irqchip: Fix dependencies for archs w/o HAS_IOMEM
[linux/fpc-iii.git] / net / mac80211 / rx.c
blob82af407fea7a094db5f08e6426ae670a4cab3729
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
39 u64_stats_update_begin(&tstats->syncp);
40 tstats->rx_packets++;
41 tstats->rx_bytes += len;
42 u64_stats_update_end(&tstats->syncp);
45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
46 enum nl80211_iftype type)
48 __le16 fc = hdr->frame_control;
50 if (ieee80211_is_data(fc)) {
51 if (len < 24) /* drop incorrect hdr len (data) */
52 return NULL;
54 if (ieee80211_has_a4(fc))
55 return NULL;
56 if (ieee80211_has_tods(fc))
57 return hdr->addr1;
58 if (ieee80211_has_fromds(fc))
59 return hdr->addr2;
61 return hdr->addr3;
64 if (ieee80211_is_mgmt(fc)) {
65 if (len < 24) /* drop incorrect hdr len (mgmt) */
66 return NULL;
67 return hdr->addr3;
70 if (ieee80211_is_ctl(fc)) {
71 if (ieee80211_is_pspoll(fc))
72 return hdr->addr1;
74 if (ieee80211_is_back_req(fc)) {
75 switch (type) {
76 case NL80211_IFTYPE_STATION:
77 return hdr->addr2;
78 case NL80211_IFTYPE_AP:
79 case NL80211_IFTYPE_AP_VLAN:
80 return hdr->addr1;
81 default:
82 break; /* fall through to the return */
87 return NULL;
91 * monitor mode reception
93 * This function cleans up the SKB, i.e. it removes all the stuff
94 * only useful for monitoring.
96 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
97 struct sk_buff *skb,
98 unsigned int rtap_vendor_space)
100 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
101 if (likely(skb->len > FCS_LEN))
102 __pskb_trim(skb, skb->len - FCS_LEN);
103 else {
104 /* driver bug */
105 WARN_ON(1);
106 dev_kfree_skb(skb);
107 return NULL;
111 __pskb_pull(skb, rtap_vendor_space);
113 return skb;
116 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
117 unsigned int rtap_vendor_space)
119 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
120 struct ieee80211_hdr *hdr;
122 hdr = (void *)(skb->data + rtap_vendor_space);
124 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
125 RX_FLAG_FAILED_PLCP_CRC))
126 return true;
128 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
129 return true;
131 if (ieee80211_is_ctl(hdr->frame_control) &&
132 !ieee80211_is_pspoll(hdr->frame_control) &&
133 !ieee80211_is_back_req(hdr->frame_control))
134 return true;
136 return false;
139 static int
140 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
141 struct ieee80211_rx_status *status,
142 struct sk_buff *skb)
144 int len;
146 /* always present fields */
147 len = sizeof(struct ieee80211_radiotap_header) + 8;
149 /* allocate extra bitmaps */
150 if (status->chains)
151 len += 4 * hweight8(status->chains);
153 if (ieee80211_have_rx_timestamp(status)) {
154 len = ALIGN(len, 8);
155 len += 8;
157 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
158 len += 1;
160 /* antenna field, if we don't have per-chain info */
161 if (!status->chains)
162 len += 1;
164 /* padding for RX_FLAGS if necessary */
165 len = ALIGN(len, 2);
167 if (status->flag & RX_FLAG_HT) /* HT info */
168 len += 3;
170 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
171 len = ALIGN(len, 4);
172 len += 8;
175 if (status->flag & RX_FLAG_VHT) {
176 len = ALIGN(len, 2);
177 len += 12;
180 if (status->chains) {
181 /* antenna and antenna signal fields */
182 len += 2 * hweight8(status->chains);
185 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
186 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
188 /* vendor presence bitmap */
189 len += 4;
190 /* alignment for fixed 6-byte vendor data header */
191 len = ALIGN(len, 2);
192 /* vendor data header */
193 len += 6;
194 if (WARN_ON(rtap->align == 0))
195 rtap->align = 1;
196 len = ALIGN(len, rtap->align);
197 len += rtap->len + rtap->pad;
200 return len;
204 * ieee80211_add_rx_radiotap_header - add radiotap header
206 * add a radiotap header containing all the fields which the hardware provided.
208 static void
209 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
210 struct sk_buff *skb,
211 struct ieee80211_rate *rate,
212 int rtap_len, bool has_fcs)
214 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
215 struct ieee80211_radiotap_header *rthdr;
216 unsigned char *pos;
217 __le32 *it_present;
218 u32 it_present_val;
219 u16 rx_flags = 0;
220 u16 channel_flags = 0;
221 int mpdulen, chain;
222 unsigned long chains = status->chains;
223 struct ieee80211_vendor_radiotap rtap = {};
225 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
226 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
227 /* rtap.len and rtap.pad are undone immediately */
228 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
231 mpdulen = skb->len;
232 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
233 mpdulen += FCS_LEN;
235 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
236 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
237 it_present = &rthdr->it_present;
239 /* radiotap header, set always present flags */
240 rthdr->it_len = cpu_to_le16(rtap_len);
241 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
242 BIT(IEEE80211_RADIOTAP_CHANNEL) |
243 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
245 if (!status->chains)
246 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
248 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
249 it_present_val |=
250 BIT(IEEE80211_RADIOTAP_EXT) |
251 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
252 put_unaligned_le32(it_present_val, it_present);
253 it_present++;
254 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
255 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
258 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
259 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
260 BIT(IEEE80211_RADIOTAP_EXT);
261 put_unaligned_le32(it_present_val, it_present);
262 it_present++;
263 it_present_val = rtap.present;
266 put_unaligned_le32(it_present_val, it_present);
268 pos = (void *)(it_present + 1);
270 /* the order of the following fields is important */
272 /* IEEE80211_RADIOTAP_TSFT */
273 if (ieee80211_have_rx_timestamp(status)) {
274 /* padding */
275 while ((pos - (u8 *)rthdr) & 7)
276 *pos++ = 0;
277 put_unaligned_le64(
278 ieee80211_calculate_rx_timestamp(local, status,
279 mpdulen, 0),
280 pos);
281 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
282 pos += 8;
285 /* IEEE80211_RADIOTAP_FLAGS */
286 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
287 *pos |= IEEE80211_RADIOTAP_F_FCS;
288 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
289 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
290 if (status->flag & RX_FLAG_SHORTPRE)
291 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
292 pos++;
294 /* IEEE80211_RADIOTAP_RATE */
295 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
297 * Without rate information don't add it. If we have,
298 * MCS information is a separate field in radiotap,
299 * added below. The byte here is needed as padding
300 * for the channel though, so initialise it to 0.
302 *pos = 0;
303 } else {
304 int shift = 0;
305 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
306 if (status->flag & RX_FLAG_10MHZ)
307 shift = 1;
308 else if (status->flag & RX_FLAG_5MHZ)
309 shift = 2;
310 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
312 pos++;
314 /* IEEE80211_RADIOTAP_CHANNEL */
315 put_unaligned_le16(status->freq, pos);
316 pos += 2;
317 if (status->flag & RX_FLAG_10MHZ)
318 channel_flags |= IEEE80211_CHAN_HALF;
319 else if (status->flag & RX_FLAG_5MHZ)
320 channel_flags |= IEEE80211_CHAN_QUARTER;
322 if (status->band == IEEE80211_BAND_5GHZ)
323 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
324 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
325 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
326 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
327 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
328 else if (rate)
329 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
330 else
331 channel_flags |= IEEE80211_CHAN_2GHZ;
332 put_unaligned_le16(channel_flags, pos);
333 pos += 2;
335 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
336 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
337 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
338 *pos = status->signal;
339 rthdr->it_present |=
340 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
341 pos++;
344 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
346 if (!status->chains) {
347 /* IEEE80211_RADIOTAP_ANTENNA */
348 *pos = status->antenna;
349 pos++;
352 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
354 /* IEEE80211_RADIOTAP_RX_FLAGS */
355 /* ensure 2 byte alignment for the 2 byte field as required */
356 if ((pos - (u8 *)rthdr) & 1)
357 *pos++ = 0;
358 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
359 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
360 put_unaligned_le16(rx_flags, pos);
361 pos += 2;
363 if (status->flag & RX_FLAG_HT) {
364 unsigned int stbc;
366 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
367 *pos++ = local->hw.radiotap_mcs_details;
368 *pos = 0;
369 if (status->flag & RX_FLAG_SHORT_GI)
370 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
371 if (status->flag & RX_FLAG_40MHZ)
372 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
373 if (status->flag & RX_FLAG_HT_GF)
374 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
375 if (status->flag & RX_FLAG_LDPC)
376 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
377 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
378 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
379 pos++;
380 *pos++ = status->rate_idx;
383 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
384 u16 flags = 0;
386 /* ensure 4 byte alignment */
387 while ((pos - (u8 *)rthdr) & 3)
388 pos++;
389 rthdr->it_present |=
390 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
391 put_unaligned_le32(status->ampdu_reference, pos);
392 pos += 4;
393 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
394 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
395 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
396 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
397 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
398 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
399 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
400 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
401 put_unaligned_le16(flags, pos);
402 pos += 2;
403 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
404 *pos++ = status->ampdu_delimiter_crc;
405 else
406 *pos++ = 0;
407 *pos++ = 0;
410 if (status->flag & RX_FLAG_VHT) {
411 u16 known = local->hw.radiotap_vht_details;
413 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
414 put_unaligned_le16(known, pos);
415 pos += 2;
416 /* flags */
417 if (status->flag & RX_FLAG_SHORT_GI)
418 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
419 /* in VHT, STBC is binary */
420 if (status->flag & RX_FLAG_STBC_MASK)
421 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
422 if (status->vht_flag & RX_VHT_FLAG_BF)
423 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
424 pos++;
425 /* bandwidth */
426 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
427 *pos++ = 4;
428 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
429 *pos++ = 11;
430 else if (status->flag & RX_FLAG_40MHZ)
431 *pos++ = 1;
432 else /* 20 MHz */
433 *pos++ = 0;
434 /* MCS/NSS */
435 *pos = (status->rate_idx << 4) | status->vht_nss;
436 pos += 4;
437 /* coding field */
438 if (status->flag & RX_FLAG_LDPC)
439 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
440 pos++;
441 /* group ID */
442 pos++;
443 /* partial_aid */
444 pos += 2;
447 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
448 *pos++ = status->chain_signal[chain];
449 *pos++ = chain;
452 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
453 /* ensure 2 byte alignment for the vendor field as required */
454 if ((pos - (u8 *)rthdr) & 1)
455 *pos++ = 0;
456 *pos++ = rtap.oui[0];
457 *pos++ = rtap.oui[1];
458 *pos++ = rtap.oui[2];
459 *pos++ = rtap.subns;
460 put_unaligned_le16(rtap.len, pos);
461 pos += 2;
462 /* align the actual payload as requested */
463 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
464 *pos++ = 0;
465 /* data (and possible padding) already follows */
470 * This function copies a received frame to all monitor interfaces and
471 * returns a cleaned-up SKB that no longer includes the FCS nor the
472 * radiotap header the driver might have added.
474 static struct sk_buff *
475 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
476 struct ieee80211_rate *rate)
478 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
479 struct ieee80211_sub_if_data *sdata;
480 int rt_hdrlen, needed_headroom;
481 struct sk_buff *skb, *skb2;
482 struct net_device *prev_dev = NULL;
483 int present_fcs_len = 0;
484 unsigned int rtap_vendor_space = 0;
486 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
487 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
489 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
493 * First, we may need to make a copy of the skb because
494 * (1) we need to modify it for radiotap (if not present), and
495 * (2) the other RX handlers will modify the skb we got.
497 * We don't need to, of course, if we aren't going to return
498 * the SKB because it has a bad FCS/PLCP checksum.
