Linux 3.16.66
[linux/fpc-iii.git] / kernel / time / tick-sched.c
blob003df76a03ea0861630d00a51b9afcfa8e0a1216
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
28 #include <asm/irq_regs.h>
30 #include "tick-internal.h"
32 #include <trace/events/timer.h>
35 * Per cpu nohz control structure
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
42 static ktime_t last_jiffies_update;
44 struct tick_sched *tick_get_tick_sched(int cpu)
46 return &per_cpu(tick_cpu_sched, cpu);
50 * Must be called with interrupts disabled !
52 static void tick_do_update_jiffies64(ktime_t now)
54 unsigned long ticks = 0;
55 ktime_t delta;
58 * Do a quick check without holding jiffies_lock:
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
78 ticks = ktime_divns(delta, incr);
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
83 do_timer(++ticks);
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
96 * Initialize and return retrieve the jiffies update.
98 static ktime_t tick_init_jiffy_update(void)
100 ktime_t period;
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
112 static void tick_sched_do_timer(ktime_t now)
114 int cpu = smp_processor_id();
116 #ifdef CONFIG_NO_HZ_COMMON
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
136 #ifdef CONFIG_NO_HZ_COMMON
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 bool tick_nohz_full_running;
159 static bool can_stop_full_tick(void)
161 WARN_ON_ONCE(!irqs_disabled());
163 if (!sched_can_stop_tick()) {
164 trace_tick_stop(0, "more than 1 task in runqueue\n");
165 return false;
168 if (!posix_cpu_timers_can_stop_tick(current)) {
169 trace_tick_stop(0, "posix timers running\n");
170 return false;
173 if (!perf_event_can_stop_tick()) {
174 trace_tick_stop(0, "perf events running\n");
175 return false;
178 /* sched_clock_tick() needs us? */
179 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 * TODO: kick full dynticks CPUs when
182 * sched_clock_stable is set.
184 if (!sched_clock_stable()) {
185 trace_tick_stop(0, "unstable sched clock\n");
187 * Don't allow the user to think they can get
188 * full NO_HZ with this machine.
190 WARN_ONCE(tick_nohz_full_running,
191 "NO_HZ FULL will not work with unstable sched clock");
192 return false;
194 #endif
196 return true;
199 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
202 * Re-evaluate the need for the tick on the current CPU
203 * and restart it if necessary.
205 void __tick_nohz_full_check(void)
207 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
209 if (tick_nohz_full_cpu(smp_processor_id())) {
210 if (ts->tick_stopped && !is_idle_task(current)) {
211 if (!can_stop_full_tick())
212 tick_nohz_restart_sched_tick(ts, ktime_get());
217 static void nohz_full_kick_work_func(struct irq_work *work)
219 __tick_nohz_full_check();
222 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
223 .func = nohz_full_kick_work_func,
227 * Kick the current CPU if it's full dynticks in order to force it to
228 * re-evaluate its dependency on the tick and restart it if necessary.
230 void tick_nohz_full_kick(void)
232 if (tick_nohz_full_cpu(smp_processor_id()))
233 irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
236 static void nohz_full_kick_ipi(void *info)
238 __tick_nohz_full_check();
242 * Kick all full dynticks CPUs in order to force these to re-evaluate
243 * their dependency on the tick and restart it if necessary.
245 void tick_nohz_full_kick_all(void)
247 if (!tick_nohz_full_running)
248 return;
250 preempt_disable();
251 smp_call_function_many(tick_nohz_full_mask,
252 nohz_full_kick_ipi, NULL, false);
253 tick_nohz_full_kick();
254 preempt_enable();
258 * Re-evaluate the need for the tick as we switch the current task.
259 * It might need the tick due to per task/process properties:
260 * perf events, posix cpu timers, ...
