2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
71 module_param(halt_poll_ns
, uint
, S_IRUGO
| S_IWUSR
);
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow
= 2;
75 module_param(halt_poll_ns_grow
, int, S_IRUGO
);
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink
;
79 module_param(halt_poll_ns_shrink
, int, S_IRUGO
);
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
87 DEFINE_SPINLOCK(kvm_lock
);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
91 static cpumask_var_t cpus_hardware_enabled
;
92 static int kvm_usage_count
;
93 static atomic_t hardware_enable_failed
;
95 struct kmem_cache
*kvm_vcpu_cache
;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
98 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
100 struct dentry
*kvm_debugfs_dir
;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
103 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
112 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
114 static void kvm_release_pfn_dirty(pfn_t pfn
);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
117 __visible
bool kvm_rebooting
;
118 EXPORT_SYMBOL_GPL(kvm_rebooting
);
120 static bool largepages_enabled
= true;
122 bool kvm_is_reserved_pfn(pfn_t pfn
)
125 return PageReserved(pfn_to_page(pfn
));
131 * Switches to specified vcpu, until a matching vcpu_put()
133 int vcpu_load(struct kvm_vcpu
*vcpu
)
137 if (mutex_lock_killable(&vcpu
->mutex
))
140 preempt_notifier_register(&vcpu
->preempt_notifier
);
141 kvm_arch_vcpu_load(vcpu
, cpu
);
146 void vcpu_put(struct kvm_vcpu
*vcpu
)
149 kvm_arch_vcpu_put(vcpu
);
150 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
152 mutex_unlock(&vcpu
->mutex
);
155 static void ack_flush(void *_completed
)
159 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
164 struct kvm_vcpu
*vcpu
;
166 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
169 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
170 kvm_make_request(req
, vcpu
);
173 /* Set ->requests bit before we read ->mode */
176 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
177 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
178 cpumask_set_cpu(cpu
, cpus
);
180 if (unlikely(cpus
== NULL
))
181 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
182 else if (!cpumask_empty(cpus
))
183 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
187 free_cpumask_var(cpus
);
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
194 long dirty_count
= kvm
->tlbs_dirty
;
197 if (kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
198 ++kvm
->stat
.remote_tlb_flush
;
199 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
204 void kvm_reload_remote_mmus(struct kvm
*kvm
)
206 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
209 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
211 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
214 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
216 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
219 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
224 mutex_init(&vcpu
->mutex
);
229 vcpu
->halt_poll_ns
= 0;
230 init_waitqueue_head(&vcpu
->wq
);
231 kvm_async_pf_vcpu_init(vcpu
);
234 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
236 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
241 vcpu
->run
= page_address(page
);
243 kvm_vcpu_set_in_spin_loop(vcpu
, false);
244 kvm_vcpu_set_dy_eligible(vcpu
, false);
245 vcpu
->preempted
= false;
247 r
= kvm_arch_vcpu_init(vcpu
);
253 free_page((unsigned long)vcpu
->run
);
257 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
259 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
262 kvm_arch_vcpu_uninit(vcpu
);
263 free_page((unsigned long)vcpu
->run
);
265 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
267 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
268 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
270 return container_of(mn
, struct kvm
, mmu_notifier
);
273 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
274 struct mm_struct
*mm
,
275 unsigned long address
)
277 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
278 int need_tlb_flush
, idx
;
281 * When ->invalidate_page runs, the linux pte has been zapped
282 * already but the page is still allocated until
283 * ->invalidate_page returns. So if we increase the sequence
284 * here the kvm page fault will notice if the spte can't be
285 * established because the page is going to be freed. If
286 * instead the kvm page fault establishes the spte before
287 * ->invalidate_page runs, kvm_unmap_hva will release it
290 * The sequence increase only need to be seen at spin_unlock
291 * time, and not at spin_lock time.
293 * Increasing the sequence after the spin_unlock would be
294 * unsafe because the kvm page fault could then establish the
295 * pte after kvm_unmap_hva returned, without noticing the page
296 * is going to be freed.
298 idx
= srcu_read_lock(&kvm
->srcu
);
299 spin_lock(&kvm
->mmu_lock
);
301 kvm
->mmu_notifier_seq
++;
302 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
303 /* we've to flush the tlb before the pages can be freed */
305 kvm_flush_remote_tlbs(kvm
);
307 spin_unlock(&kvm
->mmu_lock
);
309 kvm_arch_mmu_notifier_invalidate_page(kvm
, address
);
311 srcu_read_unlock(&kvm
->srcu
, idx
);
314 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
315 struct mm_struct
*mm
,
316 unsigned long address
,
319 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
322 idx
= srcu_read_lock(&kvm
->srcu
);
323 spin_lock(&kvm
->mmu_lock
);
324 kvm
->mmu_notifier_seq
++;
325 kvm_set_spte_hva(kvm
, address
, pte
);
326 spin_unlock(&kvm
->mmu_lock
);
327 srcu_read_unlock(&kvm
->srcu
, idx
);
330 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
331 struct mm_struct
*mm
,
335 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
336 int need_tlb_flush
= 0, idx
;
338 idx
= srcu_read_lock(&kvm
->srcu
);
339 spin_lock(&kvm
->mmu_lock
);
341 * The count increase must become visible at unlock time as no
342 * spte can be established without taking the mmu_lock and
343 * count is also read inside the mmu_lock critical section.
345 kvm
->mmu_notifier_count
++;
346 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
347 need_tlb_flush
|= kvm
->tlbs_dirty
;
348 /* we've to flush the tlb before the pages can be freed */
350 kvm_flush_remote_tlbs(kvm
);
352 spin_unlock(&kvm
->mmu_lock
);
353 srcu_read_unlock(&kvm
->srcu
, idx
);
356 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
357 struct mm_struct
*mm
,
361 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
363 spin_lock(&kvm
->mmu_lock
);
365 * This sequence increase will notify the kvm page fault that
366 * the page that is going to be mapped in the spte could have
369 kvm
->mmu_notifier_seq
++;
372 * The above sequence increase must be visible before the
373 * below count decrease, which is ensured by the smp_wmb above
374 * in conjunction with the smp_rmb in mmu_notifier_retry().
376 kvm
->mmu_notifier_count
--;
377 spin_unlock(&kvm
->mmu_lock
);
379 BUG_ON(kvm
->mmu_notifier_count
< 0);
382 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
383 struct mm_struct
*mm
,
387 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
390 idx
= srcu_read_lock(&kvm
->srcu
);
391 spin_lock(&kvm
->mmu_lock
);
393 young
= kvm_age_hva(kvm
, start
, end
);
395 kvm_flush_remote_tlbs(kvm
);
397 spin_unlock(&kvm
->mmu_lock
);
398 srcu_read_unlock(&kvm
->srcu
, idx
);
403 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
404 struct mm_struct
*mm
,
408 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
411 idx
= srcu_read_lock(&kvm
->srcu
);
412 spin_lock(&kvm
->mmu_lock
);
414 * Even though we do not flush TLB, this will still adversely
415 * affect performance on pre-Haswell Intel EPT, where there is
416 * no EPT Access Bit to clear so that we have to tear down EPT
417 * tables instead. If we find this unacceptable, we can always
418 * add a parameter to kvm_age_hva so that it effectively doesn't
419 * do anything on clear_young.
421 * Also note that currently we never issue secondary TLB flushes
422 * from clear_young, leaving this job up to the regular system
423 * cadence. If we find this inaccurate, we might come up with a
424 * more sophisticated heuristic later.
426 young
= kvm_age_hva(kvm
, start
, end
);
427 spin_unlock(&kvm
->mmu_lock
);
428 srcu_read_unlock(&kvm
->srcu
, idx
);
433 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
434 struct mm_struct
*mm
,
435 unsigned long address
)
437 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
440 idx
= srcu_read_lock(&kvm
->srcu
);
441 spin_lock(&kvm
->mmu_lock
);
442 young
= kvm_test_age_hva(kvm
, address
);
443 spin_unlock(&kvm
->mmu_lock
);
444 srcu_read_unlock(&kvm
->srcu
, idx
);
449 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
450 struct mm_struct
*mm
)
452 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
455 idx
= srcu_read_lock(&kvm
->srcu
);
456 kvm_arch_flush_shadow_all(kvm
);
457 srcu_read_unlock(&kvm
->srcu
, idx
);
460 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
461 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
462 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
463 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
464 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
465 .clear_young
= kvm_mmu_notifier_clear_young
,
466 .test_young
= kvm_mmu_notifier_test_young
,
467 .change_pte
= kvm_mmu_notifier_change_pte
,
468 .release
= kvm_mmu_notifier_release
,
471 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
473 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
474 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
477 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
479 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
484 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
486 static struct kvm_memslots
*kvm_alloc_memslots(void)
489 struct kvm_memslots
*slots
;
491 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
496 * Init kvm generation close to the maximum to easily test the
497 * code of handling generation number wrap-around.
