2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
45 * fill ring buffer with silence
46 * runtime->silence_start: starting pointer to silence area
47 * runtime->silence_filled: size filled with silence
48 * runtime->silence_threshold: threshold from application
49 * runtime->silence_size: maximal size from application
51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
53 void snd_pcm_playback_silence(struct snd_pcm_substream
*substream
, snd_pcm_uframes_t new_hw_ptr
)
55 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
56 snd_pcm_uframes_t frames
, ofs
, transfer
;
58 if (runtime
->silence_size
< runtime
->boundary
) {
59 snd_pcm_sframes_t noise_dist
, n
;
60 if (runtime
->silence_start
!= runtime
->control
->appl_ptr
) {
61 n
= runtime
->control
->appl_ptr
- runtime
->silence_start
;
63 n
+= runtime
->boundary
;
64 if ((snd_pcm_uframes_t
)n
< runtime
->silence_filled
)
65 runtime
->silence_filled
-= n
;
67 runtime
->silence_filled
= 0;
68 runtime
->silence_start
= runtime
->control
->appl_ptr
;
70 if (runtime
->silence_filled
>= runtime
->buffer_size
)
72 noise_dist
= snd_pcm_playback_hw_avail(runtime
) + runtime
->silence_filled
;
73 if (noise_dist
>= (snd_pcm_sframes_t
) runtime
->silence_threshold
)
75 frames
= runtime
->silence_threshold
- noise_dist
;
76 if (frames
> runtime
->silence_size
)
77 frames
= runtime
->silence_size
;
79 if (new_hw_ptr
== ULONG_MAX
) { /* initialization */
80 snd_pcm_sframes_t avail
= snd_pcm_playback_hw_avail(runtime
);
81 if (avail
> runtime
->buffer_size
)
82 avail
= runtime
->buffer_size
;
83 runtime
->silence_filled
= avail
> 0 ? avail
: 0;
84 runtime
->silence_start
= (runtime
->status
->hw_ptr
+
85 runtime
->silence_filled
) %
88 ofs
= runtime
->status
->hw_ptr
;
89 frames
= new_hw_ptr
- ofs
;
90 if ((snd_pcm_sframes_t
)frames
< 0)
91 frames
+= runtime
->boundary
;
92 runtime
->silence_filled
-= frames
;
93 if ((snd_pcm_sframes_t
)runtime
->silence_filled
< 0) {
94 runtime
->silence_filled
= 0;
95 runtime
->silence_start
= new_hw_ptr
;
97 runtime
->silence_start
= ofs
;
100 frames
= runtime
->buffer_size
- runtime
->silence_filled
;
102 if (snd_BUG_ON(frames
> runtime
->buffer_size
))
106 ofs
= runtime
->silence_start
% runtime
->buffer_size
;
108 transfer
= ofs
+ frames
> runtime
->buffer_size
? runtime
->buffer_size
- ofs
: frames
;
109 if (runtime
->access
== SNDRV_PCM_ACCESS_RW_INTERLEAVED
||
110 runtime
->access
== SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
) {
111 if (substream
->ops
->silence
) {
113 err
= substream
->ops
->silence(substream
, -1, ofs
, transfer
);
116 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, ofs
);
117 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, transfer
* runtime
->channels
);
121 unsigned int channels
= runtime
->channels
;
122 if (substream
->ops
->silence
) {
123 for (c
= 0; c
< channels
; ++c
) {
125 err
= substream
->ops
->silence(substream
, c
, ofs
, transfer
);
129 size_t dma_csize
= runtime
->dma_bytes
/ channels
;
130 for (c
= 0; c
< channels
; ++c
) {
131 char *hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, ofs
);
132 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, transfer
);
136 runtime
->silence_filled
+= transfer
;
142 #ifdef CONFIG_SND_DEBUG
143 void snd_pcm_debug_name(struct snd_pcm_substream
*substream
,
144 char *name
, size_t len
)
146 snprintf(name
, len
, "pcmC%dD%d%c:%d",
147 substream
->pcm
->card
->number
,
148 substream
->pcm
->device
,
149 substream
->stream
? 'c' : 'p',
152 EXPORT_SYMBOL(snd_pcm_debug_name
);
155 #define XRUN_DEBUG_BASIC (1<<0)
156 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
161 #define xrun_debug(substream, mask) \
162 ((substream)->pstr->xrun_debug & (mask))
164 #define xrun_debug(substream, mask) 0
167 #define dump_stack_on_xrun(substream) do { \
168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
172 static void xrun(struct snd_pcm_substream
*substream
)
174 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
176 trace_xrun(substream
);
177 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
)
178 snd_pcm_gettime(runtime
, (struct timespec
*)&runtime
->status
->tstamp
);
179 snd_pcm_stop(substream
, SNDRV_PCM_STATE_XRUN
);
180 if (xrun_debug(substream
, XRUN_DEBUG_BASIC
)) {
182 snd_pcm_debug_name(substream
, name
, sizeof(name
));
183 pcm_warn(substream
->pcm
, "XRUN: %s\n", name
);
184 dump_stack_on_xrun(substream
);
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
191 trace_hw_ptr_error(substream, reason); \
192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194 (in_interrupt) ? 'Q' : 'P', ##args); \
195 dump_stack_on_xrun(substream); \
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
205 int snd_pcm_update_state(struct snd_pcm_substream
*substream
,
206 struct snd_pcm_runtime
*runtime
)
208 snd_pcm_uframes_t avail
;
210 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
211 avail
= snd_pcm_playback_avail(runtime
);
213 avail
= snd_pcm_capture_avail(runtime
);
214 if (avail
> runtime
->avail_max
)
215 runtime
->avail_max
= avail
;
216 if (runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
217 if (avail
>= runtime
->buffer_size
) {
218 snd_pcm_drain_done(substream
);
222 if (avail
>= runtime
->stop_threshold
) {
227 if (runtime
->twake
) {
228 if (avail
>= runtime
->twake
)
229 wake_up(&runtime
->tsleep
);
230 } else if (avail
>= runtime
->control
->avail_min
)
231 wake_up(&runtime
->sleep
);
235 static void update_audio_tstamp(struct snd_pcm_substream
*substream
,
236 struct timespec
*curr_tstamp
,
237 struct timespec
*audio_tstamp
)
239 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
240 u64 audio_frames
, audio_nsecs
;
241 struct timespec driver_tstamp
;
243 if (runtime
->tstamp_mode
!= SNDRV_PCM_TSTAMP_ENABLE
)
246 if (!(substream
->ops
->get_time_info
) ||
247 (runtime
->audio_tstamp_report
.actual_type
==
248 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
251 * provide audio timestamp derived from pointer position
252 * add delay only if requested
255 audio_frames
= runtime
->hw_ptr_wrap
+ runtime
->status
->hw_ptr
;
257 if (runtime
->audio_tstamp_config
.report_delay
) {
258 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
259 audio_frames
-= runtime
->delay
;
261 audio_frames
+= runtime
->delay
;
263 audio_nsecs
= div_u64(audio_frames
* 1000000000LL,
265 *audio_tstamp
= ns_to_timespec(audio_nsecs
);
267 runtime
->status
->audio_tstamp
= *audio_tstamp
;
268 runtime
->status
->tstamp
= *curr_tstamp
;
271 * re-take a driver timestamp to let apps detect if the reference tstamp
272 * read by low-level hardware was provided with a delay
274 snd_pcm_gettime(substream
->runtime
, (struct timespec
*)&driver_tstamp
);
275 runtime
->driver_tstamp
= driver_tstamp
;
278 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream
*substream
,
279 unsigned int in_interrupt
)
281 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
282 snd_pcm_uframes_t pos
;
283 snd_pcm_uframes_t old_hw_ptr
, new_hw_ptr
, hw_base
;
284 snd_pcm_sframes_t hdelta
, delta
;
285 unsigned long jdelta
;
286 unsigned long curr_jiffies
;
287 struct timespec curr_tstamp
;
288 struct timespec audio_tstamp
;
289 int crossed_boundary
= 0;
291 old_hw_ptr
= runtime
->status
->hw_ptr
;
294 * group pointer, time and jiffies reads to allow for more
295 * accurate correlations/corrections.