262 void __tick_nohz_task_switch(struct task_struct *tsk)
264 unsigned long flags;
266 local_irq_save(flags);
268 if (!tick_nohz_full_cpu(smp_processor_id()))
269 goto out;
271 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
272 tick_nohz_full_kick();
274 out:
275 local_irq_restore(flags);
278 /* Parse the boot-time nohz CPU list from the kernel parameters. */
279 static int __init tick_nohz_full_setup(char *str)
281 int cpu;
283 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
284 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
285 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
286 return 1;
289 cpu = smp_processor_id();
290 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
291 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
292 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
294 tick_nohz_full_running = true;
296 return 1;
298 __setup("nohz_full=", tick_nohz_full_setup);
300 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
301 unsigned long action,
302 void *hcpu)
304 unsigned int cpu = (unsigned long)hcpu;
306 switch (action & ~CPU_TASKS_FROZEN) {
307 case CPU_DOWN_PREPARE:
309 * If we handle the timekeeping duty for full dynticks CPUs,
310 * we can't safely shutdown that CPU.
312 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
313 return NOTIFY_BAD;
314 break;
316 return NOTIFY_OK;
320 * Worst case string length in chunks of CPU range seems 2 steps
321 * separations: 0,2,4,6,...
322 * This is NR_CPUS + sizeof('\0')
324 static char __initdata nohz_full_buf[NR_CPUS + 1];
326 static int tick_nohz_init_all(void)
328 int err = -1;
330 #ifdef CONFIG_NO_HZ_FULL_ALL
331 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
332 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
333 return err;
335 err = 0;
336 cpumask_setall(tick_nohz_full_mask);
337 cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
338 tick_nohz_full_running = true;
339 #endif
340 return err;
343 void __init tick_nohz_init(void)
345 int cpu;
347 if (!tick_nohz_full_running) {
348 if (tick_nohz_init_all() < 0)
349 return;
352 for_each_cpu(cpu, tick_nohz_full_mask)
353 context_tracking_cpu_set(cpu);
355 cpu_notifier(tick_nohz_cpu_down_callback, 0);
356 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
357 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
359 #endif
362 * NOHZ - aka dynamic tick functionality
364 #ifdef CONFIG_NO_HZ_COMMON
366 * NO HZ enabled ?
368 static int tick_nohz_enabled __read_mostly = 1;
369 int tick_nohz_active __read_mostly;
371 * Enable / Disable tickless mode
373 static int __init setup_tick_nohz(char *str)
375 if (!strcmp(str, "off"))
376 tick_nohz_enabled = 0;
377 else if (!strcmp(str, "on"))
378 tick_nohz_enabled = 1;
379 else
380 return 0;
381 return 1;
384 __setup("nohz=", setup_tick_nohz);
387 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
389 * Called from interrupt entry when the CPU was idle
391 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
392 * must be updated. Otherwise an interrupt handler could use a stale jiffy
393 * value. We do this unconditionally on any cpu, as we don't know whether the
394 * cpu, which has the update task assigned is in a long sleep.
396 static void tick_nohz_update_jiffies(ktime_t now)
398 unsigned long flags;
400 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
402 local_irq_save(flags);
403 tick_do_update_jiffies64(now);
404 local_irq_restore(flags);
406 touch_softlockup_watchdog();
410 * Updates the per cpu time idle statistics counters
412 static void
413 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
415 ktime_t delta;
417 if (ts->idle_active) {
418 delta = ktime_sub(now, ts->idle_entrytime);
419 if (nr_iowait_cpu(cpu) > 0)
420 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
421 else
422 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
423 ts->idle_entrytime = now;
426 if (last_update_time)
427 *last_update_time = ktime_to_us(now);
431 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
433 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
434 ts->idle_active = 0;
436 sched_clock_idle_wakeup_event(0);
439 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
441 ktime_t now = ktime_get();
443 ts->idle_entrytime = now;
444 ts->idle_active = 1;
445 sched_clock_idle_sleep_event();
446 return now;
450 * get_cpu_idle_time_us - get the total idle time of a cpu
451 * @cpu: CPU number to query
452 * @last_update_time: variable to store update time in. Do not update
453 * counters if NULL.
