1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim
;
68 /* This context's GFP mask */
71 /* Allocation order */
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
84 struct mem_cgroup
*target_mem_cgroup
;
86 /* Scan (total_size >> priority) pages at once */
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx
;
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage
:1;
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap
:1;
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap
:1;
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
106 unsigned int memcg_low_reclaim
:1;
107 unsigned int memcg_low_skipped
:1;
109 unsigned int hibernation_mode
:1;
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready
:1;
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned
;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed
;
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field) \
124 if ((_page)->lru.prev != _base) { \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field) \
138 if ((_page)->lru.prev != _base) { \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
150 * From 0 .. 100. Higher means more swappy.
152 int vm_swappiness
= 60;
154 * The total number of pages which are beyond the high watermark within all
157 unsigned long vm_total_pages
;
159 static LIST_HEAD(shrinker_list
);
160 static DECLARE_RWSEM(shrinker_rwsem
);
163 static bool global_reclaim(struct scan_control
*sc
)
165 return !sc
->target_mem_cgroup
;
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
181 static bool sane_reclaim(struct scan_control
*sc
)
183 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
194 static bool global_reclaim(struct scan_control
*sc
)
199 static bool sane_reclaim(struct scan_control
*sc
)
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
210 unsigned long zone_reclaimable_pages(struct zone
*zone
)
214 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
215 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
216 if (get_nr_swap_pages() > 0)
217 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
218 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
223 unsigned long pgdat_reclaimable_pages(struct pglist_data
*pgdat
)
227 nr
= node_page_state_snapshot(pgdat
, NR_ACTIVE_FILE
) +
228 node_page_state_snapshot(pgdat
, NR_INACTIVE_FILE
) +
229 node_page_state_snapshot(pgdat
, NR_ISOLATED_FILE
);
231 if (get_nr_swap_pages() > 0)
232 nr
+= node_page_state_snapshot(pgdat
, NR_ACTIVE_ANON
) +
233 node_page_state_snapshot(pgdat
, NR_INACTIVE_ANON
) +
234 node_page_state_snapshot(pgdat
, NR_ISOLATED_ANON
);
240 * lruvec_lru_size - Returns the number of pages on the given LRU list.
241 * @lruvec: lru vector
243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
245 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
247 unsigned long lru_size
;
250 if (!mem_cgroup_disabled())
251 lru_size
= mem_cgroup_get_lru_size(lruvec
, lru
);
253 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
255 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
256 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
259 if (!managed_zone(zone
))
262 if (!mem_cgroup_disabled())
263 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
265 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
266 NR_ZONE_LRU_BASE
+ lru
);
267 lru_size
-= min(size
, lru_size
);
275 * Add a shrinker callback to be called from the vm.
277 int register_shrinker(struct shrinker
*shrinker
)
279 size_t size
= sizeof(*shrinker
->nr_deferred
);
281 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
284 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
285 if (!shrinker
->nr_deferred
)
288 down_write(&shrinker_rwsem
);
289 list_add_tail(&shrinker
->list
, &shrinker_list
);
290 up_write(&shrinker_rwsem
);
293 EXPORT_SYMBOL(register_shrinker
);
298 void unregister_shrinker(struct shrinker
*shrinker
)
300 if (!shrinker
->nr_deferred
)
302 down_write(&shrinker_rwsem
);
303 list_del(&shrinker
->list
);
304 up_write(&shrinker_rwsem
);
305 kfree(shrinker
->nr_deferred
);
306 shrinker
->nr_deferred
= NULL
;
308 EXPORT_SYMBOL(unregister_shrinker
);
310 #define SHRINK_BATCH 128
312 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
313 struct shrinker
*shrinker
,
314 unsigned long nr_scanned
,
315 unsigned long nr_eligible
)
317 unsigned long freed
= 0;
318 unsigned long long delta
;
323 int nid
= shrinkctl
->nid
;
324 long batch_size
= shrinker
->batch
? shrinker
->batch
326 long scanned
= 0, next_deferred
;
328 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
333 * copy the current shrinker scan count into a local variable
334 * and zero it so that other concurrent shrinker invocations
335 * don't also do this scanning work.
