1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
40 #include "blockcheck.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
47 #include "localalloc.h"
54 #include "buffer_head_io.h"
56 DEFINE_SPINLOCK(trans_inc_lock
);
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
60 static int ocfs2_force_read_journal(struct inode
*inode
);
61 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
62 int node_num
, int slot_num
);
63 static int __ocfs2_recovery_thread(void *arg
);
64 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
67 int dirty
, int replayed
);
68 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
70 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
72 static int ocfs2_commit_thread(void *arg
);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
75 struct ocfs2_dinode
*la_dinode
,
76 struct ocfs2_dinode
*tl_dinode
,
77 struct ocfs2_quota_recovery
*qrec
);
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
81 return __ocfs2_wait_on_mount(osb
, 0);
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
86 return __ocfs2_wait_on_mount(osb
, 1);
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
94 enum ocfs2_replay_state
{
95 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE
/* Replay was already queued */
100 struct ocfs2_replay_map
{
101 unsigned int rm_slots
;
102 enum ocfs2_replay_state rm_state
;
103 unsigned char rm_replay_slots
[0];
106 void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
108 if (!osb
->replay_map
)
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
115 osb
->replay_map
->rm_state
= state
;
118 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
120 struct ocfs2_replay_map
*replay_map
;
123 /* If replay map is already set, we don't do it again */
127 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
128 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
135 spin_lock(&osb
->osb_lock
);
137 replay_map
->rm_slots
= osb
->max_slots
;
138 replay_map
->rm_state
= REPLAY_UNNEEDED
;
140 /* set rm_replay_slots for offline slot(s) */
141 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
142 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
143 replay_map
->rm_replay_slots
[i
] = 1;
146 osb
->replay_map
= replay_map
;
147 spin_unlock(&osb
->osb_lock
);
151 void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
)
153 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
159 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
162 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
163 if (replay_map
->rm_replay_slots
[i
])
164 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
166 replay_map
->rm_state
= REPLAY_DONE
;
169 void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
171 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
173 if (!osb
->replay_map
)
177 osb
->replay_map
= NULL
;
180 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
182 struct ocfs2_recovery_map
*rm
;
184 mutex_init(&osb
->recovery_lock
);
185 osb
->disable_recovery
= 0;
186 osb
->recovery_thread_task
= NULL
;
187 init_waitqueue_head(&osb
->recovery_event
);
189 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
190 osb
->max_slots
* sizeof(unsigned int),
197 rm
->rm_entries
= (unsigned int *)((char *)rm
+
198 sizeof(struct ocfs2_recovery_map
));
199 osb
->recovery_map
= rm
;
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
207 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
210 return osb
->recovery_thread_task
!= NULL
;
213 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
215 struct ocfs2_recovery_map
*rm
;
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb
->recovery_lock
);
220 osb
->disable_recovery
= 1;
221 mutex_unlock(&osb
->recovery_lock
);
222 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
227 flush_workqueue(ocfs2_wq
);
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
233 rm
= osb
->recovery_map
;
234 /* XXX: Should we bug if there are dirty entries? */
239 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
240 unsigned int node_num
)
243 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
245 assert_spin_locked(&osb
->osb_lock
);
247 for (i
= 0; i
< rm
->rm_used
; i
++) {
248 if (rm
->rm_entries
[i
] == node_num
)
255 /* Behaves like test-and-set. Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
257 unsigned int node_num
)
259 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
261 spin_lock(&osb
->osb_lock
);
262 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
263 spin_unlock(&osb
->osb_lock
);
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
270 rm
->rm_entries
[rm
->rm_used
] = node_num
;
272 spin_unlock(&osb
->osb_lock
);
277 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
278 unsigned int node_num
)
281 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
283 spin_lock(&osb
->osb_lock
);
285 for (i
= 0; i
< rm
->rm_used
; i
++) {
286 if (rm
->rm_entries
[i
] == node_num
)
290 if (i
< rm
->rm_used
) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
293 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
297 spin_unlock(&osb
->osb_lock
);
300 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
303 unsigned int flushed
;
304 unsigned long old_id
;
305 struct ocfs2_journal
*journal
= NULL
;
309 journal
= osb
->journal
;
311 /* Flush all pending commits and checkpoint the journal. */
312 down_write(&journal
->j_trans_barrier
);
314 if (atomic_read(&journal
->j_num_trans
) == 0) {
315 up_write(&journal
->j_trans_barrier
);
316 mlog(0, "No transactions for me to flush!\n");
320 jbd2_journal_lock_updates(journal
->j_journal
);
321 status
= jbd2_journal_flush(journal
->j_journal
);
322 jbd2_journal_unlock_updates(journal
->j_journal
);
324 up_write(&journal
->j_trans_barrier
);
329 old_id
= ocfs2_inc_trans_id(journal
);
331 flushed
= atomic_read(&journal
->j_num_trans
);
332 atomic_set(&journal
->j_num_trans
, 0);
333 up_write(&journal
->j_trans_barrier
);
335 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
336 journal
->j_trans_id
, flushed
);
338 ocfs2_wake_downconvert_thread(osb
);
339 wake_up(&journal
->j_checkpointed
);
345 /* pass it NULL and it will allocate a new handle object for you. If
346 * you pass it a handle however, it may still return error, in which
347 * case it has free'd the passed handle for you. */
348 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
350 journal_t
*journal
= osb
->journal
->j_journal
;
353 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
355 if (ocfs2_is_hard_readonly(osb
))
356 return ERR_PTR(-EROFS
);
358 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
359 BUG_ON(max_buffs
<= 0);
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal
, max_buffs
);
365 down_read(&osb
->journal
->j_trans_barrier
);
367 handle
= jbd2_journal_start(journal
, max_buffs
);
368 if (IS_ERR(handle
)) {
369 up_read(&osb
->journal
->j_trans_barrier
);
371 mlog_errno(PTR_ERR(handle
));
373 if (is_journal_aborted(journal
)) {
374 ocfs2_abort(osb
->sb
, "Detected aborted journal");
375 handle
= ERR_PTR(-EROFS
);
378 if (!ocfs2_mount_local(osb
))
379 atomic_inc(&(osb
->journal
->j_num_trans
));
385 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
389 struct ocfs2_journal
*journal
= osb
->journal
;
393 nested
= handle
->h_ref
> 1;
394 ret
= jbd2_journal_stop(handle
);
399 up_read(&journal
->j_trans_barrier
);
405 * 'nblocks' is what you want to add to the current transaction.