455 * Return the cummulative idle time (since boot) for a given
456 * CPU, in microseconds.
458 * This time is measured via accounting rather than sampling,
459 * and is as accurate as ktime_get() is.
461 * This function returns -1 if NOHZ is not enabled.
463 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
465 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
466 ktime_t now, idle;
468 if (!tick_nohz_active)
469 return -1;
471 now = ktime_get();
472 if (last_update_time) {
473 update_ts_time_stats(cpu, ts, now, last_update_time);
474 idle = ts->idle_sleeptime;
475 } else {
476 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
477 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
479 idle = ktime_add(ts->idle_sleeptime, delta);
480 } else {
481 idle = ts->idle_sleeptime;
485 return ktime_to_us(idle);
488 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
491 * get_cpu_iowait_time_us - get the total iowait time of a cpu
492 * @cpu: CPU number to query
493 * @last_update_time: variable to store update time in. Do not update
494 * counters if NULL.
496 * Return the cummulative iowait time (since boot) for a given
497 * CPU, in microseconds.
499 * This time is measured via accounting rather than sampling,
500 * and is as accurate as ktime_get() is.
502 * This function returns -1 if NOHZ is not enabled.
504 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
506 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
507 ktime_t now, iowait;
509 if (!tick_nohz_active)
510 return -1;
512 now = ktime_get();
513 if (last_update_time) {
514 update_ts_time_stats(cpu, ts, now, last_update_time);
515 iowait = ts->iowait_sleeptime;
516 } else {
517 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
518 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
520 iowait = ktime_add(ts->iowait_sleeptime, delta);
521 } else {
522 iowait = ts->iowait_sleeptime;
526 return ktime_to_us(iowait);
528 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
530 static inline bool local_timer_softirq_pending(void)
532 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
535 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
536 ktime_t now, int cpu)
538 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
539 ktime_t last_update, expires, ret = { .tv64 = 0 };
540 unsigned long rcu_delta_jiffies;
541 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
542 u64 time_delta;
544 time_delta = timekeeping_max_deferment();
546 /* Read jiffies and the time when jiffies were updated last */
547 do {
548 seq = read_seqbegin(&jiffies_lock);
549 last_update = last_jiffies_update;
550 last_jiffies = jiffies;
551 } while (read_seqretry(&jiffies_lock, seq));
554 * Keep the periodic tick, when RCU, architecture or irq_work
555 * requests it.
556 * Aside of that check whether the local timer softirq is
557 * pending. If so its a bad idea to call get_next_timer_interrupt()
558 * because there is an already expired timer, so it will request
559 * immeditate expiry, which rearms the hardware timer with a
560 * minimal delta which brings us back to this place
561 * immediately. Lather, rinse and repeat...
563 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || arch_needs_cpu(cpu) ||
564 irq_work_needs_cpu() || local_timer_softirq_pending()) {
565 next_jiffies = last_jiffies + 1;
566 delta_jiffies = 1;
567 } else {
568 /* Get the next timer wheel timer */
569 next_jiffies = get_next_timer_interrupt(last_jiffies);
570 delta_jiffies = next_jiffies - last_jiffies;
571 if (rcu_delta_jiffies < delta_jiffies) {
572 next_jiffies = last_jiffies + rcu_delta_jiffies;
573 delta_jiffies = rcu_delta_jiffies;
578 * Do not stop the tick, if we are only one off (or less)
579 * or if the cpu is required for RCU:
581 if (!ts->tick_stopped && delta_jiffies <= 1)
582 goto out;
584 /* Schedule the tick, if we are at least one jiffie off */
585 if ((long)delta_jiffies >= 1) {
588 * If this cpu is the one which updates jiffies, then
589 * give up the assignment and let it be taken by the
590 * cpu which runs the tick timer next, which might be
591 * this cpu as well. If we don't drop this here the
592 * jiffies might be stale and do_timer() never
593 * invoked. Keep track of the fact that it was the one
594 * which had the do_timer() duty last. If this cpu is
595 * the one which had the do_timer() duty last, we
596 * limit the sleep time to the timekeeping
597 * max_deferement value which we retrieved
598 * above. Otherwise we can sleep as long as we want.
