net: dsa: slave: chip data is optional, don't dereference NULL
[linux/fpc-iii.git] / fs / exec.c
blob887c1c955df8264efc43bd0964f971ac8c107f34
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
65 #include <trace/events/task.h>
66 #include "internal.h"
68 #include <trace/events/sched.h>
70 int suid_dumpable = 0;
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
86 EXPORT_SYMBOL(__register_binfmt);
88 void unregister_binfmt(struct linux_binfmt * fmt)
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
95 EXPORT_SYMBOL(unregister_binfmt);
97 static inline void put_binfmt(struct linux_binfmt * fmt)
99 module_put(fmt->module);
102 bool path_noexec(const struct path *path)
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
108 #ifdef CONFIG_USELIB
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
113 * Also note that we take the address to load from from the file itself.
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
128 if (IS_ERR(tmp))
129 goto out;
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
145 fsnotify_open(file);
147 error = -ENOEXEC;
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
162 read_unlock(&binfmt_lock);
163 exit:
164 fput(file);
165 out:
166 return error;
168 #endif /* #ifdef CONFIG_USELIB */
170 #ifdef CONFIG_MMU
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
182 if (!mm || !diff)
183 return;
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
192 struct page *page;
193 int ret;
195 #ifdef CONFIG_STACK_GROWSUP
196 if (write) {
197 ret = expand_downwards(bprm->vma, pos);
198 if (ret < 0)
199 return NULL;
201 #endif
203 * We are doing an exec(). 'current' is the process
204 * doing the exec and bprm->mm is the new process's mm.
206 ret = get_user_pages_remote(current, bprm->mm, pos, 1, write,
207 1, &page, NULL);
208 if (ret <= 0)
209 return NULL;
211 if (write) {
212 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
213 struct rlimit *rlim;
215 acct_arg_size(bprm, size / PAGE_SIZE);
218 * We've historically supported up to 32 pages (ARG_MAX)
219 * of argument strings even with small stacks
221 if (size <= ARG_MAX)
222 return page;
225 * Limit to 1/4-th the stack size for the argv+env strings.
226 * This ensures that:
227 * - the remaining binfmt code will not run out of stack space,
228 * - the program will have a reasonable amount of stack left
229 * to work from.
231 rlim = current->signal->rlim;
232 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
233 put_page(page);
234 return NULL;
238 return page;
241 static void put_arg_page(struct page *page)
243 put_page(page);
246 static void free_arg_pages(struct linux_binprm *bprm)
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 struct page *page)
253 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
256 static int __bprm_mm_init(struct linux_binprm *bprm)
258 int err;
259 struct vm_area_struct *vma = NULL;
260 struct mm_struct *mm = bprm->mm;
262 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 if (!vma)
264 return -ENOMEM;
266 if (down_write_killable(&mm->mmap_sem)) {
267 err = -EINTR;
268 goto err_free;
270 vma->vm_mm = mm;
273 * Place the stack at the largest stack address the architecture
274 * supports. Later, we'll move this to an appropriate place. We don't
275 * use STACK_TOP because that can depend on attributes which aren't
276 * configured yet.
278 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
279 vma->vm_end = STACK_TOP_MAX;
280 vma->vm_start = vma->vm_end - PAGE_SIZE;
281 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
282 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
283 INIT_LIST_HEAD(&vma->anon_vma_chain);
285 err = insert_vm_struct(mm, vma);
286 if (err)
287 goto err;
289 mm->stack_vm = mm->total_vm = 1;
290 arch_bprm_mm_init(mm, vma);
291 up_write(&mm->mmap_sem);
292 bprm->p = vma->vm_end - sizeof(void *);
293 return 0;
294 err:
295 up_write(&mm->mmap_sem);
296 err_free:
297 bprm->vma = NULL;
298 kmem_cache_free(vm_area_cachep, vma);
299 return err;
302 static bool valid_arg_len(struct linux_binprm *bprm, long len)
304 return len <= MAX_ARG_STRLEN;
307 #else
309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
314 int write)
316 struct page *page;
318 page = bprm->page[pos / PAGE_SIZE];
319 if (!page && write) {
320 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
321 if (!page)
322 return NULL;
323 bprm->page[pos / PAGE_SIZE] = page;
326 return page;
329 static void put_arg_page(struct page *page)
333 static void free_arg_page(struct linux_binprm *bprm, int i)
335 if (bprm->page[i]) {
336 __free_page(bprm->page[i]);
337 bprm->page[i] = NULL;
341 static void free_arg_pages(struct linux_binprm *bprm)
343 int i;
345 for (i = 0; i < MAX_ARG_PAGES; i++)
346 free_arg_page(bprm, i);
349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
350 struct page *page)
354 static int __bprm_mm_init(struct linux_binprm *bprm)
356 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357 return 0;
360 static bool valid_arg_len(struct linux_binprm *bprm, long len)
362 return len <= bprm->p;
365 #endif /* CONFIG_MMU */
368 * Create a new mm_struct and populate it with a temporary stack
369 * vm_area_struct. We don't have enough context at this point to set the stack
370 * flags, permissions, and offset, so we use temporary values. We'll update
371 * them later in setup_arg_pages().
