);
2821 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
2822 sk_memory_allocated_add(sk
, amt
, &status
);
2825 /* Send a FIN. The caller locks the socket for us.
2826 * We should try to send a FIN packet really hard, but eventually give up.
2828 void tcp_send_fin(struct sock
*sk
)
2830 struct sk_buff
*skb
, *tskb
= tcp_write_queue_tail(sk
);
2831 struct tcp_sock
*tp
= tcp_sk(sk
);
2833 /* Optimization, tack on the FIN if we have one skb in write queue and
2834 * this skb was not yet sent, or we are under memory pressure.
2835 * Note: in the latter case, FIN packet will be sent after a timeout,
2836 * as TCP stack thinks it has already been transmitted.
2838 if (tskb
&& (tcp_send_head(sk
) || tcp_under_memory_pressure(sk
))) {
2840 TCP_SKB_CB(tskb
)->tcp_flags
|= TCPHDR_FIN
;
2841 TCP_SKB_CB(tskb
)->end_seq
++;
2843 if (!tcp_send_head(sk
)) {
2844 /* This means tskb was already sent.
2845 * Pretend we included the FIN on previous transmit.
2846 * We need to set tp->snd_nxt to the value it would have
2847 * if FIN had been sent. This is because retransmit path
2848 * does not change tp->snd_nxt.
2854 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, sk
->sk_allocation
);
2855 if (unlikely(!skb
)) {
2860 skb_reserve(skb
, MAX_TCP_HEADER
);
2861 sk_forced_mem_schedule(sk
, skb
->truesize
);
2862 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2863 tcp_init_nondata_skb(skb
, tp
->write_seq
,
2864 TCPHDR_ACK
| TCPHDR_FIN
);
2865 tcp_queue_skb(sk
, skb
);
2867 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
), TCP_NAGLE_OFF
);
2870 /* We get here when a process closes a file descriptor (either due to
2871 * an explicit close() or as a byproduct of exit()'ing) and there
2872 * was unread data in the receive queue. This behavior is recommended
2873 * by RFC 2525, section 2.17. -DaveM
2875 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
2877 struct sk_buff
*skb
;
2879 /* NOTE: No TCP options attached and we never retransmit this. */
2880 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
2882 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2886 /* Reserve space for headers and prepare control bits. */
2887 skb_reserve(skb
, MAX_TCP_HEADER
);
2888 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
2889 TCPHDR_ACK
| TCPHDR_RST
);
2890 skb_mstamp_get(&skb
->skb_mstamp
);
2892 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
2893 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2895 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
2898 /* Send a crossed SYN-ACK during socket establishment.
2899 * WARNING: This routine must only be called when we have already sent
2900 * a SYN packet that crossed the incoming SYN that caused this routine
2901 * to get called. If this assumption fails then the initial rcv_wnd
2902 * and rcv_wscale values will not be correct.
2904 int tcp_send_synack(struct sock
*sk
)
2906 struct sk_buff
*skb
;
2908 skb
= tcp_write_queue_head(sk
);
2909 if (!skb
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
2910 pr_debug("%s: wrong queue state\n", __func__
);
2913 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
2914 if (skb_cloned(skb
)) {
2915 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
2918 tcp_unlink_write_queue(skb
, sk
);
2919 __skb_header_release(nskb
);
2920 __tcp_add_write_queue_head(sk
, nskb
);
2921 sk_wmem_free_skb(sk
, skb
);
2922 sk
->sk_wmem_queued
+= nskb
->truesize
;
2923 sk_mem_charge(sk
, nskb
->truesize
);
2927 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
2928 tcp_ecn_send_synack(sk
, skb
);
2930 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2934 * tcp_make_synack - Prepare a SYN-ACK.
2935 * sk: listener socket
2936 * dst: dst entry attached to the SYNACK
2937 * req: request_sock pointer
2939 * Allocate one skb and build a SYNACK packet.
2940 * @dst is consumed : Caller should not use it again.