600 if (cpu == tick_do_timer_cpu) {
601 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
602 ts->do_timer_last = 1;
603 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
604 time_delta = KTIME_MAX;
605 ts->do_timer_last = 0;
606 } else if (!ts->do_timer_last) {
607 time_delta = KTIME_MAX;
610 #ifdef CONFIG_NO_HZ_FULL
611 if (!ts->inidle) {
612 time_delta = min(time_delta,
613 scheduler_tick_max_deferment());
615 #endif
618 * calculate the expiry time for the next timer wheel
619 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
620 * that there is no timer pending or at least extremely
621 * far into the future (12 days for HZ=1000). In this
622 * case we set the expiry to the end of time.
624 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
626 * Calculate the time delta for the next timer event.
627 * If the time delta exceeds the maximum time delta
628 * permitted by the current clocksource then adjust
629 * the time delta accordingly to ensure the
630 * clocksource does not wrap.
632 time_delta = min_t(u64, time_delta,
633 tick_period.tv64 * delta_jiffies);
636 if (time_delta < KTIME_MAX)
637 expires = ktime_add_ns(last_update, time_delta);
638 else
639 expires.tv64 = KTIME_MAX;
641 /* Skip reprogram of event if its not changed */
642 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
643 goto out;
645 ret = expires;
648 * nohz_stop_sched_tick can be called several times before
649 * the nohz_restart_sched_tick is called. This happens when
650 * interrupts arrive which do not cause a reschedule. In the
651 * first call we save the current tick time, so we can restart
652 * the scheduler tick in nohz_restart_sched_tick.
654 if (!ts->tick_stopped) {
655 nohz_balance_enter_idle(cpu);
656 calc_load_enter_idle();
658 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
659 ts->tick_stopped = 1;
660 trace_tick_stop(1, " ");
664 * If the expiration time == KTIME_MAX, then
665 * in this case we simply stop the tick timer.
667 if (unlikely(expires.tv64 == KTIME_MAX)) {
668 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
669 hrtimer_cancel(&ts->sched_timer);
670 goto out;
673 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
674 hrtimer_start(&ts->sched_timer, expires,
675 HRTIMER_MODE_ABS_PINNED);
676 /* Check, if the timer was already in the past */
677 if (hrtimer_active(&ts->sched_timer))
678 goto out;
679 } else if (!tick_program_event(expires, 0))
680 goto out;
682 * We are past the event already. So we crossed a
683 * jiffie boundary. Update jiffies and raise the
684 * softirq.
686 tick_do_update_jiffies64(ktime_get());
688 raise_softirq_irqoff(TIMER_SOFTIRQ);
689 out:
690 ts->next_jiffies = next_jiffies;
691 ts->last_jiffies = last_jiffies;
692 ts->sleep_length = ktime_sub(dev->next_event, now);
694 return ret;
697 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
699 #ifdef CONFIG_NO_HZ_FULL
700 int cpu = smp_processor_id();
702 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
703 return;
705 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
706 return;
708 if (!can_stop_full_tick())
709 return;
711 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
712 #endif
715 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
718 * If this cpu is offline and it is the one which updates
719 * jiffies, then give up the assignment and let it be taken by
720 * the cpu which runs the tick timer next. If we don't drop
721 * this here the jiffies might be stale and do_timer() never
722 * invoked.