296 * The values are stored at the end of this routine after
297 * corrections for hw_ptr position
299 pos
= substream
->ops
->pointer(substream
);
300 curr_jiffies
= jiffies
;
301 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
) {
302 if ((substream
->ops
->get_time_info
) &&
303 (runtime
->audio_tstamp_config
.type_requested
!= SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
304 substream
->ops
->get_time_info(substream
, &curr_tstamp
,
306 &runtime
->audio_tstamp_config
,
307 &runtime
->audio_tstamp_report
);
309 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
310 if (runtime
->audio_tstamp_report
.actual_type
== SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)
311 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
313 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
316 if (pos
== SNDRV_PCM_POS_XRUN
) {
320 if (pos
>= runtime
->buffer_size
) {
321 if (printk_ratelimit()) {
323 snd_pcm_debug_name(substream
, name
, sizeof(name
));
324 pcm_err(substream
->pcm
,
325 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
326 name
, pos
, runtime
->buffer_size
,
327 runtime
->period_size
);
331 pos
-= pos
% runtime
->min_align
;
332 trace_hwptr(substream
, pos
, in_interrupt
);
333 hw_base
= runtime
->hw_ptr_base
;
334 new_hw_ptr
= hw_base
+ pos
;
336 /* we know that one period was processed */
337 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
338 delta
= runtime
->hw_ptr_interrupt
+ runtime
->period_size
;
339 if (delta
> new_hw_ptr
) {
340 /* check for double acknowledged interrupts */
341 hdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
342 if (hdelta
> runtime
->hw_ptr_buffer_jiffies
/2 + 1) {
343 hw_base
+= runtime
->buffer_size
;
344 if (hw_base
>= runtime
->boundary
) {
348 new_hw_ptr
= hw_base
+ pos
;
353 /* new_hw_ptr might be lower than old_hw_ptr in case when */
354 /* pointer crosses the end of the ring buffer */
355 if (new_hw_ptr
< old_hw_ptr
) {
356 hw_base
+= runtime
->buffer_size
;
357 if (hw_base
>= runtime
->boundary
) {
361 new_hw_ptr
= hw_base
+ pos
;
364 delta
= new_hw_ptr
- old_hw_ptr
;
366 delta
+= runtime
->boundary
;
368 if (runtime
->no_period_wakeup
) {
369 snd_pcm_sframes_t xrun_threshold
;
371 * Without regular period interrupts, we have to check
372 * the elapsed time to detect xruns.
374 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
375 if (jdelta
< runtime
->hw_ptr_buffer_jiffies
/ 2)
377 hdelta
= jdelta
- delta
* HZ
/ runtime
->rate
;
378 xrun_threshold
= runtime
->hw_ptr_buffer_jiffies
/ 2 + 1;
379 while (hdelta
> xrun_threshold
) {
380 delta
+= runtime
->buffer_size
;
381 hw_base
+= runtime
->buffer_size
;
382 if (hw_base
>= runtime
->boundary
) {
386 new_hw_ptr
= hw_base
+ pos
;
387 hdelta
-= runtime
->hw_ptr_buffer_jiffies
;
392 /* something must be really wrong */
393 if (delta
>= runtime
->buffer_size
+ runtime
->period_size
) {
394 hw_ptr_error(substream
, in_interrupt
, "Unexpected hw_ptr",
395 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
396 substream
->stream
, (long)pos
,
397 (long)new_hw_ptr
, (long)old_hw_ptr
);
401 /* Do jiffies check only in xrun_debug mode */
402 if (!xrun_debug(substream
, XRUN_DEBUG_JIFFIESCHECK
))
403 goto no_jiffies_check
;
405 /* Skip the jiffies check for hardwares with BATCH flag.
406 * Such hardware usually just increases the position at each IRQ,
407 * thus it can't give any strange position.
409 if (runtime
->hw
.info
& SNDRV_PCM_INFO_BATCH
)
410 goto no_jiffies_check
;
412 if (hdelta
< runtime
->delay
)
413 goto no_jiffies_check
;
414 hdelta
-= runtime
->delay
;
415 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
416 if (((hdelta
* HZ
) / runtime
->rate
) > jdelta
+ HZ
/100) {
418 (((runtime
->period_size
* HZ
) / runtime
->rate
)
420 /* move new_hw_ptr according jiffies not pos variable */
421 new_hw_ptr
= old_hw_ptr
;
423 /* use loop to avoid checks for delta overflows */
424 /* the delta value is small or zero in most cases */
426 new_hw_ptr
+= runtime
->period_size
;
427 if (new_hw_ptr
>= runtime
->boundary
) {
428 new_hw_ptr
-= runtime
->boundary
;
433 /* align hw_base to buffer_size */
434 hw_ptr_error(substream
, in_interrupt
, "hw_ptr skipping",
435 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
436 (long)pos
, (long)hdelta
,
437 (long)runtime
->period_size
, jdelta
,
438 ((hdelta
* HZ
) / runtime
->rate
), hw_base
,
439 (unsigned long)old_hw_ptr
,
440 (unsigned long)new_hw_ptr
);
441 /* reset values to proper state */
443 hw_base
= new_hw_ptr
- (new_hw_ptr
% runtime
->buffer_size
);
446 if (delta
> runtime
->period_size
+ runtime
->period_size
/ 2) {
447 hw_ptr_error(substream
, in_interrupt
,
449 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
450 substream
->stream
, (long)delta
,
456 if (runtime
->status
->hw_ptr
== new_hw_ptr
) {
457 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
461 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
&&
462 runtime
->silence_size
> 0)
463 snd_pcm_playback_silence(substream
, new_hw_ptr
);
466 delta
= new_hw_ptr
- runtime
->hw_ptr_interrupt
;
468 delta
+= runtime
->boundary
;
469 delta
-= (snd_pcm_uframes_t
)delta
% runtime
->period_size
;
470 runtime
->hw_ptr_interrupt
+= delta
;
471 if (runtime
->hw_ptr_interrupt
>= runtime
->boundary
)
472 runtime
->hw_ptr_interrupt
-= runtime
->boundary
;
474 runtime
->hw_ptr_base
= hw_base
;
475 runtime
->status
->hw_ptr
= new_hw_ptr
;
476 runtime
->hw_ptr_jiffies
= curr_jiffies
;
477 if (crossed_boundary
) {
478 snd_BUG_ON(crossed_boundary
!= 1);
479 runtime
->hw_ptr_wrap
+= runtime
->boundary
;
482 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
484 return snd_pcm_update_state(substream
, runtime
);
487 /* CAUTION: call it with irq disabled */
488 int snd_pcm_update_hw_ptr(struct snd_pcm_substream
*substream
)
490 return snd_pcm_update_hw_ptr0(substream
, 0);
494 * snd_pcm_set_ops - set the PCM operators
495 * @pcm: the pcm instance
496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
497 * @ops: the operator table
499 * Sets the given PCM operators to the pcm instance.
501 void snd_pcm_set_ops(struct snd_pcm
*pcm
, int direction
,
502 const struct snd_pcm_ops
*ops
)
504 struct snd_pcm_str
*stream
= &pcm
->streams
[direction
];
505 struct snd_pcm_substream
*substream
;
507 for (substream
= stream
->substream
; substream
!= NULL
; substream
= substream
->next
)
508 substream
->ops
= ops
;
511 EXPORT_SYMBOL(snd_pcm_set_ops
);
514 * snd_pcm_sync - set the PCM sync id
515 * @substream: the pcm substream
517 * Sets the PCM sync identifier for the card.
519 void snd_pcm_set_sync(struct snd_pcm_substream
*substream
)
521 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
523 runtime
->sync
.id32
[0] = substream
->pcm
->card
->number
;
524 runtime
->sync
.id32
[1] = -1;
525 runtime
->sync
.id32
[2] = -1;
526 runtime
->sync
.id32
[3] = -1;
529 EXPORT_SYMBOL(snd_pcm_set_sync
);
532 * Standard ioctl routine
535 static inline unsigned int div32(unsigned int a
, unsigned int b
,
546 static inline unsigned int div_down(unsigned int a
, unsigned int b
)
553 static inline unsigned int div_up(unsigned int a
, unsigned int b
)
565 static inline unsigned int mul(unsigned int a
, unsigned int b
)
569 if (div_down(UINT_MAX
, a
) < b
)
574 static inline unsigned int muldiv32(unsigned int a
, unsigned int b
,
575 unsigned int c
, unsigned int *r
)
577 u_int64_t n
= (u_int64_t
) a
* b
;
583 n
= div_u64_rem(n
, c
, r
);
592 * snd_interval_refine - refine the interval value of configurator
593 * @i: the interval value to refine
594 * @v: the interval value to refer to
596 * Refines the interval value with the reference value.
597 * The interval is changed to the range satisfying both intervals.
598 * The interval status (min, max, integer, etc.) are evaluated.
600 * Return: Positive if the value is changed, zero if it's not changed, or a
601 * negative error code.