2942 struct sk_buff
*tcp_make_synack(const struct sock
*sk
, struct dst_entry
*dst
,
2943 struct request_sock
*req
,
2944 struct tcp_fastopen_cookie
*foc
,
2947 struct inet_request_sock
*ireq
= inet_rsk(req
);
2948 const struct tcp_sock
*tp
= tcp_sk(sk
);
2949 struct tcp_md5sig_key
*md5
= NULL
;
2950 struct tcp_out_options opts
;
2951 struct sk_buff
*skb
;
2952 int tcp_header_size
;
2957 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2958 if (unlikely(!skb
)) {
2962 /* Reserve space for headers. */
2963 skb_reserve(skb
, MAX_TCP_HEADER
);
2966 skb_set_owner_w(skb
, req_to_sk(req
));
2968 /* sk is a const pointer, because we want to express multiple
2969 * cpu might call us concurrently.
2970 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
2972 skb_set_owner_w(skb
, (struct sock
*)sk
);
2974 skb_dst_set(skb
, dst
);
2976 mss
= dst_metric_advmss(dst
);
2977 user_mss
= READ_ONCE(tp
->rx_opt
.user_mss
);
2978 if (user_mss
&& user_mss
< mss
)
2981 memset(&opts
, 0, sizeof(opts
));
2982 #ifdef CONFIG_SYN_COOKIES
2983 if (unlikely(req
->cookie_ts
))
2984 skb
->skb_mstamp
.stamp_jiffies
= cookie_init_timestamp(req
);
2987 skb_mstamp_get(&skb
->skb_mstamp
);
2989 #ifdef CONFIG_TCP_MD5SIG
2991 md5
= tcp_rsk(req
)->af_specific
->req_md5_lookup(sk
, req_to_sk(req
));
2993 skb_set_hash(skb
, tcp_rsk(req
)->txhash
, PKT_HASH_TYPE_L4
);
2994 tcp_header_size
= tcp_synack_options(req
, mss
, skb
, &opts
, md5
, foc
) +
2997 skb_push(skb
, tcp_header_size
);
2998 skb_reset_transport_header(skb
);
3001 memset(th
, 0, sizeof(struct tcphdr
));
3004 tcp_ecn_make_synack(req
, th
);
3005 th
->source
= htons(ireq
->ir_num
);
3006 th
->dest
= ireq
->ir_rmt_port
;
3007 /* Setting of flags are superfluous here for callers (and ECE is
3008 * not even correctly set)
3010 tcp_init_nondata_skb(skb
, tcp_rsk(req
)->snt_isn
,
3011 TCPHDR_SYN
| TCPHDR_ACK
);
3013 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
3014 /* XXX data is queued and acked as is. No buffer/window check */
3015 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
3017 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3018 th
->window
= htons(min(req
->rsk_rcv_wnd
, 65535U));
3019 tcp_options_write((__be32
*)(th
+ 1), NULL
, &opts
);
3020 th
->doff
= (tcp_header_size
>> 2);
3021 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_OUTSEGS
);
3023 #ifdef CONFIG_TCP_MD5SIG
3024 /* Okay, we have all we need - do the md5 hash if needed */
3026 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
3027 md5
, req_to_sk(req
), skb
);
3031 /* Do not fool tcpdump (if any), clean our debris */
3032 skb
->tstamp
.tv64
= 0;
3035 EXPORT_SYMBOL(tcp_make_synack
);
3037 static void tcp_ca_dst_init(struct sock
*sk
, const struct dst_entry
*dst
)
3039 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3040 const struct tcp_congestion_ops
*ca
;
3041 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
3043 if (ca_key
== TCP_CA_UNSPEC
)
3047 ca
= tcp_ca_find_key(ca_key
);
3048 if (likely(ca
&& try_module_get(ca
->owner
))) {
3049 module_put(icsk
->icsk_ca_ops
->owner
);
3050 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
3051 icsk
->icsk_ca_ops
= ca
;
3056 /* Do all connect socket setups that can be done AF independent. */
3057 static void tcp_connect_init(struct sock
*sk
)
3059 const struct dst_entry
*dst
= __sk_dst_get(sk
);
3060 struct tcp_sock
*tp
= tcp_sk(sk
);
3063 /* We'll fix this up when we get a response from the other end.