501 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
502 present_fcs_len = FCS_LEN;
504 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
505 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
506 dev_kfree_skb(origskb);
507 return NULL;
510 if (!local->monitors) {
511 if (should_drop_frame(origskb, present_fcs_len,
512 rtap_vendor_space)) {
513 dev_kfree_skb(origskb);
514 return NULL;
517 return remove_monitor_info(local, origskb, rtap_vendor_space);
520 /* room for the radiotap header based on driver features */
521 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
522 needed_headroom = rt_hdrlen - rtap_vendor_space;
524 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
525 /* only need to expand headroom if necessary */
526 skb = origskb;
527 origskb = NULL;
530 * This shouldn't trigger often because most devices have an
531 * RX header they pull before we get here, and that should
532 * be big enough for our radiotap information. We should
533 * probably export the length to drivers so that we can have
534 * them allocate enough headroom to start with.
536 if (skb_headroom(skb) < needed_headroom &&
537 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
538 dev_kfree_skb(skb);
539 return NULL;
541 } else {
543 * Need to make a copy and possibly remove radiotap header
544 * and FCS from the original.
546 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
548 origskb = remove_monitor_info(local, origskb,
549 rtap_vendor_space);
551 if (!skb)
552 return origskb;
555 /* prepend radiotap information */
556 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
558 skb_reset_mac_header(skb);
559 skb->ip_summed = CHECKSUM_UNNECESSARY;
560 skb->pkt_type = PACKET_OTHERHOST;
561 skb->protocol = htons(ETH_P_802_2);
563 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
564 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
565 continue;
567 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
568 continue;
570 if (!ieee80211_sdata_running(sdata))
571 continue;
573 if (prev_dev) {
574 skb2 = skb_clone(skb, GFP_ATOMIC);
575 if (skb2) {
576 skb2->dev = prev_dev;
577 netif_receive_skb(skb2);
581 prev_dev = sdata->dev;
582 ieee80211_rx_stats(sdata->dev, skb->len);
585 if (prev_dev) {
586 skb->dev = prev_dev;
587 netif_receive_skb(skb);
588 } else
589 dev_kfree_skb(skb);
591 return origskb;
594 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
597 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
598 int tid, seqno_idx, security_idx;
600 /* does the frame have a qos control field? */
601 if (ieee80211_is_data_qos(hdr->frame_control)) {
602 u8 *qc = ieee80211_get_qos_ctl(hdr);
603 /* frame has qos control */
604 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
605 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
606 status->rx_flags |= IEEE80211_RX_AMSDU;
608 seqno_idx = tid;
609 security_idx = tid;
610 } else {
612 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
614 * Sequence numbers for management frames, QoS data
615 * frames with a broadcast/multicast address in the
616 * Address 1 field, and all non-QoS data frames sent
617 * by QoS STAs are assigned using an additional single
618 * modulo-4096 counter, [...]
620 * We also use that counter for non-QoS STAs.
622 seqno_idx = IEEE80211_NUM_TIDS;
623 security_idx = 0;
624 if (ieee80211_is_mgmt(hdr->frame_control))
625 security_idx = IEEE80211_NUM_TIDS;
626 tid = 0;
629 rx->seqno_idx = seqno_idx;
630 rx->security_idx = security_idx;
631 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
632 * For now, set skb->priority to 0 for other cases. */
633 rx->skb->priority = (tid > 7) ? 0 : tid;
637 * DOC: Packet alignment
639 * Drivers always need to pass packets that are aligned to two-byte boundaries
640 * to the stack.
642 * Additionally, should, if possible, align the payload data in a way that
643 * guarantees that the contained IP header is aligned to a four-byte
644 * boundary. In the case of regular frames, this simply means aligning the
645 * payload to a four-byte boundary (because either the IP header is directly
646 * contained, or IV/RFC1042 headers that have a length divisible by four are
647 * in front of it). If the payload data is not properly aligned and the
648 * architecture doesn't support efficient unaligned operations, mac80211
649 * will align the data.
651 * With A-MSDU frames, however, the payload data address must yield two modulo
652 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
653 * push the IP header further back to a multiple of four again. Thankfully, the
654 * specs were sane enough this time around to require padding each A-MSDU
655 * subframe to a length that is a multiple of four.
657 * Padding like Atheros hardware adds which is between the 802.11 header and
658 * the payload is not supported, the driver is required to move the 802.11
659 * header to be directly in front of the payload in that case.
661 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
663 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
664 WARN_ONCE((unsigned long)rx->skb->data & 1,
665 "unaligned packet at 0x%p\n", rx->skb->data);
666 #endif
670 /* rx handlers */
672 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
674 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
676 if (is_multicast_ether_addr(hdr->addr1))
677 return 0;
679 return ieee80211_is_robust_mgmt_frame(skb);
683 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
685 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
687 if (!is_multicast_ether_addr(hdr->addr1))
688 return 0;
690 return ieee80211_is_robust_mgmt_frame(skb);
694 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
695 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
697 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
698 struct ieee80211_mmie *mmie;
699 struct ieee80211_mmie_16 *mmie16;
701 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
702 return -1;
704 if (!ieee80211_is_robust_mgmt_frame(skb))
705 return -1; /* not a robust management frame */
707 mmie = (struct ieee80211_mmie *)
708 (skb->data + skb->len - sizeof(*mmie));
709 if (mmie->element_id == WLAN_EID_MMIE &&
710 mmie->length == sizeof(*mmie) - 2)
711 return le16_to_cpu(mmie->key_id);
713 mmie16 = (struct ieee80211_mmie_16 *)
714 (skb->data + skb->len - sizeof(*mmie16));
715 if (skb->len >= 24 + sizeof(*mmie16) &&
716 mmie16->element_id == WLAN_EID_MMIE &&
717 mmie16->length == sizeof(*mmie16) - 2)
718 return le16_to_cpu(mmie16->key_id);
720 return -1;
723 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
724 struct sk_buff *skb)
726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
727 __le16 fc;
728 int hdrlen;
729 u8 keyid;
731 fc = hdr->frame_control;
732 hdrlen = ieee80211_hdrlen(fc);
734 if (skb->len < hdrlen + cs->hdr_len)
735 return -EINVAL;
737 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
738 keyid &= cs->key_idx_mask;
739 keyid >>= cs->key_idx_shift;
741 return keyid;
744 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
746 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
747 char *dev_addr = rx->sdata->vif.addr;
749 if (ieee80211_is_data(hdr->frame_control)) {
750 if (is_multicast_ether_addr(hdr->addr1)) {
751 if (ieee80211_has_tods(hdr->frame_control) ||
752 !ieee80211_has_fromds(hdr->frame_control))
753 return RX_DROP_MONITOR;
754 if (ether_addr_equal(hdr->addr3, dev_addr))
755 return RX_DROP_MONITOR;
756 } else {
757 if (!ieee80211_has_a4(hdr->frame_control))
758 return RX_DROP_MONITOR;
759 if (ether_addr_equal(hdr->addr4, dev_addr))
760 return RX_DROP_MONITOR;
764 /* If there is not an established peer link and this is not a peer link
765 * establisment frame, beacon or probe, drop the frame.
768 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
769 struct ieee80211_mgmt *mgmt;
771 if (!ieee80211_is_mgmt(hdr->frame_control))
772 return RX_DROP_MONITOR;
774 if (ieee80211_is_action(hdr->frame_control)) {
775 u8 category;
777 /* make sure category field is present */
778 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
779 return RX_DROP_MONITOR;
781 mgmt = (struct ieee80211_mgmt *)hdr;
782 category = mgmt->u.action.category;
783 if (category != WLAN_CATEGORY_MESH_ACTION &&
784 category != WLAN_CATEGORY_SELF_PROTECTED)
785 return RX_DROP_MONITOR;
786 return RX_CONTINUE;
789 if (ieee80211_is_probe_req(hdr->frame_control) ||
790 ieee80211_is_probe_resp(hdr->frame_control) ||
791 ieee80211_is_beacon(hdr->frame_control) ||
792 ieee80211_is_auth(hdr->frame_control))
793 return RX_CONTINUE;
795 return RX_DROP_MONITOR;
798 return RX_CONTINUE;
801 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
802 struct tid_ampdu_rx *tid_agg_rx,
803 int index,
804 struct sk_buff_head *frames)
806 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
807 struct sk_buff *skb;
808 struct ieee80211_rx_status *status;
810 lockdep_assert_held(&tid_agg_rx->reorder_lock);
812 if (skb_queue_empty(skb_list))
813 goto no_frame;
815 if (!ieee80211_rx_reorder_ready(skb_list)) {
816 __skb_queue_purge(skb_list);
817 goto no_frame;
820 /* release frames from the reorder ring buffer */
821 tid_agg_rx->stored_mpdu_num--;
822 while ((skb = __skb_dequeue(skb_list))) {
823 status = IEEE80211_SKB_RXCB(skb);
824 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
825 __skb_queue_tail(frames, skb);
828 no_frame:
829 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
832 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
833 struct tid_ampdu_rx *tid_agg_rx,
834 u16 head_seq_num,
835 struct sk_buff_head *frames)
837 int index;
839 lockdep_assert_held(&tid_agg_rx->reorder_lock);
841 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
842 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
843 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
844 frames);
849 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
850 * the skb was added to the buffer longer than this time ago, the earlier
851 * frames that have not yet been received are assumed to be lost and the skb
852 * can be released for processing. This may also release other skb's from the
853 * reorder buffer if there are no additional gaps between the frames.
855 * Callers must hold tid_agg_rx->reorder_lock.
857 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
859 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
860 struct tid_ampdu_rx *tid_agg_rx,
861 struct sk_buff_head *frames)
863 int index, i, j;
865 lockdep_assert_held(&tid_agg_rx->reorder_lock);
867 /* release the buffer until next missing frame */
868 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
869 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
870 tid_agg_rx->stored_mpdu_num) {
872 * No buffers ready to be released, but check whether any
873 * frames in the reorder buffer have timed out.
875 int skipped = 1;
876 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
877 j = (j + 1) % tid_agg_rx->buf_size) {
878 if (!ieee80211_rx_reorder_ready(
879 &tid_agg_rx->reorder_buf[j])) {
880 skipped++;
881 continue;
883 if (skipped &&
884 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
885 HT_RX_REORDER_BUF_TIMEOUT))
886 goto set_release_timer;
888 /* don't leave incomplete A-MSDUs around */
889 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
890 i = (i + 1) % tid_agg_rx->buf_size)
891 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
893 ht_dbg_ratelimited(sdata,
894 "release an RX reorder frame due to timeout on earlier frames\n");
895 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
896 frames);
899 * Increment the head seq# also for the skipped slots.
901 tid_agg_rx->head_seq_num =
902 (tid_agg_rx->head_seq_num +
903 skipped) & IEEE80211_SN_MASK;
904 skipped = 0;
906 } else while (ieee80211_rx_reorder_ready(
907 &tid_agg_rx->reorder_buf[index])) {
908 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
909 frames);
910 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
913 if (tid_agg_rx->stored_mpdu_num) {
914 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
916 for (; j != (index - 1) % tid_agg_rx->buf_size;
917 j = (j + 1) % tid_agg_rx->buf_size) {
918 if (ieee80211_rx_reorder_ready(
919 &tid_agg_rx->reorder_buf[j]))
920 break;
923 set_release_timer:
925 if (!tid_agg_rx->removed)
926 mod_timer(&tid_agg_rx->reorder_timer,
927 tid_agg_rx->reorder_time[j] + 1 +
928 HT_RX_REORDER_BUF_TIMEOUT);
929 } else {
930 del_timer(&tid_agg_rx->reorder_timer);
935 * As this function belongs to the RX path it must be under
936 * rcu_read_lock protection. It returns false if the frame
937 * can be processed immediately, true if it was consumed.
939 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
940 struct tid_ampdu_rx *tid_agg_rx,
941 struct sk_buff *skb,
942 struct sk_buff_head *frames)
944 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
945 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
946 u16 sc = le16_to_cpu(hdr->seq_ctrl);
947 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
948 u16 head_seq_num, buf_size;
949 int index;
950 bool ret = true;
952 spin_lock(&tid_agg_rx->reorder_lock);
955 * Offloaded BA sessions have no known starting sequence number so pick
956 * one from first Rxed frame for this tid after BA was started.