603 int snd_interval_refine(struct snd_interval
*i
, const struct snd_interval
*v
)
606 if (snd_BUG_ON(snd_interval_empty(i
)))
608 if (i
->min
< v
->min
) {
610 i
->openmin
= v
->openmin
;
612 } else if (i
->min
== v
->min
&& !i
->openmin
&& v
->openmin
) {
616 if (i
->max
> v
->max
) {
618 i
->openmax
= v
->openmax
;
620 } else if (i
->max
== v
->max
&& !i
->openmax
&& v
->openmax
) {
624 if (!i
->integer
&& v
->integer
) {
637 } else if (!i
->openmin
&& !i
->openmax
&& i
->min
== i
->max
)
639 if (snd_interval_checkempty(i
)) {
640 snd_interval_none(i
);
646 EXPORT_SYMBOL(snd_interval_refine
);
648 static int snd_interval_refine_first(struct snd_interval
*i
)
650 if (snd_BUG_ON(snd_interval_empty(i
)))
652 if (snd_interval_single(i
))
655 i
->openmax
= i
->openmin
;
661 static int snd_interval_refine_last(struct snd_interval
*i
)
663 if (snd_BUG_ON(snd_interval_empty(i
)))
665 if (snd_interval_single(i
))
668 i
->openmin
= i
->openmax
;
674 void snd_interval_mul(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
676 if (a
->empty
|| b
->empty
) {
677 snd_interval_none(c
);
681 c
->min
= mul(a
->min
, b
->min
);
682 c
->openmin
= (a
->openmin
|| b
->openmin
);
683 c
->max
= mul(a
->max
, b
->max
);
684 c
->openmax
= (a
->openmax
|| b
->openmax
);
685 c
->integer
= (a
->integer
&& b
->integer
);
689 * snd_interval_div - refine the interval value with division
696 * Returns non-zero if the value is changed, zero if not changed.
698 void snd_interval_div(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
701 if (a
->empty
|| b
->empty
) {
702 snd_interval_none(c
);
706 c
->min
= div32(a
->min
, b
->max
, &r
);
707 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
709 c
->max
= div32(a
->max
, b
->min
, &r
);
714 c
->openmax
= (a
->openmax
|| b
->openmin
);
723 * snd_interval_muldivk - refine the interval value
726 * @k: divisor (as integer)
731 * Returns non-zero if the value is changed, zero if not changed.
733 void snd_interval_muldivk(const struct snd_interval
*a
, const struct snd_interval
*b
,
734 unsigned int k
, struct snd_interval
*c
)
737 if (a
->empty
|| b
->empty
) {
738 snd_interval_none(c
);
742 c
->min
= muldiv32(a
->min
, b
->min
, k
, &r
);
743 c
->openmin
= (r
|| a
->openmin
|| b
->openmin
);
744 c
->max
= muldiv32(a
->max
, b
->max
, k
, &r
);
749 c
->openmax
= (a
->openmax
|| b
->openmax
);
754 * snd_interval_mulkdiv - refine the interval value
756 * @k: dividend 2 (as integer)
762 * Returns non-zero if the value is changed, zero if not changed.
764 void snd_interval_mulkdiv(const struct snd_interval
*a
, unsigned int k
,
765 const struct snd_interval
*b
, struct snd_interval
*c
)
768 if (a
->empty
|| b
->empty
) {
769 snd_interval_none(c
);
773 c
->min
= muldiv32(a
->min
, k
, b
->max
, &r
);
774 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
776 c
->max
= muldiv32(a
->max
, k
, b
->min
, &r
);
781 c
->openmax
= (a
->openmax
|| b
->openmin
);
793 * snd_interval_ratnum - refine the interval value
794 * @i: interval to refine
795 * @rats_count: number of ratnum_t
796 * @rats: ratnum_t array
797 * @nump: pointer to store the resultant numerator
798 * @denp: pointer to store the resultant denominator
800 * Return: Positive if the value is changed, zero if it's not changed, or a
801 * negative error code.
803 int snd_interval_ratnum(struct snd_interval
*i
,
804 unsigned int rats_count
, const struct snd_ratnum
*rats
,
805 unsigned int *nump
, unsigned int *denp
)
807 unsigned int best_num
, best_den
;
810 struct snd_interval t
;
812 unsigned int result_num
, result_den
;
815 best_num
= best_den
= best_diff
= 0;
816 for (k
= 0; k
< rats_count
; ++k
) {
817 unsigned int num
= rats
[k
].num
;
819 unsigned int q
= i
->min
;
823 den
= div_up(num
, q
);
824 if (den
< rats
[k
].den_min
)
826 if (den
> rats
[k
].den_max
)
827 den
= rats
[k
].den_max
;
830 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
834 diff
= num
- q
* den
;
838 diff
* best_den
< best_diff
* den
) {
848 t
.min
= div_down(best_num
, best_den
);
849 t
.openmin
= !!(best_num
% best_den
);
851 result_num
= best_num
;
852 result_diff
= best_diff
;
853 result_den
= best_den
;
854 best_num
= best_den
= best_diff
= 0;
855 for (k
= 0; k
< rats_count
; ++k
) {
856 unsigned int num
= rats
[k
].num
;
858 unsigned int q
= i
->max
;
864 den
= div_down(num
, q
);
865 if (den
> rats
[k
].den_max
)
867 if (den
< rats
[k
].den_min
)
868 den
= rats
[k
].den_min
;
871 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
873 den
+= rats
[k
].den_step
- r
;
875 diff
= q
* den
- num
;
879 diff
* best_den
< best_diff
* den
) {
889 t
.max
= div_up(best_num
, best_den
);
890 t
.openmax
= !!(best_num
% best_den
);
892 err
= snd_interval_refine(i
, &t
);
896 if (snd_interval_single(i
)) {
897 if (best_diff
* result_den
< result_diff
* best_den
) {
898 result_num
= best_num
;
899 result_den
= best_den
;
909 EXPORT_SYMBOL(snd_interval_ratnum
);
912 * snd_interval_ratden - refine the interval value
913 * @i: interval to refine
914 * @rats_count: number of struct ratden
915 * @rats: struct ratden array
916 * @nump: pointer to store the resultant numerator
917 * @denp: pointer to store the resultant denominator
919 * Return: Positive if the value is changed, zero if it's not changed, or a
920 * negative error code.
922 static int snd_interval_ratden(struct snd_interval
*i
,
923 unsigned int rats_count
,
924 const struct snd_ratden
*rats
,
925 unsigned int *nump
, unsigned int *denp
)
927 unsigned int best_num
, best_diff
, best_den
;
929 struct snd_interval t
;
932 best_num
= best_den
= best_diff
= 0;
933 for (k
= 0; k
< rats_count
; ++k
) {
935 unsigned int den
= rats
[k
].den
;
936 unsigned int q
= i
->min
;
939 if (num
> rats
[k
].num_max
)
941 if (num
< rats
[k
].num_min
)
942 num
= rats
[k
].num_max
;
945 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
947 num
+= rats
[k
].num_step
- r
;
949 diff
= num
- q
* den
;
951 diff
* best_den
< best_diff
* den
) {
961 t
.min
= div_down(best_num
, best_den
);
962 t
.openmin
= !!(best_num
% best_den
);
964 best_num
= best_den
= best_diff
= 0;
965 for (k
= 0; k
< rats_count
; ++k
) {
967 unsigned int den
= rats
[k
].den
;
968 unsigned int q
= i
->max
;
971 if (num
< rats
[k
].num_min
)
973 if (num
> rats
[k
].num_max
)
974 num
= rats
[k
].num_max
;
977 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
981 diff
= q
* den
- num
;
983 diff
* best_den
< best_diff
* den
) {
993 t
.max
= div_up(best_num
, best_den
);
994 t
.openmax
= !!(best_num
% best_den
);
996 err
= snd_interval_refine(i
, &t
);
1000 if (snd_interval_single(i
)) {
1010 * snd_interval_list - refine the interval value from the list
1011 * @i: the interval value to refine
1012 * @count: the number of elements in the list
1013 * @list: the value list
1014 * @mask: the bit-mask to evaluate
1016 * Refines the interval value from the list.
1017 * When mask is non-zero, only the elements corresponding to bit 1 are
1020 * Return: Positive if the value is changed, zero if it's not changed, or a
1021 * negative error code.
1023 int snd_interval_list(struct snd_interval
*i
, unsigned int count
,
1024 const unsigned int *list
, unsigned int mask
)
1027 struct snd_interval list_range
;
1033 snd_interval_any(&list_range
);
1034 list_range
.min
= UINT_MAX
;
1036 for (k
= 0; k
< count
; k
++) {
1037 if (mask
&& !(mask
& (1 << k
)))
1039 if (!snd_interval_test(i
, list
[k
]))
1041 list_range
.min
= min(list_range
.min
, list
[k
]);
1042 list_range
.max
= max(list_range
.max
, list
[k
]);
1044 return snd_interval_refine(i
, &list_range
);
1047 EXPORT_SYMBOL(snd_interval_list
);
1050 * snd_interval_ranges - refine the interval value from the list of ranges
1051 * @i: the interval value to refine
1052 * @count: the number of elements in the list of ranges
1053 * @ranges: the ranges list
1054 * @mask: the bit-mask to evaluate
1056 * Refines the interval value from the list of ranges.