373 static int bprm_mm_init(struct linux_binprm *bprm)
375 int err;
376 struct mm_struct *mm = NULL;
378 bprm->mm = mm = mm_alloc();
379 err = -ENOMEM;
380 if (!mm)
381 goto err;
383 err = __bprm_mm_init(bprm);
384 if (err)
385 goto err;
387 return 0;
389 err:
390 if (mm) {
391 bprm->mm = NULL;
392 mmdrop(mm);
395 return err;
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 bool is_compat;
401 #endif
402 union {
403 const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 const compat_uptr_t __user *compat;
406 #endif
407 } ptr;
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
412 const char __user *native;
414 #ifdef CONFIG_COMPAT
415 if (unlikely(argv.is_compat)) {
416 compat_uptr_t compat;
418 if (get_user(compat, argv.ptr.compat + nr))
419 return ERR_PTR(-EFAULT);
421 return compat_ptr(compat);
423 #endif
425 if (get_user(native, argv.ptr.native + nr))
426 return ERR_PTR(-EFAULT);
428 return native;
432 * count() counts the number of strings in array ARGV.
434 static int count(struct user_arg_ptr argv, int max)
436 int i = 0;
438 if (argv.ptr.native != NULL) {
439 for (;;) {
440 const char __user *p = get_user_arg_ptr(argv, i);
442 if (!p)
443 break;
445 if (IS_ERR(p))
446 return -EFAULT;
448 if (i >= max)
449 return -E2BIG;
450 ++i;
452 if (fatal_signal_pending(current))
453 return -ERESTARTNOHAND;
454 cond_resched();
457 return i;
461 * 'copy_strings()' copies argument/environment strings from the old
462 * processes's memory to the new process's stack. The call to get_user_pages()
463 * ensures the destination page is created and not swapped out.
465 static int copy_strings(int argc, struct user_arg_ptr argv,
466 struct linux_binprm *bprm)
468 struct page *kmapped_page = NULL;
469 char *kaddr = NULL;
470 unsigned long kpos = 0;
471 int ret;
473 while (argc-- > 0) {
474 const char __user *str;
475 int len;
476 unsigned long pos;
478 ret = -EFAULT;
479 str = get_user_arg_ptr(argv, argc);
480 if (IS_ERR(str))
481 goto out;
483 len = strnlen_user(str, MAX_ARG_STRLEN);
484 if (!len)
485 goto out;
487 ret = -E2BIG;
488 if (!valid_arg_len(bprm, len))
489 goto out;
491 /* We're going to work our way backwords. */
492 pos = bprm->p;
493 str += len;
494 bprm->p -= len;
496 while (len > 0) {
497 int offset, bytes_to_copy;
499 if (fatal_signal_pending(current)) {
500 ret = -ERESTARTNOHAND;
501 goto out;
503 cond_resched();
505 offset = pos % PAGE_SIZE;
506 if (offset == 0)
507 offset = PAGE_SIZE;
509 bytes_to_copy = offset;
510 if (bytes_to_copy > len)
511 bytes_to_copy = len;
513 offset -= bytes_to_copy;
514 pos -= bytes_to_copy;
515 str -= bytes_to_copy;
516 len -= bytes_to_copy;
518 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
519 struct page *page;
521 page = get_arg_page(bprm, pos, 1);
522 if (!page) {
523 ret = -E2BIG;
524 goto out;
527 if (kmapped_page) {
528 flush_kernel_dcache_page(kmapped_page);
529 kunmap(kmapped_page);
530 put_arg_page(kmapped_page);
532 kmapped_page = page;
533 kaddr = kmap(kmapped_page);
534 kpos = pos & PAGE_MASK;
535 flush_arg_page(bprm, kpos, kmapped_page);
537 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
538 ret = -EFAULT;
539 goto out;
543 ret = 0;
544 out:
545 if (kmapped_page) {
546 flush_kernel_dcache_page(kmapped_page);
547 kunmap(kmapped_page);
548 put_arg_page(kmapped_page);
550 return ret;
554 * Like copy_strings, but get argv and its values from kernel memory.
556 int copy_strings_kernel(int argc, const char *const *__argv,
557 struct linux_binprm *bprm)
559 int r;
560 mm_segment_t oldfs = get_fs();
561 struct user_arg_ptr argv = {
562 .ptr.native = (const char __user *const __user *)__argv,
565 set_fs(KERNEL_DS);
566 r = copy_strings(argc, argv, bprm);
567 set_fs(oldfs);
569 return r;
571 EXPORT_SYMBOL(copy_strings_kernel);
573 #ifdef CONFIG_MMU
576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
577 * the binfmt code determines where the new stack should reside, we shift it to
578 * its final location. The process proceeds as follows:
580 * 1) Use shift to calculate the new vma endpoints.
581 * 2) Extend vma to cover both the old and new ranges. This ensures the
582 * arguments passed to subsequent functions are consistent.
583 * 3) Move vma's page tables to the new range.
584 * 4) Free up any cleared pgd range.
585 * 5) Shrink the vma to cover only the new range.
587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
589 struct mm_struct *mm = vma->vm_mm;
590 unsigned long old_start = vma->vm_start;
591 unsigned long old_end = vma->vm_end;
592 unsigned long length = old_end - old_start;
593 unsigned long new_start = old_start - shift;
594 unsigned long new_end = old_end - shift;
595 struct mmu_gather tlb;
597 BUG_ON(new_start > new_end);
600 * ensure there are no vmas between where we want to go
601 * and where we are
603 if (vma != find_vma(mm, new_start))
604 return -EFAULT;
607 * cover the whole range: [new_start, old_end)
609 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
610 return -ENOMEM;
613 * move the page tables downwards, on failure we rely on
614 * process cleanup to remove whatever mess we made.
616 if (length != move_page_tables(vma, old_start,
617 vma, new_start, length, false))
618 return -ENOMEM;
620 lru_add_drain();
621 tlb_gather_mmu(&tlb, mm, old_start, old_end);
622 if (new_end > old_start) {
624 * when the old and new regions overlap clear from new_end.
626 free_pgd_range(&tlb, new_end, old_end, new_end,
627 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
628 } else {
630 * otherwise, clean from old_start; this is done to not touch
631 * the address space in [new_end, old_start) some architectures
632 * have constraints on va-space that make this illegal (IA64) -
633 * for the others its just a little faster.