499 slots
->generation
= -150;
500 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
501 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
506 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
508 if (!memslot
->dirty_bitmap
)
511 kvfree(memslot
->dirty_bitmap
);
512 memslot
->dirty_bitmap
= NULL
;
516 * Free any memory in @free but not in @dont.
518 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
519 struct kvm_memory_slot
*dont
)
521 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
522 kvm_destroy_dirty_bitmap(free
);
524 kvm_arch_free_memslot(kvm
, free
, dont
);
529 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
531 struct kvm_memory_slot
*memslot
;
536 kvm_for_each_memslot(memslot
, slots
)
537 kvm_free_memslot(kvm
, memslot
, NULL
);
542 static struct kvm
*kvm_create_vm(unsigned long type
)
545 struct kvm
*kvm
= kvm_arch_alloc_vm();
548 return ERR_PTR(-ENOMEM
);
550 r
= kvm_arch_init_vm(kvm
, type
);
552 goto out_err_no_disable
;
554 r
= hardware_enable_all();
556 goto out_err_no_disable
;
558 #ifdef CONFIG_HAVE_KVM_IRQFD
559 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
562 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
565 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
566 kvm
->memslots
[i
] = kvm_alloc_memslots();
567 if (!kvm
->memslots
[i
])
568 goto out_err_no_srcu
;
571 if (init_srcu_struct(&kvm
->srcu
))
572 goto out_err_no_srcu
;
573 if (init_srcu_struct(&kvm
->irq_srcu
))
574 goto out_err_no_irq_srcu
;
575 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
576 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
582 spin_lock_init(&kvm
->mmu_lock
);
583 kvm
->mm
= current
->mm
;
584 atomic_inc(&kvm
->mm
->mm_count
);
585 kvm_eventfd_init(kvm
);
586 mutex_init(&kvm
->lock
);
587 mutex_init(&kvm
->irq_lock
);
588 mutex_init(&kvm
->slots_lock
);
589 atomic_set(&kvm
->users_count
, 1);
590 INIT_LIST_HEAD(&kvm
->devices
);
592 r
= kvm_init_mmu_notifier(kvm
);
596 spin_lock(&kvm_lock
);
597 list_add(&kvm
->vm_list
, &vm_list
);
598 spin_unlock(&kvm_lock
);
600 preempt_notifier_inc();
605 cleanup_srcu_struct(&kvm
->irq_srcu
);
607 cleanup_srcu_struct(&kvm
->srcu
);
609 hardware_disable_all();
611 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
612 kfree(kvm
->buses
[i
]);
613 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
614 kvm_free_memslots(kvm
, kvm
->memslots
[i
]);
615 kvm_arch_free_vm(kvm
);
620 * Avoid using vmalloc for a small buffer.
621 * Should not be used when the size is statically known.
623 void *kvm_kvzalloc(unsigned long size
)
625 if (size
> PAGE_SIZE
)
626 return vzalloc(size
);
628 return kzalloc(size
, GFP_KERNEL
);
631 static void kvm_destroy_devices(struct kvm
*kvm
)
633 struct list_head
*node
, *tmp
;
635 list_for_each_safe(node
, tmp
, &kvm
->devices
) {
636 struct kvm_device
*dev
=
637 list_entry(node
, struct kvm_device
, vm_node
);
640 dev
->ops
->destroy(dev
);
644 static void kvm_destroy_vm(struct kvm
*kvm
)
647 struct mm_struct
*mm
= kvm
->mm
;
649 kvm_arch_sync_events(kvm
);
650 spin_lock(&kvm_lock
);
651 list_del(&kvm
->vm_list
);
652 spin_unlock(&kvm_lock
);
653 kvm_free_irq_routing(kvm
);
654 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
655 kvm_io_bus_destroy(kvm
->buses
[i
]);
656 kvm_coalesced_mmio_free(kvm
);
657 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
658 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
660 kvm_arch_flush_shadow_all(kvm
);
662 kvm_arch_destroy_vm(kvm
);
663 kvm_destroy_devices(kvm
);
664 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
665 kvm_free_memslots(kvm
, kvm
->memslots
[i
]);
666 cleanup_srcu_struct(&kvm
->irq_srcu
);
667 cleanup_srcu_struct(&kvm
->srcu
);
668 kvm_arch_free_vm(kvm
);
669 preempt_notifier_dec();
670 hardware_disable_all();
674 void kvm_get_kvm(struct kvm
*kvm
)
676 atomic_inc(&kvm
->users_count
);
678 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
680 void kvm_put_kvm(struct kvm
*kvm
)
682 if (atomic_dec_and_test(&kvm
->users_count
))
685 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
688 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
690 struct kvm
*kvm
= filp
->private_data
;
692 kvm_irqfd_release(kvm
);
699 * Allocation size is twice as large as the actual dirty bitmap size.
700 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
702 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
704 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
706 memslot
->dirty_bitmap
= kvm_kvzalloc(dirty_bytes
);
707 if (!memslot
->dirty_bitmap
)
714 * Insert memslot and re-sort memslots based on their GFN,
715 * so binary search could be used to lookup GFN.
716 * Sorting algorithm takes advantage of having initially
717 * sorted array and known changed memslot position.
719 static void update_memslots(struct kvm_memslots
*slots
,
720 struct kvm_memory_slot
*new)
723 int i
= slots
->id_to_index
[id
];
724 struct kvm_memory_slot
*mslots
= slots
->memslots
;
726 WARN_ON(mslots
[i
].id
!= id
);
728 WARN_ON(!mslots
[i
].npages
);
729 if (mslots
[i
].npages
)
732 if (!mslots
[i
].npages
)
736 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
737 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
738 if (!mslots
[i
+ 1].npages
)
740 mslots
[i
] = mslots
[i
+ 1];
741 slots
->id_to_index
[mslots
[i
].id
] = i
;
746 * The ">=" is needed when creating a slot with base_gfn == 0,
747 * so that it moves before all those with base_gfn == npages == 0.
749 * On the other hand, if new->npages is zero, the above loop has
750 * already left i pointing to the beginning of the empty part of
751 * mslots, and the ">=" would move the hole backwards in this
752 * case---which is wrong. So skip the loop when deleting a slot.
756 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
757 mslots
[i
] = mslots
[i
- 1];
758 slots
->id_to_index
[mslots
[i
].id
] = i
;
762 WARN_ON_ONCE(i
!= slots
->used_slots
);
765 slots
->id_to_index
[mslots
[i
].id
] = i
;
768 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
770 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
772 #ifdef __KVM_HAVE_READONLY_MEM
773 valid_flags
|= KVM_MEM_READONLY
;
776 if (mem
->flags
& ~valid_flags
)
782 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
783 int as_id
, struct kvm_memslots
*slots
)
785 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
788 * Set the low bit in the generation, which disables SPTE caching
789 * until the end of synchronize_srcu_expedited.
791 WARN_ON(old_memslots
->generation
& 1);
792 slots
->generation
= old_memslots
->generation
+ 1;
794 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
795 synchronize_srcu_expedited(&kvm
->srcu
);
798 * Increment the new memslot generation a second time. This prevents
799 * vm exits that race with memslot updates from caching a memslot
800 * generation that will (potentially) be valid forever.
804 kvm_arch_memslots_updated(kvm
, slots
);
810 * Allocate some memory and give it an address in the guest physical address
813 * Discontiguous memory is allowed, mostly for framebuffers.
815 * Must be called holding kvm->slots_lock for write.