1057 * When mask is non-zero, only the elements corresponding to bit 1 are
1060 * Return: Positive if the value is changed, zero if it's not changed, or a
1061 * negative error code.
1063 int snd_interval_ranges(struct snd_interval
*i
, unsigned int count
,
1064 const struct snd_interval
*ranges
, unsigned int mask
)
1067 struct snd_interval range_union
;
1068 struct snd_interval range
;
1071 snd_interval_none(i
);
1074 snd_interval_any(&range_union
);
1075 range_union
.min
= UINT_MAX
;
1076 range_union
.max
= 0;
1077 for (k
= 0; k
< count
; k
++) {
1078 if (mask
&& !(mask
& (1 << k
)))
1080 snd_interval_copy(&range
, &ranges
[k
]);
1081 if (snd_interval_refine(&range
, i
) < 0)
1083 if (snd_interval_empty(&range
))
1086 if (range
.min
< range_union
.min
) {
1087 range_union
.min
= range
.min
;
1088 range_union
.openmin
= 1;
1090 if (range
.min
== range_union
.min
&& !range
.openmin
)
1091 range_union
.openmin
= 0;
1092 if (range
.max
> range_union
.max
) {
1093 range_union
.max
= range
.max
;
1094 range_union
.openmax
= 1;
1096 if (range
.max
== range_union
.max
&& !range
.openmax
)
1097 range_union
.openmax
= 0;
1099 return snd_interval_refine(i
, &range_union
);
1101 EXPORT_SYMBOL(snd_interval_ranges
);
1103 static int snd_interval_step(struct snd_interval
*i
, unsigned int step
)
1108 if (n
!= 0 || i
->openmin
) {
1114 if (n
!= 0 || i
->openmax
) {
1119 if (snd_interval_checkempty(i
)) {
1126 /* Info constraints helpers */
1129 * snd_pcm_hw_rule_add - add the hw-constraint rule
1130 * @runtime: the pcm runtime instance
1131 * @cond: condition bits
1132 * @var: the variable to evaluate
1133 * @func: the evaluation function
1134 * @private: the private data pointer passed to function
1135 * @dep: the dependent variables
1137 * Return: Zero if successful, or a negative error code on failure.
1139 int snd_pcm_hw_rule_add(struct snd_pcm_runtime
*runtime
, unsigned int cond
,
1141 snd_pcm_hw_rule_func_t func
, void *private,
1144 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1145 struct snd_pcm_hw_rule
*c
;
1148 va_start(args
, dep
);
1149 if (constrs
->rules_num
>= constrs
->rules_all
) {
1150 struct snd_pcm_hw_rule
*new;
1151 unsigned int new_rules
= constrs
->rules_all
+ 16;
1152 new = kcalloc(new_rules
, sizeof(*c
), GFP_KERNEL
);
1157 if (constrs
->rules
) {
1158 memcpy(new, constrs
->rules
,
1159 constrs
->rules_num
* sizeof(*c
));
1160 kfree(constrs
->rules
);
1162 constrs
->rules
= new;
1163 constrs
->rules_all
= new_rules
;
1165 c
= &constrs
->rules
[constrs
->rules_num
];
1169 c
->private = private;
1172 if (snd_BUG_ON(k
>= ARRAY_SIZE(c
->deps
))) {
1179 dep
= va_arg(args
, int);
1181 constrs
->rules_num
++;
1186 EXPORT_SYMBOL(snd_pcm_hw_rule_add
);
1189 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1190 * @runtime: PCM runtime instance
1191 * @var: hw_params variable to apply the mask
1192 * @mask: the bitmap mask
1194 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196 * Return: Zero if successful, or a negative error code on failure.
1198 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1201 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1202 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1203 *maskp
->bits
&= mask
;
1204 memset(maskp
->bits
+ 1, 0, (SNDRV_MASK_MAX
-32) / 8); /* clear rest */
1205 if (*maskp
->bits
== 0)
1211 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the mask
1214 * @mask: the 64bit bitmap mask
1216 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218 * Return: Zero if successful, or a negative error code on failure.
1220 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1223 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1224 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1225 maskp
->bits
[0] &= (u_int32_t
)mask
;
1226 maskp
->bits
[1] &= (u_int32_t
)(mask
>> 32);
1227 memset(maskp
->bits
+ 2, 0, (SNDRV_MASK_MAX
-64) / 8); /* clear rest */
1228 if (! maskp
->bits
[0] && ! maskp
->bits
[1])
1232 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64
);
1235 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1236 * @runtime: PCM runtime instance
1237 * @var: hw_params variable to apply the integer constraint
1239 * Apply the constraint of integer to an interval parameter.
1241 * Return: Positive if the value is changed, zero if it's not changed, or a
1242 * negative error code.
1244 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
)
1246 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1247 return snd_interval_setinteger(constrs_interval(constrs
, var
));
1250 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer
);
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1259 * Apply the min/max range constraint to an interval parameter.
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1264 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1265 unsigned int min
, unsigned int max
)
1267 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1268 struct snd_interval t
;
1271 t
.openmin
= t
.openmax
= 0;
1273 return snd_interval_refine(constrs_interval(constrs
, var
), &t
);
1276 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax
);
1278 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params
*params
,
1279 struct snd_pcm_hw_rule
*rule
)
1281 struct snd_pcm_hw_constraint_list
*list
= rule
->private;
1282 return snd_interval_list(hw_param_interval(params
, rule
->var
), list
->count
, list
->list
, list
->mask
);
1287 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1288 * @runtime: PCM runtime instance
1289 * @cond: condition bits
1290 * @var: hw_params variable to apply the list constraint
1293 * Apply the list of constraints to an interval parameter.
1295 * Return: Zero if successful, or a negative error code on failure.
1297 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime
*runtime
,
1299 snd_pcm_hw_param_t var
,
1300 const struct snd_pcm_hw_constraint_list
*l
)
1302 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1303 snd_pcm_hw_rule_list
, (void *)l
,
1307 EXPORT_SYMBOL(snd_pcm_hw_constraint_list
);
1309 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params
*params
,
1310 struct snd_pcm_hw_rule
*rule
)
1312 struct snd_pcm_hw_constraint_ranges
*r
= rule
->private;
1313 return snd_interval_ranges(hw_param_interval(params
, rule
->var
),
1314 r
->count
, r
->ranges
, r
->mask
);
1319 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1320 * @runtime: PCM runtime instance
1321 * @cond: condition bits
1322 * @var: hw_params variable to apply the list of range constraints
1325 * Apply the list of range constraints to an interval parameter.
1327 * Return: Zero if successful, or a negative error code on failure.
1329 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime
*runtime
,
1331 snd_pcm_hw_param_t var
,
1332 const struct snd_pcm_hw_constraint_ranges
*r
)
1334 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1335 snd_pcm_hw_rule_ranges
, (void *)r
,
1338 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges
);
1340 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params
*params
,
1341 struct snd_pcm_hw_rule
*rule
)
1343 const struct snd_pcm_hw_constraint_ratnums
*r
= rule
->private;
1344 unsigned int num
= 0, den
= 0;
1346 err
= snd_interval_ratnum(hw_param_interval(params
, rule
->var
),
1347 r
->nrats
, r
->rats
, &num
, &den
);
1348 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1349 params
->rate_num
= num
;
1350 params
->rate_den
= den
;
1356 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1357 * @runtime: PCM runtime instance
1358 * @cond: condition bits
1359 * @var: hw_params variable to apply the ratnums constraint
1360 * @r: struct snd_ratnums constriants
1362 * Return: Zero if successful, or a negative error code on failure.
1364 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime
*runtime
,
1366 snd_pcm_hw_param_t var
,
1367 const struct snd_pcm_hw_constraint_ratnums
*r
)
1369 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1370 snd_pcm_hw_rule_ratnums
, (void *)r
,
1374 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums
);
1376 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params
*params
,
1377 struct snd_pcm_hw_rule
*rule
)
1379 const struct snd_pcm_hw_constraint_ratdens
*r
= rule
->private;
1380 unsigned int num
= 0, den
= 0;
1381 int err
= snd_interval_ratden(hw_param_interval(params
, rule
->var
),
1382 r
->nrats
, r
->rats
, &num
, &den
);
1383 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1384 params
->rate_num
= num
;
1385 params
->rate_den
= den
;
1391 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1392 * @runtime: PCM runtime instance
1393 * @cond: condition bits
1394 * @var: hw_params variable to apply the ratdens constraint
1395 * @r: struct snd_ratdens constriants
1397 * Return: Zero if successful, or a negative error code on failure.