337 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
340 delta
= (4 * nr_scanned
) / shrinker
->seeks
;
342 do_div(delta
, nr_eligible
+ 1);
344 if (total_scan
< 0) {
345 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
346 shrinker
->scan_objects
, total_scan
);
347 total_scan
= freeable
;
350 next_deferred
= total_scan
;
353 * We need to avoid excessive windup on filesystem shrinkers
354 * due to large numbers of GFP_NOFS allocations causing the
355 * shrinkers to return -1 all the time. This results in a large
356 * nr being built up so when a shrink that can do some work
357 * comes along it empties the entire cache due to nr >>>
358 * freeable. This is bad for sustaining a working set in
361 * Hence only allow the shrinker to scan the entire cache when
362 * a large delta change is calculated directly.
364 if (delta
< freeable
/ 4)
365 total_scan
= min(total_scan
, freeable
/ 2);
368 * Avoid risking looping forever due to too large nr value:
369 * never try to free more than twice the estimate number of
372 if (total_scan
> freeable
* 2)
373 total_scan
= freeable
* 2;
375 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
376 nr_scanned
, nr_eligible
,
377 freeable
, delta
, total_scan
);
380 * Normally, we should not scan less than batch_size objects in one
381 * pass to avoid too frequent shrinker calls, but if the slab has less
382 * than batch_size objects in total and we are really tight on memory,
383 * we will try to reclaim all available objects, otherwise we can end
384 * up failing allocations although there are plenty of reclaimable
385 * objects spread over several slabs with usage less than the
388 * We detect the "tight on memory" situations by looking at the total
389 * number of objects we want to scan (total_scan). If it is greater
390 * than the total number of objects on slab (freeable), we must be
391 * scanning at high prio and therefore should try to reclaim as much as
394 while (total_scan
>= batch_size
||
395 total_scan
>= freeable
) {
397 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
399 shrinkctl
->nr_to_scan
= nr_to_scan
;
400 shrinkctl
->nr_scanned
= nr_to_scan
;
401 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
402 if (ret
== SHRINK_STOP
)
406 count_vm_events(SLABS_SCANNED
, shrinkctl
->nr_scanned
);
407 total_scan
-= shrinkctl
->nr_scanned
;
408 scanned
+= shrinkctl
->nr_scanned
;
413 if (next_deferred
>= scanned
)
414 next_deferred
-= scanned
;
418 * move the unused scan count back into the shrinker in a
419 * manner that handles concurrent updates. If we exhausted the
420 * scan, there is no need to do an update.
422 if (next_deferred
> 0)
423 new_nr
= atomic_long_add_return(next_deferred
,
424 &shrinker
->nr_deferred
[nid
]);
426 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
428 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
433 * shrink_slab - shrink slab caches
434 * @gfp_mask: allocation context
435 * @nid: node whose slab caches to target
436 * @memcg: memory cgroup whose slab caches to target
437 * @nr_scanned: pressure numerator
438 * @nr_eligible: pressure denominator
440 * Call the shrink functions to age shrinkable caches.
442 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
443 * unaware shrinkers will receive a node id of 0 instead.
445 * @memcg specifies the memory cgroup to target. If it is not NULL,
446 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
447 * objects from the memory cgroup specified. Otherwise, only unaware
448 * shrinkers are called.
450 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
451 * the available objects should be scanned. Page reclaim for example
452 * passes the number of pages scanned and the number of pages on the
453 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
454 * when it encountered mapped pages. The ratio is further biased by
455 * the ->seeks setting of the shrink function, which indicates the
456 * cost to recreate an object relative to that of an LRU page.
458 * Returns the number of reclaimed slab objects.
460 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
461 struct mem_cgroup
*memcg
,
462 unsigned long nr_scanned
,
463 unsigned long nr_eligible
)
465 struct shrinker
*shrinker
;
466 unsigned long freed
= 0;
468 if (memcg
&& (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
)))
472 nr_scanned
= SWAP_CLUSTER_MAX
;
474 if (!down_read_trylock(&shrinker_rwsem
)) {
476 * If we would return 0, our callers would understand that we
477 * have nothing else to shrink and give up trying. By returning
478 * 1 we keep it going and assume we'll be able to shrink next
485 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
486 struct shrink_control sc
= {
487 .gfp_mask
= gfp_mask
,
493 * If kernel memory accounting is disabled, we ignore
494 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
495 * passing NULL for memcg.