635 free_pgd_range(&tlb, old_start, old_end, new_end,
636 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
638 tlb_finish_mmu(&tlb, old_start, old_end);
641 * Shrink the vma to just the new range. Always succeeds.
643 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
645 return 0;
649 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650 * the stack is optionally relocated, and some extra space is added.
652 int setup_arg_pages(struct linux_binprm *bprm,
653 unsigned long stack_top,
654 int executable_stack)
656 unsigned long ret;
657 unsigned long stack_shift;
658 struct mm_struct *mm = current->mm;
659 struct vm_area_struct *vma = bprm->vma;
660 struct vm_area_struct *prev = NULL;
661 unsigned long vm_flags;
662 unsigned long stack_base;
663 unsigned long stack_size;
664 unsigned long stack_expand;
665 unsigned long rlim_stack;
667 #ifdef CONFIG_STACK_GROWSUP
668 /* Limit stack size */
669 stack_base = rlimit_max(RLIMIT_STACK);
670 if (stack_base > STACK_SIZE_MAX)
671 stack_base = STACK_SIZE_MAX;
673 /* Add space for stack randomization. */
674 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
676 /* Make sure we didn't let the argument array grow too large. */
677 if (vma->vm_end - vma->vm_start > stack_base)
678 return -ENOMEM;
680 stack_base = PAGE_ALIGN(stack_top - stack_base);
682 stack_shift = vma->vm_start - stack_base;
683 mm->arg_start = bprm->p - stack_shift;
684 bprm->p = vma->vm_end - stack_shift;
685 #else
686 stack_top = arch_align_stack(stack_top);
687 stack_top = PAGE_ALIGN(stack_top);
689 if (unlikely(stack_top < mmap_min_addr) ||
690 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
691 return -ENOMEM;
693 stack_shift = vma->vm_end - stack_top;
695 bprm->p -= stack_shift;
696 mm->arg_start = bprm->p;
697 #endif
699 if (bprm->loader)
700 bprm->loader -= stack_shift;
701 bprm->exec -= stack_shift;
703 if (down_write_killable(&mm->mmap_sem))
704 return -EINTR;
706 vm_flags = VM_STACK_FLAGS;
709 * Adjust stack execute permissions; explicitly enable for
710 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
711 * (arch default) otherwise.
713 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
714 vm_flags |= VM_EXEC;
715 else if (executable_stack == EXSTACK_DISABLE_X)
716 vm_flags &= ~VM_EXEC;
717 vm_flags |= mm->def_flags;
718 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
720 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
721 vm_flags);
722 if (ret)
723 goto out_unlock;
724 BUG_ON(prev != vma);
726 /* Move stack pages down in memory. */
727 if (stack_shift) {
728 ret = shift_arg_pages(vma, stack_shift);
729 if (ret)
730 goto out_unlock;
733 /* mprotect_fixup is overkill to remove the temporary stack flags */
734 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
736 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
737 stack_size = vma->vm_end - vma->vm_start;
739 * Align this down to a page boundary as expand_stack
740 * will align it up.
742 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
743 #ifdef CONFIG_STACK_GROWSUP
744 if (stack_size + stack_expand > rlim_stack)
745 stack_base = vma->vm_start + rlim_stack;
746 else
747 stack_base = vma->vm_end + stack_expand;
748 #else
749 if (stack_size + stack_expand > rlim_stack)
750 stack_base = vma->vm_end - rlim_stack;
751 else
752 stack_base = vma->vm_start - stack_expand;
753 #endif
754 current->mm->start_stack = bprm->p;
755 ret = expand_stack(vma, stack_base);
756 if (ret)
757 ret = -EFAULT;
759 out_unlock:
760 up_write(&mm->mmap_sem);
761 return ret;
763 EXPORT_SYMBOL(setup_arg_pages);
765 #endif /* CONFIG_MMU */
767 static struct file *do_open_execat(int fd, struct filename *name, int flags)
769 struct file *file;
770 int err;
771 struct open_flags open_exec_flags = {
772 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
773 .acc_mode = MAY_EXEC,
774 .intent = LOOKUP_OPEN,
775 .lookup_flags = LOOKUP_FOLLOW,
778 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
779 return ERR_PTR(-EINVAL);
780 if (flags & AT_SYMLINK_NOFOLLOW)
781 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
782 if (flags & AT_EMPTY_PATH)
783 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
785 file = do_filp_open(fd, name, &open_exec_flags);
786 if (IS_ERR(file))
787 goto out;
789 err = -EACCES;
790 if (!S_ISREG(file_inode(file)->i_mode))
791 goto exit;
793 if (path_noexec(&file->f_path))
794 goto exit;
796 err = deny_write_access(file);
797 if (err)
798 goto exit;
800 if (name->name[0] != '\0')
801 fsnotify_open(file);
803 out:
804 return file;
806 exit:
807 fput(file);
808 return ERR_PTR(err);
811 struct file *open_exec(const char *name)
813 struct filename *filename = getname_kernel(name);
814 struct file *f = ERR_CAST(filename);
816 if (!IS_ERR(filename)) {
817 f = do_open_execat(AT_FDCWD, filename, 0);
818 putname(filename);
820 return f;
822 EXPORT_SYMBOL(open_exec);
824 int kernel_read(struct file *file, loff_t offset,
825 char *addr, unsigned long count)
827 mm_segment_t old_fs;
828 loff_t pos = offset;
829 int result;
831 old_fs = get_fs();
832 set_fs(get_ds());
833 /* The cast to a user pointer is valid due to the set_fs() */
834 result = vfs_read(file, (void __user *)addr, count, &pos);
835 set_fs(old_fs);
836 return result;
839 EXPORT_SYMBOL(kernel_read);