958 if (unlikely(tid_agg_rx->auto_seq)) {
959 tid_agg_rx->auto_seq = false;
960 tid_agg_rx->ssn = mpdu_seq_num;
961 tid_agg_rx->head_seq_num = mpdu_seq_num;
964 buf_size = tid_agg_rx->buf_size;
965 head_seq_num = tid_agg_rx->head_seq_num;
967 /* frame with out of date sequence number */
968 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
969 dev_kfree_skb(skb);
970 goto out;
974 * If frame the sequence number exceeds our buffering window
975 * size release some previous frames to make room for this one.
977 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
978 head_seq_num = ieee80211_sn_inc(
979 ieee80211_sn_sub(mpdu_seq_num, buf_size));
980 /* release stored frames up to new head to stack */
981 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
982 head_seq_num, frames);
985 /* Now the new frame is always in the range of the reordering buffer */
987 index = mpdu_seq_num % tid_agg_rx->buf_size;
989 /* check if we already stored this frame */
990 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
991 dev_kfree_skb(skb);
992 goto out;
996 * If the current MPDU is in the right order and nothing else
997 * is stored we can process it directly, no need to buffer it.
998 * If it is first but there's something stored, we may be able
999 * to release frames after this one.
1001 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1002 tid_agg_rx->stored_mpdu_num == 0) {
1003 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1004 tid_agg_rx->head_seq_num =
1005 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1006 ret = false;
1007 goto out;
1010 /* put the frame in the reordering buffer */
1011 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1012 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1013 tid_agg_rx->reorder_time[index] = jiffies;
1014 tid_agg_rx->stored_mpdu_num++;
1015 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1018 out:
1019 spin_unlock(&tid_agg_rx->reorder_lock);
1020 return ret;
1024 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1025 * true if the MPDU was buffered, false if it should be processed.
1027 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1028 struct sk_buff_head *frames)
1030 struct sk_buff *skb = rx->skb;
1031 struct ieee80211_local *local = rx->local;
1032 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1033 struct sta_info *sta = rx->sta;
1034 struct tid_ampdu_rx *tid_agg_rx;
1035 u16 sc;
1036 u8 tid, ack_policy;
1038 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1039 is_multicast_ether_addr(hdr->addr1))
1040 goto dont_reorder;
1043 * filter the QoS data rx stream according to
1044 * STA/TID and check if this STA/TID is on aggregation
1047 if (!sta)
1048 goto dont_reorder;
1050 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1051 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1052 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1054 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1055 if (!tid_agg_rx)
1056 goto dont_reorder;
1058 /* qos null data frames are excluded */
1059 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1060 goto dont_reorder;
1062 /* not part of a BA session */
1063 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1064 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1065 goto dont_reorder;
1067 /* new, potentially un-ordered, ampdu frame - process it */
1069 /* reset session timer */
1070 if (tid_agg_rx->timeout)
1071 tid_agg_rx->last_rx = jiffies;
1073 /* if this mpdu is fragmented - terminate rx aggregation session */
1074 sc = le16_to_cpu(hdr->seq_ctrl);
1075 if (sc & IEEE80211_SCTL_FRAG) {
1076 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1077 skb_queue_tail(&rx->sdata->skb_queue, skb);
1078 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1079 return;
1083 * No locking needed -- we will only ever process one
1084 * RX packet at a time, and thus own tid_agg_rx. All
1085 * other code manipulating it needs to (and does) make
1086 * sure that we cannot get to it any more before doing
1087 * anything with it.
1089 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1090 frames))
1091 return;
1093 dont_reorder:
1094 __skb_queue_tail(frames, skb);
1097 static ieee80211_rx_result debug_noinline
1098 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1100 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1101 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1104 * Drop duplicate 802.11 retransmissions
1105 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1108 if (rx->skb->len < 24)
1109 return RX_CONTINUE;
1111 if (ieee80211_is_ctl(hdr->frame_control) ||
1112 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1113 is_multicast_ether_addr(hdr->addr1))
1114 return RX_CONTINUE;
1116 if (!rx->sta)
1117 return RX_CONTINUE;
1119 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1120 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1121 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1122 rx->sta->rx_stats.num_duplicates++;
1123 return RX_DROP_UNUSABLE;
1124 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1125 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1128 return RX_CONTINUE;
1131 static ieee80211_rx_result debug_noinline
1132 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1134 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1136 /* Drop disallowed frame classes based on STA auth/assoc state;
1137 * IEEE 802.11, Chap 5.5.
1139 * mac80211 filters only based on association state, i.e. it drops
1140 * Class 3 frames from not associated stations. hostapd sends
1141 * deauth/disassoc frames when needed. In addition, hostapd is
1142 * responsible for filtering on both auth and assoc states.
1145 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1146 return ieee80211_rx_mesh_check(rx);
1148 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1149 ieee80211_is_pspoll(hdr->frame_control)) &&
1150 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1151 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1152 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1153 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1155 * accept port control frames from the AP even when it's not
1156 * yet marked ASSOC to prevent a race where we don't set the
1157 * assoc bit quickly enough before it sends the first frame
1159 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1160 ieee80211_is_data_present(hdr->frame_control)) {
1161 unsigned int hdrlen;
1162 __be16 ethertype;
1164 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1166 if (rx->skb->len < hdrlen + 8)
1167 return RX_DROP_MONITOR;
1169 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1170 if (ethertype == rx->sdata->control_port_protocol)
1171 return RX_CONTINUE;
1174 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1175 cfg80211_rx_spurious_frame(rx->sdata->dev,
1176 hdr->addr2,
1177 GFP_ATOMIC))
1178 return RX_DROP_UNUSABLE;
1180 return RX_DROP_MONITOR;
1183 return RX_CONTINUE;
1187 static ieee80211_rx_result debug_noinline
1188 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1190 struct ieee80211_local *local;
1191 struct ieee80211_hdr *hdr;
1192 struct sk_buff *skb;
1194 local = rx->local;
1195 skb = rx->skb;
1196 hdr = (struct ieee80211_hdr *) skb->data;
1198 if (!local->pspolling)
1199 return RX_CONTINUE;
1201 if (!ieee80211_has_fromds(hdr->frame_control))
1202 /* this is not from AP */
1203 return RX_CONTINUE;
1205 if (!ieee80211_is_data(hdr->frame_control))
1206 return RX_CONTINUE;
1208 if (!ieee80211_has_moredata(hdr->frame_control)) {
1209 /* AP has no more frames buffered for us */
1210 local->pspolling = false;
1211 return RX_CONTINUE;
1214 /* more data bit is set, let's request a new frame from the AP */
1215 ieee80211_send_pspoll(local, rx->sdata);
1217 return RX_CONTINUE;
1220 static void sta_ps_start(struct sta_info *sta)
1222 struct ieee80211_sub_if_data *sdata = sta->sdata;
1223 struct ieee80211_local *local = sdata->local;
1224 struct ps_data *ps;
1225 int tid;
1227 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1228 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1229 ps = &sdata->bss->ps;
1230 else
1231 return;
1233 atomic_inc(&ps->num_sta_ps);
1234 set_sta_flag(sta, WLAN_STA_PS_STA);
1235 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1236 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1237 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1238 sta->sta.addr, sta->sta.aid);
1240 ieee80211_clear_fast_xmit(sta);
1242 if (!sta->sta.txq[0])
1243 return;
1245 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1246 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1248 if (!skb_queue_len(&txqi->queue))
1249 set_bit(tid, &sta->txq_buffered_tids);
1250 else
1251 clear_bit(tid, &sta->txq_buffered_tids);
1255 static void sta_ps_end(struct sta_info *sta)
1257 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1258 sta->sta.addr, sta->sta.aid);
1260 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1262 * Clear the flag only if the other one is still set
1263 * so that the TX path won't start TX'ing new frames
1264 * directly ... In the case that the driver flag isn't
1265 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1267 clear_sta_flag(sta, WLAN_STA_PS_STA);
1268 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1269 sta->sta.addr, sta->sta.aid);
1270 return;
1273 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1274 clear_sta_flag(sta, WLAN_STA_PS_STA);
1275 ieee80211_sta_ps_deliver_wakeup(sta);
1278 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1280 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1281 bool in_ps;
1283 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1285 /* Don't let the same PS state be set twice */
1286 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1287 if ((start && in_ps) || (!start && !in_ps))
1288 return -EINVAL;
1290 if (start)
1291 sta_ps_start(sta);
1292 else
1293 sta_ps_end(sta);
1295 return 0;
1297 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1299 static ieee80211_rx_result debug_noinline
1300 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1302 struct ieee80211_sub_if_data *sdata = rx->sdata;
1303 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1304 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1305 int tid, ac;
1307 if (!rx->sta)
1308 return RX_CONTINUE;
1310 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1311 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1312 return RX_CONTINUE;
1315 * The device handles station powersave, so don't do anything about
1316 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1317 * it to mac80211 since they're handled.)
1319 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1320 return RX_CONTINUE;
1323 * Don't do anything if the station isn't already asleep. In
1324 * the uAPSD case, the station will probably be marked asleep,
1325 * in the PS-Poll case the station must be confused ...
1327 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1328 return RX_CONTINUE;
1330 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1331 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1332 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1333 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1334 else
1335 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1338 /* Free PS Poll skb here instead of returning RX_DROP that would
1339 * count as an dropped frame. */
1340 dev_kfree_skb(rx->skb);
1342 return RX_QUEUED;
1343 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1344 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1345 ieee80211_has_pm(hdr->frame_control) &&
1346 (ieee80211_is_data_qos(hdr->frame_control) ||
1347 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1348 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1349 ac = ieee802_1d_to_ac[tid & 7];
1352 * If this AC is not trigger-enabled do nothing.
1354 * NB: This could/should check a separate bitmap of trigger-
1355 * enabled queues, but for now we only implement uAPSD w/o
1356 * TSPEC changes to the ACs, so they're always the same.
1358 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1359 return RX_CONTINUE;
1361 /* if we are in a service period, do nothing */
1362 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1363 return RX_CONTINUE;
1365 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1366 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1367 else
1368 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1371 return RX_CONTINUE;
1374 static ieee80211_rx_result debug_noinline
1375 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1377 struct sta_info *sta = rx->sta;
1378 struct sk_buff *skb = rx->skb;
1379 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1380 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1381 int i;
1383 if (!sta)
1384 return RX_CONTINUE;
1387 * Update last_rx only for IBSS packets which are for the current
1388 * BSSID and for station already AUTHORIZED to avoid keeping the
1389 * current IBSS network alive in cases where other STAs start
1390 * using different BSSID. This will also give the station another
1391 * chance to restart the authentication/authorization in case
1392 * something went wrong the first time.
1394 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1395 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1396 NL80211_IFTYPE_ADHOC);
1397 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1398 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1399 sta->rx_stats.last_rx = jiffies;
1400 if (ieee80211_is_data(hdr->frame_control) &&
1401 !is_multicast_ether_addr(hdr->addr1)) {
1402 sta->rx_stats.last_rate_idx =
1403 status->rate_idx;
1404 sta->rx_stats.last_rate_flag =
1405 status->flag;
1406 sta->rx_stats.last_rate_vht_flag =
1407 status->vht_flag;
1408 sta->rx_stats.last_rate_vht_nss =
1409 status->vht_nss;
1412 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1413 sta->rx_stats.last_rx = jiffies;
1414 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1416 * Mesh beacons will update last_rx when if they are found to
1417 * match the current local configuration when processed.
1419 sta->rx_stats.last_rx = jiffies;
1420 if (ieee80211_is_data(hdr->frame_control)) {
1421 sta->rx_stats.last_rate_idx = status->rate_idx;
1422 sta->rx_stats.last_rate_flag = status->flag;
1423 sta->rx_stats.last_rate_vht_flag = status->vht_flag;
1424 sta->rx_stats.last_rate_vht_nss = status->vht_nss;
1428 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1429 ieee80211_sta_rx_notify(rx->sdata, hdr);
1431 sta->rx_stats.fragments++;
1432 sta->rx_stats.bytes += rx->skb->len;
1433 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1434 sta->rx_stats.last_signal = status->signal;
1435 ewma_signal_add(&sta->rx_stats.avg_signal, -status->signal);
1438 if (status->chains) {
1439 sta->rx_stats.chains = status->chains;
1440 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1441 int signal = status->chain_signal[i];
1443 if (!(status->chains & BIT(i)))
1444 continue;
1446 sta->rx_stats.chain_signal_last[i] = signal;
1447 ewma_signal_add(&sta->rx_stats.chain_signal_avg[i],
1448 -signal);
1453 * Change STA power saving mode only at the end of a frame
1454 * exchange sequence.