817 int __kvm_set_memory_region(struct kvm
*kvm
,
818 const struct kvm_userspace_memory_region
*mem
)
822 unsigned long npages
;
823 struct kvm_memory_slot
*slot
;
824 struct kvm_memory_slot old
, new;
825 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
827 enum kvm_mr_change change
;
829 r
= check_memory_region_flags(mem
);
834 as_id
= mem
->slot
>> 16;
837 /* General sanity checks */
838 if (mem
->memory_size
& (PAGE_SIZE
- 1))
840 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
842 /* We can read the guest memory with __xxx_user() later on. */
843 if ((id
< KVM_USER_MEM_SLOTS
) &&
844 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
845 !access_ok(VERIFY_WRITE
,
846 (void __user
*)(unsigned long)mem
->userspace_addr
,
849 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
851 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
854 slot
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
855 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
856 npages
= mem
->memory_size
>> PAGE_SHIFT
;
858 if (npages
> KVM_MEM_MAX_NR_PAGES
)
864 new.base_gfn
= base_gfn
;
866 new.flags
= mem
->flags
;
870 change
= KVM_MR_CREATE
;
871 else { /* Modify an existing slot. */
872 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
873 (npages
!= old
.npages
) ||
874 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
877 if (base_gfn
!= old
.base_gfn
)
878 change
= KVM_MR_MOVE
;
879 else if (new.flags
!= old
.flags
)
880 change
= KVM_MR_FLAGS_ONLY
;
881 else { /* Nothing to change. */
890 change
= KVM_MR_DELETE
;
895 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
896 /* Check for overlaps */
898 kvm_for_each_memslot(slot
, __kvm_memslots(kvm
, as_id
)) {
899 if ((slot
->id
>= KVM_USER_MEM_SLOTS
) ||
902 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
903 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
908 /* Free page dirty bitmap if unneeded */
909 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
910 new.dirty_bitmap
= NULL
;
913 if (change
== KVM_MR_CREATE
) {
914 new.userspace_addr
= mem
->userspace_addr
;
916 if (kvm_arch_create_memslot(kvm
, &new, npages
))
920 /* Allocate page dirty bitmap if needed */
921 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
922 if (kvm_create_dirty_bitmap(&new) < 0)
926 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
929 memcpy(slots
, __kvm_memslots(kvm
, as_id
), sizeof(struct kvm_memslots
));
931 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
932 slot
= id_to_memslot(slots
, id
);
933 slot
->flags
|= KVM_MEMSLOT_INVALID
;
935 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
937 /* slot was deleted or moved, clear iommu mapping */
938 kvm_iommu_unmap_pages(kvm
, &old
);
939 /* From this point no new shadow pages pointing to a deleted,
940 * or moved, memslot will be created.
942 * validation of sp->gfn happens in:
943 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
944 * - kvm_is_visible_gfn (mmu_check_roots)
946 kvm_arch_flush_shadow_memslot(kvm
, slot
);
949 * We can re-use the old_memslots from above, the only difference
950 * from the currently installed memslots is the invalid flag. This
951 * will get overwritten by update_memslots anyway.
953 slots
= old_memslots
;
956 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
960 /* actual memory is freed via old in kvm_free_memslot below */
961 if (change
== KVM_MR_DELETE
) {
962 new.dirty_bitmap
= NULL
;
963 memset(&new.arch
, 0, sizeof(new.arch
));
966 update_memslots(slots
, &new);
967 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
969 kvm_arch_commit_memory_region(kvm
, mem
, &old
, &new, change
);
971 kvm_free_memslot(kvm
, &old
, &new);
972 kvfree(old_memslots
);
975 * IOMMU mapping: New slots need to be mapped. Old slots need to be
976 * un-mapped and re-mapped if their base changes. Since base change
977 * unmapping is handled above with slot deletion, mapping alone is
978 * needed here. Anything else the iommu might care about for existing
979 * slots (size changes, userspace addr changes and read-only flag
980 * changes) is disallowed above, so any other attribute changes getting
981 * here can be skipped.
983 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
984 r
= kvm_iommu_map_pages(kvm
, &new);
993 kvm_free_memslot(kvm
, &new, &old
);
997 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
999 int kvm_set_memory_region(struct kvm
*kvm
,
1000 const struct kvm_userspace_memory_region
*mem
)
1004 mutex_lock(&kvm
->slots_lock
);
1005 r
= __kvm_set_memory_region(kvm
, mem
);
1006 mutex_unlock(&kvm
->slots_lock
);
1009 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1011 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1012 struct kvm_userspace_memory_region
*mem
)
1014 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1017 return kvm_set_memory_region(kvm
, mem
);
1020 int kvm_get_dirty_log(struct kvm
*kvm
,
1021 struct kvm_dirty_log
*log
, int *is_dirty
)
1023 struct kvm_memslots
*slots
;
1024 struct kvm_memory_slot
*memslot
;
1025 int r
, i
, as_id
, id
;
1027 unsigned long any
= 0;
1030 as_id
= log
->slot
>> 16;
1031 id
= (u16
)log
->slot
;
1032 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1035 slots
= __kvm_memslots(kvm
, as_id
);
1036 memslot
= id_to_memslot(slots
, id
);
1038 if (!memslot
->dirty_bitmap
)
1041 n
= kvm_dirty_bitmap_bytes(memslot
);
1043 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1044 any
= memslot
->dirty_bitmap
[i
];
1047 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1057 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1059 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1061 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1062 * are dirty write protect them for next write.
1063 * @kvm: pointer to kvm instance
1064 * @log: slot id and address to which we copy the log
1065 * @is_dirty: flag set if any page is dirty
1067 * We need to keep it in mind that VCPU threads can write to the bitmap
1068 * concurrently. So, to avoid losing track of dirty pages we keep the
1071 * 1. Take a snapshot of the bit and clear it if needed.
1072 * 2. Write protect the corresponding page.
1073 * 3. Copy the snapshot to the userspace.
1074 * 4. Upon return caller flushes TLB's if needed.
1076 * Between 2 and 4, the guest may write to the page using the remaining TLB
1077 * entry. This is not a problem because the page is reported dirty using
1078 * the snapshot taken before and step 4 ensures that writes done after
1079 * exiting to userspace will be logged for the next call.
1082 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1083 struct kvm_dirty_log
*log
, bool *is_dirty
)
1085 struct kvm_memslots
*slots
;
1086 struct kvm_memory_slot
*memslot
;
1087 int r
, i
, as_id
, id
;
1089 unsigned long *dirty_bitmap
;
1090 unsigned long *dirty_bitmap_buffer
;
1093 as_id
= log
->slot
>> 16;
1094 id
= (u16
)log
->slot
;
1095 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1098 slots
= __kvm_memslots(kvm
, as_id
);
1099 memslot
= id_to_memslot(slots
, id
);
1101 dirty_bitmap
= memslot
->dirty_bitmap
;
1106 n
= kvm_dirty_bitmap_bytes(memslot
);
1108 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
1109 memset(dirty_bitmap_buffer
, 0, n
);
1111 spin_lock(&kvm
->mmu_lock
);
1113 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1117 if (!dirty_bitmap
[i
])
1122 mask
= xchg(&dirty_bitmap
[i
], 0);
1123 dirty_bitmap_buffer
[i
] = mask
;
1126 offset
= i
* BITS_PER_LONG
;
1127 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1132 spin_unlock(&kvm
->mmu_lock
);
1135 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1142 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1145 bool kvm_largepages_enabled(void)
1147 return largepages_enabled
;
1150 void kvm_disable_largepages(void)
1152 largepages_enabled
= false;
1154 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1156 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1158 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1160 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1162 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1164 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1167 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1169 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1171 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1172 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1177 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1179 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1181 struct vm_area_struct
*vma
;
1182 unsigned long addr
, size
;
1186 addr
= gfn_to_hva(kvm
, gfn
);
1187 if (kvm_is_error_hva(addr
))
1190 down_read(¤t
->mm
->mmap_sem
);
1191 vma
= find_vma(current
->mm
, addr
);
1195 size
= vma_kernel_pagesize(vma
);
1198 up_read(¤t
->mm
->mmap_sem
);
1203 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1205 return slot
->flags
& KVM_MEM_READONLY
;
1208 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1209 gfn_t
*nr_pages
, bool write
)
1211 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1212 return KVM_HVA_ERR_BAD
;
1214 if (memslot_is_readonly(slot
) && write
)
1215 return KVM_HVA_ERR_RO_BAD
;
1218 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1220 return __gfn_to_hva_memslot(slot
, gfn
);
1223 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1226 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1229 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1232 return gfn_to_hva_many(slot
, gfn
, NULL
);
1234 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1236 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1238 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1240 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1242 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1244 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1246 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1249 * If writable is set to false, the hva returned by this function is only
1250 * allowed to be read.