1399 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime
*runtime
,
1401 snd_pcm_hw_param_t var
,
1402 const struct snd_pcm_hw_constraint_ratdens
*r
)
1404 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1405 snd_pcm_hw_rule_ratdens
, (void *)r
,
1409 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens
);
1411 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params
*params
,
1412 struct snd_pcm_hw_rule
*rule
)
1414 unsigned int l
= (unsigned long) rule
->private;
1415 int width
= l
& 0xffff;
1416 unsigned int msbits
= l
>> 16;
1417 struct snd_interval
*i
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_SAMPLE_BITS
);
1419 if (!snd_interval_single(i
))
1422 if ((snd_interval_value(i
) == width
) ||
1423 (width
== 0 && snd_interval_value(i
) > msbits
))
1424 params
->msbits
= min_not_zero(params
->msbits
, msbits
);
1430 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1431 * @runtime: PCM runtime instance
1432 * @cond: condition bits
1433 * @width: sample bits width
1434 * @msbits: msbits width
1436 * This constraint will set the number of most significant bits (msbits) if a
1437 * sample format with the specified width has been select. If width is set to 0
1438 * the msbits will be set for any sample format with a width larger than the
1441 * Return: Zero if successful, or a negative error code on failure.
1443 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime
*runtime
,
1446 unsigned int msbits
)
1448 unsigned long l
= (msbits
<< 16) | width
;
1449 return snd_pcm_hw_rule_add(runtime
, cond
, -1,
1450 snd_pcm_hw_rule_msbits
,
1452 SNDRV_PCM_HW_PARAM_SAMPLE_BITS
, -1);
1455 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits
);
1457 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params
*params
,
1458 struct snd_pcm_hw_rule
*rule
)
1460 unsigned long step
= (unsigned long) rule
->private;
1461 return snd_interval_step(hw_param_interval(params
, rule
->var
), step
);
1465 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1466 * @runtime: PCM runtime instance
1467 * @cond: condition bits
1468 * @var: hw_params variable to apply the step constraint
1471 * Return: Zero if successful, or a negative error code on failure.
1473 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime
*runtime
,
1475 snd_pcm_hw_param_t var
,
1478 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1479 snd_pcm_hw_rule_step
, (void *) step
,
1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_step
);
1485 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params
*params
, struct snd_pcm_hw_rule
*rule
)
1487 static unsigned int pow2_sizes
[] = {
1488 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1489 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1490 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1491 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1493 return snd_interval_list(hw_param_interval(params
, rule
->var
),
1494 ARRAY_SIZE(pow2_sizes
), pow2_sizes
, 0);
1498 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1499 * @runtime: PCM runtime instance
1500 * @cond: condition bits
1501 * @var: hw_params variable to apply the power-of-2 constraint
1503 * Return: Zero if successful, or a negative error code on failure.
1505 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime
*runtime
,
1507 snd_pcm_hw_param_t var
)
1509 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1510 snd_pcm_hw_rule_pow2
, NULL
,
1514 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2
);
1516 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params
*params
,
1517 struct snd_pcm_hw_rule
*rule
)
1519 unsigned int base_rate
= (unsigned int)(uintptr_t)rule
->private;
1520 struct snd_interval
*rate
;
1522 rate
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_RATE
);
1523 return snd_interval_list(rate
, 1, &base_rate
, 0);
1527 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1528 * @runtime: PCM runtime instance
1529 * @base_rate: the rate at which the hardware does not resample
1531 * Return: Zero if successful, or a negative error code on failure.
1533 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime
*runtime
,
1534 unsigned int base_rate
)
1536 return snd_pcm_hw_rule_add(runtime
, SNDRV_PCM_HW_PARAMS_NORESAMPLE
,
1537 SNDRV_PCM_HW_PARAM_RATE
,
1538 snd_pcm_hw_rule_noresample_func
,
1539 (void *)(uintptr_t)base_rate
,
1540 SNDRV_PCM_HW_PARAM_RATE
, -1);
1542 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample
);
1544 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params
*params
,
1545 snd_pcm_hw_param_t var
)
1547 if (hw_is_mask(var
)) {
1548 snd_mask_any(hw_param_mask(params
, var
));
1549 params
->cmask
|= 1 << var
;
1550 params
->rmask
|= 1 << var
;
1553 if (hw_is_interval(var
)) {
1554 snd_interval_any(hw_param_interval(params
, var
));
1555 params
->cmask
|= 1 << var
;
1556 params
->rmask
|= 1 << var
;
1562 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params
*params
)
1565 memset(params
, 0, sizeof(*params
));
1566 for (k
= SNDRV_PCM_HW_PARAM_FIRST_MASK
; k
<= SNDRV_PCM_HW_PARAM_LAST_MASK
; k
++)
1567 _snd_pcm_hw_param_any(params
, k
);
1568 for (k
= SNDRV_PCM_HW_PARAM_FIRST_INTERVAL
; k
<= SNDRV_PCM_HW_PARAM_LAST_INTERVAL
; k
++)
1569 _snd_pcm_hw_param_any(params
, k
);
1573 EXPORT_SYMBOL(_snd_pcm_hw_params_any
);
1576 * snd_pcm_hw_param_value - return @params field @var value
1577 * @params: the hw_params instance
1578 * @var: parameter to retrieve
1579 * @dir: pointer to the direction (-1,0,1) or %NULL
1581 * Return: The value for field @var if it's fixed in configuration space
1582 * defined by @params. -%EINVAL otherwise.
1584 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params
*params
,
1585 snd_pcm_hw_param_t var
, int *dir
)
1587 if (hw_is_mask(var
)) {
1588 const struct snd_mask
*mask
= hw_param_mask_c(params
, var
);
1589 if (!snd_mask_single(mask
))
1593 return snd_mask_value(mask
);
1595 if (hw_is_interval(var
)) {
1596 const struct snd_interval
*i
= hw_param_interval_c(params
, var
);
1597 if (!snd_interval_single(i
))
1601 return snd_interval_value(i
);
1606 EXPORT_SYMBOL(snd_pcm_hw_param_value
);
1608 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params
*params
,
1609 snd_pcm_hw_param_t var
)
1611 if (hw_is_mask(var
)) {
1612 snd_mask_none(hw_param_mask(params
, var
));
1613 params
->cmask
|= 1 << var
;
1614 params
->rmask
|= 1 << var
;
1615 } else if (hw_is_interval(var
)) {
1616 snd_interval_none(hw_param_interval(params
, var
));
1617 params
->cmask
|= 1 << var
;
1618 params
->rmask
|= 1 << var
;
1624 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty
);
1626 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params
*params
,
1627 snd_pcm_hw_param_t var
)
1630 if (hw_is_mask(var
))
1631 changed
= snd_mask_refine_first(hw_param_mask(params
, var
));
1632 else if (hw_is_interval(var
))
1633 changed
= snd_interval_refine_first(hw_param_interval(params
, var
));
1637 params
->cmask
|= 1 << var
;
1638 params
->rmask
|= 1 << var
;
1645 * snd_pcm_hw_param_first - refine config space and return minimum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1651 * Inside configuration space defined by @params remove from @var all
1652 * values > minimum. Reduce configuration space accordingly.
1654 * Return: The minimum, or a negative error code on failure.
1656 int snd_pcm_hw_param_first(struct snd_pcm_substream
*pcm
,
1657 struct snd_pcm_hw_params
*params
,
1658 snd_pcm_hw_param_t var
, int *dir
)
1660 int changed
= _snd_pcm_hw_param_first(params
, var
);
1663 if (params
->rmask
) {
1664 int err
= snd_pcm_hw_refine(pcm
, params
);
1665 if (snd_BUG_ON(err
< 0))
1668 return snd_pcm_hw_param_value(params
, var
, dir
);
1671 EXPORT_SYMBOL(snd_pcm_hw_param_first
);
1673 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params
*params
,
1674 snd_pcm_hw_param_t var
)
1677 if (hw_is_mask(var
))
1678 changed
= snd_mask_refine_last(hw_param_mask(params
, var
));
1679 else if (hw_is_interval(var
))
1680 changed
= snd_interval_refine_last(hw_param_interval(params
, var
));
1684 params
->cmask
|= 1 << var
;
1685 params
->rmask
|= 1 << var
;
1692 * snd_pcm_hw_param_last - refine config space and return maximum value
1693 * @pcm: PCM instance
1694 * @params: the hw_params instance
1695 * @var: parameter to retrieve
1696 * @dir: pointer to the direction (-1,0,1) or %NULL
1698 * Inside configuration space defined by @params remove from @var all
1699 * values < maximum. Reduce configuration space accordingly.