1456 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1457 !ieee80211_has_morefrags(hdr->frame_control) &&
1458 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1459 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1460 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1461 /* PM bit is only checked in frames where it isn't reserved,
1462 * in AP mode it's reserved in non-bufferable management frames
1463 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1465 (!ieee80211_is_mgmt(hdr->frame_control) ||
1466 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1467 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1468 if (!ieee80211_has_pm(hdr->frame_control))
1469 sta_ps_end(sta);
1470 } else {
1471 if (ieee80211_has_pm(hdr->frame_control))
1472 sta_ps_start(sta);
1476 /* mesh power save support */
1477 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1478 ieee80211_mps_rx_h_sta_process(sta, hdr);
1481 * Drop (qos-)data::nullfunc frames silently, since they
1482 * are used only to control station power saving mode.
1484 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1485 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1486 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1489 * If we receive a 4-addr nullfunc frame from a STA
1490 * that was not moved to a 4-addr STA vlan yet send
1491 * the event to userspace and for older hostapd drop
1492 * the frame to the monitor interface.
1494 if (ieee80211_has_a4(hdr->frame_control) &&
1495 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1496 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1497 !rx->sdata->u.vlan.sta))) {
1498 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1499 cfg80211_rx_unexpected_4addr_frame(
1500 rx->sdata->dev, sta->sta.addr,
1501 GFP_ATOMIC);
1502 return RX_DROP_MONITOR;
1505 * Update counter and free packet here to avoid
1506 * counting this as a dropped packed.
1508 sta->rx_stats.packets++;
1509 dev_kfree_skb(rx->skb);
1510 return RX_QUEUED;
1513 return RX_CONTINUE;
1514 } /* ieee80211_rx_h_sta_process */
1516 static ieee80211_rx_result debug_noinline
1517 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1519 struct sk_buff *skb = rx->skb;
1520 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1521 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1522 int keyidx;
1523 int hdrlen;
1524 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1525 struct ieee80211_key *sta_ptk = NULL;
1526 int mmie_keyidx = -1;
1527 __le16 fc;
1528 const struct ieee80211_cipher_scheme *cs = NULL;
1531 * Key selection 101
1533 * There are four types of keys:
1534 * - GTK (group keys)
1535 * - IGTK (group keys for management frames)
1536 * - PTK (pairwise keys)
1537 * - STK (station-to-station pairwise keys)
1539 * When selecting a key, we have to distinguish between multicast
1540 * (including broadcast) and unicast frames, the latter can only
1541 * use PTKs and STKs while the former always use GTKs and IGTKs.
1542 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1543 * unicast frames can also use key indices like GTKs. Hence, if we
1544 * don't have a PTK/STK we check the key index for a WEP key.
1546 * Note that in a regular BSS, multicast frames are sent by the
1547 * AP only, associated stations unicast the frame to the AP first
1548 * which then multicasts it on their behalf.
1550 * There is also a slight problem in IBSS mode: GTKs are negotiated
1551 * with each station, that is something we don't currently handle.
1552 * The spec seems to expect that one negotiates the same key with
1553 * every station but there's no such requirement; VLANs could be
1554 * possible.
1557 /* start without a key */
1558 rx->key = NULL;
1559 fc = hdr->frame_control;
1561 if (rx->sta) {
1562 int keyid = rx->sta->ptk_idx;
1564 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1565 cs = rx->sta->cipher_scheme;
1566 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1567 if (unlikely(keyid < 0))
1568 return RX_DROP_UNUSABLE;
1570 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1573 if (!ieee80211_has_protected(fc))
1574 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1576 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1577 rx->key = sta_ptk;
1578 if ((status->flag & RX_FLAG_DECRYPTED) &&
1579 (status->flag & RX_FLAG_IV_STRIPPED))
1580 return RX_CONTINUE;
1581 /* Skip decryption if the frame is not protected. */
1582 if (!ieee80211_has_protected(fc))
1583 return RX_CONTINUE;
1584 } else if (mmie_keyidx >= 0) {
1585 /* Broadcast/multicast robust management frame / BIP */
1586 if ((status->flag & RX_FLAG_DECRYPTED) &&
1587 (status->flag & RX_FLAG_IV_STRIPPED))
1588 return RX_CONTINUE;
1590 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1591 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1592 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1593 if (rx->sta)
1594 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1595 if (!rx->key)
1596 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1597 } else if (!ieee80211_has_protected(fc)) {
1599 * The frame was not protected, so skip decryption. However, we
1600 * need to set rx->key if there is a key that could have been
1601 * used so that the frame may be dropped if encryption would
1602 * have been expected.
1604 struct ieee80211_key *key = NULL;
1605 struct ieee80211_sub_if_data *sdata = rx->sdata;
1606 int i;
1608 if (ieee80211_is_mgmt(fc) &&
1609 is_multicast_ether_addr(hdr->addr1) &&
1610 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1611 rx->key = key;
1612 else {
1613 if (rx->sta) {
1614 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1615 key = rcu_dereference(rx->sta->gtk[i]);
1616 if (key)
1617 break;
1620 if (!key) {
1621 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1622 key = rcu_dereference(sdata->keys[i]);
1623 if (key)
1624 break;
1627 if (key)
1628 rx->key = key;
1630 return RX_CONTINUE;
1631 } else {
1632 u8 keyid;
1635 * The device doesn't give us the IV so we won't be
1636 * able to look up the key. That's ok though, we
1637 * don't need to decrypt the frame, we just won't
1638 * be able to keep statistics accurate.
1639 * Except for key threshold notifications, should
1640 * we somehow allow the driver to tell us which key
1641 * the hardware used if this flag is set?
1643 if ((status->flag & RX_FLAG_DECRYPTED) &&
1644 (status->flag & RX_FLAG_IV_STRIPPED))
1645 return RX_CONTINUE;
1647 hdrlen = ieee80211_hdrlen(fc);
1649 if (cs) {
1650 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1652 if (unlikely(keyidx < 0))
1653 return RX_DROP_UNUSABLE;
1654 } else {
1655 if (rx->skb->len < 8 + hdrlen)
1656 return RX_DROP_UNUSABLE; /* TODO: count this? */
1658 * no need to call ieee80211_wep_get_keyidx,
1659 * it verifies a bunch of things we've done already
1661 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1662 keyidx = keyid >> 6;
1665 /* check per-station GTK first, if multicast packet */
1666 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1667 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1669 /* if not found, try default key */
1670 if (!rx->key) {
1671 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1674 * RSNA-protected unicast frames should always be
1675 * sent with pairwise or station-to-station keys,
1676 * but for WEP we allow using a key index as well.
1678 if (rx->key &&
1679 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1680 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1681 !is_multicast_ether_addr(hdr->addr1))
1682 rx->key = NULL;
1686 if (rx->key) {
1687 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1688 return RX_DROP_MONITOR;
1690 /* TODO: add threshold stuff again */
1691 } else {
1692 return RX_DROP_MONITOR;
1695 switch (rx->key->conf.cipher) {
1696 case WLAN_CIPHER_SUITE_WEP40:
1697 case WLAN_CIPHER_SUITE_WEP104:
1698 result = ieee80211_crypto_wep_decrypt(rx);
1699 break;
1700 case WLAN_CIPHER_SUITE_TKIP:
1701 result = ieee80211_crypto_tkip_decrypt(rx);
1702 break;
1703 case WLAN_CIPHER_SUITE_CCMP:
1704 result = ieee80211_crypto_ccmp_decrypt(
1705 rx, IEEE80211_CCMP_MIC_LEN);
1706 break;
1707 case WLAN_CIPHER_SUITE_CCMP_256:
1708 result = ieee80211_crypto_ccmp_decrypt(
1709 rx, IEEE80211_CCMP_256_MIC_LEN);
1710 break;
1711 case WLAN_CIPHER_SUITE_AES_CMAC:
1712 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1713 break;
1714 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1715 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1716 break;
1717 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1718 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1719 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1720 break;
1721 case WLAN_CIPHER_SUITE_GCMP:
1722 case WLAN_CIPHER_SUITE_GCMP_256:
1723 result = ieee80211_crypto_gcmp_decrypt(rx);
1724 break;
1725 default:
1726 result = ieee80211_crypto_hw_decrypt(rx);
1729 /* the hdr variable is invalid after the decrypt handlers */
1731 /* either the frame has been decrypted or will be dropped */
1732 status->flag |= RX_FLAG_DECRYPTED;
1734 return result;
1737 static inline struct ieee80211_fragment_entry *
1738 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1739 unsigned int frag, unsigned int seq, int rx_queue,
1740 struct sk_buff **skb)
1742 struct ieee80211_fragment_entry *entry;
1744 entry = &sdata->fragments[sdata->fragment_next++];
1745 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1746 sdata->fragment_next = 0;
1748 if (!skb_queue_empty(&entry->skb_list))
1749 __skb_queue_purge(&entry->skb_list);
1751 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1752 *skb = NULL;
1753 entry->first_frag_time = jiffies;
1754 entry->seq = seq;
1755 entry->rx_queue = rx_queue;
1756 entry->last_frag = frag;
1757 entry->ccmp = 0;
1758 entry->extra_len = 0;
1760 return entry;
1763 static inline struct ieee80211_fragment_entry *
1764 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1765 unsigned int frag, unsigned int seq,
1766 int rx_queue, struct ieee80211_hdr *hdr)
1768 struct ieee80211_fragment_entry *entry;
1769 int i, idx;
1771 idx = sdata->fragment_next;
1772 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1773 struct ieee80211_hdr *f_hdr;
1775 idx--;
1776 if (idx < 0)
1777 idx = IEEE80211_FRAGMENT_MAX - 1;
1779 entry = &sdata->fragments[idx];
1780 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1781 entry->rx_queue != rx_queue ||
1782 entry->last_frag + 1 != frag)
1783 continue;
1785 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1788 * Check ftype and addresses are equal, else check next fragment
1790 if (((hdr->frame_control ^ f_hdr->frame_control) &
1791 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1792 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1793 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1794 continue;
1796 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1797 __skb_queue_purge(&entry->skb_list);
1798 continue;
1800 return entry;
1803 return NULL;
1806 static ieee80211_rx_result debug_noinline
1807 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1809 struct ieee80211_hdr *hdr;
1810 u16 sc;
1811 __le16 fc;
1812 unsigned int frag, seq;
1813 struct ieee80211_fragment_entry *entry;
1814 struct sk_buff *skb;
1815 struct ieee80211_rx_status *status;
1817 hdr = (struct ieee80211_hdr *)rx->skb->data;
1818 fc = hdr->frame_control;
1820 if (ieee80211_is_ctl(fc))
1821 return RX_CONTINUE;
1823 sc = le16_to_cpu(hdr->seq_ctrl);
1824 frag = sc & IEEE80211_SCTL_FRAG;
1826 if (is_multicast_ether_addr(hdr->addr1)) {
1827 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1828 goto out_no_led;
1831 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1832 goto out;
1834 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1836 if (skb_linearize(rx->skb))
1837 return RX_DROP_UNUSABLE;
1840 * skb_linearize() might change the skb->data and
1841 * previously cached variables (in this case, hdr) need to
1842 * be refreshed with the new data.
1844 hdr = (struct ieee80211_hdr *)rx->skb->data;
1845 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1847 if (frag == 0) {
1848 /* This is the first fragment of a new frame. */
1849 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1850 rx->seqno_idx, &(rx->skb));
1851 if (rx->key &&
1852 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1853 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) &&
1854 ieee80211_has_protected(fc)) {
1855 int queue = rx->security_idx;
1856 /* Store CCMP PN so that we can verify that the next
1857 * fragment has a sequential PN value. */
1858 entry->ccmp = 1;
1859 memcpy(entry->last_pn,
1860 rx->key->u.ccmp.rx_pn[queue],
1861 IEEE80211_CCMP_PN_LEN);
1863 return RX_QUEUED;
1866 /* This is a fragment for a frame that should already be pending in
1867 * fragment cache. Add this fragment to the end of the pending entry.