1252 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1253 gfn_t gfn
, bool *writable
)
1255 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1257 if (!kvm_is_error_hva(hva
) && writable
)
1258 *writable
= !memslot_is_readonly(slot
);
1263 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1265 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1267 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1270 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1272 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1274 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1277 static int get_user_page_nowait(struct task_struct
*tsk
, struct mm_struct
*mm
,
1278 unsigned long start
, int write
, struct page
**page
)
1280 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1283 flags
|= FOLL_WRITE
;
1285 return __get_user_pages(tsk
, mm
, start
, 1, flags
, page
, NULL
, NULL
);
1288 static inline int check_user_page_hwpoison(unsigned long addr
)
1290 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1292 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1293 flags
, NULL
, NULL
, NULL
);
1294 return rc
== -EHWPOISON
;
1298 * The atomic path to get the writable pfn which will be stored in @pfn,
1299 * true indicates success, otherwise false is returned.
1301 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1302 bool write_fault
, bool *writable
, pfn_t
*pfn
)
1304 struct page
*page
[1];
1307 if (!(async
|| atomic
))
1311 * Fast pin a writable pfn only if it is a write fault request
1312 * or the caller allows to map a writable pfn for a read fault
1315 if (!(write_fault
|| writable
))
1318 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1320 *pfn
= page_to_pfn(page
[0]);
1331 * The slow path to get the pfn of the specified host virtual address,
1332 * 1 indicates success, -errno is returned if error is detected.
1334 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1335 bool *writable
, pfn_t
*pfn
)
1337 struct page
*page
[1];
1343 *writable
= write_fault
;
1346 down_read(¤t
->mm
->mmap_sem
);
1347 npages
= get_user_page_nowait(current
, current
->mm
,
1348 addr
, write_fault
, page
);
1349 up_read(¤t
->mm
->mmap_sem
);
1351 npages
= __get_user_pages_unlocked(current
, current
->mm
, addr
, 1,
1352 write_fault
, 0, page
,
1353 FOLL_TOUCH
|FOLL_HWPOISON
);
1357 /* map read fault as writable if possible */
1358 if (unlikely(!write_fault
) && writable
) {
1359 struct page
*wpage
[1];
1361 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1370 *pfn
= page_to_pfn(page
[0]);
1374 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1376 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1379 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1386 * Pin guest page in memory and return its pfn.
1387 * @addr: host virtual address which maps memory to the guest
1388 * @atomic: whether this function can sleep
1389 * @async: whether this function need to wait IO complete if the
1390 * host page is not in the memory
1391 * @write_fault: whether we should get a writable host page
1392 * @writable: whether it allows to map a writable host page for !@write_fault
1394 * The function will map a writable host page for these two cases:
1395 * 1): @write_fault = true
1396 * 2): @write_fault = false && @writable, @writable will tell the caller
1397 * whether the mapping is writable.
1399 static pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1400 bool write_fault
, bool *writable
)
1402 struct vm_area_struct
*vma
;
1406 /* we can do it either atomically or asynchronously, not both */
1407 BUG_ON(atomic
&& async
);
1409 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1413 return KVM_PFN_ERR_FAULT
;
1415 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1419 down_read(¤t
->mm
->mmap_sem
);
1420 if (npages
== -EHWPOISON
||
1421 (!async
&& check_user_page_hwpoison(addr
))) {
1422 pfn
= KVM_PFN_ERR_HWPOISON
;
1426 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1429 pfn
= KVM_PFN_ERR_FAULT
;
1430 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1431 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1433 BUG_ON(!kvm_is_reserved_pfn(pfn
));
1435 if (async
&& vma_is_valid(vma
, write_fault
))
1437 pfn
= KVM_PFN_ERR_FAULT
;
1440 up_read(¤t
->mm
->mmap_sem
);
1444 pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
, bool atomic
,
1445 bool *async
, bool write_fault
, bool *writable
)
1447 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1449 if (addr
== KVM_HVA_ERR_RO_BAD
)
1450 return KVM_PFN_ERR_RO_FAULT
;
1452 if (kvm_is_error_hva(addr
))
1453 return KVM_PFN_NOSLOT
;
1455 /* Do not map writable pfn in the readonly memslot. */
1456 if (writable
&& memslot_is_readonly(slot
)) {
1461 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1464 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1466 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1469 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1470 write_fault
, writable
);
1472 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1474 pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1476 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1478 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1480 pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1482 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1484 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1486 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1488 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm
, gfn
), gfn
);
1490 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1492 pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1494 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1496 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1498 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1500 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1502 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1504 pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1506 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1508 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
1510 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1511 struct page
**pages
, int nr_pages
)
1516 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
1517 if (kvm_is_error_hva(addr
))
1520 if (entry
< nr_pages
)
1523 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1525 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1527 static struct page
*kvm_pfn_to_page(pfn_t pfn
)
1529 if (is_error_noslot_pfn(pfn
))
1530 return KVM_ERR_PTR_BAD_PAGE
;
1532 if (kvm_is_reserved_pfn(pfn
)) {
1534 return KVM_ERR_PTR_BAD_PAGE
;
1537 return pfn_to_page(pfn
);
1540 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1544 pfn
= gfn_to_pfn(kvm
, gfn
);
1546 return kvm_pfn_to_page(pfn
);
1548 EXPORT_SYMBOL_GPL(gfn_to_page
);
1550 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1554 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
1556 return kvm_pfn_to_page(pfn
);
1558 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
1560 void kvm_release_page_clean(struct page
*page
)
1562 WARN_ON(is_error_page(page
));
1564 kvm_release_pfn_clean(page_to_pfn(page
));
1566 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1568 void kvm_release_pfn_clean(pfn_t pfn
)
1570 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1571 put_page(pfn_to_page(pfn
));
1573 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1575 void kvm_release_page_dirty(struct page
*page
)
1577 WARN_ON(is_error_page(page
));
1579 kvm_release_pfn_dirty(page_to_pfn(page
));
1581 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1583 static void kvm_release_pfn_dirty(pfn_t pfn
)
1585 kvm_set_pfn_dirty(pfn
);
1586 kvm_release_pfn_clean(pfn
);
1589 void kvm_set_pfn_dirty(pfn_t pfn
)
1591 if (!kvm_is_reserved_pfn(pfn
)) {
1592 struct page
*page
= pfn_to_page(pfn
);
1594 if (!PageReserved(page
))
1598 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1600 void kvm_set_pfn_accessed(pfn_t pfn
)
1602 if (!kvm_is_reserved_pfn(pfn
))
1603 mark_page_accessed(pfn_to_page(pfn
));
1605 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1607 void kvm_get_pfn(pfn_t pfn
)
1609 if (!kvm_is_reserved_pfn(pfn
))
1610 get_page(pfn_to_page(pfn
));
1612 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1614 static int next_segment(unsigned long len
, int offset
)
1616 if (len
> PAGE_SIZE
- offset
)
1617 return PAGE_SIZE
- offset
;
1622 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1623 void *data
, int offset
, int len
)
1628 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1629 if (kvm_is_error_hva(addr
))
1631 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1637 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1640 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1642 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1644 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1646 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
1647 int offset
, int len
)
1649 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1651 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1653 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
1655 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1657 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1659 int offset
= offset_in_page(gpa
);
1662 while ((seg
= next_segment(len
, offset
)) != 0) {
1663 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1673 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1675 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
1677 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1679 int offset
= offset_in_page(gpa
);
1682 while ((seg
= next_segment(len
, offset
)) != 0) {
1683 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1693 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
1695 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1696 void *data
, int offset
, unsigned long len
)
1701 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1702 if (kvm_is_error_hva(addr
))
1704 pagefault_disable();
1705 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1712 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1715 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1716 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1717 int offset
= offset_in_page(gpa
);
1719 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1721 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic
);
1723 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1724 void *data
, unsigned long len
)
1726 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1727 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1728 int offset
= offset_in_page(gpa
);
1730 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1732 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
1734 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
1735 const void *data
, int offset
, int len
)
1740 addr
= gfn_to_hva_memslot(memslot
, gfn
);
1741 if (kvm_is_error_hva(addr
))
1743 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1746 mark_page_dirty_in_slot(memslot
, gfn
);
1750 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
1751 const void *data
, int offset
, int len
)
1753 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1755 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1757 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1759 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1760 const void *data
, int offset
, int len
)
1762 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1764 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1766 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
1768 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1771 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1773 int offset
= offset_in_page(gpa
);
1776 while ((seg
= next_segment(len
, offset
)) != 0) {
1777 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1787 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1789 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
1792 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1794 int offset
= offset_in_page(gpa
);
1797 while ((seg
= next_segment(len
, offset
)) != 0) {
1798 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1808 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
1810 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1811 gpa_t gpa
, unsigned long len
)
1813 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1814 int offset
= offset_in_page(gpa
);
1815 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1816 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1817 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1818 gfn_t nr_pages_avail
;
1821 ghc
->generation
= slots
->generation
;
1823 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1824 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1825 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1829 * If the requested region crosses two memslots, we still
1830 * verify that the entire region is valid here.