724 if (unlikely(!cpu_online(cpu))) {
725 if (cpu == tick_do_timer_cpu)
726 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
727 return false;
730 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
731 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
732 return false;
735 if (need_resched())
736 return false;
738 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
739 static int ratelimit;
741 if (ratelimit < 10 &&
742 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
743 pr_warn("NOHZ: local_softirq_pending %02x\n",
744 (unsigned int) local_softirq_pending());
745 ratelimit++;
747 return false;
750 if (tick_nohz_full_enabled()) {
752 * Keep the tick alive to guarantee timekeeping progression
753 * if there are full dynticks CPUs around
755 if (tick_do_timer_cpu == cpu)
756 return false;
758 * Boot safety: make sure the timekeeping duty has been
759 * assigned before entering dyntick-idle mode,
761 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
762 return false;
765 return true;
768 static void __tick_nohz_idle_enter(struct tick_sched *ts)
770 ktime_t now, expires;
771 int cpu = smp_processor_id();
773 now = tick_nohz_start_idle(ts);
775 if (can_stop_idle_tick(cpu, ts)) {
776 int was_stopped = ts->tick_stopped;
778 ts->idle_calls++;
780 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
781 if (expires.tv64 > 0LL) {
782 ts->idle_sleeps++;
783 ts->idle_expires = expires;
786 if (!was_stopped && ts->tick_stopped)
787 ts->idle_jiffies = ts->last_jiffies;
792 * tick_nohz_idle_enter - stop the idle tick from the idle task
794 * When the next event is more than a tick into the future, stop the idle tick
795 * Called when we start the idle loop.
797 * The arch is responsible of calling:
799 * - rcu_idle_enter() after its last use of RCU before the CPU is put
800 * to sleep.
801 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
803 void tick_nohz_idle_enter(void)
805 struct tick_sched *ts;
807 WARN_ON_ONCE(irqs_disabled());
810 * Update the idle state in the scheduler domain hierarchy
811 * when tick_nohz_stop_sched_tick() is called from the idle loop.
812 * State will be updated to busy during the first busy tick after
813 * exiting idle.
815 set_cpu_sd_state_idle();
817 local_irq_disable();
819 ts = &__get_cpu_var(tick_cpu_sched);
820 ts->inidle = 1;
821 __tick_nohz_idle_enter(ts);
823 local_irq_enable();
827 * tick_nohz_irq_exit - update next tick event from interrupt exit
829 * When an interrupt fires while we are idle and it doesn't cause
830 * a reschedule, it may still add, modify or delete a timer, enqueue
831 * an RCU callback, etc...
832 * So we need to re-calculate and reprogram the next tick event.
834 void tick_nohz_irq_exit(void)
836 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
838 if (ts->inidle)
839 __tick_nohz_idle_enter(ts);
840 else
841 tick_nohz_full_stop_tick(ts);
845 * tick_nohz_get_sleep_length - return the length of the current sleep
847 * Called from power state control code with interrupts disabled
849 ktime_t tick_nohz_get_sleep_length(void)
851 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
853 return ts->sleep_length;
856 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
858 hrtimer_cancel(&ts->sched_timer);
859 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
861 while (1) {
862 /* Forward the time to expire in the future */
863 hrtimer_forward(&ts->sched_timer, now, tick_period);
865 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
866 hrtimer_start_expires(&ts->sched_timer,
867 HRTIMER_MODE_ABS_PINNED);
868 /* Check, if the timer was already in the past */
869 if (hrtimer_active(&ts->sched_timer))
870 break;
871 } else {
872 if (!tick_program_event(
873 hrtimer_get_expires(&ts->sched_timer), 0))
874 break;
876 /* Reread time and update jiffies */
877 now = ktime_get();
878 tick_do_update_jiffies64(now);
882 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
884 /* Update jiffies first */
885 tick_do_update_jiffies64(now);
886 update_cpu_load_nohz();
888 calc_load_exit_idle();
889 touch_softlockup_watchdog();
891 * Cancel the scheduled timer and restore the tick
893 ts->tick_stopped = 0;
894 ts->idle_exittime = now;
896 tick_nohz_restart(ts, now);
899 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
901 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
902 unsigned long ticks;
904 if (vtime_accounting_enabled())
905 return;
907 * We stopped the tick in idle. Update process times would miss the
908 * time we slept as update_process_times does only a 1 tick
909 * accounting. Enforce that this is accounted to idle !