841 int kernel_read_file(struct file *file, void **buf, loff_t *size,
842 loff_t max_size, enum kernel_read_file_id id)
844 loff_t i_size, pos;
845 ssize_t bytes = 0;
846 int ret;
848 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
849 return -EINVAL;
851 ret = security_kernel_read_file(file, id);
852 if (ret)
853 return ret;
855 ret = deny_write_access(file);
856 if (ret)
857 return ret;
859 i_size = i_size_read(file_inode(file));
860 if (max_size > 0 && i_size > max_size) {
861 ret = -EFBIG;
862 goto out;
864 if (i_size <= 0) {
865 ret = -EINVAL;
866 goto out;
869 *buf = vmalloc(i_size);
870 if (!*buf) {
871 ret = -ENOMEM;
872 goto out;
875 pos = 0;
876 while (pos < i_size) {
877 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
878 i_size - pos);
879 if (bytes < 0) {
880 ret = bytes;
881 goto out;
884 if (bytes == 0)
885 break;
886 pos += bytes;
889 if (pos != i_size) {
890 ret = -EIO;
891 goto out_free;
894 ret = security_kernel_post_read_file(file, *buf, i_size, id);
895 if (!ret)
896 *size = pos;
898 out_free:
899 if (ret < 0) {
900 vfree(*buf);
901 *buf = NULL;
904 out:
905 allow_write_access(file);
906 return ret;
908 EXPORT_SYMBOL_GPL(kernel_read_file);
910 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
911 loff_t max_size, enum kernel_read_file_id id)
913 struct file *file;
914 int ret;
916 if (!path || !*path)
917 return -EINVAL;
919 file = filp_open(path, O_RDONLY, 0);
920 if (IS_ERR(file))
921 return PTR_ERR(file);
923 ret = kernel_read_file(file, buf, size, max_size, id);
924 fput(file);
925 return ret;
927 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
929 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
930 enum kernel_read_file_id id)
932 struct fd f = fdget(fd);
933 int ret = -EBADF;
935 if (!f.file)
936 goto out;
938 ret = kernel_read_file(f.file, buf, size, max_size, id);
939 out:
940 fdput(f);
941 return ret;
943 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
945 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
947 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
948 if (res > 0)
949 flush_icache_range(addr, addr + len);
950 return res;
952 EXPORT_SYMBOL(read_code);
954 static int exec_mmap(struct mm_struct *mm)
956 struct task_struct *tsk;
957 struct mm_struct *old_mm, *active_mm;
959 /* Notify parent that we're no longer interested in the old VM */
960 tsk = current;
961 old_mm = current->mm;
962 mm_release(tsk, old_mm);
964 if (old_mm) {
965 sync_mm_rss(old_mm);
967 * Make sure that if there is a core dump in progress
968 * for the old mm, we get out and die instead of going
969 * through with the exec. We must hold mmap_sem around
970 * checking core_state and changing tsk->mm.
972 down_read(&old_mm->mmap_sem);
973 if (unlikely(old_mm->core_state)) {
974 up_read(&old_mm->mmap_sem);
975 return -EINTR;
978 task_lock(tsk);
979 active_mm = tsk->active_mm;
980 tsk->mm = mm;
981 tsk->active_mm = mm;
982 activate_mm(active_mm, mm);
983 tsk->mm->vmacache_seqnum = 0;
984 vmacache_flush(tsk);
985 task_unlock(tsk);
986 if (old_mm) {
987 up_read(&old_mm->mmap_sem);
988 BUG_ON(active_mm != old_mm);
989 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
990 mm_update_next_owner(old_mm);
991 mmput(old_mm);
992 return 0;
994 mmdrop(active_mm);
995 return 0;
999 * This function makes sure the current process has its own signal table,
1000 * so that flush_signal_handlers can later reset the handlers without
1001 * disturbing other processes. (Other processes might share the signal
1002 * table via the CLONE_SIGHAND option to clone().)
1004 static int de_thread(struct task_struct *tsk)
1006 struct signal_struct *sig = tsk->signal;
1007 struct sighand_struct *oldsighand = tsk->sighand;
1008 spinlock_t *lock = &oldsighand->siglock;
1010 if (thread_group_empty(tsk))
1011 goto no_thread_group;
1014 * Kill all other threads in the thread group.
1016 spin_lock_irq(lock);
1017 if (signal_group_exit(sig)) {
1019 * Another group action in progress, just
1020 * return so that the signal is processed.
1022 spin_unlock_irq(lock);
1023 return -EAGAIN;
1026 sig->group_exit_task = tsk;
1027 sig->notify_count = zap_other_threads(tsk);
1028 if (!thread_group_leader(tsk))
1029 sig->notify_count--;
1031 while (sig->notify_count) {
1032 __set_current_state(TASK_KILLABLE);
1033 spin_unlock_irq(lock);
1034 schedule();
1035 if (unlikely(__fatal_signal_pending(tsk)))
1036 goto killed;
1037 spin_lock_irq(lock);
1039 spin_unlock_irq(lock);
1042 * At this point all other threads have exited, all we have to
1043 * do is to wait for the thread group leader to become inactive,
1044 * and to assume its PID:
1046 if (!thread_group_leader(tsk)) {
1047 struct task_struct *leader = tsk->group_leader;
1049 for (;;) {
1050 threadgroup_change_begin(tsk);
1051 write_lock_irq(&tasklist_lock);
1053 * Do this under tasklist_lock to ensure that
1054 * exit_notify() can't miss ->group_exit_task
1056 sig->notify_count = -1;
1057 if (likely(leader->exit_state))
1058 break;
1059 __set_current_state(TASK_KILLABLE);
1060 write_unlock_irq(&tasklist_lock);
1061 threadgroup_change_end(tsk);
1062 schedule();
1063 if (unlikely(__fatal_signal_pending(tsk)))
1064 goto killed;
1068 * The only record we have of the real-time age of a
1069 * process, regardless of execs it's done, is start_time.