1832 while (start_gfn
<= end_gfn
) {
1833 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1834 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1836 if (kvm_is_error_hva(ghc
->hva
))
1838 start_gfn
+= nr_pages_avail
;
1840 /* Use the slow path for cross page reads and writes. */
1841 ghc
->memslot
= NULL
;
1845 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1847 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1848 void *data
, unsigned long len
)
1850 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1853 BUG_ON(len
> ghc
->len
);
1855 if (slots
->generation
!= ghc
->generation
)
1856 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1858 if (unlikely(!ghc
->memslot
))
1859 return kvm_write_guest(kvm
, ghc
->gpa
, data
, len
);
1861 if (kvm_is_error_hva(ghc
->hva
))
1864 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1867 mark_page_dirty_in_slot(ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1871 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1873 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1874 void *data
, unsigned long len
)
1876 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1879 BUG_ON(len
> ghc
->len
);
1881 if (slots
->generation
!= ghc
->generation
)
1882 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1884 if (unlikely(!ghc
->memslot
))
1885 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
1887 if (kvm_is_error_hva(ghc
->hva
))
1890 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1896 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1898 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1900 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1902 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
1904 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1906 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1908 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1910 int offset
= offset_in_page(gpa
);
1913 while ((seg
= next_segment(len
, offset
)) != 0) {
1914 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1923 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1925 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
1928 if (memslot
&& memslot
->dirty_bitmap
) {
1929 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1931 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1935 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1937 struct kvm_memory_slot
*memslot
;
1939 memslot
= gfn_to_memslot(kvm
, gfn
);
1940 mark_page_dirty_in_slot(memslot
, gfn
);
1942 EXPORT_SYMBOL_GPL(mark_page_dirty
);
1944 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1946 struct kvm_memory_slot
*memslot
;
1948 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1949 mark_page_dirty_in_slot(memslot
, gfn
);
1951 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
1953 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
1957 old
= val
= vcpu
->halt_poll_ns
;
1959 if (val
== 0 && halt_poll_ns_grow
)
1962 val
*= halt_poll_ns_grow
;
1964 vcpu
->halt_poll_ns
= val
;
1965 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
1968 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
1972 old
= val
= vcpu
->halt_poll_ns
;
1973 if (halt_poll_ns_shrink
== 0)
1976 val
/= halt_poll_ns_shrink
;
1978 vcpu
->halt_poll_ns
= val
;
1979 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
1982 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
1984 if (kvm_arch_vcpu_runnable(vcpu
)) {
1985 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1988 if (kvm_cpu_has_pending_timer(vcpu
))
1990 if (signal_pending(current
))
1997 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1999 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2003 bool waited
= false;
2006 start
= cur
= ktime_get();
2007 if (vcpu
->halt_poll_ns
) {
2008 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2010 ++vcpu
->stat
.halt_attempted_poll
;
2013 * This sets KVM_REQ_UNHALT if an interrupt
2016 if (kvm_vcpu_check_block(vcpu
) < 0) {
2017 ++vcpu
->stat
.halt_successful_poll
;
2021 } while (single_task_running() && ktime_before(cur
, stop
));
2024 kvm_arch_vcpu_blocking(vcpu
);
2027 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2029 if (kvm_vcpu_check_block(vcpu
) < 0)
2036 finish_wait(&vcpu
->wq
, &wait
);
2039 kvm_arch_vcpu_unblocking(vcpu
);
2041 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2044 if (block_ns
<= vcpu
->halt_poll_ns
)
2046 /* we had a long block, shrink polling */
2047 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2048 shrink_halt_poll_ns(vcpu
);
2049 /* we had a short halt and our poll time is too small */
2050 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2051 block_ns
< halt_poll_ns
)
2052 grow_halt_poll_ns(vcpu
);
2054 vcpu
->halt_poll_ns
= 0;
2056 trace_kvm_vcpu_wakeup(block_ns
, waited
);
2058 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2062 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2064 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2067 int cpu
= vcpu
->cpu
;
2068 wait_queue_head_t
*wqp
;
2070 wqp
= kvm_arch_vcpu_wq(vcpu
);
2071 if (waitqueue_active(wqp
)) {
2072 wake_up_interruptible(wqp
);
2073 ++vcpu
->stat
.halt_wakeup
;
2077 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2078 if (kvm_arch_vcpu_should_kick(vcpu
))
2079 smp_send_reschedule(cpu
);
2082 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2083 #endif /* !CONFIG_S390 */
2085 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2088 struct task_struct
*task
= NULL
;
2092 pid
= rcu_dereference(target
->pid
);
2094 task
= get_pid_task(pid
, PIDTYPE_PID
);
2098 ret
= yield_to(task
, 1);
2099 put_task_struct(task
);
2103 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2106 * Helper that checks whether a VCPU is eligible for directed yield.
2107 * Most eligible candidate to yield is decided by following heuristics:
2109 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2110 * (preempted lock holder), indicated by @in_spin_loop.
2111 * Set at the beiginning and cleared at the end of interception/PLE handler.
2113 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2114 * chance last time (mostly it has become eligible now since we have probably
2115 * yielded to lockholder in last iteration. This is done by toggling
2116 * @dy_eligible each time a VCPU checked for eligibility.)
2118 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2119 * to preempted lock-holder could result in wrong VCPU selection and CPU
2120 * burning. Giving priority for a potential lock-holder increases lock
2123 * Since algorithm is based on heuristics, accessing another VCPU data without
2124 * locking does not harm. It may result in trying to yield to same VCPU, fail
2125 * and continue with next VCPU and so on.
2127 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2129 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2132 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2133 vcpu
->spin_loop
.dy_eligible
;
2135 if (vcpu
->spin_loop
.in_spin_loop
)
2136 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2144 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
2146 struct kvm
*kvm
= me
->kvm
;
2147 struct kvm_vcpu
*vcpu
;
2148 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2154 kvm_vcpu_set_in_spin_loop(me
, true);
2156 * We boost the priority of a VCPU that is runnable but not
2157 * currently running, because it got preempted by something
2158 * else and called schedule in __vcpu_run. Hopefully that
2159 * VCPU is holding the lock that we need and will release it.
2160 * We approximate round-robin by starting at the last boosted VCPU.