1701 * Return: The maximum, or a negative error code on failure.
1703 int snd_pcm_hw_param_last(struct snd_pcm_substream
*pcm
,
1704 struct snd_pcm_hw_params
*params
,
1705 snd_pcm_hw_param_t var
, int *dir
)
1707 int changed
= _snd_pcm_hw_param_last(params
, var
);
1710 if (params
->rmask
) {
1711 int err
= snd_pcm_hw_refine(pcm
, params
);
1712 if (snd_BUG_ON(err
< 0))
1715 return snd_pcm_hw_param_value(params
, var
, dir
);
1718 EXPORT_SYMBOL(snd_pcm_hw_param_last
);
1721 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1722 * @pcm: PCM instance
1723 * @params: the hw_params instance
1725 * Choose one configuration from configuration space defined by @params.
1726 * The configuration chosen is that obtained fixing in this order:
1727 * first access, first format, first subformat, min channels,
1728 * min rate, min period time, max buffer size, min tick time
1730 * Return: Zero if successful, or a negative error code on failure.
1732 int snd_pcm_hw_params_choose(struct snd_pcm_substream
*pcm
,
1733 struct snd_pcm_hw_params
*params
)
1735 static int vars
[] = {
1736 SNDRV_PCM_HW_PARAM_ACCESS
,
1737 SNDRV_PCM_HW_PARAM_FORMAT
,
1738 SNDRV_PCM_HW_PARAM_SUBFORMAT
,
1739 SNDRV_PCM_HW_PARAM_CHANNELS
,
1740 SNDRV_PCM_HW_PARAM_RATE
,
1741 SNDRV_PCM_HW_PARAM_PERIOD_TIME
,
1742 SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
1743 SNDRV_PCM_HW_PARAM_TICK_TIME
,
1748 for (v
= vars
; *v
!= -1; v
++) {
1749 if (*v
!= SNDRV_PCM_HW_PARAM_BUFFER_SIZE
)
1750 err
= snd_pcm_hw_param_first(pcm
, params
, *v
, NULL
);
1752 err
= snd_pcm_hw_param_last(pcm
, params
, *v
, NULL
);
1753 if (snd_BUG_ON(err
< 0))
1759 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream
*substream
,
1762 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1763 unsigned long flags
;
1764 snd_pcm_stream_lock_irqsave(substream
, flags
);
1765 if (snd_pcm_running(substream
) &&
1766 snd_pcm_update_hw_ptr(substream
) >= 0)
1767 runtime
->status
->hw_ptr
%= runtime
->buffer_size
;
1769 runtime
->status
->hw_ptr
= 0;
1770 runtime
->hw_ptr_wrap
= 0;
1772 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1776 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream
*substream
,
1779 struct snd_pcm_channel_info
*info
= arg
;
1780 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1782 if (!(runtime
->info
& SNDRV_PCM_INFO_MMAP
)) {
1786 width
= snd_pcm_format_physical_width(runtime
->format
);
1790 switch (runtime
->access
) {
1791 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
:
1792 case SNDRV_PCM_ACCESS_RW_INTERLEAVED
:
1793 info
->first
= info
->channel
* width
;
1794 info
->step
= runtime
->channels
* width
;
1796 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED
:
1797 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
:
1799 size_t size
= runtime
->dma_bytes
/ runtime
->channels
;
1800 info
->first
= info
->channel
* size
* 8;
1811 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream
*substream
,
1814 struct snd_pcm_hw_params
*params
= arg
;
1815 snd_pcm_format_t format
;
1819 params
->fifo_size
= substream
->runtime
->hw
.fifo_size
;
1820 if (!(substream
->runtime
->hw
.info
& SNDRV_PCM_INFO_FIFO_IN_FRAMES
)) {
1821 format
= params_format(params
);
1822 channels
= params_channels(params
);
1823 frame_size
= snd_pcm_format_size(format
, channels
);
1825 params
->fifo_size
/= (unsigned)frame_size
;
1831 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1832 * @substream: the pcm substream instance
1833 * @cmd: ioctl command
1834 * @arg: ioctl argument
1836 * Processes the generic ioctl commands for PCM.
1837 * Can be passed as the ioctl callback for PCM ops.
1839 * Return: Zero if successful, or a negative error code on failure.
1841 int snd_pcm_lib_ioctl(struct snd_pcm_substream
*substream
,
1842 unsigned int cmd
, void *arg
)
1845 case SNDRV_PCM_IOCTL1_INFO
:
1847 case SNDRV_PCM_IOCTL1_RESET
:
1848 return snd_pcm_lib_ioctl_reset(substream
, arg
);
1849 case SNDRV_PCM_IOCTL1_CHANNEL_INFO
:
1850 return snd_pcm_lib_ioctl_channel_info(substream
, arg
);
1851 case SNDRV_PCM_IOCTL1_FIFO_SIZE
:
1852 return snd_pcm_lib_ioctl_fifo_size(substream
, arg
);
1857 EXPORT_SYMBOL(snd_pcm_lib_ioctl
);
1860 * snd_pcm_period_elapsed - update the pcm status for the next period
1861 * @substream: the pcm substream instance
1863 * This function is called from the interrupt handler when the
1864 * PCM has processed the period size. It will update the current
1865 * pointer, wake up sleepers, etc.
1867 * Even if more than one periods have elapsed since the last call, you
1868 * have to call this only once.
1870 void snd_pcm_period_elapsed(struct snd_pcm_substream
*substream
)
1872 struct snd_pcm_runtime
*runtime
;
1873 unsigned long flags
;
1875 if (PCM_RUNTIME_CHECK(substream
))
1877 runtime
= substream
->runtime
;
1879 snd_pcm_stream_lock_irqsave(substream
, flags
);
1880 if (!snd_pcm_running(substream
) ||
1881 snd_pcm_update_hw_ptr0(substream
, 1) < 0)
1884 #ifdef CONFIG_SND_PCM_TIMER
1885 if (substream
->timer_running
)
1886 snd_timer_interrupt(substream
->timer
, 1);
1889 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1890 kill_fasync(&runtime
->fasync
, SIGIO
, POLL_IN
);
1893 EXPORT_SYMBOL(snd_pcm_period_elapsed
);
1896 * Wait until avail_min data becomes available
1897 * Returns a negative error code if any error occurs during operation.
1898 * The available space is stored on availp. When err = 0 and avail = 0
1899 * on the capture stream, it indicates the stream is in DRAINING state.
1901 static int wait_for_avail(struct snd_pcm_substream
*substream
,
1902 snd_pcm_uframes_t
*availp
)
1904 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1905 int is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
1908 snd_pcm_uframes_t avail
= 0;
1909 long wait_time
, tout
;
1911 init_waitqueue_entry(&wait
, current
);
1912 set_current_state(TASK_INTERRUPTIBLE
);
1913 add_wait_queue(&runtime
->tsleep
, &wait
);
1915 if (runtime
->no_period_wakeup
)
1916 wait_time
= MAX_SCHEDULE_TIMEOUT
;
1919 if (runtime
->rate
) {
1920 long t
= runtime
->period_size
* 2 / runtime
->rate
;
1921 wait_time
= max(t
, wait_time
);
1923 wait_time
= msecs_to_jiffies(wait_time
* 1000);
1927 if (signal_pending(current
)) {
1933 * We need to check if space became available already
1934 * (and thus the wakeup happened already) first to close
1935 * the race of space already having become available.
1936 * This check must happen after been added to the waitqueue
1937 * and having current state be INTERRUPTIBLE.