497 if (memcg_kmem_enabled() &&
498 !!memcg
!= !!(shrinker
->flags
& SHRINKER_MEMCG_AWARE
))
501 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
504 freed
+= do_shrink_slab(&sc
, shrinker
, nr_scanned
, nr_eligible
);
507 up_read(&shrinker_rwsem
);
513 void drop_slab_node(int nid
)
518 struct mem_cgroup
*memcg
= NULL
;
522 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
,
524 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
525 } while (freed
> 10);
532 for_each_online_node(nid
)
536 static inline int is_page_cache_freeable(struct page
*page
)
539 * A freeable page cache page is referenced only by the caller
540 * that isolated the page, the page cache radix tree and
541 * optional buffer heads at page->private.
543 int radix_pins
= PageTransHuge(page
) && PageSwapCache(page
) ?
545 return page_count(page
) - page_has_private(page
) == 1 + radix_pins
;
548 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
550 if (current
->flags
& PF_SWAPWRITE
)
552 if (!inode_write_congested(inode
))
554 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
560 * We detected a synchronous write error writing a page out. Probably
561 * -ENOSPC. We need to propagate that into the address_space for a subsequent
562 * fsync(), msync() or close().
564 * The tricky part is that after writepage we cannot touch the mapping: nothing
565 * prevents it from being freed up. But we have a ref on the page and once
566 * that page is locked, the mapping is pinned.
568 * We're allowed to run sleeping lock_page() here because we know the caller has
571 static void handle_write_error(struct address_space
*mapping
,
572 struct page
*page
, int error
)
575 if (page_mapping(page
) == mapping
)
576 mapping_set_error(mapping
, error
);
580 /* possible outcome of pageout() */
582 /* failed to write page out, page is locked */
584 /* move page to the active list, page is locked */
586 /* page has been sent to the disk successfully, page is unlocked */
588 /* page is clean and locked */
593 * pageout is called by shrink_page_list() for each dirty page.
594 * Calls ->writepage().
596 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
597 struct scan_control
*sc
)
600 * If the page is dirty, only perform writeback if that write
601 * will be non-blocking. To prevent this allocation from being
602 * stalled by pagecache activity. But note that there may be
603 * stalls if we need to run get_block(). We could test
604 * PagePrivate for that.
606 * If this process is currently in __generic_file_write_iter() against
607 * this page's queue, we can perform writeback even if that
610 * If the page is swapcache, write it back even if that would
611 * block, for some throttling. This happens by accident, because
612 * swap_backing_dev_info is bust: it doesn't reflect the
613 * congestion state of the swapdevs. Easy to fix, if needed.
615 if (!is_page_cache_freeable(page
))
619 * Some data journaling orphaned pages can have
620 * page->mapping == NULL while being dirty with clean buffers.
622 if (page_has_private(page
)) {
623 if (try_to_free_buffers(page
)) {
624 ClearPageDirty(page
);
625 pr_info("%s: orphaned page\n", __func__
);
631 if (mapping
->a_ops
->writepage
== NULL
)
632 return PAGE_ACTIVATE
;
633 if (!may_write_to_inode(mapping
->host
, sc
))
636 if (clear_page_dirty_for_io(page
)) {
638 struct writeback_control wbc
= {
639 .sync_mode
= WB_SYNC_NONE
,
640 .nr_to_write
= SWAP_CLUSTER_MAX
,
642 .range_end
= LLONG_MAX
,
646 SetPageReclaim(page
);
647 res
= mapping
->a_ops
->writepage(page
, &wbc
);
649 handle_write_error(mapping
, page
, res
);
650 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
651 ClearPageReclaim(page
);
652 return PAGE_ACTIVATE
;
655 if (!PageWriteback(page
)) {
656 /* synchronous write or broken a_ops? */
657 ClearPageReclaim(page
);
659 trace_mm_vmscan_writepage(page
);
660 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
668 * Same as remove_mapping, but if the page is removed from the mapping, it
669 * gets returned with a refcount of 0.