2162 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2163 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2164 if (!pass
&& i
<= last_boosted_vcpu
) {
2165 i
= last_boosted_vcpu
;
2167 } else if (pass
&& i
> last_boosted_vcpu
)
2169 if (!ACCESS_ONCE(vcpu
->preempted
))
2173 if (waitqueue_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
2175 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2178 yielded
= kvm_vcpu_yield_to(vcpu
);
2180 kvm
->last_boosted_vcpu
= i
;
2182 } else if (yielded
< 0) {
2189 kvm_vcpu_set_in_spin_loop(me
, false);
2191 /* Ensure vcpu is not eligible during next spinloop */
2192 kvm_vcpu_set_dy_eligible(me
, false);
2194 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2196 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2198 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
2201 if (vmf
->pgoff
== 0)
2202 page
= virt_to_page(vcpu
->run
);
2204 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2205 page
= virt_to_page(vcpu
->arch
.pio_data
);
2207 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2208 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2209 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2212 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2218 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2219 .fault
= kvm_vcpu_fault
,
2222 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2224 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2228 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2230 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2232 kvm_put_kvm(vcpu
->kvm
);
2236 static struct file_operations kvm_vcpu_fops
= {
2237 .release
= kvm_vcpu_release
,
2238 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2239 #ifdef CONFIG_KVM_COMPAT
2240 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
2242 .mmap
= kvm_vcpu_mmap
,
2243 .llseek
= noop_llseek
,
2247 * Allocates an inode for the vcpu.
2249 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2251 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2255 * Creates some virtual cpus. Good luck creating more than one.
2257 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2260 struct kvm_vcpu
*vcpu
, *v
;
2262 if (id
>= KVM_MAX_VCPUS
)
2265 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2267 return PTR_ERR(vcpu
);
2269 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2271 r
= kvm_arch_vcpu_setup(vcpu
);
2275 mutex_lock(&kvm
->lock
);
2276 if (!kvm_vcpu_compatible(vcpu
)) {
2278 goto unlock_vcpu_destroy
;
2280 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
2282 goto unlock_vcpu_destroy
;
2285 kvm_for_each_vcpu(r
, v
, kvm
)
2286 if (v
->vcpu_id
== id
) {
2288 goto unlock_vcpu_destroy
;
2291 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2293 /* Now it's all set up, let userspace reach it */
2295 r
= create_vcpu_fd(vcpu
);
2298 goto unlock_vcpu_destroy
;
2301 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2304 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2305 * before kvm->online_vcpu's incremented value.
2308 atomic_inc(&kvm
->online_vcpus
);
2310 mutex_unlock(&kvm
->lock
);
2311 kvm_arch_vcpu_postcreate(vcpu
);
2314 unlock_vcpu_destroy
:
2315 mutex_unlock(&kvm
->lock
);
2317 kvm_arch_vcpu_destroy(vcpu
);
2321 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2324 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2325 vcpu
->sigset_active
= 1;
2326 vcpu
->sigset
= *sigset
;
2328 vcpu
->sigset_active
= 0;
2332 static long kvm_vcpu_ioctl(struct file
*filp
,
2333 unsigned int ioctl
, unsigned long arg
)
2335 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2336 void __user
*argp
= (void __user
*)arg
;
2338 struct kvm_fpu
*fpu
= NULL
;
2339 struct kvm_sregs
*kvm_sregs
= NULL
;
2341 if (vcpu
->kvm
->mm
!= current
->mm
)
2344 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2347 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2349 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2350 * so vcpu_load() would break it.
2352 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_S390_IRQ
|| ioctl
== KVM_INTERRUPT
)
2353 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2357 r
= vcpu_load(vcpu
);
2365 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
2366 /* The thread running this VCPU changed. */
2367 struct pid
*oldpid
= vcpu
->pid
;
2368 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
2370 rcu_assign_pointer(vcpu
->pid
, newpid
);
2375 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2376 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2378 case KVM_GET_REGS
: {
2379 struct kvm_regs
*kvm_regs
;
2382 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2385 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2389 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2396 case KVM_SET_REGS
: {
2397 struct kvm_regs
*kvm_regs
;
2400 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2401 if (IS_ERR(kvm_regs
)) {
2402 r
= PTR_ERR(kvm_regs
);
2405 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2409 case KVM_GET_SREGS
: {
2410 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2414 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2418 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2423 case KVM_SET_SREGS
: {
2424 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2425 if (IS_ERR(kvm_sregs
)) {
2426 r
= PTR_ERR(kvm_sregs
);
2430 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2433 case KVM_GET_MP_STATE
: {
2434 struct kvm_mp_state mp_state
;
2436 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2440 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2445 case KVM_SET_MP_STATE
: {
2446 struct kvm_mp_state mp_state
;
2449 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2451 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2454 case KVM_TRANSLATE
: {
2455 struct kvm_translation tr
;
2458 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2460 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2464 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2469 case KVM_SET_GUEST_DEBUG
: {
2470 struct kvm_guest_debug dbg
;
2473 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2475 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2478 case KVM_SET_SIGNAL_MASK
: {
2479 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2480 struct kvm_signal_mask kvm_sigmask
;
2481 sigset_t sigset
, *p
;
2486 if (copy_from_user(&kvm_sigmask
, argp
,
2487 sizeof(kvm_sigmask
)))
2490 if (kvm_sigmask
.len
!= sizeof(sigset
))
2493 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2498 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2502 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2506 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2510 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2516 fpu
= memdup_user(argp
, sizeof(*fpu
));
2522 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2526 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2535 #ifdef CONFIG_KVM_COMPAT
2536 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2537 unsigned int ioctl
, unsigned long arg
)
2539 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2540 void __user
*argp
= compat_ptr(arg
);
2543 if (vcpu
->kvm
->mm
!= current
->mm
)
2547 case KVM_SET_SIGNAL_MASK
: {
2548 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2549 struct kvm_signal_mask kvm_sigmask
;
2550 compat_sigset_t csigset
;
2555 if (copy_from_user(&kvm_sigmask
, argp
,
2556 sizeof(kvm_sigmask
)))
2559 if (kvm_sigmask
.len
!= sizeof(csigset
))
2562 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2565 sigset_from_compat(&sigset
, &csigset
);
2566 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2568 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2572 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2580 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2581 int (*accessor
)(struct kvm_device
*dev
,
2582 struct kvm_device_attr
*attr
),
2585 struct kvm_device_attr attr
;
2590 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2593 return accessor(dev
, &attr
);
2596 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2599 struct kvm_device
*dev
= filp
->private_data
;
2602 case KVM_SET_DEVICE_ATTR
:
2603 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2604 case KVM_GET_DEVICE_ATTR
:
2605 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2606 case KVM_HAS_DEVICE_ATTR
:
2607 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2609 if (dev
->ops
->ioctl
)
2610 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2616 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2618 struct kvm_device
*dev
= filp
->private_data
;
2619 struct kvm
*kvm
= dev
->kvm
;
2625 static const struct file_operations kvm_device_fops
= {
2626 .unlocked_ioctl
= kvm_device_ioctl
,
2627 #ifdef CONFIG_KVM_COMPAT
2628 .compat_ioctl
= kvm_device_ioctl
,
2630 .release
= kvm_device_release
,
2633 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2635 if (filp
->f_op
!= &kvm_device_fops
)
2638 return filp
->private_data
;
2641 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2642 #ifdef CONFIG_KVM_MPIC
2643 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2644 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2647 #ifdef CONFIG_KVM_XICS
2648 [KVM_DEV_TYPE_XICS
] = &kvm_xics_ops
,
2652 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2654 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2657 if (kvm_device_ops_table
[type
] != NULL
)
2660 kvm_device_ops_table