407 * This might call jbd2_journal_restart() which will commit dirty buffers
408 * and then restart the transaction. Before calling
409 * ocfs2_extend_trans(), any changed blocks should have been
410 * dirtied. After calling it, all blocks which need to be changed must
411 * go through another set of journal_access/journal_dirty calls.
413 * WARNING: This will not release any semaphores or disk locks taken
414 * during the transaction, so make sure they were taken *before*
415 * start_trans or we'll have ordering deadlocks.
417 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
418 * good because transaction ids haven't yet been recorded on the
419 * cluster locks associated with this handle.
421 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
423 int status
, old_nblocks
;
431 old_nblocks
= handle
->h_buffer_credits
;
434 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks
);
436 #ifdef CONFIG_OCFS2_DEBUG_FS
439 status
= jbd2_journal_extend(handle
, nblocks
);
448 "jbd2_journal_extend failed, trying "
449 "jbd2_journal_restart\n");
450 status
= jbd2_journal_restart(handle
,
451 old_nblocks
+ nblocks
);
465 struct ocfs2_triggers
{
466 struct jbd2_buffer_trigger_type ot_triggers
;
470 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
472 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
475 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
476 struct buffer_head
*bh
,
477 void *data
, size_t size
)
479 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
482 * We aren't guaranteed to have the superblock here, so we
483 * must unconditionally compute the ecc data.
484 * __ocfs2_journal_access() will only set the triggers if
485 * metaecc is enabled.
487 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
491 * Quota blocks have their own trigger because the struct ocfs2_block_check
492 * offset depends on the blocksize.
494 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
495 struct buffer_head
*bh
,
496 void *data
, size_t size
)
498 struct ocfs2_disk_dqtrailer
*dqt
=
499 ocfs2_block_dqtrailer(size
, data
);
502 * We aren't guaranteed to have the superblock here, so we
503 * must unconditionally compute the ecc data.
504 * __ocfs2_journal_access() will only set the triggers if
505 * metaecc is enabled.
507 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
511 * Directory blocks also have their own trigger because the
512 * struct ocfs2_block_check offset depends on the blocksize.
514 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
515 struct buffer_head
*bh
,
516 void *data
, size_t size
)
518 struct ocfs2_dir_block_trailer
*trailer
=
519 ocfs2_dir_trailer_from_size(size
, data
);
522 * We aren't guaranteed to have the superblock here, so we
523 * must unconditionally compute the ecc data.
524 * __ocfs2_journal_access() will only set the triggers if
525 * metaecc is enabled.
527 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
530 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
531 struct buffer_head
*bh
)
534 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
535 "bh->b_blocknr = %llu\n",
537 (unsigned long long)bh
->b_blocknr
);
539 /* We aren't guaranteed to have the superblock here - but if we
540 * don't, it'll just crash. */
541 ocfs2_error(bh
->b_assoc_map
->host
->i_sb
,
542 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
545 static struct ocfs2_triggers di_triggers
= {
547 .t_frozen
= ocfs2_frozen_trigger
,
548 .t_abort
= ocfs2_abort_trigger
,
550 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
553 static struct ocfs2_triggers eb_triggers
= {
555 .t_frozen
= ocfs2_frozen_trigger
,
556 .t_abort
= ocfs2_abort_trigger
,
558 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
561 static struct ocfs2_triggers rb_triggers
= {
563 .t_frozen
= ocfs2_frozen_trigger
,
564 .t_abort
= ocfs2_abort_trigger
,
566 .ot_offset
= offsetof(struct ocfs2_refcount_block
, rf_check
),
569 static struct ocfs2_triggers gd_triggers
= {
571 .t_frozen
= ocfs2_frozen_trigger
,
572 .t_abort
= ocfs2_abort_trigger
,
574 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
577 static struct ocfs2_triggers db_triggers
= {
579 .t_frozen
= ocfs2_db_frozen_trigger
,
580 .t_abort
= ocfs2_abort_trigger
,
584 static struct ocfs2_triggers xb_triggers
= {
586 .t_frozen
= ocfs2_frozen_trigger
,
587 .t_abort
= ocfs2_abort_trigger
,
589 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
592 static struct ocfs2_triggers dq_triggers
= {
594 .t_frozen
= ocfs2_dq_frozen_trigger
,
595 .t_abort
= ocfs2_abort_trigger
,
599 static struct ocfs2_triggers dr_triggers
= {
601 .t_frozen
= ocfs2_frozen_trigger
,
602 .t_abort
= ocfs2_abort_trigger
,
604 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
607 static struct ocfs2_triggers dl_triggers
= {
609 .t_frozen
= ocfs2_frozen_trigger
,
610 .t_abort
= ocfs2_abort_trigger
,
612 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
615 static int __ocfs2_journal_access(handle_t
*handle
,
616 struct ocfs2_caching_info
*ci
,
617 struct buffer_head
*bh
,
618 struct ocfs2_triggers
*triggers
,
622 struct ocfs2_super
*osb
=
623 OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
625 BUG_ON(!ci
|| !ci
->ci_ops
);
629 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
630 (unsigned long long)bh
->b_blocknr
, type
,
631 (type
== OCFS2_JOURNAL_ACCESS_CREATE
) ?