671 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
677 BUG_ON(!PageLocked(page
));
678 BUG_ON(mapping
!= page_mapping(page
));
680 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
682 * The non racy check for a busy page.
684 * Must be careful with the order of the tests. When someone has
685 * a ref to the page, it may be possible that they dirty it then
686 * drop the reference. So if PageDirty is tested before page_count
687 * here, then the following race may occur:
689 * get_user_pages(&page);
690 * [user mapping goes away]
692 * !PageDirty(page) [good]
693 * SetPageDirty(page);
695 * !page_count(page) [good, discard it]
697 * [oops, our write_to data is lost]
699 * Reversing the order of the tests ensures such a situation cannot
700 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
701 * load is not satisfied before that of page->_refcount.
703 * Note that if SetPageDirty is always performed via set_page_dirty,
704 * and thus under tree_lock, then this ordering is not required.
706 if (unlikely(PageTransHuge(page
)) && PageSwapCache(page
))
707 refcount
= 1 + HPAGE_PMD_NR
;
710 if (!page_ref_freeze(page
, refcount
))
712 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
713 if (unlikely(PageDirty(page
))) {
714 page_ref_unfreeze(page
, refcount
);
718 if (PageSwapCache(page
)) {
719 swp_entry_t swap
= { .val
= page_private(page
) };
720 mem_cgroup_swapout(page
, swap
);
721 __delete_from_swap_cache(page
);
722 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
723 put_swap_page(page
, swap
);
725 void (*freepage
)(struct page
*);
728 freepage
= mapping
->a_ops
->freepage
;
730 * Remember a shadow entry for reclaimed file cache in
731 * order to detect refaults, thus thrashing, later on.
733 * But don't store shadows in an address space that is
734 * already exiting. This is not just an optizimation,
735 * inode reclaim needs to empty out the radix tree or
736 * the nodes are lost. Don't plant shadows behind its
739 * We also don't store shadows for DAX mappings because the
740 * only page cache pages found in these are zero pages
741 * covering holes, and because we don't want to mix DAX
742 * exceptional entries and shadow exceptional entries in the
745 if (reclaimed
&& page_is_file_cache(page
) &&
746 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
747 shadow
= workingset_eviction(mapping
, page
);
748 __delete_from_page_cache(page
, shadow
);
749 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
751 if (freepage
!= NULL
)
758 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
763 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
764 * someone else has a ref on the page, abort and return 0. If it was
765 * successfully detached, return 1. Assumes the caller has a single ref on
768 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
770 if (__remove_mapping(mapping
, page
, false)) {
772 * Unfreezing the refcount with 1 rather than 2 effectively
773 * drops the pagecache ref for us without requiring another
776 page_ref_unfreeze(page
, 1);
783 * putback_lru_page - put previously isolated page onto appropriate LRU list
784 * @page: page to be put back to appropriate lru list
786 * Add previously isolated @page to appropriate LRU list.
787 * Page may still be unevictable for other reasons.
789 * lru_lock must not be held, interrupts must be enabled.
791 void putback_lru_page(struct page
*page
)
794 int was_unevictable
= PageUnevictable(page
);
796 VM_BUG_ON_PAGE(PageLRU(page
), page
);
799 ClearPageUnevictable(page
);
801 if (page_evictable(page
)) {
803 * For evictable pages, we can use the cache.
804 * In event of a race, worst case is we end up with an
805 * unevictable page on [in]active list.
806 * We know how to handle that.
808 is_unevictable
= false;
812 * Put unevictable pages directly on zone's unevictable
815 is_unevictable
= true;
816 add_page_to_unevictable_list(page
);
818 * When racing with an mlock or AS_UNEVICTABLE clearing
819 * (page is unlocked) make sure that if the other thread
820 * does not observe our setting of PG_lru and fails
821 * isolation/check_move_unevictable_pages,
822 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
823 * the page back to the evictable list.
825 * The other side is TestClearPageMlocked() or shmem_lock().
831 * page's status can change while we move it among lru. If an evictable
832 * page is on unevictable list, it never be freed. To avoid that,
833 * check after we added it to the list, again.