[type
] = ops
;
2664 void kvm_unregister_device_ops(u32 type
)
2666 if (kvm_device_ops_table
[type
] != NULL
)
2667 kvm_device_ops_table
[type
] = NULL
;
2670 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2671 struct kvm_create_device
*cd
)
2673 struct kvm_device_ops
*ops
= NULL
;
2674 struct kvm_device
*dev
;
2675 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2678 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2681 ops
= kvm_device_ops_table
[cd
->type
];
2688 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2695 ret
= ops
->create(dev
, cd
->type
);
2701 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2707 list_add(&dev
->vm_node
, &kvm
->devices
);
2713 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2716 case KVM_CAP_USER_MEMORY
:
2717 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2718 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2719 case KVM_CAP_INTERNAL_ERROR_DATA
:
2720 #ifdef CONFIG_HAVE_KVM_MSI
2721 case KVM_CAP_SIGNAL_MSI
:
2723 #ifdef CONFIG_HAVE_KVM_IRQFD
2725 case KVM_CAP_IRQFD_RESAMPLE
:
2727 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
2728 case KVM_CAP_CHECK_EXTENSION_VM
:
2730 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2731 case KVM_CAP_IRQ_ROUTING
:
2732 return KVM_MAX_IRQ_ROUTES
;
2734 #if KVM_ADDRESS_SPACE_NUM > 1
2735 case KVM_CAP_MULTI_ADDRESS_SPACE
:
2736 return KVM_ADDRESS_SPACE_NUM
;
2741 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2744 static long kvm_vm_ioctl(struct file
*filp
,
2745 unsigned int ioctl
, unsigned long arg
)
2747 struct kvm
*kvm
= filp
->private_data
;
2748 void __user
*argp
= (void __user
*)arg
;
2751 if (kvm
->mm
!= current
->mm
)
2754 case KVM_CREATE_VCPU
:
2755 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2757 case KVM_SET_USER_MEMORY_REGION
: {
2758 struct kvm_userspace_memory_region kvm_userspace_mem
;
2761 if (copy_from_user(&kvm_userspace_mem
, argp
,
2762 sizeof(kvm_userspace_mem
)))
2765 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2768 case KVM_GET_DIRTY_LOG
: {
2769 struct kvm_dirty_log log
;
2772 if (copy_from_user(&log
, argp
, sizeof(log
)))
2774 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2777 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2778 case KVM_REGISTER_COALESCED_MMIO
: {
2779 struct kvm_coalesced_mmio_zone zone
;
2782 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2784 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2787 case KVM_UNREGISTER_COALESCED_MMIO
: {
2788 struct kvm_coalesced_mmio_zone zone
;
2791 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2793 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2798 struct kvm_irqfd data
;
2801 if (copy_from_user(&data
, argp
, sizeof(data
)))
2803 r
= kvm_irqfd(kvm
, &data
);
2806 case KVM_IOEVENTFD
: {
2807 struct kvm_ioeventfd data
;
2810 if (copy_from_user(&data
, argp
, sizeof(data
)))
2812 r
= kvm_ioeventfd(kvm
, &data
);
2815 #ifdef CONFIG_HAVE_KVM_MSI
2816 case KVM_SIGNAL_MSI
: {
2820 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
2822 r
= kvm_send_userspace_msi(kvm
, &msi
);
2826 #ifdef __KVM_HAVE_IRQ_LINE
2827 case KVM_IRQ_LINE_STATUS
:
2828 case KVM_IRQ_LINE
: {
2829 struct kvm_irq_level irq_event
;
2832 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
2835 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
2836 ioctl
== KVM_IRQ_LINE_STATUS
);
2841 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2842 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
2850 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2851 case KVM_SET_GSI_ROUTING
: {
2852 struct kvm_irq_routing routing
;
2853 struct kvm_irq_routing __user
*urouting
;
2854 struct kvm_irq_routing_entry
*entries
;
2857 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
2860 if (routing
.nr
>= KVM_MAX_IRQ_ROUTES
)
2865 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
2870 if (copy_from_user(entries
, urouting
->entries
,
2871 routing
.nr
* sizeof(*entries
)))
2872 goto out_free_irq_routing
;
2873 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
2875 out_free_irq_routing
:
2879 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2880 case KVM_CREATE_DEVICE
: {
2881 struct kvm_create_device cd
;
2884 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
2887 r
= kvm_ioctl_create_device(kvm
, &cd
);
2892 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
2898 case KVM_CHECK_EXTENSION
:
2899 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
2902 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2908 #ifdef CONFIG_KVM_COMPAT
2909 struct compat_kvm_dirty_log
{
2913 compat_uptr_t dirty_bitmap
; /* one bit per page */
2918 static long kvm_vm_compat_ioctl(struct file
*filp
,
2919 unsigned int ioctl
, unsigned long arg
)
2921 struct kvm
*kvm
= filp
->private_data
;
2924 if (kvm
->mm
!= current
->mm
)
2927 case KVM_GET_DIRTY_LOG
: {
2928 struct compat_kvm_dirty_log compat_log
;
2929 struct kvm_dirty_log log
;
2932 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2933 sizeof(compat_log
)))
2935 log
.slot
= compat_log
.slot
;
2936 log
.padding1
= compat_log
.padding1
;
2937 log
.padding2
= compat_log
.padding2
;
2938 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2940 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2944 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2952 static struct file_operations kvm_vm_fops
= {
2953 .release
= kvm_vm_release
,
2954 .unlocked_ioctl
= kvm_vm_ioctl
,
2955 #ifdef CONFIG_KVM_COMPAT
2956 .compat_ioctl
= kvm_vm_compat_ioctl
,
2958 .llseek
= noop_llseek
,
2961 static int kvm_dev_ioctl_create_vm(unsigned long type
)
2966 kvm
= kvm_create_vm(type
);
2968 return PTR_ERR(kvm
);
2969 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2970 r
= kvm_coalesced_mmio_init(kvm
);
2976 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
| O_CLOEXEC
);
2983 static long kvm_dev_ioctl(struct file
*filp
,
2984 unsigned int ioctl
, unsigned long arg
)
2989 case KVM_GET_API_VERSION
:
2992 r
= KVM_API_VERSION
;
2995 r
= kvm_dev_ioctl_create_vm(arg
);
2997 case KVM_CHECK_EXTENSION
:
2998 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3000 case KVM_GET_VCPU_MMAP_SIZE
:
3003 r
= PAGE_SIZE
; /* struct kvm_run */
3005 r
+= PAGE_SIZE
; /* pio data page */
3007 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3008 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3011 case KVM_TRACE_ENABLE
:
3012 case KVM_TRACE_PAUSE
:
3013 case KVM_TRACE_DISABLE
:
3017 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3023 static struct file_operations kvm_chardev_ops
= {
3024 .unlocked_ioctl
= kvm_dev_ioctl
,
3025 .compat_ioctl
= kvm_dev_ioctl
,
3026 .llseek
= noop_llseek
,
3029 static struct miscdevice kvm_dev
= {
3035 static void hardware_enable_nolock(void *junk
)
3037 int cpu
= raw_smp_processor_id();
3040 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3043 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3045 r
= kvm_arch_hardware_enable();
3048 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3049 atomic_inc(&hardware_enable_failed
);
3050 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3054 static void hardware_enable(void)
3056 raw_spin_lock(&kvm_count_lock
);
3057 if (kvm_usage_count
)
3058 hardware_enable_nolock(NULL
);
3059 raw_spin_unlock(&kvm_count_lock
);
3062 static void hardware_disable_nolock(void *junk
)
3064 int cpu
= raw_smp_processor_id();
3066 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3068 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3069 kvm_arch_hardware_disable();
3072 static void hardware_disable(void)
3074 raw_spin_lock(&kvm_count_lock
);
3075 if (kvm_usage_count
)
3076 hardware_disable_nolock(NULL
);
3077 raw_spin_unlock(&kvm_count_lock
);
3080 static void hardware_disable_all_nolock(void)
3082 BUG_ON(!kvm_usage_count
);
3085 if (!kvm_usage_count
)
3086 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3089 static void hardware_disable_all(void)
3091 raw_spin_lock(&kvm_count_lock
);
3092 hardware_disable_all_nolock();
3093 raw_spin_unlock(&kvm_count_lock
);
3096 static int hardware_enable_all(void)
3100 raw_spin_lock(&kvm_count_lock
);
3103 if (kvm_usage_count
== 1) {
3104 atomic_set(&hardware_enable_failed
, 0);
3105 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3107 if (atomic_read(&hardware_enable_failed
)) {
3108 hardware_disable_all_nolock();
3113 raw_spin_unlock(&kvm_count_lock
);
3118 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
3121 val
&= ~CPU_TASKS_FROZEN
;
3133 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3137 * Some (well, at least mine) BIOSes hang on reboot if
3140 * And Intel TXT required VMX off for all cpu when system shutdown.
3142 pr_info("kvm: exiting hardware virtualization\n");
3143 kvm_rebooting
= true;
3144 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3148 static struct notifier_block kvm_reboot_notifier
= {
3149 .notifier_call
= kvm_reboot
,
3153 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3157 for (i
= 0; i
< bus
->dev_count
; i
++) {
3158 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
3160 kvm_iodevice_destructor(pos
);
3165 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
3166 const struct kvm_io_range
*r2
)
3168 gpa_t addr1
= r1
->addr
;
3169 gpa_t addr2
= r2
->addr
;
3174 /* If r2->len == 0, match the exact address. If r2->len != 0,
3175 * accept any overlapping write. Any order is acceptable for
3176 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3177 * we process all of them.