3064 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3066 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
3067 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
3069 #ifdef CONFIG_TCP_MD5SIG
3070 if (tp
->af_specific
->md5_lookup(sk
, sk
))
3071 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
3074 /* If user gave his TCP_MAXSEG, record it to clamp */
3075 if (tp
->rx_opt
.user_mss
)
3076 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3079 tcp_sync_mss(sk
, dst_mtu(dst
));
3081 tcp_ca_dst_init(sk
, dst
);
3083 if (!tp
->window_clamp
)
3084 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
3085 tp
->advmss
= dst_metric_advmss(dst
);
3086 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->advmss
)
3087 tp
->advmss
= tp
->rx_opt
.user_mss
;
3089 tcp_initialize_rcv_mss(sk
);
3091 /* limit the window selection if the user enforce a smaller rx buffer */
3092 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
3093 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
3094 tp
->window_clamp
= tcp_full_space(sk
);
3096 tcp_select_initial_window(tcp_full_space(sk
),
3097 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
3100 sysctl_tcp_window_scaling
,
3102 dst_metric(dst
, RTAX_INITRWND
));
3104 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3105 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
3108 sock_reset_flag(sk
, SOCK_DONE
);
3111 tp
->snd_una
= tp
->write_seq
;
3112 tp
->snd_sml
= tp
->write_seq
;
3113 tp
->snd_up
= tp
->write_seq
;
3114 tp
->snd_nxt
= tp
->write_seq
;
3116 if (likely(!tp
->repair
))
3119 tp
->rcv_tstamp
= tcp_time_stamp
;
3120 tp
->rcv_wup
= tp
->rcv_nxt
;
3121 tp
->copied_seq
= tp
->rcv_nxt
;
3123 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
3124 inet_csk(sk
)->icsk_retransmits
= 0;
3125 tcp_clear_retrans(tp
);
3128 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3130 struct tcp_sock
*tp
= tcp_sk(sk
);
3131 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3133 tcb
->end_seq
+= skb
->len
;
3134 __skb_header_release(skb
);
3135 __tcp_add_write_queue_tail(sk
, skb
);
3136 sk
->sk_wmem_queued
+= skb
->truesize
;
3137 sk_mem_charge(sk
, skb
->truesize
);
3138 tp
->write_seq
= tcb
->end_seq
;
3139 tp
->packets_out
+= tcp_skb_pcount(skb
);
3142 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3143 * queue a data-only packet after the regular SYN, such that regular SYNs
3144 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3145 * only the SYN sequence, the data are retransmitted in the first ACK.
3146 * If cookie is not cached or other error occurs, falls back to send a
3147 * regular SYN with Fast Open cookie request option.
3149 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3151 struct tcp_sock
*tp
= tcp_sk(sk
);
3152 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3153 int syn_loss
= 0, space
, err
= 0;
3154 unsigned long last_syn_loss
= 0;
3155 struct sk_buff
*syn_data
;
3157 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3158 tcp_fastopen_cache_get(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
,
3159 &syn_loss
, &last_syn_loss
);
3160 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3162 time_before(jiffies
, last_syn_loss
+ (60*HZ
<< syn_loss
))) {
3163 fo
->cookie
.len
= -1;
3167 if (sysctl_tcp_fastopen
& TFO_CLIENT_NO_COOKIE
)
3168 fo
->cookie
.len
= -1;
3169 else if (fo
->cookie
.len
<= 0)
3172 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3173 * user-MSS. Reserve maximum option space for middleboxes that add
3174 * private TCP options. The cost is reduced data space in SYN :(
3176 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->rx_opt
.mss_clamp
)
3177 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3178 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3179 MAX_TCP_OPTION_SPACE
;
3181 space
= min_t(size_t, space
, fo
->size
);
3183 /* limit to order-0 allocations */
3184 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3186 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
, false);
3189 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3190 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3192 int copied
= copy_from_iter(skb_put(syn_data
, space
), space
,
3193 &fo
->data
->msg_iter
);
3194 if (unlikely(!copied
)) {
3195 kfree_skb(syn_data
);
3198 if (copied
!= space
) {
3199 skb_trim(syn_data
, copied
);
3203 /* No more data pending in inet_wait_for_connect() */
3204 if (space
== fo
->size
)
3208 tcp_connect_queue_skb(sk
, syn_data
);
3210 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3212 syn
->skb_mstamp
= syn_data
->skb_mstamp
;
3214 /* Now full SYN+DATA was cloned and sent (or not),
3215 * remove the SYN from the original skb (syn_data)
3216 * we keep in write queue in case of a retransmit, as we
3217 * also have the SYN packet (with no data) in the same queue.