1940 avail
= snd_pcm_playback_avail(runtime
);
1942 avail
= snd_pcm_capture_avail(runtime
);
1943 if (avail
>= runtime
->twake
)
1945 snd_pcm_stream_unlock_irq(substream
);
1947 tout
= schedule_timeout(wait_time
);
1949 snd_pcm_stream_lock_irq(substream
);
1950 set_current_state(TASK_INTERRUPTIBLE
);
1951 switch (runtime
->status
->state
) {
1952 case SNDRV_PCM_STATE_SUSPENDED
:
1955 case SNDRV_PCM_STATE_XRUN
:
1958 case SNDRV_PCM_STATE_DRAINING
:
1962 avail
= 0; /* indicate draining */
1964 case SNDRV_PCM_STATE_OPEN
:
1965 case SNDRV_PCM_STATE_SETUP
:
1966 case SNDRV_PCM_STATE_DISCONNECTED
:
1969 case SNDRV_PCM_STATE_PAUSED
:
1973 pcm_dbg(substream
->pcm
,
1974 "%s write error (DMA or IRQ trouble?)\n",
1975 is_playback
? "playback" : "capture");
1981 set_current_state(TASK_RUNNING
);
1982 remove_wait_queue(&runtime
->tsleep
, &wait
);
1987 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream
*substream
,
1989 unsigned long data
, unsigned int off
,
1990 snd_pcm_uframes_t frames
)
1992 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1994 char __user
*buf
= (char __user
*) data
+ frames_to_bytes(runtime
, off
);
1995 if (substream
->ops
->copy
) {
1996 if ((err
= substream
->ops
->copy(substream
, -1, hwoff
, buf
, frames
)) < 0)
1999 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, hwoff
);
2000 if (copy_from_user(hwbuf
, buf
, frames_to_bytes(runtime
, frames
)))
2006 typedef int (*transfer_f
)(struct snd_pcm_substream
*substream
, unsigned int hwoff
,
2007 unsigned long data
, unsigned int off
,
2008 snd_pcm_uframes_t size
);
2010 static snd_pcm_sframes_t
snd_pcm_lib_write1(struct snd_pcm_substream
*substream
,
2012 snd_pcm_uframes_t size
,
2014 transfer_f transfer
)
2016 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2017 snd_pcm_uframes_t xfer
= 0;
2018 snd_pcm_uframes_t offset
= 0;
2019 snd_pcm_uframes_t avail
;
2025 snd_pcm_stream_lock_irq(substream
);
2026 switch (runtime
->status
->state
) {
2027 case SNDRV_PCM_STATE_PREPARED
:
2028 case SNDRV_PCM_STATE_RUNNING
:
2029 case SNDRV_PCM_STATE_PAUSED
:
2031 case SNDRV_PCM_STATE_XRUN
:
2034 case SNDRV_PCM_STATE_SUSPENDED
:
2042 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2043 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2044 snd_pcm_update_hw_ptr(substream
);
2045 avail
= snd_pcm_playback_avail(runtime
);
2047 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2048 snd_pcm_uframes_t cont
;
2054 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2055 runtime
->control
->avail_min
? : 1);
2056 err
= wait_for_avail(substream
, &avail
);
2060 frames
= size
> avail
? avail
: size
;
2061 cont
= runtime
->buffer_size
- runtime
->control
->appl_ptr
% runtime
->buffer_size
;
2064 if (snd_BUG_ON(!frames
)) {
2066 snd_pcm_stream_unlock_irq(substream
);
2069 appl_ptr
= runtime
->control
->appl_ptr
;
2070 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2071 snd_pcm_stream_unlock_irq(substream
);
2072 err
= transfer(substream
, appl_ofs
, data
, offset
, frames
);
2073 snd_pcm_stream_lock_irq(substream
);
2076 switch (runtime
->status
->state
) {
2077 case SNDRV_PCM_STATE_XRUN
:
2080 case SNDRV_PCM_STATE_SUSPENDED
:
2087 if (appl_ptr
>= runtime
->boundary
)
2088 appl_ptr
-= runtime
->boundary
;
2089 runtime
->control
->appl_ptr
= appl_ptr
;
2090 if (substream
->ops
->ack
)
2091 substream
->ops
->ack(substream
);
2097 if (runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2098 snd_pcm_playback_hw_avail(runtime
) >= (snd_pcm_sframes_t
)runtime
->start_threshold
) {
2099 err
= snd_pcm_start(substream
);
2106 if (xfer
> 0 && err
>= 0)
2107 snd_pcm_update_state(substream
, runtime
);
2108 snd_pcm_stream_unlock_irq(substream
);
2109 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2112 /* sanity-check for read/write methods */
2113 static int pcm_sanity_check(struct snd_pcm_substream
*substream
)
2115 struct snd_pcm_runtime
*runtime
;
2116 if (PCM_RUNTIME_CHECK(substream
))
2118 runtime
= substream
->runtime
;
2119 if (snd_BUG_ON(!substream
->ops
->copy
&& !runtime
->dma_area
))
2121 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2126 snd_pcm_sframes_t
snd_pcm_lib_write(struct snd_pcm_substream
*substream
, const void __user
*buf
, snd_pcm_uframes_t size
)
2128 struct snd_pcm_runtime
*runtime
;
2132 err
= pcm_sanity_check(substream
);
2135 runtime
= substream
->runtime
;
2136 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2138 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
&&
2139 runtime
->channels
> 1)
2141 return snd_pcm_lib_write1(substream
, (unsigned long)buf
, size
, nonblock
,
2142 snd_pcm_lib_write_transfer
);
2145 EXPORT_SYMBOL(snd_pcm_lib_write
);
2147 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream
*substream
,
2149 unsigned long data
, unsigned int off
,
2150 snd_pcm_uframes_t frames
)
2152 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2154 void __user
**bufs
= (void __user
**)data
;
2155 int channels
= runtime
->channels
;
2157 if (substream
->ops
->copy
) {
2158 if (snd_BUG_ON(!substream
->ops
->silence
))
2160 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2161 if (*bufs
== NULL
) {
2162 if ((err
= substream
->ops
->silence(substream
, c
, hwoff
, frames
)) < 0)
2165 char __user
*buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2166 if ((err
= substream
->ops
->copy(substream
, c
, hwoff
, buf
, frames
)) < 0)
2171 /* default transfer behaviour */
2172 size_t dma_csize
= runtime
->dma_bytes
/ channels
;
2173 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2174 char *hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, hwoff
);
2175 if (*bufs
== NULL
) {
2176 snd_pcm_format_set_silence(runtime
->format
, hwbuf
, frames
);
2178 char __user
*buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2179 if (copy_from_user(hwbuf
, buf
, samples_to_bytes(runtime
, frames
)))
2187 snd_pcm_sframes_t
snd_pcm_lib_writev(struct snd_pcm_substream
*substream
,
2189 snd_pcm_uframes_t frames
)
2191 struct snd_pcm_runtime
*runtime
;
2195 err
= pcm_sanity_check(substream
);
2198 runtime
= substream
->runtime
;
2199 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2201 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2203 return snd_pcm_lib_write1(substream
, (unsigned long)bufs
, frames
,
2204 nonblock
, snd_pcm_lib_writev_transfer
);
2207 EXPORT_SYMBOL(snd_pcm_lib_writev
);
2209 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream
*substream
,
2211 unsigned long data
, unsigned int off
,
2212 snd_pcm_uframes_t frames
)
2214 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2216 char __user
*buf
= (char __user
*) data
+ frames_to_bytes(runtime
, off
);
2217 if (substream
->ops
->copy
) {
2218 if ((err
= substream
->ops
->copy(substream
, -1, hwoff
, buf
, frames
)) < 0)
2221 char *hwbuf
= runtime
->dma_area
+ frames_to_bytes(runtime
, hwoff
);
2222 if (copy_to_user(buf
, hwbuf
, frames_to_bytes(runtime
, frames
)))
2228 static snd_pcm_sframes_t
snd_pcm_lib_read1(struct snd_pcm_substream
*substream
,
2230 snd_pcm_uframes_t size
,
2232 transfer_f transfer
)
2234 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2235 snd_pcm_uframes_t xfer
= 0;
2236 snd_pcm_uframes_t offset
= 0;
2237 snd_pcm_uframes_t avail
;
2243 snd_pcm_stream_lock_irq(substream
);
2244 switch (runtime
->status
->state
) {
2245 case SNDRV_PCM_STATE_PREPARED
:
2246 if (size
>= runtime
->start_threshold
) {
2247 err
= snd_pcm_start(substream
);
2252 case SNDRV_PCM_STATE_DRAINING
:
2253 case SNDRV_PCM_STATE_RUNNING
:
2254 case SNDRV_PCM_STATE_PAUSED
:
2256 case SNDRV_PCM_STATE_XRUN
:
2259 case SNDRV_PCM_STATE_SUSPENDED
:
2267 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2268 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2269 snd_pcm_update_hw_ptr(substream
);
2270 avail
= snd_pcm_capture_avail(runtime
);
2272 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2273 snd_pcm_uframes_t cont
;
2275 if (runtime
->status
->state
==
2276 SNDRV_PCM_STATE_DRAINING
) {
2277 snd_pcm_stop(substream
, SNDRV_PCM_STATE_SETUP
);
2284 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2285 runtime
->control
->avail_min
? : 1);
2286 err
= wait_for_avail(substream
, &avail
);
2290 continue; /* draining */
2292 frames
= size
> avail
? avail
: size
;
2293 cont
= runtime
->buffer_size
- runtime
->control
->appl_ptr
% runtime
->buffer_size
;
2296 if (snd_BUG_ON(!frames
)) {
2298 snd_pcm_stream_unlock_irq(substream
);
2301 appl_ptr
= runtime
->control
->appl_ptr
;
2302 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2303 snd_pcm_stream_unlock_irq(substream
);
2304 err
= transfer(substream
, appl_ofs
, data
, offset