835 if (is_unevictable
&& page_evictable(page
)) {
836 if (!isolate_lru_page(page
)) {
840 /* This means someone else dropped this page from LRU
841 * So, it will be freed or putback to LRU again. There is
842 * nothing to do here.
846 if (was_unevictable
&& !is_unevictable
)
847 count_vm_event(UNEVICTABLE_PGRESCUED
);
848 else if (!was_unevictable
&& is_unevictable
)
849 count_vm_event(UNEVICTABLE_PGCULLED
);
851 put_page(page
); /* drop ref from isolate */
854 enum page_references
{
856 PAGEREF_RECLAIM_CLEAN
,
861 static enum page_references
page_check_references(struct page
*page
,
862 struct scan_control
*sc
)
864 int referenced_ptes
, referenced_page
;
865 unsigned long vm_flags
;
867 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
869 referenced_page
= TestClearPageReferenced(page
);
872 * Mlock lost the isolation race with us. Let try_to_unmap()
873 * move the page to the unevictable list.
875 if (vm_flags
& VM_LOCKED
)
876 return PAGEREF_RECLAIM
;
878 if (referenced_ptes
) {
879 if (PageSwapBacked(page
))
880 return PAGEREF_ACTIVATE
;
882 * All mapped pages start out with page table
883 * references from the instantiating fault, so we need
884 * to look twice if a mapped file page is used more
887 * Mark it and spare it for another trip around the
888 * inactive list. Another page table reference will
889 * lead to its activation.
891 * Note: the mark is set for activated pages as well
892 * so that recently deactivated but used pages are
895 SetPageReferenced(page
);
897 if (referenced_page
|| referenced_ptes
> 1)
898 return PAGEREF_ACTIVATE
;
901 * Activate file-backed executable pages after first usage.
903 if (vm_flags
& VM_EXEC
)
904 return PAGEREF_ACTIVATE
;
909 /* Reclaim if clean, defer dirty pages to writeback */
910 if (referenced_page
&& !PageSwapBacked(page
))
911 return PAGEREF_RECLAIM_CLEAN
;
913 return PAGEREF_RECLAIM
;
916 /* Check if a page is dirty or under writeback */
917 static void page_check_dirty_writeback(struct page
*page
,
918 bool *dirty
, bool *writeback
)
920 struct address_space
*mapping
;
923 * Anonymous pages are not handled by flushers and must be written
924 * from reclaim context. Do not stall reclaim based on them
926 if (!page_is_file_cache(page
) ||
927 (PageAnon(page
) && !PageSwapBacked(page
))) {
933 /* By default assume that the page flags are accurate */
934 *dirty
= PageDirty(page
);
935 *writeback
= PageWriteback(page
);
937 /* Verify dirty/writeback state if the filesystem supports it */
938 if (!page_has_private(page
))
941 mapping
= page_mapping(page
);
942 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
943 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
946 struct reclaim_stat
{
948 unsigned nr_unqueued_dirty
;
949 unsigned nr_congested
;
950 unsigned nr_writeback
;
951 unsigned nr_immediate
;
952 unsigned nr_activate
;
953 unsigned nr_ref_keep
;
954 unsigned nr_unmap_fail
;
958 * shrink_page_list() returns the number of reclaimed pages
960 static unsigned long shrink_page_list(struct list_head
*page_list
,
961 struct pglist_data
*pgdat
,
962 struct scan_control
*sc
,
963 enum ttu_flags ttu_flags
,
964 struct reclaim_stat
*stat
,
967 LIST_HEAD(ret_pages
);
968 LIST_HEAD(free_pages
);
970 unsigned nr_unqueued_dirty
= 0;
971 unsigned nr_dirty
= 0;
972 unsigned nr_congested
= 0;
973 unsigned nr_reclaimed
= 0;
974 unsigned nr_writeback
= 0;
975 unsigned nr_immediate
= 0;
976 unsigned nr_ref_keep
= 0;
977 unsigned nr_unmap_fail
= 0;
981 while (!list_empty(page_list
)) {
982 struct address_space
*mapping
;
985 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
986 bool dirty
, writeback
;
990 page
= lru_to_page(page_list
);
991 list_del(&page
->lru
);
993 if (!trylock_page(page
))
996 VM_BUG_ON_PAGE(PageActive(page
), page
);
1000 if (unlikely(!page_evictable(page
)))
1001 goto activate_locked
;
1003 if (!sc
->may_unmap
&& page_mapped(page
))
1006 /* Double the slab pressure for mapped and swapcache pages */
1007 if ((page_mapped(page
) || PageSwapCache(page
)) &&
1008 !(PageAnon(page
) && !PageSwapBacked(page
)))
1011 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
1012 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
1015 * The number of dirty pages determines if a zone is marked
1016 * reclaim_congested which affects wait_iff_congested. kswapd
1017 * will stall and start writing pages if the tail of the LRU
1018 * is all dirty unqueued pages.