632 "OCFS2_JOURNAL_ACCESS_CREATE" :
633 "OCFS2_JOURNAL_ACCESS_WRITE",
636 /* we can safely remove this assertion after testing. */
637 if (!buffer_uptodate(bh
)) {
638 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
639 mlog(ML_ERROR
, "b_blocknr=%llu\n",
640 (unsigned long long)bh
->b_blocknr
);
644 /* Set the current transaction information on the ci so
645 * that the locking code knows whether it can drop it's locks
646 * on this ci or not. We're protected from the commit
647 * thread updating the current transaction id until
648 * ocfs2_commit_trans() because ocfs2_start_trans() took
649 * j_trans_barrier for us. */
650 ocfs2_set_ci_lock_trans(osb
->journal
, ci
);
652 ocfs2_metadata_cache_io_lock(ci
);
654 case OCFS2_JOURNAL_ACCESS_CREATE
:
655 case OCFS2_JOURNAL_ACCESS_WRITE
:
656 status
= jbd2_journal_get_write_access(handle
, bh
);
659 case OCFS2_JOURNAL_ACCESS_UNDO
:
660 status
= jbd2_journal_get_undo_access(handle
, bh
);
665 mlog(ML_ERROR
, "Unknown access type!\n");
667 if (!status
&& ocfs2_meta_ecc(osb
) && triggers
)
668 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
669 ocfs2_metadata_cache_io_unlock(ci
);
672 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
679 int ocfs2_journal_access_di(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
680 struct buffer_head
*bh
, int type
)
682 return __ocfs2_journal_access(handle
, ci
, bh
, &di_triggers
, type
);
685 int ocfs2_journal_access_eb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
686 struct buffer_head
*bh
, int type
)
688 return __ocfs2_journal_access(handle
, ci
, bh
, &eb_triggers
, type
);
691 int ocfs2_journal_access_rb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
692 struct buffer_head
*bh
, int type
)
694 return __ocfs2_journal_access(handle
, ci
, bh
, &rb_triggers
,
698 int ocfs2_journal_access_gd(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
699 struct buffer_head
*bh
, int type
)
701 return __ocfs2_journal_access(handle
, ci
, bh
, &gd_triggers
, type
);
704 int ocfs2_journal_access_db(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
705 struct buffer_head
*bh
, int type
)
707 return __ocfs2_journal_access(handle
, ci
, bh
, &db_triggers
, type
);
710 int ocfs2_journal_access_xb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
711 struct buffer_head
*bh
, int type
)
713 return __ocfs2_journal_access(handle
, ci
, bh
, &xb_triggers
, type
);
716 int ocfs2_journal_access_dq(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
717 struct buffer_head
*bh
, int type
)
719 return __ocfs2_journal_access(handle
, ci
, bh
, &dq_triggers
, type
);
722 int ocfs2_journal_access_dr(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
723 struct buffer_head
*bh
, int type
)
725 return __ocfs2_journal_access(handle
, ci
, bh
, &dr_triggers
, type
);
728 int ocfs2_journal_access_dl(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
729 struct buffer_head
*bh
, int type
)
731 return __ocfs2_journal_access(handle
, ci
, bh
, &dl_triggers
, type
);
734 int ocfs2_journal_access(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
735 struct buffer_head
*bh
, int type
)
737 return __ocfs2_journal_access(handle
, ci
, bh
, NULL
, type
);
740 void ocfs2_journal_dirty(handle_t
*handle
, struct buffer_head
*bh
)
744 mlog_entry("(bh->b_blocknr=%llu)\n",
745 (unsigned long long)bh
->b_blocknr
);
747 status
= jbd2_journal_dirty_metadata(handle
, bh
);
753 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
755 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
757 journal_t
*journal
= osb
->journal
->j_journal
;
758 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
760 if (osb
->osb_commit_interval
)
761 commit_interval
= osb
->osb_commit_interval
;
763 write_lock(&journal
->j_state_lock
);
764 journal
->j_commit_interval
= commit_interval
;
765 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
766 journal
->j_flags
|= JBD2_BARRIER
;
768 journal
->j_flags
&= ~JBD2_BARRIER
;
769 write_unlock(&journal
->j_state_lock
);
772 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
775 struct inode
*inode
= NULL
; /* the journal inode */
776 journal_t
*j_journal
= NULL
;
777 struct ocfs2_dinode
*di
= NULL
;
778 struct buffer_head
*bh
= NULL
;
779 struct ocfs2_super
*osb
;
786 osb
= journal
->j_osb
;
788 /* already have the inode for our journal */
789 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
796 if (is_bad_inode(inode
)) {
797 mlog(ML_ERROR
, "access error (bad inode)\n");
804 SET_INODE_JOURNAL(inode
);
805 OCFS2_I(inode
)->ip_open_count
++;
807 /* Skip recovery waits here - journal inode metadata never
808 * changes in a live cluster so it can be considered an
809 * exception to the rule. */
810 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
812 if (status
!= -ERESTARTSYS
)
813 mlog(ML_ERROR
, "Could not get lock on journal!\n");
818 di
= (struct ocfs2_dinode
*)bh
->b_data
;
820 if (inode
->i_size
< OCFS2_MIN_JOURNAL_SIZE
) {
821 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
827 mlog(0, "inode->i_size = %lld\n", inode
->i_size
);
828 mlog(0, "inode->i_blocks = %llu\n",
829 (unsigned long long)inode
->i_blocks
);
830 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode
)->ip_clusters
);
832 /* call the kernels journal init function now */
833 j_journal
= jbd2_journal_init_inode(inode
);
834 if (j_journal
== NULL
) {
835 mlog(ML_ERROR
, "Linux journal layer error\n");
840 mlog(0, "Returned from jbd2_journal_init_inode\n");
841 mlog(0, "j_journal->j_maxlen = %u\n", j_journal
->j_maxlen
);
843 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
844 OCFS2_JOURNAL_DIRTY_FL
);
846 journal
->j_journal
= j_journal
;
847 journal
->j_inode
= inode
;
850 ocfs2_set_journal_params(osb
);
852 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
858 ocfs2_inode_unlock(inode
, 1);
861 OCFS2_I(inode
)->ip_open_count
--;
870 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
872 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
875 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
877 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
880 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
881 int dirty
, int replayed
)
885 struct ocfs2_journal
*journal
= osb
->journal
;
886 struct buffer_head
*bh
= journal
->j_bh
;
887 struct ocfs2_dinode
*fe
;
891 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
893 /* The journal bh on the osb always comes from ocfs2_journal_init()
894 * and was validated there inside ocfs2_inode_lock_full(). It's a
895 * code bug if we mess it up. */
896 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
898 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
900 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
902 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
903 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
906 ocfs2_bump_recovery_generation(fe
);
908 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
909 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(journal
->j_inode
));
918 * If the journal has been kmalloc'd it needs to be freed after this
921 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
923 struct ocfs2_journal
*journal
= NULL
;
925 struct inode
*inode
= NULL
;
926 int num_running_trans
= 0;
932 journal
= osb
->journal
;
936 inode
= journal
->j_inode
;
938 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
941 /* need to inc inode use count - jbd2_journal_destroy will iput. */
945 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
946 if (num_running_trans
> 0)
947 mlog(0, "Shutting down journal: must wait on %d "
948 "running transactions!\n",
951 /* Do a commit_cache here. It will flush our journal, *and*
952 * release any locks that are still held.