911 ticks = jiffies - ts->idle_jiffies;
913 * We might be one off. Do not randomly account a huge number of ticks!
915 if (ticks && ticks < LONG_MAX)
916 account_idle_ticks(ticks);
917 #endif
921 * tick_nohz_idle_exit - restart the idle tick from the idle task
923 * Restart the idle tick when the CPU is woken up from idle
924 * This also exit the RCU extended quiescent state. The CPU
925 * can use RCU again after this function is called.
927 void tick_nohz_idle_exit(void)
929 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
930 ktime_t now;
932 local_irq_disable();
934 WARN_ON_ONCE(!ts->inidle);
936 ts->inidle = 0;
938 if (ts->idle_active || ts->tick_stopped)
939 now = ktime_get();
941 if (ts->idle_active)
942 tick_nohz_stop_idle(ts, now);
944 if (ts->tick_stopped) {
945 tick_nohz_restart_sched_tick(ts, now);
946 tick_nohz_account_idle_ticks(ts);
949 local_irq_enable();
952 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
954 hrtimer_forward(&ts->sched_timer, now, tick_period);
955 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
959 * The nohz low res interrupt handler
961 static void tick_nohz_handler(struct clock_event_device *dev)
963 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
964 struct pt_regs *regs = get_irq_regs();
965 ktime_t now = ktime_get();
967 dev->next_event.tv64 = KTIME_MAX;
969 tick_sched_do_timer(now);
970 tick_sched_handle(ts, regs);
972 while (tick_nohz_reprogram(ts, now)) {
973 now = ktime_get();
974 tick_do_update_jiffies64(now);
979 * tick_nohz_switch_to_nohz - switch to nohz mode
981 static void tick_nohz_switch_to_nohz(void)
983 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
984 ktime_t next;
986 if (!tick_nohz_enabled)
987 return;
989 local_irq_disable();
990 if (tick_switch_to_oneshot(tick_nohz_handler)) {
991 local_irq_enable();
992 return;
994 tick_nohz_active = 1;
995 ts->nohz_mode = NOHZ_MODE_LOWRES;
998 * Recycle the hrtimer in ts, so we can share the
999 * hrtimer_forward with the highres code.
1001 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1002 /* Get the next period */
1003 next = tick_init_jiffy_update();
1005 for (;;) {
1006 hrtimer_set_expires(&ts->sched_timer, next);
1007 if (!tick_program_event(next, 0))
1008 break;
1009 next = ktime_add(next, tick_period);
1011 local_irq_enable();
1015 * When NOHZ is enabled and the tick is stopped, we need to kick the
1016 * tick timer from irq_enter() so that the jiffies update is kept
1017 * alive during long running softirqs. That's ugly as hell, but
1018 * correctness is key even if we need to fix the offending softirq in
1019 * the first place.
1021 * Note, this is different to tick_nohz_restart. We just kick the
1022 * timer and do not touch the other magic bits which need to be done
1023 * when idle is left.
1025 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1027 #if 0
1028 /* Switch back to 2.6.27 behaviour */
1029 ktime_t delta;
1032 * Do not touch the tick device, when the next expiry is either
1033 * already reached or less/equal than the tick period.
1035 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1036 if (delta.tv64 <= tick_period.tv64)
1037 return;
1039 tick_nohz_restart(ts, now);
1040 #endif
1043 static inline void tick_nohz_irq_enter(void)
1045 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1046 ktime_t now;
1048 if (!ts->idle_active && !ts->tick_stopped)
1049 return;
1050 now = ktime_get();
1051 if (ts->idle_active)
1052 tick_nohz_stop_idle(ts, now);
1053 if (ts->tick_stopped) {
1054 tick_nohz_update_jiffies(now);
1055 tick_nohz_kick_tick(ts, now);
1059 #else
1061 static inline void tick_nohz_switch_to_nohz(void) { }
1062 static inline void tick_nohz_irq_enter(void) { }
1064 #endif /* CONFIG_NO_HZ_COMMON */
1067 * Called from irq_enter to notify about the possible interruption of idle()
1069 void tick_irq_enter(void)
1071 tick_check_oneshot_broadcast_this_cpu();
1072 tick_nohz_irq_enter();
1076 * High resolution timer specific code
1078 #ifdef CONFIG_HIGH_RES_TIMERS
1080 * We rearm the timer until we get disabled by the idle code.