1020 page_check_dirty_writeback(page
, &dirty
, &writeback
);
1021 if (dirty
|| writeback
)
1024 if (dirty
&& !writeback
)
1025 nr_unqueued_dirty
++;
1028 * Treat this page as congested if the underlying BDI is or if
1029 * pages are cycling through the LRU so quickly that the
1030 * pages marked for immediate reclaim are making it to the
1031 * end of the LRU a second time.
1033 mapping
= page_mapping(page
);
1034 if (((dirty
|| writeback
) && mapping
&&
1035 inode_write_congested(mapping
->host
)) ||
1036 (writeback
&& PageReclaim(page
)))
1040 * If a page at the tail of the LRU is under writeback, there
1041 * are three cases to consider.
1043 * 1) If reclaim is encountering an excessive number of pages
1044 * under writeback and this page is both under writeback and
1045 * PageReclaim then it indicates that pages are being queued
1046 * for IO but are being recycled through the LRU before the
1047 * IO can complete. Waiting on the page itself risks an
1048 * indefinite stall if it is impossible to writeback the
1049 * page due to IO error or disconnected storage so instead
1050 * note that the LRU is being scanned too quickly and the
1051 * caller can stall after page list has been processed.
1053 * 2) Global or new memcg reclaim encounters a page that is
1054 * not marked for immediate reclaim, or the caller does not
1055 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1056 * not to fs). In this case mark the page for immediate
1057 * reclaim and continue scanning.
1059 * Require may_enter_fs because we would wait on fs, which
1060 * may not have submitted IO yet. And the loop driver might
1061 * enter reclaim, and deadlock if it waits on a page for
1062 * which it is needed to do the write (loop masks off
1063 * __GFP_IO|__GFP_FS for this reason); but more thought
1064 * would probably show more reasons.
1066 * 3) Legacy memcg encounters a page that is already marked
1067 * PageReclaim. memcg does not have any dirty pages
1068 * throttling so we could easily OOM just because too many
1069 * pages are in writeback and there is nothing else to
1070 * reclaim. Wait for the writeback to complete.
1072 * In cases 1) and 2) we activate the pages to get them out of
1073 * the way while we continue scanning for clean pages on the
1074 * inactive list and refilling from the active list. The
1075 * observation here is that waiting for disk writes is more
1076 * expensive than potentially causing reloads down the line.
1077 * Since they're marked for immediate reclaim, they won't put
1078 * memory pressure on the cache working set any longer than it
1079 * takes to write them to disk.
1081 if (PageWriteback(page
)) {
1083 if (current_is_kswapd() &&
1084 PageReclaim(page
) &&
1085 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1087 goto activate_locked
;
1090 } else if (sane_reclaim(sc
) ||
1091 !PageReclaim(page
) || !may_enter_fs
) {
1093 * This is slightly racy - end_page_writeback()
1094 * might have just cleared PageReclaim, then
1095 * setting PageReclaim here end up interpreted
1096 * as PageReadahead - but that does not matter
1097 * enough to care. What we do want is for this
1098 * page to have PageReclaim set next time memcg
1099 * reclaim reaches the tests above, so it will
1100 * then wait_on_page_writeback() to avoid OOM;
1101 * and it's also appropriate in global reclaim.