3219 TCP_SKB_CB(syn_data
)->seq
++;
3220 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3222 tp
->syn_data
= (fo
->copied
> 0);
3223 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3228 /* Send a regular SYN with Fast Open cookie request option */
3229 if (fo
->cookie
.len
> 0)
3231 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3233 tp
->syn_fastopen
= 0;
3235 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3239 /* Build a SYN and send it off. */
3240 int tcp_connect(struct sock
*sk
)
3242 struct tcp_sock
*tp
= tcp_sk(sk
);
3243 struct sk_buff
*buff
;
3246 tcp_connect_init(sk
);
3248 if (unlikely(tp
->repair
)) {
3249 tcp_finish_connect(sk
, NULL
);
3253 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
, true);
3254 if (unlikely(!buff
))
3257 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3258 tp
->retrans_stamp
= tcp_time_stamp
;
3259 tcp_connect_queue_skb(sk
, buff
);
3260 tcp_ecn_send_syn(sk
, buff
);
3262 /* Send off SYN; include data in Fast Open. */
3263 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3264 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3265 if (err
== -ECONNREFUSED
)
3268 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3269 * in order to make this packet get counted in tcpOutSegs.
3271 tp
->snd_nxt
= tp
->write_seq
;
3272 tp
->pushed_seq
= tp
->write_seq
;
3273 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3275 /* Timer for repeating the SYN until an answer. */
3276 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3277 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3280 EXPORT_SYMBOL(tcp_connect
);
3282 /* Send out a delayed ack, the caller does the policy checking
3283 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3286 void tcp_send_delayed_ack(struct sock
*sk
)
3288 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3289 int ato
= icsk
->icsk_ack
.ato
;
3290 unsigned long timeout
;
3292 tcp_ca_event(sk
, CA_EVENT_DELAYED_ACK
);
3294 if (ato
> TCP_DELACK_MIN
) {
3295 const struct tcp_sock
*tp
= tcp_sk(sk
);
3296 int max_ato
= HZ
/ 2;
3298 if (icsk
->icsk_ack
.pingpong
||
3299 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3300 max_ato
= TCP_DELACK_MAX
;
3302 /* Slow path, intersegment interval is "high". */
3304 /* If some rtt estimate is known, use it to bound delayed ack.
3305 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3309 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3316 ato
= min(ato
, max_ato
);
3319 /* Stay within the limit we were given */
3320 timeout
= jiffies
+ ato
;
3322 /* Use new timeout only if there wasn't a older one earlier. */
3323 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3324 /* If delack timer was blocked or is about to expire,
3327 if (icsk
->icsk_ack
.blocked
||
3328 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3333 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3334 timeout
= icsk
->icsk_ack
.timeout
;
3336 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3337 icsk
->icsk_ack
.timeout
= timeout
;
3338 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3341 /* This routine sends an ack and also updates the window. */
3342 void tcp_send_ack(struct sock
*sk
)
3344 struct sk_buff
*buff
;
3346 /* If we have been reset, we may not send again. */
3347 if (sk
->sk_state
== TCP_CLOSE
)
3350 tcp_ca_event(sk
, CA_EVENT_NON_DELAYED_ACK
);
3352 /* We are not putting this on the write queue, so
3353 * tcp_transmit_skb() will set the ownership to this
3356 buff
= alloc_skb(MAX_TCP_HEADER
, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3358 inet_csk_schedule_ack(sk
);
3359 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3360 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3361 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3365 /* Reserve space for headers and prepare control bits. */
3366 skb_reserve(buff
, MAX_TCP_HEADER
);
3367 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3369 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3371 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3372 * We also avoid tcp_wfree() overhead (cache line miss accessing
3373 * tp->tsq_flags) by using regular sock_wfree()
3375 skb_set_tcp_pure_ack(buff
);
3377 /* Send it off, this clears delayed acks for us. */
3378 skb_mstamp_get(&buff
->skb_mstamp
);
3379 tcp_transmit_skb(sk
, buff
, 0, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3381 EXPORT_SYMBOL_GPL(tcp_send_ack
);
3383 /* This routine sends a packet with an out of date sequence
3384 * number. It assumes the other end will try to ack it.