953 * set the SHUTDOWN flag and release the trans lock.
954 * the commit thread will take the trans lock for us below. */
955 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
957 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
958 * drop the trans_lock (which we want to hold until we
959 * completely destroy the journal. */
960 if (osb
->commit_task
) {
961 /* Wait for the commit thread */
962 mlog(0, "Waiting for ocfs2commit to exit....\n");
963 kthread_stop(osb
->commit_task
);
964 osb
->commit_task
= NULL
;
967 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
969 if (ocfs2_mount_local(osb
)) {
970 jbd2_journal_lock_updates(journal
->j_journal
);
971 status
= jbd2_journal_flush(journal
->j_journal
);
972 jbd2_journal_unlock_updates(journal
->j_journal
);
979 * Do not toggle if flush was unsuccessful otherwise
980 * will leave dirty metadata in a "clean" journal
982 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
987 /* Shutdown the kernel journal system */
988 jbd2_journal_destroy(journal
->j_journal
);
989 journal
->j_journal
= NULL
;
991 OCFS2_I(inode
)->ip_open_count
--;
993 /* unlock our journal */
994 ocfs2_inode_unlock(inode
, 1);
996 brelse(journal
->j_bh
);
997 journal
->j_bh
= NULL
;
999 journal
->j_state
= OCFS2_JOURNAL_FREE
;
1001 // up_write(&journal->j_trans_barrier);
1008 static void ocfs2_clear_journal_error(struct super_block
*sb
,
1014 olderr
= jbd2_journal_errno(journal
);
1016 mlog(ML_ERROR
, "File system error %d recorded in "
1017 "journal %u.\n", olderr
, slot
);
1018 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
1021 jbd2_journal_ack_err(journal
);
1022 jbd2_journal_clear_err(journal
);
1026 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1029 struct ocfs2_super
*osb
;
1035 osb
= journal
->j_osb
;
1037 status
= jbd2_journal_load(journal
->j_journal
);
1039 mlog(ML_ERROR
, "Failed to load journal!\n");
1043 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1045 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1051 /* Launch the commit thread */
1053 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1055 if (IS_ERR(osb
->commit_task
)) {
1056 status
= PTR_ERR(osb
->commit_task
);
1057 osb
->commit_task
= NULL
;
1058 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1059 "error=%d", status
);
1063 osb
->commit_task
= NULL
;
1071 /* 'full' flag tells us whether we clear out all blocks or if we just
1072 * mark the journal clean */
1073 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1081 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1087 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1096 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1099 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1101 spin_lock(&osb
->osb_lock
);
1102 empty
= (rm
->rm_used
== 0);
1103 spin_unlock(&osb
->osb_lock
);
1108 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1110 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1114 * JBD Might read a cached version of another nodes journal file. We
1115 * don't want this as this file changes often and we get no
1116 * notification on those changes. The only way to be sure that we've
1117 * got the most up to date version of those blocks then is to force
1118 * read them off disk. Just searching through the buffer cache won't
1119 * work as there may be pages backing this file which are still marked
1120 * up to date. We know things can't change on this file underneath us
1121 * as we have the lock by now :)
1123 static int ocfs2_force_read_journal(struct inode
*inode
)
1127 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1128 #define CONCURRENT_JOURNAL_FILL 32ULL
1129 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
1133 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
1135 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, inode
->i_size
);
1137 while (v_blkno
< num_blocks
) {
1138 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1139 &p_blkno
, &p_blocks
, NULL
);
1145 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
1146 p_blocks
= CONCURRENT_JOURNAL_FILL
;
1148 /* We are reading journal data which should not
1149 * be put in the uptodate cache */
1150 status
= ocfs2_read_blocks_sync(OCFS2_SB(inode
->i_sb
),
1151 p_blkno
, p_blocks
, bhs
);
1157 for(i
= 0; i
< p_blocks
; i
++) {
1162 v_blkno
+= p_blocks
;
1166 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
1172 struct ocfs2_la_recovery_item
{
1173 struct list_head lri_list
;
1175 struct ocfs2_dinode
*lri_la_dinode
;
1176 struct ocfs2_dinode
*lri_tl_dinode
;
1177 struct ocfs2_quota_recovery
*lri_qrec
;
1180 /* Does the second half of the recovery process. By this point, the
1181 * node is marked clean and can actually be considered recovered,
1182 * hence it's no longer in the recovery map, but there's still some
1183 * cleanup we can do which shouldn't happen within the recovery thread
1184 * as locking in that context becomes very difficult if we are to take
1185 * recovering nodes into account.