1869 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1870 rx->seqno_idx, hdr);
1871 if (!entry) {
1872 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1873 return RX_DROP_MONITOR;
1876 /* Verify that MPDUs within one MSDU have sequential PN values.
1877 * (IEEE 802.11i, 8.3.3.4.5) */
1878 if (entry->ccmp) {
1879 int i;
1880 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1881 int queue;
1882 if (!rx->key ||
1883 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1884 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256))
1885 return RX_DROP_UNUSABLE;
1886 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1887 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1888 pn[i]++;
1889 if (pn[i])
1890 break;
1892 queue = rx->security_idx;
1893 rpn = rx->key->u.ccmp.rx_pn[queue];
1894 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1895 return RX_DROP_UNUSABLE;
1896 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1899 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1900 __skb_queue_tail(&entry->skb_list, rx->skb);
1901 entry->last_frag = frag;
1902 entry->extra_len += rx->skb->len;
1903 if (ieee80211_has_morefrags(fc)) {
1904 rx->skb = NULL;
1905 return RX_QUEUED;
1908 rx->skb = __skb_dequeue(&entry->skb_list);
1909 if (skb_tailroom(rx->skb) < entry->extra_len) {
1910 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1911 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1912 GFP_ATOMIC))) {
1913 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1914 __skb_queue_purge(&entry->skb_list);
1915 return RX_DROP_UNUSABLE;
1918 while ((skb = __skb_dequeue(&entry->skb_list))) {
1919 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1920 dev_kfree_skb(skb);
1923 /* Complete frame has been reassembled - process it now */
1924 status = IEEE80211_SKB_RXCB(rx->skb);
1926 out:
1927 ieee80211_led_rx(rx->local);
1928 out_no_led:
1929 if (rx->sta)
1930 rx->sta->rx_stats.packets++;
1931 return RX_CONTINUE;
1934 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1936 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1937 return -EACCES;
1939 return 0;
1942 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1944 struct sk_buff *skb = rx->skb;
1945 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1948 * Pass through unencrypted frames if the hardware has
1949 * decrypted them already.
1951 if (status->flag & RX_FLAG_DECRYPTED)
1952 return 0;
1954 /* Drop unencrypted frames if key is set. */
1955 if (unlikely(!ieee80211_has_protected(fc) &&
1956 !ieee80211_is_nullfunc(fc) &&
1957 ieee80211_is_data(fc) && rx->key))
1958 return -EACCES;
1960 return 0;
1963 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1965 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1966 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1967 __le16 fc = hdr->frame_control;
1970 * Pass through unencrypted frames if the hardware has
1971 * decrypted them already.
1973 if (status->flag & RX_FLAG_DECRYPTED)
1974 return 0;
1976 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1977 if (unlikely(!ieee80211_has_protected(fc) &&
1978 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1979 rx->key)) {
1980 if (ieee80211_is_deauth(fc) ||
1981 ieee80211_is_disassoc(fc))
1982 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1983 rx->skb->data,
1984 rx->skb->len);
1985 return -EACCES;
1987 /* BIP does not use Protected field, so need to check MMIE */
1988 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1989 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1990 if (ieee80211_is_deauth(fc) ||
1991 ieee80211_is_disassoc(fc))
1992 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1993 rx->skb->data,
1994 rx->skb->len);
1995 return -EACCES;
1998 * When using MFP, Action frames are not allowed prior to
1999 * having configured keys.
2001 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2002 ieee80211_is_robust_mgmt_frame(rx->skb)))
2003 return -EACCES;
2006 return 0;
2009 static int
2010 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2012 struct ieee80211_sub_if_data *sdata = rx->sdata;
2013 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2014 bool check_port_control = false;
2015 struct ethhdr *ehdr;
2016 int ret;
2018 *port_control = false;
2019 if (ieee80211_has_a4(hdr->frame_control) &&
2020 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2021 return -1;
2023 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2024 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2026 if (!sdata->u.mgd.use_4addr)
2027 return -1;
2028 else
2029 check_port_control = true;
2032 if (is_multicast_ether_addr(hdr->addr1) &&
2033 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2034 return -1;
2036 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2037 if (ret < 0)
2038 return ret;
2040 ehdr = (struct ethhdr *) rx->skb->data;
2041 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2042 *port_control = true;
2043 else if (check_port_control)
2044 return -1;
2046 return 0;
2050 * requires that rx->skb is a frame with ethernet header
2052 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2054 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2055 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2056 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2059 * Allow EAPOL frames to us/the PAE group address regardless
2060 * of whether the frame was encrypted or not.
2062 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2063 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2064 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2065 return true;
2067 if (ieee80211_802_1x_port_control(rx) ||
2068 ieee80211_drop_unencrypted(rx, fc))
2069 return false;
2071 return true;
2075 * requires that rx->skb is a frame with ethernet header
2077 static void
2078 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2080 struct ieee80211_sub_if_data *sdata = rx->sdata;
2081 struct net_device *dev = sdata->dev;
2082 struct sk_buff *skb, *xmit_skb;
2083 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2084 struct sta_info *dsta;
2086 skb = rx->skb;
2087 xmit_skb = NULL;
2089 ieee80211_rx_stats(dev, skb->len);
2091 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2092 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2093 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2094 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2095 if (is_multicast_ether_addr(ehdr->h_dest)) {
2097 * send multicast frames both to higher layers in
2098 * local net stack and back to the wireless medium
2100 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2101 if (!xmit_skb)
2102 net_info_ratelimited("%s: failed to clone multicast frame\n",
2103 dev->name);
2104 } else {
2105 dsta = sta_info_get(sdata, skb->data);
2106 if (dsta) {
2108 * The destination station is associated to
2109 * this AP (in this VLAN), so send the frame
2110 * directly to it and do not pass it to local
2111 * net stack.
2113 xmit_skb = skb;
2114 skb = NULL;
2119 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2120 if (skb) {
2121 /* 'align' will only take the values 0 or 2 here since all
2122 * frames are required to be aligned to 2-byte boundaries
2123 * when being passed to mac80211; the code here works just
2124 * as well if that isn't true, but mac80211 assumes it can
2125 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2127 int align;
2129 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2130 if (align) {
2131 if (WARN_ON(skb_headroom(skb) < 3)) {
2132 dev_kfree_skb(skb);
2133 skb = NULL;
2134 } else {
2135 u8 *data = skb->data;
2136 size_t len = skb_headlen(skb);
2137 skb->data -= align;
2138 memmove(skb->data, data, len);
2139 skb_set_tail_pointer(skb, len);
2143 #endif
2145 if (skb) {
2146 /* deliver to local stack */
2147 skb->protocol = eth_type_trans(skb, dev);
2148 memset(skb->cb, 0, sizeof(skb->cb));
2149 if (rx->napi)
2150 napi_gro_receive(rx->napi, skb);
2151 else
2152 netif_receive_skb(skb);
2155 if (xmit_skb) {
2157 * Send to wireless media and increase priority by 256 to
2158 * keep the received priority instead of reclassifying
2159 * the frame (see cfg80211_classify8021d).
2161 xmit_skb->priority += 256;
2162 xmit_skb->protocol = htons(ETH_P_802_3);
2163 skb_reset_network_header(xmit_skb);
2164 skb_reset_mac_header(xmit_skb);
2165 dev_queue_xmit(xmit_skb);
2169 static ieee80211_rx_result debug_noinline
2170 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2172 struct net_device *dev = rx->sdata->dev;
2173 struct sk_buff *skb = rx->skb;
2174 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2175 __le16 fc = hdr->frame_control;
2176 struct sk_buff_head frame_list;
2177 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2179 if (unlikely(!ieee80211_is_data(fc)))
2180 return RX_CONTINUE;
2182 if (unlikely(!ieee80211_is_data_present(fc)))
2183 return RX_DROP_MONITOR;
2185 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2186 return RX_CONTINUE;
2188 if (ieee80211_has_a4(hdr->frame_control) &&
2189 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2190 !rx->sdata->u.vlan.sta)
2191 return RX_DROP_UNUSABLE;
2193 if (is_multicast_ether_addr(hdr->addr1) &&
2194 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2195 rx->sdata->u.vlan.sta) ||
2196 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2197 rx->sdata->u.mgd.use_4addr)))
2198 return RX_DROP_UNUSABLE;
2200 skb->dev = dev;
2201 __skb_queue_head_init(&frame_list);
2203 if (skb_linearize(skb))
2204 return RX_DROP_UNUSABLE;
2206 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2207 rx->sdata->vif.type,
2208 rx->local->hw.extra_tx_headroom, true);
2210 while (!skb_queue_empty(&frame_list)) {
2211 rx->skb = __skb_dequeue(&frame_list);
2213 if (!ieee80211_frame_allowed(rx, fc)) {
2214 dev_kfree_skb(rx->skb);
2215 continue;
2218 ieee80211_deliver_skb(rx);
2221 return RX_QUEUED;
2224 #ifdef CONFIG_MAC80211_MESH
2225 static ieee80211_rx_result
2226 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2228 struct ieee80211_hdr *fwd_hdr, *hdr;
2229 struct ieee80211_tx_info *info;
2230 struct ieee80211s_hdr *mesh_hdr;
2231 struct sk_buff *skb = rx->skb, *fwd_skb;
2232 struct ieee80211_local *local = rx->local;
2233 struct ieee80211_sub_if_data *sdata = rx->sdata;
2234 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2235 u16 q, hdrlen;
2237 hdr = (struct ieee80211_hdr *) skb->data;
2238 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2240 /* make sure fixed part of mesh header is there, also checks skb len */
2241 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2242 return RX_DROP_MONITOR;
2244 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2246 /* make sure full mesh header is there, also checks skb len */
2247 if (!pskb_may_pull(rx->skb,
2248 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2249 return RX_DROP_MONITOR;
2251 /* reload pointers */
2252 hdr = (struct ieee80211_hdr *) skb->data;
2253 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2255 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2256 return RX_DROP_MONITOR;
2258 /* frame is in RMC, don't forward */
2259 if (ieee80211_is_data(hdr->frame_control) &&
2260 is_multicast_ether_addr(hdr->addr1) &&
2261 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2262 return RX_DROP_MONITOR;
2264 if (!ieee80211_is_data(hdr->frame_control))
2265 return RX_CONTINUE;
2267 if (!mesh_hdr->ttl)
2268 return RX_DROP_MONITOR;
2270 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2271 struct mesh_path *mppath;
2272 char *proxied_addr;
2273 char *mpp_addr;
2275 if (is_multicast_ether_addr(hdr->addr1)) {
2276 mpp_addr = hdr->addr3;
2277 proxied_addr = mesh_hdr->eaddr1;
2278 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2279 /* has_a4 already checked in ieee80211_rx_mesh_check */
2280 mpp_addr = hdr->addr4;
2281 proxied_addr = mesh_hdr->eaddr2;
2282 } else {
2283 return RX_DROP_MONITOR;
2286 rcu_read_lock();
2287 mppath = mpp_path_lookup(sdata, proxied_addr);
2288 if (!mppath) {
2289 mpp_path_add(sdata, proxied_addr, mpp_addr);
2290 } else {
2291 spin_lock_bh(&mppath->state_lock);
2292 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2293 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2294 spin_unlock_bh(&mppath->state_lock);
2296 rcu_read_unlock();
2299 /* Frame has reached destination. Don't forward */
2300 if (!is_multicast_ether_addr(hdr->addr1) &&
2301 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2302 return RX_CONTINUE;
2304 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2305 if (ieee80211_queue_stopped(&local->hw, q)) {
2306 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2307 return RX_DROP_MONITOR;
2309 skb_set_queue_mapping(skb, q);
2311 if (!--mesh_hdr->ttl) {
2312 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2313 goto out;
2316 if (!ifmsh->mshcfg.dot11MeshForwarding)
2317 goto out;
2319 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2320 if (!fwd_skb) {
2321 net_info_ratelimited("%s: failed to clone mesh frame\n",
2322 sdata->name);
2323 goto out;
2326 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2327 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2328 info = IEEE80211_SKB_CB(fwd_skb);
2329 memset(info, 0, sizeof(*info));
2330 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2331 info->control.vif = &rx->sdata->vif;
2332 info->control.jiffies = jiffies;
2333 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2334 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2335 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2336 /* update power mode indication when forwarding */
2337 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2338 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2339 /* mesh power mode flags updated in mesh_nexthop_lookup */
2340 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2341 } else {
2342 /* unable to resolve next hop */
2343 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2344 fwd_hdr->addr3, 0,
2345 WLAN_REASON_MESH_PATH_NOFORWARD,
2346 fwd_hdr->addr2);
2347 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2348 kfree_skb(fwd_skb);
2349 return RX_DROP_MONITOR;
2352 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2353 ieee80211_add_pending_skb(local, fwd_skb);
2354 out:
2355 if (is_multicast_ether_addr(hdr->addr1))
2356 return RX_CONTINUE;
2357 return RX_DROP_MONITOR;
2359 #endif
2361 static ieee80211_rx_result debug_noinline
2362 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2364 struct ieee80211_sub_if_data *sdata = rx->sdata;
2365 struct ieee80211_local *local = rx->local;
2366 struct net_device *dev = sdata->dev;
2367 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2368 __le16 fc = hdr->frame_control;
2369 bool port_control;
2370 int err;
2372 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2373 return RX_CONTINUE;
2375 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2376 return RX_DROP_MONITOR;
2378 if (rx->sta) {
2379 /* The seqno index has the same property as needed
2380 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2381 * for non-QoS-data frames. Here we know it's a data
2382 * frame, so count MSDUs.