1081 * Called with interrupts disabled.
1083 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1085 struct tick_sched *ts =
1086 container_of(timer, struct tick_sched, sched_timer);
1087 struct pt_regs *regs = get_irq_regs();
1088 ktime_t now = ktime_get();
1090 tick_sched_do_timer(now);
1093 * Do not call, when we are not in irq context and have
1094 * no valid regs pointer
1096 if (regs)
1097 tick_sched_handle(ts, regs);
1099 hrtimer_forward(timer, now, tick_period);
1101 return HRTIMER_RESTART;
1104 static int sched_skew_tick;
1106 static int __init skew_tick(char *str)
1108 get_option(&str, &sched_skew_tick);
1110 return 0;
1112 early_param("skew_tick", skew_tick);
1115 * tick_setup_sched_timer - setup the tick emulation timer
1117 void tick_setup_sched_timer(void)
1119 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1120 ktime_t now = ktime_get();
1123 * Emulate tick processing via per-CPU hrtimers:
1125 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1126 ts->sched_timer.function = tick_sched_timer;
1128 /* Get the next period (per cpu) */
1129 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1131 /* Offset the tick to avert jiffies_lock contention. */
1132 if (sched_skew_tick) {
1133 u64 offset = ktime_to_ns(tick_period) >> 1;
1134 do_div(offset, num_possible_cpus());
1135 offset *= smp_processor_id();
1136 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1139 for (;;) {
1140 hrtimer_forward(&ts->sched_timer, now, tick_period);
1141 hrtimer_start_expires(&ts->sched_timer,
1142 HRTIMER_MODE_ABS_PINNED);
1143 /* Check, if the timer was already in the past */
1144 if (hrtimer_active(&ts->sched_timer))
1145 break;
1146 now = ktime_get();
1149 #ifdef CONFIG_NO_HZ_COMMON
1150 if (tick_nohz_enabled) {
1151 ts->nohz_mode = NOHZ_MODE_HIGHRES;
1152 tick_nohz_active = 1;
1154 #endif
1156 #endif /* HIGH_RES_TIMERS */
1158 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1159 void tick_cancel_sched_timer(int cpu)
1161 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1163 # ifdef CONFIG_HIGH_RES_TIMERS
1164 if (ts->sched_timer.base)
1165 hrtimer_cancel(&ts->sched_timer);
1166 # endif
1168 memset(ts, 0, sizeof(*ts));
1170 #endif
1173 * Async notification about clocksource changes
1175 void tick_clock_notify(void)
1177 int cpu;
1179 for_each_possible_cpu(cpu)
1180 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1184 * Async notification about clock event changes
1186 void tick_oneshot_notify(void)
1188 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1190 set_bit(0, &ts->check_clocks);
1194 * Check, if a change happened, which makes oneshot possible.
1196 * Called cyclic from the hrtimer softirq (driven by the timer
1197 * softirq) allow_nohz signals, that we can switch into low-res nohz
1198 * mode, because high resolution timers are disabled (either compile
1199 * or runtime).
1201 int tick_check_oneshot_change(int allow_nohz)
1203 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1205 if (!test_and_clear_bit(0, &ts->check_clocks))
1206 return 0;
1208 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1209 return 0;
1211 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1212 return 0;
1214 if (!allow_nohz)
1215 return 1;
1217 tick_nohz_switch_to_nohz();
1218 return 0;