1187 * NOTE: This function can and will sleep on recovery of other nodes
1188 * during cluster locking, just like any other ocfs2 process.
1190 void ocfs2_complete_recovery(struct work_struct
*work
)
1193 struct ocfs2_journal
*journal
=
1194 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1195 struct ocfs2_super
*osb
= journal
->j_osb
;
1196 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1197 struct ocfs2_la_recovery_item
*item
, *n
;
1198 struct ocfs2_quota_recovery
*qrec
;
1199 LIST_HEAD(tmp_la_list
);
1203 mlog(0, "completing recovery from keventd\n");
1205 spin_lock(&journal
->j_lock
);
1206 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1207 spin_unlock(&journal
->j_lock
);
1209 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1210 list_del_init(&item
->lri_list
);
1212 mlog(0, "Complete recovery for slot %d\n", item
->lri_slot
);
1214 ocfs2_wait_on_quotas(osb
);
1216 la_dinode
= item
->lri_la_dinode
;
1218 mlog(0, "Clean up local alloc %llu\n",
1219 (unsigned long long)le64_to_cpu(la_dinode
->i_blkno
));
1221 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1229 tl_dinode
= item
->lri_tl_dinode
;
1231 mlog(0, "Clean up truncate log %llu\n",
1232 (unsigned long long)le64_to_cpu(tl_dinode
->i_blkno
));
1234 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1242 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
1246 qrec
= item
->lri_qrec
;
1248 mlog(0, "Recovering quota files");
1249 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1253 /* Recovery info is already freed now */
1259 mlog(0, "Recovery completion\n");
1263 /* NOTE: This function always eats your references to la_dinode and
1264 * tl_dinode, either manually on error, or by passing them to
1265 * ocfs2_complete_recovery */
1266 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1268 struct ocfs2_dinode
*la_dinode
,
1269 struct ocfs2_dinode
*tl_dinode
,
1270 struct ocfs2_quota_recovery
*qrec
)
1272 struct ocfs2_la_recovery_item
*item
;
1274 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1276 /* Though we wish to avoid it, we are in fact safe in
1277 * skipping local alloc cleanup as fsck.ocfs2 is more
1278 * than capable of reclaiming unused space. */
1286 ocfs2_free_quota_recovery(qrec
);
1288 mlog_errno(-ENOMEM
);
1292 INIT_LIST_HEAD(&item
->lri_list
);
1293 item
->lri_la_dinode
= la_dinode
;
1294 item
->lri_slot
= slot_num
;
1295 item
->lri_tl_dinode
= tl_dinode
;
1296 item
->lri_qrec
= qrec
;
1298 spin_lock(&journal
->j_lock
);
1299 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1300 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
1301 spin_unlock(&journal
->j_lock
);
1304 /* Called by the mount code to queue recovery the last part of
1305 * recovery for it's own and offline slot(s). */
1306 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1308 struct ocfs2_journal
*journal
= osb
->journal
;
1310 /* No need to queue up our truncate_log as regular cleanup will catch
1312 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1313 osb
->local_alloc_copy
, NULL
, NULL
);
1314 ocfs2_schedule_truncate_log_flush(osb
, 0);
1316 osb
->local_alloc_copy
= NULL
;
1319 /* queue to recover orphan slots for all offline slots */
1320 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1321 ocfs2_queue_replay_slots(osb
);
1322 ocfs2_free_replay_slots(osb
);
1325 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1327 if (osb
->quota_rec
) {
1328 ocfs2_queue_recovery_completion(osb
->journal
,
1333 osb
->quota_rec
= NULL
;
1337 static int __ocfs2_recovery_thread(void *arg
)
1339 int status
, node_num
, slot_num
;
1340 struct ocfs2_super
*osb
= arg
;
1341 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1342 int *rm_quota
= NULL
;
1343 int rm_quota_used
= 0, i
;
1344 struct ocfs2_quota_recovery
*qrec
;
1348 status
= ocfs2_wait_on_mount(osb
);
1353 rm_quota
= kzalloc(osb
->max_slots
* sizeof(int), GFP_NOFS
);
1359 status
= ocfs2_super_lock(osb
, 1);
1365 status
= ocfs2_compute_replay_slots(osb
);
1369 /* queue recovery for our own slot */
1370 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1373 spin_lock(&osb
->osb_lock
);
1374 while (rm
->rm_used
) {
1375 /* It's always safe to remove entry zero, as we won't
1376 * clear it until ocfs2_recover_node() has succeeded. */
1377 node_num
= rm
->rm_entries
[0];
1378 spin_unlock(&osb
->osb_lock
);
1379 mlog(0, "checking node %d\n", node_num
);
1380 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1381 if (slot_num
== -ENOENT
) {
1383 mlog(0, "no slot for this node, so no recovery"
1387 mlog(0, "node %d was using slot %d\n", node_num
, slot_num
);
1389 /* It is a bit subtle with quota recovery. We cannot do it
1390 * immediately because we have to obtain cluster locks from
1391 * quota files and we also don't want to just skip it because
1392 * then quota usage would be out of sync until some node takes
1393 * the slot. So we remember which nodes need quota recovery
1394 * and when everything else is done, we recover quotas. */
1395 for (i
= 0; i
< rm_quota_used
&& rm_quota
[i
] != slot_num
; i
++);
1396 if (i
== rm_quota_used
)
1397 rm_quota
[rm_quota_used
++] = slot_num
;
1399 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1402 ocfs2_recovery_map_clear(osb
, node_num
);
1405 "Error %d recovering node %d on device (%u,%u)!\n",
1407 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1408 mlog(ML_ERROR
, "Volume requires unmount.\n");
1411 spin_lock(&osb
->osb_lock
);
1413 spin_unlock(&osb
->osb_lock
);
1414 mlog(0, "All nodes recovered\n");
1416 /* Refresh all journal recovery generations from disk */
1417 status
= ocfs2_check_journals_nolocks(osb
);
1418 status
= (status
== -EROFS
) ? 0 : status
;
1422 /* Now it is right time to recover quotas... We have to do this under
1423 * superblock lock so that noone can start using the slot (and crash)
1424 * before we recover it */
1425 for (i
= 0; i
< rm_quota_used
; i
++) {