1070 * All the past CPU time is accumulated in signal_struct
1071 * from sister threads now dead. But in this non-leader
1072 * exec, nothing survives from the original leader thread,
1073 * whose birth marks the true age of this process now.
1074 * When we take on its identity by switching to its PID, we
1075 * also take its birthdate (always earlier than our own).
1077 tsk->start_time = leader->start_time;
1078 tsk->real_start_time = leader->real_start_time;
1080 BUG_ON(!same_thread_group(leader, tsk));
1081 BUG_ON(has_group_leader_pid(tsk));
1083 * An exec() starts a new thread group with the
1084 * TGID of the previous thread group. Rehash the
1085 * two threads with a switched PID, and release
1086 * the former thread group leader:
1089 /* Become a process group leader with the old leader's pid.
1090 * The old leader becomes a thread of the this thread group.
1091 * Note: The old leader also uses this pid until release_task
1092 * is called. Odd but simple and correct.
1094 tsk->pid = leader->pid;
1095 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1096 transfer_pid(leader, tsk, PIDTYPE_PGID);
1097 transfer_pid(leader, tsk, PIDTYPE_SID);
1099 list_replace_rcu(&leader->tasks, &tsk->tasks);
1100 list_replace_init(&leader->sibling, &tsk->sibling);
1102 tsk->group_leader = tsk;
1103 leader->group_leader = tsk;
1105 tsk->exit_signal = SIGCHLD;
1106 leader->exit_signal = -1;
1108 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1109 leader->exit_state = EXIT_DEAD;
1112 * We are going to release_task()->ptrace_unlink() silently,
1113 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1114 * the tracer wont't block again waiting for this thread.
1116 if (unlikely(leader->ptrace))
1117 __wake_up_parent(leader, leader->parent);
1118 write_unlock_irq(&tasklist_lock);
1119 threadgroup_change_end(tsk);
1121 release_task(leader);
1124 sig->group_exit_task = NULL;
1125 sig->notify_count = 0;
1127 no_thread_group:
1128 /* we have changed execution domain */
1129 tsk->exit_signal = SIGCHLD;
1131 exit_itimers(sig);
1132 flush_itimer_signals();
1134 if (atomic_read(&oldsighand->count) != 1) {
1135 struct sighand_struct *newsighand;
1137 * This ->sighand is shared with the CLONE_SIGHAND
1138 * but not CLONE_THREAD task, switch to the new one.
1140 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1141 if (!newsighand)
1142 return -ENOMEM;
1144 atomic_set(&newsighand->count, 1);
1145 memcpy(newsighand->action, oldsighand->action,
1146 sizeof(newsighand->action));
1148 write_lock_irq(&tasklist_lock);
1149 spin_lock(&oldsighand->siglock);
1150 rcu_assign_pointer(tsk->sighand, newsighand);
1151 spin_unlock(&oldsighand->siglock);
1152 write_unlock_irq(&tasklist_lock);
1154 __cleanup_sighand(oldsighand);
1157 BUG_ON(!thread_group_leader(tsk));
1158 return 0;
1160 killed:
1161 /* protects against exit_notify() and __exit_signal() */
1162 read_lock(&tasklist_lock);
1163 sig->group_exit_task = NULL;
1164 sig->notify_count = 0;
1165 read_unlock(&tasklist_lock);
1166 return -EAGAIN;
1169 char *get_task_comm(char *buf, struct task_struct *tsk)
1171 /* buf must be at least sizeof(tsk->comm) in size */
1172 task_lock(tsk);
1173 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1174 task_unlock(tsk);
1175 return buf;
1177 EXPORT_SYMBOL_GPL(get_task_comm);
1180 * These functions flushes out all traces of the currently running executable
1181 * so that a new one can be started
1184 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1186 task_lock(tsk);
1187 trace_task_rename(tsk, buf);
1188 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1189 task_unlock(tsk);
1190 perf_event_comm(tsk, exec);
1193 int flush_old_exec(struct linux_binprm * bprm)
1195 int retval;
1198 * Make sure we have a private signal table and that
1199 * we are unassociated from the previous thread group.
1201 retval = de_thread(current);
1202 if (retval)
1203 goto out;
1206 * Must be called _before_ exec_mmap() as bprm->mm is
1207 * not visibile until then. This also enables the update
1208 * to be lockless.