1103 SetPageReclaim(page
);
1105 goto activate_locked
;
1110 wait_on_page_writeback(page
);
1111 /* then go back and try same page again */
1112 list_add_tail(&page
->lru
, page_list
);
1118 references
= page_check_references(page
, sc
);
1120 switch (references
) {
1121 case PAGEREF_ACTIVATE
:
1122 goto activate_locked
;
1126 case PAGEREF_RECLAIM
:
1127 case PAGEREF_RECLAIM_CLEAN
:
1128 ; /* try to reclaim the page below */
1132 * Anonymous process memory has backing store?
1133 * Try to allocate it some swap space here.
1134 * Lazyfree page could be freed directly
1136 if (PageAnon(page
) && PageSwapBacked(page
)) {
1137 if (!PageSwapCache(page
)) {
1138 if (!(sc
->gfp_mask
& __GFP_IO
))
1140 if (PageTransHuge(page
)) {
1141 /* cannot split THP, skip it */
1142 if (!can_split_huge_page(page
, NULL
))
1143 goto activate_locked
;
1145 * Split pages without a PMD map right
1146 * away. Chances are some or all of the
1147 * tail pages can be freed without IO.
1149 if (!compound_mapcount(page
) &&
1150 split_huge_page_to_list(page
,
1152 goto activate_locked
;
1154 if (!add_to_swap(page
)) {
1155 if (!PageTransHuge(page
))
1156 goto activate_locked
;
1157 /* Fallback to swap normal pages */
1158 if (split_huge_page_to_list(page
,
1160 goto activate_locked
;
1161 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1162 count_vm_event(THP_SWPOUT_FALLBACK
);
1164 if (!add_to_swap(page
))
1165 goto activate_locked
;
1170 /* Adding to swap updated mapping */
1171 mapping
= page_mapping(page
);
1173 } else if (unlikely(PageTransHuge(page
))) {
1174 /* Split file THP */
1175 if (split_huge_page_to_list(page
, page_list
))
1180 * The page is mapped into the page tables of one or more
1181 * processes. Try to unmap it here.
1183 if (page_mapped(page
)) {
1184 enum ttu_flags flags
= ttu_flags
| TTU_BATCH_FLUSH
;
1186 if (unlikely(PageTransHuge(page
)))
1187 flags
|= TTU_SPLIT_HUGE_PMD
;
1188 if (!try_to_unmap(page
, flags
)) {
1190 goto activate_locked
;
1194 if (PageDirty(page
)) {
1196 * Only kswapd can writeback filesystem pages
1197 * to avoid risk of stack overflow. But avoid
1198 * injecting inefficient single-page IO into
1199 * flusher writeback as much as possible: only
1200 * write pages when we've encountered many
1201 * dirty pages, and when we've already scanned
1202 * the rest of the LRU for clean pages and see
1203 * the same dirty pages again (PageReclaim).
1205 if (page_is_file_cache(page
) &&
1206 (!current_is_kswapd() || !PageReclaim(page
) ||
1207 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1209 * Immediately reclaim when written back.
1210 * Similar in principal to deactivate_page()
1211 * except we already have the page isolated
1212 * and know it's dirty
1214 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1215 SetPageReclaim(page
);
1217 goto activate_locked
;
1220 if (references
== PAGEREF_RECLAIM_CLEAN
)
1224 if (!sc
->may_writepage
)
1228 * Page is dirty. Flush the TLB if a writable entry
1229 * potentially exists to avoid CPU writes after IO
1230 * starts and then write it out here.
1232 try_to_unmap_flush_dirty();
1233 switch (pageout(page
, mapping
, sc
)) {
1237 goto activate_locked
;
1239 if (PageWriteback(page
))
1241 if (PageDirty(page
))
1245 * A synchronous write - probably a ramdisk. Go
1246 * ahead and try to reclaim the page.
1248 if (!trylock_page(page
))
1250 if (PageDirty(page
) || PageWriteback(page
))
1252 mapping
= page_mapping(page
);
1254 ; /* try to free the page below */
1259 * If the page has buffers, try to free the buffer mappings
1260 * associated with this page. If we succeed we try to free
1263 * We do this even if the page is PageDirty().
1264 * try_to_release_page() does not perform I/O, but it is
1265 * possible for a page to have PageDirty set, but it is actually
1266 * clean (all its buffers are clean). This happens if the
1267 * buffers were written out directly, with submit_bh(). ext3
1268 * will do this, as well as the blockdev mapping.