1426 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1428 status
= PTR_ERR(qrec
);
1432 ocfs2_queue_recovery_completion(osb
->journal
, rm_quota
[i
],
1436 ocfs2_super_unlock(osb
, 1);
1438 /* queue recovery for offline slots */
1439 ocfs2_queue_replay_slots(osb
);
1442 mutex_lock(&osb
->recovery_lock
);
1443 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1444 mutex_unlock(&osb
->recovery_lock
);
1448 ocfs2_free_replay_slots(osb
);
1449 osb
->recovery_thread_task
= NULL
;
1450 mb(); /* sync with ocfs2_recovery_thread_running */
1451 wake_up(&osb
->recovery_event
);
1453 mutex_unlock(&osb
->recovery_lock
);
1459 /* no one is callint kthread_stop() for us so the kthread() api
1460 * requires that we call do_exit(). And it isn't exported, but
1461 * complete_and_exit() seems to be a minimal wrapper around it. */
1462 complete_and_exit(NULL
, status
);
1466 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1468 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1469 node_num
, osb
->node_num
);
1471 mutex_lock(&osb
->recovery_lock
);
1472 if (osb
->disable_recovery
)
1475 /* People waiting on recovery will wait on
1476 * the recovery map to empty. */
1477 if (ocfs2_recovery_map_set(osb
, node_num
))
1478 mlog(0, "node %d already in recovery map.\n", node_num
);
1480 mlog(0, "starting recovery thread...\n");
1482 if (osb
->recovery_thread_task
)
1485 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1487 if (IS_ERR(osb
->recovery_thread_task
)) {
1488 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1489 osb
->recovery_thread_task
= NULL
;
1493 mutex_unlock(&osb
->recovery_lock
);
1494 wake_up(&osb
->recovery_event
);
1499 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1501 struct buffer_head
**bh
,
1502 struct inode
**ret_inode
)
1504 int status
= -EACCES
;
1505 struct inode
*inode
= NULL
;
1507 BUG_ON(slot_num
>= osb
->max_slots
);
1509 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1511 if (!inode
|| is_bad_inode(inode
)) {
1515 SET_INODE_JOURNAL(inode
);
1517 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1527 if (status
|| !ret_inode
)
1535 /* Does the actual journal replay and marks the journal inode as
1536 * clean. Will only replay if the journal inode is marked dirty. */
1537 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1544 struct inode
*inode
= NULL
;
1545 struct ocfs2_dinode
*fe
;
1546 journal_t
*journal
= NULL
;
1547 struct buffer_head
*bh
= NULL
;
1550 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1556 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1557 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1562 * As the fs recovery is asynchronous, there is a small chance that
1563 * another node mounted (and recovered) the slot before the recovery
1564 * thread could get the lock. To handle that, we dirty read the journal
1565 * inode for that slot to get the recovery generation. If it is
1566 * different than what we expected, the slot has been recovered.
1567 * If not, it needs recovery.
1569 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1570 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num
,
1571 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1572 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1577 /* Continue with recovery as the journal has not yet been recovered */
1579 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1581 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status
);
1582 if (status
!= -ERESTARTSYS
)
1583 mlog(ML_ERROR
, "Could not lock journal!\n");
1588 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1590 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1591 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1593 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1594 mlog(0, "No recovery required for node %d\n", node_num
);
1595 /* Refresh recovery generation for the slot */
1596 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1600 /* we need to run complete recovery for offline orphan slots */
1601 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1603 mlog(ML_NOTICE
, "Recovering node %d from slot %d on device (%u,%u)\n",
1605 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1607 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1609 status
= ocfs2_force_read_journal(inode
);
1615 mlog(0, "calling journal_init_inode\n");
1616 journal
= jbd2_journal_init_inode(inode
);
1617 if (journal
== NULL
) {
1618 mlog(ML_ERROR
, "Linux journal layer error\n");
1623 status
= jbd2_journal_load(journal
);
1628 jbd2_journal_destroy(journal
);
1632 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1634 /* wipe the journal */
1635 mlog(0, "flushing the journal.\n");
1636 jbd2_journal_lock_updates(journal
);
1637 status
= jbd2_journal_flush(journal
);
1638 jbd2_journal_unlock_updates(journal
);
1642 /* This will mark the node clean */
1643 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1644 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1645 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1647 /* Increment recovery generation to indicate successful recovery */
1648 ocfs2_bump_recovery_generation(fe
);
1649 osb
->slot_recovery_generations
[slot_num
] =
1650 ocfs2_get_recovery_generation(fe
);
1652 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1653 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(inode
));
1660 jbd2_journal_destroy(journal
);
1663 /* drop the lock on this nodes journal */
1665 ocfs2_inode_unlock(inode
, 1);
1677 * Do the most important parts of node recovery:
1678 * - Replay it's journal
1679 * - Stamp a clean local allocator file
1680 * - Stamp a clean truncate log
1681 * - Mark the node clean
1683 * If this function completes without error, a node in OCFS2 can be
1684 * said to have been safely recovered. As a result, failure during the
1685 * second part of a nodes recovery process (local alloc recovery) is
1686 * far less concerning.