2384 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2388 * Send unexpected-4addr-frame event to hostapd. For older versions,
2389 * also drop the frame to cooked monitor interfaces.
2391 if (ieee80211_has_a4(hdr->frame_control) &&
2392 sdata->vif.type == NL80211_IFTYPE_AP) {
2393 if (rx->sta &&
2394 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2395 cfg80211_rx_unexpected_4addr_frame(
2396 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2397 return RX_DROP_MONITOR;
2400 err = __ieee80211_data_to_8023(rx, &port_control);
2401 if (unlikely(err))
2402 return RX_DROP_UNUSABLE;
2404 if (!ieee80211_frame_allowed(rx, fc))
2405 return RX_DROP_MONITOR;
2407 /* directly handle TDLS channel switch requests/responses */
2408 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2409 cpu_to_be16(ETH_P_TDLS))) {
2410 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2412 if (pskb_may_pull(rx->skb,
2413 offsetof(struct ieee80211_tdls_data, u)) &&
2414 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2415 tf->category == WLAN_CATEGORY_TDLS &&
2416 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2417 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2418 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2419 schedule_work(&local->tdls_chsw_work);
2420 if (rx->sta)
2421 rx->sta->rx_stats.packets++;
2423 return RX_QUEUED;
2427 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2428 unlikely(port_control) && sdata->bss) {
2429 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2430 u.ap);
2431 dev = sdata->dev;
2432 rx->sdata = sdata;
2435 rx->skb->dev = dev;
2437 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2438 !is_multicast_ether_addr(
2439 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2440 (!local->scanning &&
2441 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2442 mod_timer(&local->dynamic_ps_timer, jiffies +
2443 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2446 ieee80211_deliver_skb(rx);
2448 return RX_QUEUED;
2451 static ieee80211_rx_result debug_noinline
2452 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2454 struct sk_buff *skb = rx->skb;
2455 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2456 struct tid_ampdu_rx *tid_agg_rx;
2457 u16 start_seq_num;
2458 u16 tid;
2460 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2461 return RX_CONTINUE;
2463 if (ieee80211_is_back_req(bar->frame_control)) {
2464 struct {
2465 __le16 control, start_seq_num;
2466 } __packed bar_data;
2467 struct ieee80211_event event = {
2468 .type = BAR_RX_EVENT,
2471 if (!rx->sta)
2472 return RX_DROP_MONITOR;
2474 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2475 &bar_data, sizeof(bar_data)))
2476 return RX_DROP_MONITOR;
2478 tid = le16_to_cpu(bar_data.control) >> 12;
2480 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2481 if (!tid_agg_rx)
2482 return RX_DROP_MONITOR;
2484 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2485 event.u.ba.tid = tid;
2486 event.u.ba.ssn = start_seq_num;
2487 event.u.ba.sta = &rx->sta->sta;
2489 /* reset session timer */
2490 if (tid_agg_rx->timeout)
2491 mod_timer(&tid_agg_rx->session_timer,
2492 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2494 spin_lock(&tid_agg_rx->reorder_lock);
2495 /* release stored frames up to start of BAR */
2496 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2497 start_seq_num, frames);
2498 spin_unlock(&tid_agg_rx->reorder_lock);
2500 drv_event_callback(rx->local, rx->sdata, &event);
2502 kfree_skb(skb);
2503 return RX_QUEUED;
2507 * After this point, we only want management frames,
2508 * so we can drop all remaining control frames to
2509 * cooked monitor interfaces.
2511 return RX_DROP_MONITOR;
2514 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2515 struct ieee80211_mgmt *mgmt,
2516 size_t len)
2518 struct ieee80211_local *local = sdata->local;
2519 struct sk_buff *skb;
2520 struct ieee80211_mgmt *resp;
2522 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2523 /* Not to own unicast address */
2524 return;
2527 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2528 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2529 /* Not from the current AP or not associated yet. */
2530 return;
2533 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2534 /* Too short SA Query request frame */
2535 return;
2538 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2539 if (skb == NULL)
2540 return;
2542 skb_reserve(skb, local->hw.extra_tx_headroom);
2543 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2544 memset(resp, 0, 24);
2545 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2546 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2547 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2548 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2549 IEEE80211_STYPE_ACTION);
2550 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2551 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2552 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2553 memcpy(resp->u.action.u.sa_query.trans_id,
2554 mgmt->u.action.u.sa_query.trans_id,
2555 WLAN_SA_QUERY_TR_ID_LEN);
2557 ieee80211_tx_skb(sdata, skb);
2560 static ieee80211_rx_result debug_noinline
2561 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2563 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2564 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2567 * From here on, look only at management frames.
2568 * Data and control frames are already handled,
2569 * and unknown (reserved) frames are useless.
2571 if (rx->skb->len < 24)
2572 return RX_DROP_MONITOR;
2574 if (!ieee80211_is_mgmt(mgmt->frame_control))
2575 return RX_DROP_MONITOR;
2577 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2578 ieee80211_is_beacon(mgmt->frame_control) &&
2579 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2580 int sig = 0;
2582 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2583 sig = status->signal;
2585 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2586 rx->skb->data, rx->skb->len,
2587 status->freq, sig);
2588 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2591 if (ieee80211_drop_unencrypted_mgmt(rx))
2592 return RX_DROP_UNUSABLE;
2594 return RX_CONTINUE;
2597 static ieee80211_rx_result debug_noinline
2598 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2600 struct ieee80211_local *local = rx->local;
2601 struct ieee80211_sub_if_data *sdata = rx->sdata;
2602 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2603 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2604 int len = rx->skb->len;
2606 if (!ieee80211_is_action(mgmt->frame_control))
2607 return RX_CONTINUE;
2609 /* drop too small frames */
2610 if (len < IEEE80211_MIN_ACTION_SIZE)
2611 return RX_DROP_UNUSABLE;
2613 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2614 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2615 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2616 return RX_DROP_UNUSABLE;
2618 switch (mgmt->u.action.category) {
2619 case WLAN_CATEGORY_HT:
2620 /* reject HT action frames from stations not supporting HT */
2621 if (!rx->sta->sta.ht_cap.ht_supported)
2622 goto invalid;
2624 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2625 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2626 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2627 sdata->vif.type != NL80211_IFTYPE_AP &&
2628 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2629 break;
2631 /* verify action & smps_control/chanwidth are present */
2632 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2633 goto invalid;
2635 switch (mgmt->u.action.u.ht_smps.action) {
2636 case WLAN_HT_ACTION_SMPS: {
2637 struct ieee80211_supported_band *sband;
2638 enum ieee80211_smps_mode smps_mode;
2640 /* convert to HT capability */
2641 switch (mgmt->u.action.u.ht_smps.smps_control) {
2642 case WLAN_HT_SMPS_CONTROL_DISABLED:
2643 smps_mode = IEEE80211_SMPS_OFF;
2644 break;
2645 case WLAN_HT_SMPS_CONTROL_STATIC:
2646 smps_mode = IEEE80211_SMPS_STATIC;
2647 break;
2648 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2649 smps_mode = IEEE80211_SMPS_DYNAMIC;
2650 break;
2651 default:
2652 goto invalid;
2655 /* if no change do nothing */
2656 if (rx->sta->sta.smps_mode == smps_mode)
2657 goto handled;
2658 rx->sta->sta.smps_mode = smps_mode;
2660 sband = rx->local->hw.wiphy->bands[status->band];
2662 rate_control_rate_update(local, sband, rx->sta,
2663 IEEE80211_RC_SMPS_CHANGED);
2664 goto handled;
2666 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2667 struct ieee80211_supported_band *sband;
2668 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2669 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2671 /* If it doesn't support 40 MHz it can't change ... */
2672 if (!(rx->sta->sta.ht_cap.cap &
2673 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2674 goto handled;
2676 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2677 max_bw = IEEE80211_STA_RX_BW_20;
2678 else
2679 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2681 /* set cur_max_bandwidth and recalc sta bw */
2682 rx->sta->cur_max_bandwidth = max_bw;
2683 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2685 if (rx->sta->sta.bandwidth == new_bw)
2686 goto handled;
2688 rx->sta->sta.bandwidth = new_bw;
2689 sband = rx->local->hw.wiphy->bands[status->band];
2691 rate_control_rate_update(local, sband, rx->sta,
2692 IEEE80211_RC_BW_CHANGED);
2693 goto handled;
2695 default:
2696 goto invalid;
2699 break;
2700 case WLAN_CATEGORY_PUBLIC:
2701 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2702 goto invalid;
2703 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2704 break;
2705 if (!rx->sta)
2706 break;
2707 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2708 break;
2709 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2710 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2711 break;
2712 if (len < offsetof(struct ieee80211_mgmt,
2713 u.action.u.ext_chan_switch.variable))
2714 goto invalid;
2715 goto queue;
2716 case WLAN_CATEGORY_VHT:
2717 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2718 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2719 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2720 sdata->vif.type != NL80211_IFTYPE_AP &&
2721 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2722 break;
2724 /* verify action code is present */
2725 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2726 goto invalid;
2728 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2729 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2730 u8 opmode;
2732 /* verify opmode is present */
2733 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2734 goto invalid;
2736 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2738 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2739 opmode, status->band);
2740 goto handled;
2742 default:
2743 break;
2745 break;
2746 case WLAN_CATEGORY_BACK:
2747 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2748 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2749 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2750 sdata->vif.type != NL80211_IFTYPE_AP &&
2751 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2752 break;
2754 /* verify action_code is present */
2755 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2756 break;
2758 switch (mgmt->u.action.u.addba_req.action_code) {
2759 case WLAN_ACTION_ADDBA_REQ:
2760 if (len < (IEEE80211_MIN_ACTION_SIZE +
2761 sizeof(mgmt->u.action.u.addba_req)))
2762 goto invalid;
2763 break;
2764 case WLAN_ACTION_ADDBA_RESP:
2765 if (len < (IEEE80211_MIN_ACTION_SIZE +
2766 sizeof(mgmt->u.action.u.addba_resp)))
2767 goto invalid;
2768 break;
2769 case WLAN_ACTION_DELBA:
2770 if (len < (IEEE80211_MIN_ACTION_SIZE +
2771 sizeof(mgmt->u.action.u.delba)))
2772 goto invalid;
2773 break;
2774 default:
2775 goto invalid;
2778 goto queue;
2779 case WLAN_CATEGORY_SPECTRUM_MGMT:
2780 /* verify action_code is present */
2781 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2782 break;
2784 switch (mgmt->u.action.u.measurement.action_code) {
2785 case WLAN_ACTION_SPCT_MSR_REQ:
2786 if (status->band != IEEE80211_BAND_5GHZ)
2787 break;
2789 if (len < (IEEE80211_MIN_ACTION_SIZE +
2790 sizeof(mgmt->u.action.u.measurement)))
2791 break;
2793 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2794 break;
2796 ieee80211_process_measurement_req(sdata, mgmt, len);
2797 goto handled;
2798 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2799 u8 *bssid;
2800 if (len < (IEEE80211_MIN_ACTION_SIZE +
2801 sizeof(mgmt->u.action.u.chan_switch)))
2802 break;
2804 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2805 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2806 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2807 break;
2809 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2810 bssid = sdata->u.mgd.bssid;
2811 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2812 bssid = sdata->u.ibss.bssid;
2813 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2814 bssid = mgmt->sa;
2815 else
2816 break;
2818 if (!ether_addr_equal(mgmt->bssid, bssid))
2819 break;
2821 goto queue;
2824 break;
2825 case WLAN_CATEGORY_SA_QUERY:
2826 if (len < (IEEE80211_MIN_ACTION_SIZE +
2827 sizeof(mgmt->u.action.u.sa_query)))
2828 break;
2830 switch (mgmt->u.action.u.sa_query.action) {
2831 case WLAN_ACTION_SA_QUERY_REQUEST:
2832 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2833 break;
2834 ieee80211_process_sa_query_req(sdata, mgmt, len);
2835 goto handled;
2837 break;
2838 case WLAN_CATEGORY_SELF_PROTECTED:
2839 if (len < (IEEE80211_MIN_ACTION_SIZE +
2840 sizeof(mgmt->u.action.u.self_prot.action_code)))
2841 break;
2843 switch (mgmt->u.action.u.self_prot.action_code) {
2844 case WLAN_SP_MESH_PEERING_OPEN:
2845 case WLAN_SP_MESH_PEERING_CLOSE:
2846 case WLAN_SP_MESH_PEERING_CONFIRM:
2847 if (!ieee80211_vif_is_mesh(&sdata->vif))
2848 goto invalid;
2849 if (sdata->u.mesh.user_mpm)
2850 /* userspace handles this frame */
2851 break;
2852 goto queue;
2853 case WLAN_SP_MGK_INFORM:
2854 case WLAN_SP_MGK_ACK:
2855 if (!ieee80211_vif_is_mesh(&sdata->vif))
2856 goto invalid;
2857 break;
2859 break;
2860 case WLAN_CATEGORY_MESH_ACTION:
2861 if (len < (IEEE80211_MIN_ACTION_SIZE +
2862 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2863 break;
2865 if (!ieee80211_vif_is_mesh(&sdata->vif))
2866 break;
2867 if (mesh_action_is_path_sel(mgmt) &&
2868 !mesh_path_sel_is_hwmp(sdata))
2869 break;
2870 goto queue;
2873 return RX_CONTINUE;
2875 invalid:
2876 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2877 /* will return in the next handlers */
2878 return RX_CONTINUE;
2880 handled:
2881 if (rx->sta)
2882 rx->sta->rx_stats.packets++;
2883 dev_kfree_skb(rx->skb);
2884 return RX_QUEUED;
2886 queue:
2887 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2888 skb_queue_tail(&sdata->skb_queue, rx->skb);
2889 ieee80211_queue_work(&local->hw, &sdata->work);
2890 if (rx->sta)
2891 rx->sta->rx_stats.packets++;
2892 return RX_QUEUED;
2895 static ieee80211_rx_result debug_noinline
2896 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2898 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2899 int sig = 0;
2901 /* skip known-bad action frames and return them in the next handler */
2902 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2903 return RX_CONTINUE;
2906 * Getting here means the kernel doesn't know how to handle
2907 * it, but maybe userspace does ... include returned frames
2908 * so userspace can register for those to know whether ones
2909 * it transmitted were processed or returned.