1210 set_mm_exe_file(bprm->mm, bprm->file);
1213 * Release all of the old mmap stuff
1215 acct_arg_size(bprm, 0);
1216 retval = exec_mmap(bprm->mm);
1217 if (retval)
1218 goto out;
1220 bprm->mm = NULL; /* We're using it now */
1222 set_fs(USER_DS);
1223 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1224 PF_NOFREEZE | PF_NO_SETAFFINITY);
1225 flush_thread();
1226 current->personality &= ~bprm->per_clear;
1228 return 0;
1230 out:
1231 return retval;
1233 EXPORT_SYMBOL(flush_old_exec);
1235 void would_dump(struct linux_binprm *bprm, struct file *file)
1237 if (inode_permission(file_inode(file), MAY_READ) < 0)
1238 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1240 EXPORT_SYMBOL(would_dump);
1242 void setup_new_exec(struct linux_binprm * bprm)
1244 arch_pick_mmap_layout(current->mm);
1246 /* This is the point of no return */
1247 current->sas_ss_sp = current->sas_ss_size = 0;
1249 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1250 set_dumpable(current->mm, SUID_DUMP_USER);
1251 else
1252 set_dumpable(current->mm, suid_dumpable);
1254 perf_event_exec();
1255 __set_task_comm(current, kbasename(bprm->filename), true);
1257 /* Set the new mm task size. We have to do that late because it may
1258 * depend on TIF_32BIT which is only updated in flush_thread() on
1259 * some architectures like powerpc
1261 current->mm->task_size = TASK_SIZE;
1263 /* install the new credentials */
1264 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1265 !gid_eq(bprm->cred->gid, current_egid())) {
1266 current->pdeath_signal = 0;
1267 } else {
1268 would_dump(bprm, bprm->file);
1269 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1270 set_dumpable(current->mm, suid_dumpable);
1273 /* An exec changes our domain. We are no longer part of the thread
1274 group */
1275 current->self_exec_id++;
1276 flush_signal_handlers(current, 0);
1277 do_close_on_exec(current->files);
1279 EXPORT_SYMBOL(setup_new_exec);
1282 * Prepare credentials and lock ->cred_guard_mutex.
1283 * install_exec_creds() commits the new creds and drops the lock.
1284 * Or, if exec fails before, free_bprm() should release ->cred and
1285 * and unlock.
1287 int prepare_bprm_creds(struct linux_binprm *bprm)
1289 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1290 return -ERESTARTNOINTR;
1292 bprm->cred = prepare_exec_creds();
1293 if (likely(bprm->cred))
1294 return 0;
1296 mutex_unlock(&current->signal->cred_guard_mutex);
1297 return -ENOMEM;
1300 static void free_bprm(struct linux_binprm *bprm)
1302 free_arg_pages(bprm);
1303 if (bprm->cred) {
1304 mutex_unlock(&current->signal->cred_guard_mutex);
1305 abort_creds(bprm->cred);
1307 if (bprm->file) {
1308 allow_write_access(bprm->file);
1309 fput(bprm->file);
1311 /* If a binfmt changed the interp, free it. */
1312 if (bprm->interp != bprm->filename)
1313 kfree(bprm->interp);
1314 kfree(bprm);
1317 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1319 /* If a binfmt changed the interp, free it first. */
1320 if (bprm->interp != bprm->filename)
1321 kfree(bprm->interp);
1322 bprm->interp = kstrdup(interp, GFP_KERNEL);
1323 if (!bprm->interp)
1324 return -ENOMEM;
1325 return 0;
1327 EXPORT_SYMBOL(bprm_change_interp);
1330 * install the new credentials for this executable
1332 void install_exec_creds(struct linux_binprm *bprm)
1334 security_bprm_committing_creds(bprm);
1336 commit_creds(bprm->cred);
1337 bprm->cred = NULL;
1340 * Disable monitoring for regular users
1341 * when executing setuid binaries. Must
1342 * wait until new credentials are committed
1343 * by commit_creds() above
1345 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1346 perf_event_exit_task(current);
1348 * cred_guard_mutex must be held at least to this point to prevent
1349 * ptrace_attach() from altering our determination of the task's
1350 * credentials; any time after this it may be unlocked.
1352 security_bprm_committed_creds(bprm);
1353 mutex_unlock(&current->signal->cred_guard_mutex);
1355 EXPORT_SYMBOL(install_exec_creds);
1358 * determine how safe it is to execute the proposed program
1359 * - the caller must hold ->cred_guard_mutex to protect against
1360 * PTRACE_ATTACH or seccomp thread-sync
1362 static void check_unsafe_exec(struct linux_binprm *bprm)
1364 struct task_struct *p = current, *t;
1365 unsigned n_fs;
1367 if (p->ptrace) {
1368 if (p->ptrace & PT_PTRACE_CAP)
1369 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1370 else
1371 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1375 * This isn't strictly necessary, but it makes it harder for LSMs to
1376 * mess up.
1378 if (task_no_new_privs(current))
1379 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1381 t = p;
1382 n_fs = 1;
1383 spin_lock(&p->fs->lock);
1384 rcu_read_lock();
1385 while_each_thread(p, t) {
1386 if (t->fs == p->fs)
1387 n_fs++;
1389 rcu_read_unlock();
1391 if (p->fs->users > n_fs)
1392 bprm->unsafe |= LSM_UNSAFE_SHARE;
1393 else
1394 p->fs->in_exec = 1;
1395 spin_unlock(&p->fs->lock);
1398 static void bprm_fill_uid(struct linux_binprm *bprm)
1400 struct inode *inode;
1401 unsigned int mode;
1402 kuid_t uid;
1403 kgid_t gid;
1406 * Since this can be called multiple times (via prepare_binprm),
1407 * we must clear any previous work done when setting set[ug]id
1408 * bits from any earlier bprm->file uses (for example when run
1409 * first for a setuid script then again for its interpreter).
1411 bprm->cred->euid = current_euid();
1412 bprm->cred->egid = current_egid();
1414 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1415 return;
1417 if (task_no_new_privs(current))
1418 return;
1420 inode = file_inode(bprm->file);
1421 mode = READ_ONCE(inode->i_mode);
1422 if (!(mode & (S_ISUID|S_ISGID)))
1423 return;
1425 /* Be careful if suid/sgid is set */
1426 inode_lock(inode);
1428 /* reload atomically mode/uid/gid now that lock held */
1429 mode = inode->i_mode;
1430 uid = inode->i_uid;
1431 gid = inode->i_gid;
1432 inode_unlock(inode);
1434 /* We ignore suid/sgid if there are no mappings for them in the ns */
1435 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1436 !kgid_has_mapping(bprm->cred->user_ns, gid))
1437 return;
1439 if (mode & S_ISUID) {
1440 bprm->per_clear |= PER_CLEAR_ON_SETID;
1441 bprm->cred->euid = uid;
1444 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1445 bprm->per_clear |= PER_CLEAR_ON_SETID;
1446 bprm->cred->egid = gid;
1451 * Fill the binprm structure from the inode.