1688 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1689 int node_num
, int slot_num
)
1692 struct ocfs2_dinode
*la_copy
= NULL
;
1693 struct ocfs2_dinode
*tl_copy
= NULL
;
1695 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1696 node_num
, slot_num
, osb
->node_num
);
1698 /* Should not ever be called to recover ourselves -- in that
1699 * case we should've called ocfs2_journal_load instead. */
1700 BUG_ON(osb
->node_num
== node_num
);
1702 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1704 if (status
== -EBUSY
) {
1705 mlog(0, "Skipping recovery for slot %u (node %u) "
1706 "as another node has recovered it\n", slot_num
,
1715 /* Stamp a clean local alloc file AFTER recovering the journal... */
1716 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1722 /* An error from begin_truncate_log_recovery is not
1723 * serious enough to warrant halting the rest of
1725 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1729 /* Likewise, this would be a strange but ultimately not so
1730 * harmful place to get an error... */
1731 status
= ocfs2_clear_slot(osb
, slot_num
);
1735 /* This will kfree the memory pointed to by la_copy and tl_copy */
1736 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1746 /* Test node liveness by trylocking his journal. If we get the lock,
1747 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1748 * still alive (we couldn't get the lock) and < 0 on error. */
1749 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1753 struct inode
*inode
= NULL
;
1755 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1757 if (inode
== NULL
) {
1758 mlog(ML_ERROR
, "access error\n");
1762 if (is_bad_inode(inode
)) {
1763 mlog(ML_ERROR
, "access error (bad inode)\n");
1769 SET_INODE_JOURNAL(inode
);
1771 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1772 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1774 if (status
!= -EAGAIN
)
1779 ocfs2_inode_unlock(inode
, 1);
1787 /* Call this underneath ocfs2_super_lock. It also assumes that the
1788 * slot info struct has been updated from disk. */
1789 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1791 unsigned int node_num
;
1794 struct buffer_head
*bh
= NULL
;
1795 struct ocfs2_dinode
*di
;
1797 /* This is called with the super block cluster lock, so we
1798 * know that the slot map can't change underneath us. */
1800 for (i
= 0; i
< osb
->max_slots
; i
++) {
1801 /* Read journal inode to get the recovery generation */
1802 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1807 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1808 gen
= ocfs2_get_recovery_generation(di
);
1812 spin_lock(&osb
->osb_lock
);
1813 osb
->slot_recovery_generations
[i
] = gen
;
1815 mlog(0, "Slot %u recovery generation is %u\n", i
,
1816 osb
->slot_recovery_generations
[i
]);
1818 if (i
== osb
->slot_num
) {
1819 spin_unlock(&osb
->osb_lock
);
1823 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1824 if (status
== -ENOENT
) {
1825 spin_unlock(&osb
->osb_lock
);
1829 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1830 spin_unlock(&osb
->osb_lock
);
1833 spin_unlock(&osb
->osb_lock
);
1835 /* Ok, we have a slot occupied by another node which
1836 * is not in the recovery map. We trylock his journal
1837 * file here to test if he's alive. */
1838 status
= ocfs2_trylock_journal(osb
, i
);
1840 /* Since we're called from mount, we know that
1841 * the recovery thread can't race us on
1842 * setting / checking the recovery bits. */
1843 ocfs2_recovery_thread(osb
, node_num
);
1844 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1857 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1858 * randomness to the timeout to minimize multple nodes firing the timer at the
1861 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1865 get_random_bytes(&time
, sizeof(time
));
1866 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1867 return msecs_to_jiffies(time
);
1871 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1872 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1873 * is done to catch any orphans that are left over in orphan directories.
1875 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1876 * seconds. It gets an EX lock on os_lockres and checks sequence number
1877 * stored in LVB. If the sequence number has changed, it means some other
1878 * node has done the scan. This node skips the scan and tracks the
1879 * sequence number. If the sequence number didn't change, it means a scan
1880 * hasn't happened. The node queues a scan and increments the
1881 * sequence number in the LVB.
1883 void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
1885 struct ocfs2_orphan_scan
*os
;
1889 os
= &osb
->osb_orphan_scan
;
1891 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1894 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
1896 if (status
!= -EAGAIN
)
1901 /* Do no queue the tasks if the volume is being umounted */
1902 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1905 if (os
->os_seqno
!= seqno
) {
1906 os
->os_seqno
= seqno
;
1910 for (i
= 0; i
< osb
->max_slots
; i
++)
1911 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
1914 * We queued a recovery on orphan slots, increment the sequence
1915 * number and update LVB so other node will skip the scan for a while
1919 os
->os_scantime
= CURRENT_TIME
;
1921 ocfs2_orphan_scan_unlock(osb
, seqno
);
1926 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1927 void ocfs2_orphan_scan_work(struct work_struct
*work
)
1929 struct ocfs2_orphan_scan
*os
;
1930 struct ocfs2_super
*osb
;
1932 os
= container_of(work
, struct ocfs2_orphan_scan
,
1933 os_orphan_scan_work
.work
);
1936 mutex_lock(&os
->os_lock
);
1937 ocfs2_queue_orphan_scan(osb
);
1938 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
1939 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1940 ocfs2_orphan_scan_timeout());
1941 mutex_unlock(&os
->os_lock
);
1944 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
1946 struct ocfs2_orphan_scan
*os
;
1948 os
= &osb
->osb_orphan_scan
;
1949 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
1950 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1951 mutex_lock(&os
->os_lock
);
1952 cancel_delayed_work(&os
->os_orphan_scan_work
);
1953 mutex_unlock(&os
->os_lock
);
1957 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
1959 struct ocfs2_orphan_scan
*os
;
1961 os
= &osb
->osb_orphan_scan
;
1965 mutex_init(&os
->os_lock
);
1966 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
1969 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
1971 struct ocfs2_orphan_scan
*os
;
1973 os
= &osb
->osb_orphan_scan
;
1974 os
->os_scantime
= CURRENT_TIME
;
1975 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