2912 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2913 sig = status->signal;
2915 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2916 rx->skb->data, rx->skb->len, 0)) {
2917 if (rx->sta)
2918 rx->sta->rx_stats.packets++;
2919 dev_kfree_skb(rx->skb);
2920 return RX_QUEUED;
2923 return RX_CONTINUE;
2926 static ieee80211_rx_result debug_noinline
2927 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2929 struct ieee80211_local *local = rx->local;
2930 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2931 struct sk_buff *nskb;
2932 struct ieee80211_sub_if_data *sdata = rx->sdata;
2933 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2935 if (!ieee80211_is_action(mgmt->frame_control))
2936 return RX_CONTINUE;
2939 * For AP mode, hostapd is responsible for handling any action
2940 * frames that we didn't handle, including returning unknown
2941 * ones. For all other modes we will return them to the sender,
2942 * setting the 0x80 bit in the action category, as required by
2943 * 802.11-2012 9.24.4.
2944 * Newer versions of hostapd shall also use the management frame
2945 * registration mechanisms, but older ones still use cooked
2946 * monitor interfaces so push all frames there.
2948 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2949 (sdata->vif.type == NL80211_IFTYPE_AP ||
2950 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2951 return RX_DROP_MONITOR;
2953 if (is_multicast_ether_addr(mgmt->da))
2954 return RX_DROP_MONITOR;
2956 /* do not return rejected action frames */
2957 if (mgmt->u.action.category & 0x80)
2958 return RX_DROP_UNUSABLE;
2960 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2961 GFP_ATOMIC);
2962 if (nskb) {
2963 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2965 nmgmt->u.action.category |= 0x80;
2966 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2967 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2969 memset(nskb->cb, 0, sizeof(nskb->cb));
2971 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2972 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2974 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2975 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2976 IEEE80211_TX_CTL_NO_CCK_RATE;
2977 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
2978 info->hw_queue =
2979 local->hw.offchannel_tx_hw_queue;
2982 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2983 status->band);
2985 dev_kfree_skb(rx->skb);
2986 return RX_QUEUED;
2989 static ieee80211_rx_result debug_noinline
2990 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2992 struct ieee80211_sub_if_data *sdata = rx->sdata;
2993 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2994 __le16 stype;
2996 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2998 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2999 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3000 sdata->vif.type != NL80211_IFTYPE_OCB &&
3001 sdata->vif.type != NL80211_IFTYPE_STATION)
3002 return RX_DROP_MONITOR;
3004 switch (stype) {
3005 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3006 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3007 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3008 /* process for all: mesh, mlme, ibss */
3009 break;
3010 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3011 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3012 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3013 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3014 if (is_multicast_ether_addr(mgmt->da) &&
3015 !is_broadcast_ether_addr(mgmt->da))
3016 return RX_DROP_MONITOR;
3018 /* process only for station */
3019 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3020 return RX_DROP_MONITOR;
3021 break;
3022 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3023 /* process only for ibss and mesh */
3024 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3025 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3026 return RX_DROP_MONITOR;
3027 break;
3028 default:
3029 return RX_DROP_MONITOR;
3032 /* queue up frame and kick off work to process it */
3033 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3034 skb_queue_tail(&sdata->skb_queue, rx->skb);
3035 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3036 if (rx->sta)
3037 rx->sta->rx_stats.packets++;
3039 return RX_QUEUED;
3042 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3043 struct ieee80211_rate *rate)
3045 struct ieee80211_sub_if_data *sdata;
3046 struct ieee80211_local *local = rx->local;
3047 struct sk_buff *skb = rx->skb, *skb2;
3048 struct net_device *prev_dev = NULL;
3049 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3050 int needed_headroom;
3053 * If cooked monitor has been processed already, then
3054 * don't do it again. If not, set the flag.
3056 if (rx->flags & IEEE80211_RX_CMNTR)
3057 goto out_free_skb;
3058 rx->flags |= IEEE80211_RX_CMNTR;
3060 /* If there are no cooked monitor interfaces, just free the SKB */
3061 if (!local->cooked_mntrs)
3062 goto out_free_skb;
3064 /* vendor data is long removed here */
3065 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3066 /* room for the radiotap header based on driver features */
3067 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3069 if (skb_headroom(skb) < needed_headroom &&
3070 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3071 goto out_free_skb;
3073 /* prepend radiotap information */
3074 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3075 false);
3077 skb_set_mac_header(skb, 0);
3078 skb->ip_summed = CHECKSUM_UNNECESSARY;
3079 skb->pkt_type = PACKET_OTHERHOST;
3080 skb->protocol = htons(ETH_P_802_2);
3082 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3083 if (!ieee80211_sdata_running(sdata))
3084 continue;
3086 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3087 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3088 continue;
3090 if (prev_dev) {
3091 skb2 = skb_clone(skb, GFP_ATOMIC);
3092 if (skb2) {
3093 skb2->dev = prev_dev;
3094 netif_receive_skb(skb2);
3098 prev_dev = sdata->dev;
3099 ieee80211_rx_stats(sdata->dev, skb->len);
3102 if (prev_dev) {
3103 skb->dev = prev_dev;
3104 netif_receive_skb(skb);
3105 return;
3108 out_free_skb:
3109 dev_kfree_skb(skb);
3112 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3113 ieee80211_rx_result res)
3115 switch (res) {
3116 case RX_DROP_MONITOR:
3117 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3118 if (rx->sta)
3119 rx->sta->rx_stats.dropped++;
3120 /* fall through */
3121 case RX_CONTINUE: {
3122 struct ieee80211_rate *rate = NULL;
3123 struct ieee80211_supported_band *sband;
3124 struct ieee80211_rx_status *status;
3126 status = IEEE80211_SKB_RXCB((rx->skb));
3128 sband = rx->local->hw.wiphy->bands[status->band];
3129 if (!(status->flag & RX_FLAG_HT) &&
3130 !(status->flag & RX_FLAG_VHT))
3131 rate = &sband->bitrates[status->rate_idx];
3133 ieee80211_rx_cooked_monitor(rx, rate);
3134 break;
3136 case RX_DROP_UNUSABLE:
3137 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3138 if (rx->sta)
3139 rx->sta->rx_stats.dropped++;
3140 dev_kfree_skb(rx->skb);
3141 break;
3142 case RX_QUEUED:
3143 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3144 break;
3148 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3149 struct sk_buff_head *frames)
3151 ieee80211_rx_result res = RX_DROP_MONITOR;
3152 struct sk_buff *skb;
3154 #define CALL_RXH(rxh) \
3155 do { \
3156 res = rxh(rx); \
3157 if (res != RX_CONTINUE) \
3158 goto rxh_next; \
3159 } while (0);
3161 /* Lock here to avoid hitting all of the data used in the RX
3162 * path (e.g. key data, station data, ...) concurrently when
3163 * a frame is released from the reorder buffer due to timeout
3164 * from the timer, potentially concurrently with RX from the
3165 * driver.
3167 spin_lock_bh(&rx->local->rx_path_lock);
3169 while ((skb = __skb_dequeue(frames))) {
3171 * all the other fields are valid across frames
3172 * that belong to an aMPDU since they are on the
3173 * same TID from the same station
3175 rx->skb = skb;
3177 CALL_RXH(ieee80211_rx_h_check_more_data)
3178 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3179 CALL_RXH(ieee80211_rx_h_sta_process)
3180 CALL_RXH(ieee80211_rx_h_decrypt)
3181 CALL_RXH(ieee80211_rx_h_defragment)
3182 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3183 /* must be after MMIC verify so header is counted in MPDU mic */
3184 #ifdef CONFIG_MAC80211_MESH
3185 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3186 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3187 #endif
3188 CALL_RXH(ieee80211_rx_h_amsdu)
3189 CALL_RXH(ieee80211_rx_h_data)
3191 /* special treatment -- needs the queue */
3192 res = ieee80211_rx_h_ctrl(rx, frames);
3193 if (res != RX_CONTINUE)
3194 goto rxh_next;
3196 CALL_RXH(ieee80211_rx_h_mgmt_check)
3197 CALL_RXH(ieee80211_rx_h_action)
3198 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3199 CALL_RXH(ieee80211_rx_h_action_return)
3200 CALL_RXH(ieee80211_rx_h_mgmt)
3202 rxh_next:
3203 ieee80211_rx_handlers_result(rx, res);
3205 #undef CALL_RXH
3208 spin_unlock_bh(&rx->local->rx_path_lock);
3211 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3213 struct sk_buff_head reorder_release;
3214 ieee80211_rx_result res = RX_DROP_MONITOR;
3216 __skb_queue_head_init(&reorder_release);
3218 #define CALL_RXH(rxh) \
3219 do { \
3220 res = rxh(rx); \
3221 if (res != RX_CONTINUE) \
3222 goto rxh_next; \
3223 } while (0);
3225 CALL_RXH(ieee80211_rx_h_check_dup)
3226 CALL_RXH(ieee80211_rx_h_check)
3228 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3230 ieee80211_rx_handlers(rx, &reorder_release);
3231 return;
3233 rxh_next:
3234 ieee80211_rx_handlers_result(rx, res);
3236 #undef CALL_RXH
3240 * This function makes calls into the RX path, therefore
3241 * it has to be invoked under RCU read lock.