1452 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1454 * This may be called multiple times for binary chains (scripts for example).
1456 int prepare_binprm(struct linux_binprm *bprm)
1458 int retval;
1460 bprm_fill_uid(bprm);
1462 /* fill in binprm security blob */
1463 retval = security_bprm_set_creds(bprm);
1464 if (retval)
1465 return retval;
1466 bprm->cred_prepared = 1;
1468 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1469 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1472 EXPORT_SYMBOL(prepare_binprm);
1475 * Arguments are '\0' separated strings found at the location bprm->p
1476 * points to; chop off the first by relocating brpm->p to right after
1477 * the first '\0' encountered.
1479 int remove_arg_zero(struct linux_binprm *bprm)
1481 int ret = 0;
1482 unsigned long offset;
1483 char *kaddr;
1484 struct page *page;
1486 if (!bprm->argc)
1487 return 0;
1489 do {
1490 offset = bprm->p & ~PAGE_MASK;
1491 page = get_arg_page(bprm, bprm->p, 0);
1492 if (!page) {
1493 ret = -EFAULT;
1494 goto out;
1496 kaddr = kmap_atomic(page);
1498 for (; offset < PAGE_SIZE && kaddr[offset];
1499 offset++, bprm->p++)
1502 kunmap_atomic(kaddr);
1503 put_arg_page(page);
1504 } while (offset == PAGE_SIZE);
1506 bprm->p++;
1507 bprm->argc--;
1508 ret = 0;
1510 out:
1511 return ret;
1513 EXPORT_SYMBOL(remove_arg_zero);
1515 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1517 * cycle the list of binary formats handler, until one recognizes the image
1519 int search_binary_handler(struct linux_binprm *bprm)
1521 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1522 struct linux_binfmt *fmt;
1523 int retval;
1525 /* This allows 4 levels of binfmt rewrites before failing hard. */
1526 if (bprm->recursion_depth > 5)
1527 return -ELOOP;
1529 retval = security_bprm_check(bprm);
1530 if (retval)
1531 return retval;
1533 retval = -ENOENT;
1534 retry:
1535 read_lock(&binfmt_lock);
1536 list_for_each_entry(fmt, &formats, lh) {
1537 if (!try_module_get(fmt->module))
1538 continue;
1539 read_unlock(&binfmt_lock);
1540 bprm->recursion_depth++;
1541 retval = fmt->load_binary(bprm);
1542 read_lock(&binfmt_lock);
1543 put_binfmt(fmt);
1544 bprm->recursion_depth--;
1545 if (retval < 0 && !bprm->mm) {
1546 /* we got to flush_old_exec() and failed after it */
1547 read_unlock(&binfmt_lock);
1548 force_sigsegv(SIGSEGV, current);
1549 return retval;
1551 if (retval != -ENOEXEC || !bprm->file) {
1552 read_unlock(&binfmt_lock);
1553 return retval;
1556 read_unlock(&binfmt_lock);
1558 if (need_retry) {
1559 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1560 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1561 return retval;
1562 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1563 return retval;
1564 need_retry = false;
1565 goto retry;
1568 return retval;
1570 EXPORT_SYMBOL(search_binary_handler);
1572 static int exec_binprm(struct linux_binprm *bprm)
1574 pid_t old_pid, old_vpid;
1575 int ret;
1577 /* Need to fetch pid before load_binary changes it */
1578 old_pid = current->pid;
1579 rcu_read_lock();
1580 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1581 rcu_read_unlock();
1583 ret = search_binary_handler(bprm);
1584 if (ret >= 0) {
1585 audit_bprm(bprm);
1586 trace_sched_process_exec(current, old_pid, bprm);
1587 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1588 proc_exec_connector(current);
1591 return ret;
1595 * sys_execve() executes a new program.
1597 static int do_execveat_common(int fd, struct filename *filename,
1598 struct user_arg_ptr argv,
1599 struct user_arg_ptr envp,
1600 int flags)
1602 char *pathbuf = NULL;
1603 struct linux_binprm *bprm;
1604 struct file *file;
1605 struct files_struct *displaced;
1606 int retval;
1608 if (IS_ERR(filename))
1609 return PTR_ERR(filename);
1612 * We move the actual failure in case of RLIMIT_NPROC excess from
1613 * set*uid() to execve() because too many poorly written programs
1614 * don't check setuid() return code. Here we additionally recheck
1615 * whether NPROC limit is still exceeded.
1617 if ((current->flags & PF_NPROC_EXCEEDED) &&
1618 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1619 retval = -EAGAIN;
1620 goto out_ret;
1623 /* We're below the limit (still or again), so we don't want to make
1624 * further execve() calls fail. */
1625 current->flags &= ~PF_NPROC_EXCEEDED;
1627 retval = unshare_files(&displaced);
1628 if (retval)
1629 goto out_ret;
1631 retval = -ENOMEM;
1632 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1633 if (!bprm)
1634 goto out_files;
1636 retval = prepare_bprm_creds(bprm);
1637 if (retval)
1638 goto out_free;
1640 check_unsafe_exec(bprm);
1641 current->in_execve = 1;
1643 file = do_open_execat(fd, filename, flags);
1644 retval = PTR_ERR(file);
1645 if (IS_ERR(file))
1646 goto out_unmark;
1648 sched_exec();
1650 bprm->file = file;
1651 if (fd == AT_FDCWD || filename->name[0] == '/') {
1652 bprm->filename = filename->name;
1653 } else {
1654 if (filename->name[0] == '\0')
1655 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1656 else
1657 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1658 fd, filename->name);
1659 if (!pathbuf) {
1660 retval = -ENOMEM;
1661 goto out_unmark;
1664 * Record that a name derived from an O_CLOEXEC fd will be
1665 * inaccessible after exec. Relies on having exclusive access to
1666 * current->files (due to unshare_files above).