1976 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1978 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
1979 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1980 ocfs2_orphan_scan_timeout());
1984 struct ocfs2_orphan_filldir_priv
{
1986 struct ocfs2_super
*osb
;
1989 static int ocfs2_orphan_filldir(void *priv
, const char *name
, int name_len
,
1990 loff_t pos
, u64 ino
, unsigned type
)
1992 struct ocfs2_orphan_filldir_priv
*p
= priv
;
1995 if (name_len
== 1 && !strncmp(".", name
, 1))
1997 if (name_len
== 2 && !strncmp("..", name
, 2))
2000 /* Skip bad inodes so that recovery can continue */
2001 iter
= ocfs2_iget(p
->osb
, ino
,
2002 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
2006 mlog(0, "queue orphan %llu\n",
2007 (unsigned long long)OCFS2_I(iter
)->ip_blkno
);
2008 /* No locking is required for the next_orphan queue as there
2009 * is only ever a single process doing orphan recovery. */
2010 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
2016 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
2018 struct inode
**head
)
2021 struct inode
*orphan_dir_inode
= NULL
;
2022 struct ocfs2_orphan_filldir_priv priv
;
2028 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
2029 ORPHAN_DIR_SYSTEM_INODE
,
2031 if (!orphan_dir_inode
) {
2037 mutex_lock(&orphan_dir_inode
->i_mutex
);
2038 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
2044 status
= ocfs2_dir_foreach(orphan_dir_inode
, &pos
, &priv
,
2045 ocfs2_orphan_filldir
);
2054 ocfs2_inode_unlock(orphan_dir_inode
, 0);
2056 mutex_unlock(&orphan_dir_inode
->i_mutex
);
2057 iput(orphan_dir_inode
);
2061 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2066 spin_lock(&osb
->osb_lock
);
2067 ret
= !osb
->osb_orphan_wipes
[slot
];
2068 spin_unlock(&osb
->osb_lock
);
2072 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2075 spin_lock(&osb
->osb_lock
);
2076 /* Mark ourselves such that new processes in delete_inode()
2077 * know to quit early. */
2078 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2079 while (osb
->osb_orphan_wipes
[slot
]) {
2080 /* If any processes are already in the middle of an
2081 * orphan wipe on this dir, then we need to wait for
2083 spin_unlock(&osb
->osb_lock
);
2084 wait_event_interruptible(osb
->osb_wipe_event
,
2085 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2086 spin_lock(&osb
->osb_lock
);
2088 spin_unlock(&osb
->osb_lock
);
2091 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2094 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2098 * Orphan recovery. Each mounted node has it's own orphan dir which we
2099 * must run during recovery. Our strategy here is to build a list of
2100 * the inodes in the orphan dir and iget/iput them. The VFS does
2101 * (most) of the rest of the work.
2103 * Orphan recovery can happen at any time, not just mount so we have a
2104 * couple of extra considerations.
2106 * - We grab as many inodes as we can under the orphan dir lock -
2107 * doing iget() outside the orphan dir risks getting a reference on
2109 * - We must be sure not to deadlock with other processes on the
2110 * system wanting to run delete_inode(). This can happen when they go
2111 * to lock the orphan dir and the orphan recovery process attempts to
2112 * iget() inside the orphan dir lock. This can be avoided by
2113 * advertising our state to ocfs2_delete_inode().
2115 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2119 struct inode
*inode
= NULL
;
2121 struct ocfs2_inode_info
*oi
;
2123 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot
);
2125 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2126 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
2127 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2129 /* Error here should be noted, but we want to continue with as
2130 * many queued inodes as we've got. */
2135 oi
= OCFS2_I(inode
);
2136 mlog(0, "iput orphan %llu\n", (unsigned long long)oi
->ip_blkno
);
2138 iter
= oi
->ip_next_orphan
;
2140 spin_lock(&oi
->ip_lock
);
2141 /* The remote delete code may have set these on the
2142 * assumption that the other node would wipe them
2143 * successfully. If they are still in the node's
2144 * orphan dir, we need to reset that state. */
2145 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
2147 /* Set the proper information to get us going into
2148 * ocfs2_delete_inode. */
2149 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2150 spin_unlock(&oi
->ip_lock
);
2160 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2162 /* This check is good because ocfs2 will wait on our recovery
2163 * thread before changing it to something other than MOUNTED
2165 wait_event(osb
->osb_mount_event
,
2166 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2167 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2168 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2170 /* If there's an error on mount, then we may never get to the
2171 * MOUNTED flag, but this is set right before
2172 * dismount_volume() so we can trust it. */
2173 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2174 mlog(0, "mount error, exiting!\n");
2181 static int ocfs2_commit_thread(void *arg
)
2184 struct ocfs2_super
*osb
= arg
;
2185 struct ocfs2_journal
*journal
= osb
->journal
;
2187 /* we can trust j_num_trans here because _should_stop() is only set in
2188 * shutdown and nobody other than ourselves should be able to start
2189 * transactions. committing on shutdown might take a few iterations
2190 * as final transactions put deleted inodes on the list */
2191 while (!(kthread_should_stop() &&
2192 atomic_read(&journal
->j_num_trans
) == 0)) {
2194 wait_event_interruptible(osb
->checkpoint_event
,
2195 atomic_read(&journal
->j_num_trans
)
2196 || kthread_should_stop());
2198 status
= ocfs2_commit_cache(osb
);
2202 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2204 "commit_thread: %u transactions pending on "
2206 atomic_read(&journal
->j_num_trans
));
2213 /* Reads all the journal inodes without taking any cluster locks. Used
2214 * for hard readonly access to determine whether any journal requires
2215 * recovery. Also used to refresh the recovery generation numbers after
2216 * a journal has been recovered by another node.
2218 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2222 struct buffer_head
*di_bh
= NULL
;
2223 struct ocfs2_dinode
*di
;
2224 int journal_dirty
= 0;
2226 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2227 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2233 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2235 osb
->slot_recovery_generations
[slot
] =
2236 ocfs2_get_recovery_generation(di
);
2238 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2239 OCFS2_JOURNAL_DIRTY_FL
)