3190 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
3192 return kvm_io_bus_cmp(p1
, p2
);
3195 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
3196 gpa_t addr
, int len
)
3198 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
3204 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
3205 kvm_io_bus_sort_cmp
, NULL
);
3210 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
3211 gpa_t addr
, int len
)
3213 struct kvm_io_range
*range
, key
;
3216 key
= (struct kvm_io_range
) {
3221 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
3222 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
3226 off
= range
- bus
->range
;
3228 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3234 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3235 struct kvm_io_range
*range
, const void *val
)
3239 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3243 while (idx
< bus
->dev_count
&&
3244 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3245 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3254 /* kvm_io_bus_write - called under kvm->slots_lock */
3255 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3256 int len
, const void *val
)
3258 struct kvm_io_bus
*bus
;
3259 struct kvm_io_range range
;
3262 range
= (struct kvm_io_range
) {
3267 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3268 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3269 return r
< 0 ? r
: 0;
3272 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3273 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3274 gpa_t addr
, int len
, const void *val
, long cookie
)
3276 struct kvm_io_bus
*bus
;
3277 struct kvm_io_range range
;
3279 range
= (struct kvm_io_range
) {
3284 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3286 /* First try the device referenced by cookie. */
3287 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3288 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3289 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3294 * cookie contained garbage; fall back to search and return the
3295 * correct cookie value.
3297 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3300 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3301 struct kvm_io_range
*range
, void *val
)
3305 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3309 while (idx
< bus
->dev_count
&&
3310 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3311 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3319 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3321 /* kvm_io_bus_read - called under kvm->slots_lock */
3322 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3325 struct kvm_io_bus
*bus
;
3326 struct kvm_io_range range
;
3329 range
= (struct kvm_io_range
) {
3334 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3335 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3336 return r
< 0 ? r
: 0;
3340 /* Caller must hold slots_lock. */
3341 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3342 int len
, struct kvm_io_device
*dev
)
3344 struct kvm_io_bus
*new_bus
, *bus
;
3346 bus
= kvm
->buses
[bus_idx
];
3347 /* exclude ioeventfd which is limited by maximum fd */
3348 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3351 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3352 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3355 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
3356 sizeof(struct kvm_io_range
)));
3357 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
3358 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3359 synchronize_srcu_expedited(&kvm
->srcu
);
3365 /* Caller must hold slots_lock. */
3366 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3367 struct kvm_io_device
*dev
)
3370 struct kvm_io_bus
*new_bus
, *bus
;
3372 bus
= kvm
->buses
[bus_idx
];
3374 for (i
= 0; i
< bus
->dev_count
; i
++)
3375 if (bus
->range
[i
].dev
== dev
) {
3383 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3384 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3388 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3389 new_bus
->dev_count
--;
3390 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3391 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3393 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3394 synchronize_srcu_expedited(&kvm
->srcu
);
3399 static struct notifier_block kvm_cpu_notifier
= {
3400 .notifier_call
= kvm_cpu_hotplug
,
3403 static int vm_stat_get(void *_offset
, u64
*val
)
3405 unsigned offset
= (long)_offset
;
3409 spin_lock(&kvm_lock
);
3410 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3411 *val
+= *(u32
*)((void *)kvm
+ offset
);
3412 spin_unlock(&kvm_lock
);
3416 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
3418 static int vcpu_stat_get(void *_offset
, u64
*val
)
3420 unsigned offset
= (long)_offset
;
3422 struct kvm_vcpu
*vcpu
;
3426 spin_lock(&kvm_lock
);
3427 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3428 kvm_for_each_vcpu(i
, vcpu
, kvm
)
3429 *val
+= *(u32
*)((void *)vcpu
+ offset
);
3431 spin_unlock(&kvm_lock
);
3435 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
3437 static const struct file_operations
*stat_fops
[] = {
3438 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3439 [KVM_STAT_VM
] = &vm_stat_fops
,
3442 static int kvm_init_debug(void)
3445 struct kvm_stats_debugfs_item
*p
;
3447 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3448 if (kvm_debugfs_dir
== NULL
)
3451 for (p
= debugfs_entries
; p
->name
; ++p
) {
3452 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
3453 (void *)(long)p
->offset
,
3454 stat_fops
[p
->kind
]);
3455 if (p
->dentry
== NULL
)
3462 debugfs_remove_recursive(kvm_debugfs_dir
);
3467 static void kvm_exit_debug(void)
3469 struct kvm_stats_debugfs_item
*p
;
3471 for (p
= debugfs_entries
; p
->name
; ++p
)
3472 debugfs_remove(p
->dentry
);
3473 debugfs_remove(kvm_debugfs_dir
);
3476 static int kvm_suspend(void)
3478 if (kvm_usage_count
)
3479 hardware_disable_nolock(NULL
);
3483 static void kvm_resume(void)
3485 if (kvm_usage_count
) {
3486 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3487 hardware_enable_nolock(NULL
);
3491 static struct syscore_ops kvm_syscore_ops
= {
3492 .suspend
= kvm_suspend
,
3493 .resume
= kvm_resume
,
3497 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3499 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3502 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3504 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3506 if (vcpu
->preempted
)
3507 vcpu
->preempted
= false;
3509 kvm_arch_sched_in(vcpu
, cpu
);
3511 kvm_arch_vcpu_load(vcpu
, cpu
);
3514 static void kvm_sched_out(struct preempt_notifier
*pn
,
3515 struct task_struct
*next
)
3517 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3519 if (current
->state
== TASK_RUNNING
)
3520 vcpu
->preempted
= true;
3521 kvm_arch_vcpu_put(vcpu
);
3524 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3525 struct module
*module
)
3530 r
= kvm_arch_init(opaque
);
3535 * kvm_arch_init makes sure there's at most one caller
3536 * for architectures that support multiple implementations,
3537 * like intel and amd on x86.
3538 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3539 * conflicts in case kvm is already setup for another implementation.
3541 r
= kvm_irqfd_init();
3545 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
3550 r
= kvm_arch_hardware_setup();
3554 for_each_online_cpu(cpu
) {
3555 smp_call_function_single(cpu
,
3556 kvm_arch_check_processor_compat
,
3562 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3565 register_reboot_notifier(&kvm_reboot_notifier
);
3567 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3569 vcpu_align
= __alignof__(struct kvm_vcpu
);
3570 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
3572 if (!kvm_vcpu_cache
) {
3577 r
= kvm_async_pf_init();
3581 kvm_chardev_ops
.owner
= module
;
3582 kvm_vm_fops
.owner
= module
;
3583 kvm_vcpu_fops
.owner
= module
;
3585 r
= misc_register(&kvm_dev
);
3587 pr_err("kvm: misc device register failed\n");
3591 register_syscore_ops(&kvm_syscore_ops
);
3593 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
3594 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
3596 r
= kvm_init_debug();
3598 pr_err("kvm: create debugfs files failed\n");
3602 r
= kvm_vfio_ops_init();
3608 unregister_syscore_ops(&kvm_syscore_ops
);
3609 misc_deregister(&kvm_dev
);
3611 kvm_async_pf_deinit();
3613 kmem_cache_destroy(kvm_vcpu_cache
);
3615 unregister_reboot_notifier(&kvm_reboot_notifier
);
3616 unregister_cpu_notifier(&kvm_cpu_notifier
);
3619 kvm_arch_hardware_unsetup();
3621 free_cpumask_var(cpus_hardware_enabled
);
3629 EXPORT_SYMBOL_GPL(kvm_init
);
3634 misc_deregister(&kvm_dev
);
3635 kmem_cache_destroy(kvm_vcpu_cache
);
3636 kvm_async_pf_deinit();
3637 unregister_syscore_ops(&kvm_syscore_ops
);
3638 unregister_reboot_notifier(&kvm_reboot_notifier
);
3639 unregister_cpu_notifier(&kvm_cpu_notifier
);
3640 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3641 kvm_arch_hardware_unsetup();
3644 free_cpumask_var(cpus_hardware_enabled
);
3645 kvm_vfio_ops_exit();
3647 EXPORT_SYMBOL_GPL(kvm_exit
);