1668 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1669 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1670 bprm->filename = pathbuf;
1672 bprm->interp = bprm->filename;
1674 retval = bprm_mm_init(bprm);
1675 if (retval)
1676 goto out_unmark;
1678 bprm->argc = count(argv, MAX_ARG_STRINGS);
1679 if ((retval = bprm->argc) < 0)
1680 goto out;
1682 bprm->envc = count(envp, MAX_ARG_STRINGS);
1683 if ((retval = bprm->envc) < 0)
1684 goto out;
1686 retval = prepare_binprm(bprm);
1687 if (retval < 0)
1688 goto out;
1690 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1691 if (retval < 0)
1692 goto out;
1694 bprm->exec = bprm->p;
1695 retval = copy_strings(bprm->envc, envp, bprm);
1696 if (retval < 0)
1697 goto out;
1699 retval = copy_strings(bprm->argc, argv, bprm);
1700 if (retval < 0)
1701 goto out;
1703 retval = exec_binprm(bprm);
1704 if (retval < 0)
1705 goto out;
1707 /* execve succeeded */
1708 current->fs->in_exec = 0;
1709 current->in_execve = 0;
1710 acct_update_integrals(current);
1711 task_numa_free(current);
1712 free_bprm(bprm);
1713 kfree(pathbuf);
1714 putname(filename);
1715 if (displaced)
1716 put_files_struct(displaced);
1717 return retval;
1719 out:
1720 if (bprm->mm) {
1721 acct_arg_size(bprm, 0);
1722 mmput(bprm->mm);
1725 out_unmark:
1726 current->fs->in_exec = 0;
1727 current->in_execve = 0;
1729 out_free:
1730 free_bprm(bprm);
1731 kfree(pathbuf);
1733 out_files:
1734 if (displaced)
1735 reset_files_struct(displaced);
1736 out_ret:
1737 putname(filename);
1738 return retval;
1741 int do_execve(struct filename *filename,
1742 const char __user *const __user *__argv,
1743 const char __user *const __user *__envp)
1745 struct user_arg_ptr argv = { .ptr.native = __argv };
1746 struct user_arg_ptr envp = { .ptr.native = __envp };
1747 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1750 int do_execveat(int fd, struct filename *filename,
1751 const char __user *const __user *__argv,
1752 const char __user *const __user *__envp,
1753 int flags)
1755 struct user_arg_ptr argv = { .ptr.native = __argv };
1756 struct user_arg_ptr envp = { .ptr.native = __envp };
1758 return do_execveat_common(fd, filename, argv, envp, flags);
1761 #ifdef CONFIG_COMPAT
1762 static int compat_do_execve(struct filename *filename,
1763 const compat_uptr_t __user *__argv,
1764 const compat_uptr_t __user *__envp)
1766 struct user_arg_ptr argv = {
1767 .is_compat = true,
1768 .ptr.compat = __argv,
1770 struct user_arg_ptr envp = {
1771 .is_compat = true,
1772 .ptr.compat = __envp,
1774 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1777 static int compat_do_execveat(int fd, struct filename *filename,
1778 const compat_uptr_t __user *__argv,
1779 const compat_uptr_t __user *__envp,
1780 int flags)
1782 struct user_arg_ptr argv = {
1783 .is_compat = true,
1784 .ptr.compat = __argv,
1786 struct user_arg_ptr envp = {
1787 .is_compat = true,
1788 .ptr.compat = __envp,
1790 return do_execveat_common(fd, filename, argv, envp, flags);
1792 #endif
1794 void set_binfmt(struct linux_binfmt *new)
1796 struct mm_struct *mm = current->mm;
1798 if (mm->binfmt)
1799 module_put(mm->binfmt->module);
1801 mm->binfmt = new;
1802 if (new)
1803 __module_get(new->module);
1805 EXPORT_SYMBOL(set_binfmt);
1808 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1810 void set_dumpable(struct mm_struct *mm, int value)
1812 unsigned long old, new;
1814 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1815 return;
1817 do {
1818 old = ACCESS_ONCE(mm->flags);
1819 new = (old & ~MMF_DUMPABLE_MASK) | value;
1820 } while (cmpxchg(&mm->flags, old, new) != old);
1823 SYSCALL_DEFINE3(execve,
1824 const char __user *, filename,
1825 const char __user *const __user *, argv,
1826 const char __user *const __user *, envp)
1828 return do_execve(getname(filename), argv, envp);
1831 SYSCALL_DEFINE5(execveat,
1832 int, fd, const char __user *, filename,
1833 const char __user *const __user *, argv,
1834 const char __user *const __user *, envp,
1835 int, flags)
1837 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1839 return do_execveat(fd,
1840 getname_flags(filename, lookup_flags, NULL),
1841 argv, envp, flags);
1844 #ifdef CONFIG_COMPAT
1845 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1846 const compat_uptr_t __user *, argv,
1847 const compat_uptr_t __user *, envp)
1849 return compat_do_execve(getname(filename), argv, envp);
1852 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1853 const char __user *, filename,
1854 const compat_uptr_t __user *, argv,
1855 const compat_uptr_t __user *, envp,
1856 int, flags)
1858 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1860 return compat_do_execveat(fd,
1861 getname_flags(filename, lookup_flags, NULL),
1862 argv, envp, flags);
1864 #endif