3243 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3245 struct sk_buff_head frames;
3246 struct ieee80211_rx_data rx = {
3247 .sta = sta,
3248 .sdata = sta->sdata,
3249 .local = sta->local,
3250 /* This is OK -- must be QoS data frame */
3251 .security_idx = tid,
3252 .seqno_idx = tid,
3253 .napi = NULL, /* must be NULL to not have races */
3255 struct tid_ampdu_rx *tid_agg_rx;
3257 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3258 if (!tid_agg_rx)
3259 return;
3261 __skb_queue_head_init(&frames);
3263 spin_lock(&tid_agg_rx->reorder_lock);
3264 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3265 spin_unlock(&tid_agg_rx->reorder_lock);
3267 if (!skb_queue_empty(&frames)) {
3268 struct ieee80211_event event = {
3269 .type = BA_FRAME_TIMEOUT,
3270 .u.ba.tid = tid,
3271 .u.ba.sta = &sta->sta,
3273 drv_event_callback(rx.local, rx.sdata, &event);
3276 ieee80211_rx_handlers(&rx, &frames);
3279 /* main receive path */
3281 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3283 struct ieee80211_sub_if_data *sdata = rx->sdata;
3284 struct sk_buff *skb = rx->skb;
3285 struct ieee80211_hdr *hdr = (void *)skb->data;
3286 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3287 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3288 int multicast = is_multicast_ether_addr(hdr->addr1);
3290 switch (sdata->vif.type) {
3291 case NL80211_IFTYPE_STATION:
3292 if (!bssid && !sdata->u.mgd.use_4addr)
3293 return false;
3294 if (multicast)
3295 return true;
3296 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3297 case NL80211_IFTYPE_ADHOC:
3298 if (!bssid)
3299 return false;
3300 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3301 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3302 return false;
3303 if (ieee80211_is_beacon(hdr->frame_control))
3304 return true;
3305 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3306 return false;
3307 if (!multicast &&
3308 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3309 return false;
3310 if (!rx->sta) {
3311 int rate_idx;
3312 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3313 rate_idx = 0; /* TODO: HT/VHT rates */
3314 else
3315 rate_idx = status->rate_idx;
3316 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3317 BIT(rate_idx));
3319 return true;
3320 case NL80211_IFTYPE_OCB:
3321 if (!bssid)
3322 return false;
3323 if (!ieee80211_is_data_present(hdr->frame_control))
3324 return false;
3325 if (!is_broadcast_ether_addr(bssid))
3326 return false;
3327 if (!multicast &&
3328 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3329 return false;
3330 if (!rx->sta) {
3331 int rate_idx;
3332 if (status->flag & RX_FLAG_HT)
3333 rate_idx = 0; /* TODO: HT rates */
3334 else
3335 rate_idx = status->rate_idx;
3336 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3337 BIT(rate_idx));
3339 return true;
3340 case NL80211_IFTYPE_MESH_POINT:
3341 if (multicast)
3342 return true;
3343 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3344 case NL80211_IFTYPE_AP_VLAN:
3345 case NL80211_IFTYPE_AP:
3346 if (!bssid)
3347 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3349 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3351 * Accept public action frames even when the
3352 * BSSID doesn't match, this is used for P2P
3353 * and location updates. Note that mac80211
3354 * itself never looks at these frames.
3356 if (!multicast &&
3357 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3358 return false;
3359 if (ieee80211_is_public_action(hdr, skb->len))
3360 return true;
3361 return ieee80211_is_beacon(hdr->frame_control);
3364 if (!ieee80211_has_tods(hdr->frame_control)) {
3365 /* ignore data frames to TDLS-peers */
3366 if (ieee80211_is_data(hdr->frame_control))
3367 return false;
3368 /* ignore action frames to TDLS-peers */
3369 if (ieee80211_is_action(hdr->frame_control) &&
3370 !ether_addr_equal(bssid, hdr->addr1))
3371 return false;
3373 return true;
3374 case NL80211_IFTYPE_WDS:
3375 if (bssid || !ieee80211_is_data(hdr->frame_control))
3376 return false;
3377 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3378 case NL80211_IFTYPE_P2P_DEVICE:
3379 return ieee80211_is_public_action(hdr, skb->len) ||
3380 ieee80211_is_probe_req(hdr->frame_control) ||
3381 ieee80211_is_probe_resp(hdr->frame_control) ||
3382 ieee80211_is_beacon(hdr->frame_control);
3383 default:
3384 break;
3387 WARN_ON_ONCE(1);
3388 return false;
3392 * This function returns whether or not the SKB
3393 * was destined for RX processing or not, which,
3394 * if consume is true, is equivalent to whether
3395 * or not the skb was consumed.
3397 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3398 struct sk_buff *skb, bool consume)
3400 struct ieee80211_local *local = rx->local;
3401 struct ieee80211_sub_if_data *sdata = rx->sdata;
3403 rx->skb = skb;
3405 if (!ieee80211_accept_frame(rx))
3406 return false;
3408 if (!consume) {
3409 skb = skb_copy(skb, GFP_ATOMIC);
3410 if (!skb) {
3411 if (net_ratelimit())
3412 wiphy_debug(local->hw.wiphy,
3413 "failed to copy skb for %s\n",
3414 sdata->name);
3415 return true;
3418 rx->skb = skb;
3421 ieee80211_invoke_rx_handlers(rx);
3422 return true;
3426 * This is the actual Rx frames handler. as it belongs to Rx path it must
3427 * be called with rcu_read_lock protection.
3429 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3430 struct sk_buff *skb,
3431 struct napi_struct *napi)
3433 struct ieee80211_local *local = hw_to_local(hw);
3434 struct ieee80211_sub_if_data *sdata;
3435 struct ieee80211_hdr *hdr;
3436 __le16 fc;
3437 struct ieee80211_rx_data rx;
3438 struct ieee80211_sub_if_data *prev;
3439 struct sta_info *sta, *prev_sta;
3440 struct rhash_head *tmp;
3441 int err = 0;
3443 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3444 memset(&rx, 0, sizeof(rx));
3445 rx.skb = skb;
3446 rx.local = local;
3447 rx.napi = napi;
3449 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3450 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3452 if (ieee80211_is_mgmt(fc)) {
3453 /* drop frame if too short for header */
3454 if (skb->len < ieee80211_hdrlen(fc))
3455 err = -ENOBUFS;
3456 else
3457 err = skb_linearize(skb);
3458 } else {
3459 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3462 if (err) {
3463 dev_kfree_skb(skb);
3464 return;
3467 hdr = (struct ieee80211_hdr *)skb->data;
3468 ieee80211_parse_qos(&rx);
3469 ieee80211_verify_alignment(&rx);
3471 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3472 ieee80211_is_beacon(hdr->frame_control)))
3473 ieee80211_scan_rx(local, skb);
3475 if (ieee80211_is_data(fc)) {
3476 const struct bucket_table *tbl;
3478 prev_sta = NULL;
3480 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3482 for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3483 if (!prev_sta) {
3484 prev_sta = sta;
3485 continue;
3488 rx.sta = prev_sta;
3489 rx.sdata = prev_sta->sdata;
3490 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3492 prev_sta = sta;
3495 if (prev_sta) {
3496 rx.sta = prev_sta;
3497 rx.sdata = prev_sta->sdata;
3499 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3500 return;
3501 goto out;
3505 prev = NULL;
3507 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3508 if (!ieee80211_sdata_running(sdata))
3509 continue;
3511 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3512 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3513 continue;
3516 * frame is destined for this interface, but if it's
3517 * not also for the previous one we handle that after
3518 * the loop to avoid copying the SKB once too much
3521 if (!prev) {
3522 prev = sdata;
3523 continue;
3526 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3527 rx.sdata = prev;
3528 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3530 prev = sdata;
3533 if (prev) {
3534 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3535 rx.sdata = prev;
3537 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3538 return;
3541 out:
3542 dev_kfree_skb(skb);
3546 * This is the receive path handler. It is called by a low level driver when an
3547 * 802.11 MPDU is received from the hardware.
3549 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct sk_buff *skb,
3550 struct napi_struct *napi)
3552 struct ieee80211_local *local = hw_to_local(hw);
3553 struct ieee80211_rate *rate = NULL;
3554 struct ieee80211_supported_band *sband;
3555 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3557 WARN_ON_ONCE(softirq_count() == 0);
3559 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3560 goto drop;
3562 sband = local->hw.wiphy->bands[status->band];
3563 if (WARN_ON(!sband))
3564 goto drop;
3567 * If we're suspending, it is possible although not too likely
3568 * that we'd be receiving frames after having already partially
3569 * quiesced the stack. We can't process such frames then since
3570 * that might, for example, cause stations to be added or other
3571 * driver callbacks be invoked.
3573 if (unlikely(local->quiescing || local->suspended))
3574 goto drop;
3576 /* We might be during a HW reconfig, prevent Rx for the same reason */
3577 if (unlikely(local->in_reconfig))
3578 goto drop;
3581 * The same happens when we're not even started,
3582 * but that's worth a warning.
3584 if (WARN_ON(!local->started))
3585 goto drop;
3587 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3589 * Validate the rate, unless a PLCP error means that
3590 * we probably can't have a valid rate here anyway.
3593 if (status->flag & RX_FLAG_HT) {
3595 * rate_idx is MCS index, which can be [0-76]
3596 * as documented on:
3598 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3600 * Anything else would be some sort of driver or
3601 * hardware error. The driver should catch hardware
3602 * errors.
3604 if (WARN(status->rate_idx > 76,
3605 "Rate marked as an HT rate but passed "
3606 "status->rate_idx is not "
3607 "an MCS index [0-76]: %d (0x%02x)\n",
3608 status->rate_idx,
3609 status->rate_idx))
3610 goto drop;
3611 } else if (status->flag & RX_FLAG_VHT) {
3612 if (WARN_ONCE(status->rate_idx > 9 ||
3613 !status->vht_nss ||
3614 status->vht_nss > 8,
3615 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3616 status->rate_idx, status->vht_nss))
3617 goto drop;
3618 } else {
3619 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3620 goto drop;
3621 rate = &sband->bitrates[status->rate_idx];
3625 status->rx_flags = 0;
3628 * key references and virtual interfaces are protected using RCU
3629 * and this requires that we are in a read-side RCU section during
3630 * receive processing
3632 rcu_read_lock();
3635 * Frames with failed FCS/PLCP checksum are not returned,
3636 * all other frames are returned without radiotap header
3637 * if it was previously present.
3638 * Also, frames with less than 16 bytes are dropped.
3640 skb = ieee80211_rx_monitor(local, skb, rate);
3641 if (!skb) {
3642 rcu_read_unlock();
3643 return;
3646 ieee80211_tpt_led_trig_rx(local,
3647 ((struct ieee80211_hdr *)skb->data)->frame_control,
3648 skb->len);
3649 __ieee80211_rx_handle_packet(hw, skb, napi);
3651 rcu_read_unlock();
3653 return;
3654 drop:
3655 kfree_skb(skb);
3657 EXPORT_SYMBOL(ieee80211_rx_napi);
3659 /* This is a version of the rx handler that can be called from hard irq
3660 * context. Post the skb on the queue and schedule the tasklet */
3661 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3663 struct ieee80211_local *local = hw_to_local(hw);
3665 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3667 skb->pkt_type = IEEE80211_RX_MSG;
3668 skb_queue_tail(&local->skb_queue, skb);
3669 tasklet_schedule(&local->tasklet);
3671 EXPORT_SYMBOL(ieee80211_rx_irqsafe);