3386 * Question: what should we make while urgent mode?
3387 * 4.4BSD forces sending single byte of data. We cannot send
3388 * out of window data, because we have SND.NXT==SND.MAX...
3390 * Current solution: to send TWO zero-length segments in urgent mode:
3391 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3392 * out-of-date with SND.UNA-1 to probe window.
3394 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
, int mib
)
3396 struct tcp_sock
*tp
= tcp_sk(sk
);
3397 struct sk_buff
*skb
;
3399 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3400 skb
= alloc_skb(MAX_TCP_HEADER
, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3404 /* Reserve space for headers and set control bits. */
3405 skb_reserve(skb
, MAX_TCP_HEADER
);
3406 /* Use a previous sequence. This should cause the other
3407 * end to send an ack. Don't queue or clone SKB, just
3410 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3411 skb_mstamp_get(&skb
->skb_mstamp
);
3412 NET_INC_STATS(sock_net(sk
), mib
);
3413 return tcp_transmit_skb(sk
, skb
, 0, GFP_ATOMIC
);
3416 void tcp_send_window_probe(struct sock
*sk
)
3418 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3419 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3420 tcp_xmit_probe_skb(sk
, 0, LINUX_MIB_TCPWINPROBE
);
3424 /* Initiate keepalive or window probe from timer. */
3425 int tcp_write_wakeup(struct sock
*sk
, int mib
)
3427 struct tcp_sock
*tp
= tcp_sk(sk
);
3428 struct sk_buff
*skb
;
3430 if (sk
->sk_state
== TCP_CLOSE
)
3433 skb
= tcp_send_head(sk
);
3434 if (skb
&& before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3436 unsigned int mss
= tcp_current_mss(sk
);
3437 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3439 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3440 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3442 /* We are probing the opening of a window
3443 * but the window size is != 0
3444 * must have been a result SWS avoidance ( sender )
3446 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3448 seg_size
= min(seg_size
, mss
);
3449 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3450 if (tcp_fragment(sk
, skb
, seg_size
, mss
, GFP_ATOMIC
))
3452 } else if (!tcp_skb_pcount(skb
))
3453 tcp_set_skb_tso_segs(skb
, mss
);
3455 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3456 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3458 tcp_event_new_data_sent(sk
, skb
);
3461 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3462 tcp_xmit_probe_skb(sk
, 1, mib
);
3463 return tcp_xmit_probe_skb(sk
, 0, mib
);
3467 /* A window probe timeout has occurred. If window is not closed send
3468 * a partial packet else a zero probe.
3470 void tcp_send_probe0(struct sock
*sk
)
3472 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3473 struct tcp_sock
*tp
= tcp_sk(sk
);
3474 unsigned long probe_max
;
3477 err
= tcp_write_wakeup(sk
, LINUX_MIB_TCPWINPROBE
);
3479 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
3480 /* Cancel probe timer, if it is not required. */
3481 icsk
->icsk_probes_out
= 0;
3482 icsk
->icsk_backoff
= 0;
3487 if (icsk
->icsk_backoff
< sysctl_tcp_retries2
)
3488 icsk
->icsk_backoff
++;
3489 icsk
->icsk_probes_out
++;
3490 probe_max
= TCP_RTO_MAX
;
3492 /* If packet was not sent due to local congestion,
3493 * do not backoff and do not remember icsk_probes_out.
3494 * Let local senders to fight for local resources.
3496 * Use accumulated backoff yet.
3498 if (!icsk
->icsk_probes_out
)
3499 icsk
->icsk_probes_out
= 1;
3500 probe_max
= TCP_RESOURCE_PROBE_INTERVAL
;
3502 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3503 tcp_probe0_when(sk
, probe_max
),
3507 int tcp_rtx_synack(const struct sock
*sk
, struct request_sock
*req
)
3509 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3513 tcp_rsk(req
)->txhash
= net_tx_rndhash();
3514 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, NULL
, true);
3516 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3517 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3521 EXPORT_SYMBOL(tcp_rtx_synack
);