, frames
);
2305 snd_pcm_stream_lock_irq(substream
);
2308 switch (runtime
->status
->state
) {
2309 case SNDRV_PCM_STATE_XRUN
:
2312 case SNDRV_PCM_STATE_SUSPENDED
:
2319 if (appl_ptr
>= runtime
->boundary
)
2320 appl_ptr
-= runtime
->boundary
;
2321 runtime
->control
->appl_ptr
= appl_ptr
;
2322 if (substream
->ops
->ack
)
2323 substream
->ops
->ack(substream
);
2332 if (xfer
> 0 && err
>= 0)
2333 snd_pcm_update_state(substream
, runtime
);
2334 snd_pcm_stream_unlock_irq(substream
);
2335 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2338 snd_pcm_sframes_t
snd_pcm_lib_read(struct snd_pcm_substream
*substream
, void __user
*buf
, snd_pcm_uframes_t size
)
2340 struct snd_pcm_runtime
*runtime
;
2344 err
= pcm_sanity_check(substream
);
2347 runtime
= substream
->runtime
;
2348 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2349 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
)
2351 return snd_pcm_lib_read1(substream
, (unsigned long)buf
, size
, nonblock
, snd_pcm_lib_read_transfer
);
2354 EXPORT_SYMBOL(snd_pcm_lib_read
);
2356 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream
*substream
,
2358 unsigned long data
, unsigned int off
,
2359 snd_pcm_uframes_t frames
)
2361 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2363 void __user
**bufs
= (void __user
**)data
;
2364 int channels
= runtime
->channels
;
2366 if (substream
->ops
->copy
) {
2367 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2371 buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2372 if ((err
= substream
->ops
->copy(substream
, c
, hwoff
, buf
, frames
)) < 0)
2376 snd_pcm_uframes_t dma_csize
= runtime
->dma_bytes
/ channels
;
2377 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2383 hwbuf
= runtime
->dma_area
+ (c
* dma_csize
) + samples_to_bytes(runtime
, hwoff
);
2384 buf
= *bufs
+ samples_to_bytes(runtime
, off
);
2385 if (copy_to_user(buf
, hwbuf
, samples_to_bytes(runtime
, frames
)))
2392 snd_pcm_sframes_t
snd_pcm_lib_readv(struct snd_pcm_substream
*substream
,
2394 snd_pcm_uframes_t frames
)
2396 struct snd_pcm_runtime
*runtime
;
2400 err
= pcm_sanity_check(substream
);
2403 runtime
= substream
->runtime
;
2404 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2407 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2408 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2410 return snd_pcm_lib_read1(substream
, (unsigned long)bufs
, frames
, nonblock
, snd_pcm_lib_readv_transfer
);
2413 EXPORT_SYMBOL(snd_pcm_lib_readv
);
2416 * standard channel mapping helpers
2419 /* default channel maps for multi-channel playbacks, up to 8 channels */
2420 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps
[] = {
2422 .map
= { SNDRV_CHMAP_MONO
} },
2424 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2426 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2427 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2429 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2430 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2431 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
} },
2433 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2434 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2435 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2436 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2439 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps
);
2441 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2442 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps
[] = {
2444 .map
= { SNDRV_CHMAP_MONO
} },
2446 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2448 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2449 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2451 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2452 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2453 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2455 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2456 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2457 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2458 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2461 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps
);
2463 static bool valid_chmap_channels(const struct snd_pcm_chmap
*info
, int ch
)
2465 if (ch
> info
->max_channels
)
2467 return !info
->channel_mask
|| (info
->channel_mask
& (1U << ch
));
2470 static int pcm_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
2471 struct snd_ctl_elem_info
*uinfo
)
2473 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2475 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
2477 uinfo
->count
= info
->max_channels
;
2478 uinfo
->value
.integer
.min
= 0;
2479 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
2483 /* get callback for channel map ctl element
2484 * stores the channel position firstly matching with the current channels
2486 static int pcm_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
2487 struct snd_ctl_elem_value
*ucontrol
)
2489 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2490 unsigned int idx
= snd_ctl_get_ioffidx(kcontrol
, &ucontrol
->id
);
2491 struct snd_pcm_substream
*substream
;
2492 const struct snd_pcm_chmap_elem
*map
;
2494 if (snd_BUG_ON(!info
->chmap
))
2496 substream
= snd_pcm_chmap_substream(info
, idx
);
2499 memset(ucontrol
->value
.integer
.value
, 0,
2500 sizeof(ucontrol
->value
.integer
.value
));
2501 if (!substream
->runtime
)
2502 return 0; /* no channels set */
2503 for (map
= info
->chmap
; map
->channels
; map
++) {
2505 if (map
->channels
== substream
->runtime
->channels
&&
2506 valid_chmap_channels(info
, map
->channels
)) {
2507 for (i
= 0; i
< map
->channels
; i
++)
2508 ucontrol
->value
.integer
.value
[i
] = map
->map
[i
];
2515 /* tlv callback for channel map ctl element
2516 * expands the pre-defined channel maps in a form of TLV
2518 static int pcm_chmap_ctl_tlv(struct snd_kcontrol
*kcontrol
, int op_flag
,
2519 unsigned int size
, unsigned int __user
*tlv
)
2521 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2522 const struct snd_pcm_chmap_elem
*map
;
2523 unsigned int __user
*dst
;
2526 if (snd_BUG_ON(!info
->chmap
))
2530 if (put_user(SNDRV_CTL_TLVT_CONTAINER
, tlv
))
2534 for (map
= info
->chmap
; map
->channels
; map
++) {
2535 int chs_bytes
= map
->channels
* 4;
2536 if (!valid_chmap_channels(info
, map
->channels
))
2540 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED
, dst
) ||
2541 put_user(chs_bytes
, dst
+ 1))
2546 if (size
< chs_bytes
)
2550 for (c
= 0; c
< map
->channels
; c
++) {
2551 if (put_user(map
->map
[c
], dst
))
2556 if (put_user(count
, tlv
+ 1))
2561 static void pcm_chmap_ctl_private_free(struct snd_kcontrol
*kcontrol
)
2563 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2564 info
->pcm
->streams
[info
->stream
].chmap_kctl
= NULL
;
2569 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2570 * @pcm: the assigned PCM instance
2571 * @stream: stream direction
2572 * @chmap: channel map elements (for query)
2573 * @max_channels: the max number of channels for the stream
2574 * @private_value: the value passed to each kcontrol's private_value field
2575 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2577 * Create channel-mapping control elements assigned to the given PCM stream(s).
2578 * Return: Zero if successful, or a negative error value.
2580 int snd_pcm_add_chmap_ctls(struct snd_pcm
*pcm
, int stream
,
2581 const struct snd_pcm_chmap_elem
*chmap
,
2583 unsigned long private_value
,
2584 struct snd_pcm_chmap
**info_ret
)
2586 struct snd_pcm_chmap
*info
;
2587 struct snd_kcontrol_new knew
= {
2588 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
2589 .access
= SNDRV_CTL_ELEM_ACCESS_READ
|
2590 SNDRV_CTL_ELEM_ACCESS_TLV_READ
|
2591 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK
,
2592 .info
= pcm_chmap_ctl_info
,
2593 .get
= pcm_chmap_ctl_get
,
2594 .tlv
.c
= pcm_chmap_ctl_tlv
,
2598 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2602 info
->stream
= stream
;
2603 info
->chmap
= chmap
;
2604 info
->max_channels
= max_channels
;
2605 if (stream
== SNDRV_PCM_STREAM_PLAYBACK
)
2606 knew
.name
= "Playback Channel Map";
2608 knew
.name
= "Capture Channel Map";
2609 knew
.device
= pcm
->device
;
2610 knew
.count
= pcm
->streams
[stream
].substream_count
;
2611 knew
.private_value
= private_value
;
2612 info
->kctl
= snd_ctl_new1(&knew
, info
);
2617 info
->kctl
->private_free
= pcm_chmap_ctl_private_free
;
2618 err
= snd_ctl_add(pcm
->card
, info
->kctl
);
2621 pcm
->streams
[stream
].chmap_kctl
= info
->kctl
;
2626 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls
);