1269 * try_to_release_page() will discover that cleanness and will
1270 * drop the buffers and mark the page clean - it can be freed.
1272 * Rarely, pages can have buffers and no ->mapping. These are
1273 * the pages which were not successfully invalidated in
1274 * truncate_complete_page(). We try to drop those buffers here
1275 * and if that worked, and the page is no longer mapped into
1276 * process address space (page_count == 1) it can be freed.
1277 * Otherwise, leave the page on the LRU so it is swappable.
1279 if (page_has_private(page
)) {
1280 if (!try_to_release_page(page
, sc
->gfp_mask
))
1281 goto activate_locked
;
1282 if (!mapping
&& page_count(page
) == 1) {
1284 if (put_page_testzero(page
))
1288 * rare race with speculative reference.
1289 * the speculative reference will free
1290 * this page shortly, so we may
1291 * increment nr_reclaimed here (and
1292 * leave it off the LRU).
1300 if (PageAnon(page
) && !PageSwapBacked(page
)) {
1301 /* follow __remove_mapping for reference */
1302 if (!page_ref_freeze(page
, 1))
1304 if (PageDirty(page
)) {
1305 page_ref_unfreeze(page
, 1);
1309 count_vm_event(PGLAZYFREED
);
1310 count_memcg_page_event(page
, PGLAZYFREED
);
1311 } else if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1314 * At this point, we have no other references and there is
1315 * no way to pick any more up (removed from LRU, removed
1316 * from pagecache). Can use non-atomic bitops now (and
1317 * we obviously don't have to worry about waking up a process
1318 * waiting on the page lock, because there are no references.
1320 __ClearPageLocked(page
);
1325 * Is there need to periodically free_page_list? It would
1326 * appear not as the counts should be low
1328 if (unlikely(PageTransHuge(page
))) {
1329 mem_cgroup_uncharge(page
);
1330 (*get_compound_page_dtor(page
))(page
);
1332 list_add(&page
->lru
, &free_pages
);
1336 /* Not a candidate for swapping, so reclaim swap space. */
1337 if (PageSwapCache(page
) && (mem_cgroup_swap_full(page
) ||
1339 try_to_free_swap(page
);
1340 VM_BUG_ON_PAGE(PageActive(page
), page
);
1341 if (!PageMlocked(page
)) {
1342 SetPageActive(page
);
1344 count_memcg_page_event(page
, PGACTIVATE
);
1349 list_add(&page
->lru
, &ret_pages
);
1350 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1353 mem_cgroup_uncharge_list(&free_pages
);
1354 try_to_unmap_flush();
1355 free_unref_page_list(&free_pages
);
1357 list_splice(&ret_pages
, page_list
);
1358 count_vm_events(PGACTIVATE
, pgactivate
);
1361 stat
->nr_dirty
= nr_dirty
;
1362 stat
->nr_congested
= nr_congested
;
1363 stat
->nr_unqueued_dirty
= nr_unqueued_dirty
;
1364 stat
->nr_writeback
= nr_writeback
;
1365 stat
->nr_immediate
= nr_immediate
;
1366 stat
->nr_activate
= pgactivate
;
1367 stat
->nr_ref_keep
= nr_ref_keep
;
1368 stat
->nr_unmap_fail
= nr_unmap_fail
;
1370 return nr_reclaimed
;
1373 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1374 struct list_head
*page_list
)
1376 struct scan_control sc
= {
1377 .gfp_mask
= GFP_KERNEL
,
1378 .priority
= DEF_PRIORITY
,
1382 struct page
*page
, *next
;
1383 LIST_HEAD(clean_pages
);
1385 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1386 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1387 !__PageMovable(page
)) {
1388 ClearPageActive(page
);
1389 list_move(&page
->lru
, &clean_pages
);
1393 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1394 TTU_IGNORE_ACCESS
, NULL
, true);
1395 list_splice(&clean_pages
, page_list
);
1396 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1401 * Attempt to remove the specified page from its LRU. Only take this page
1402 * if it is of the appropriate PageActive status. Pages which are being
1403 * freed elsewhere are also ignored.
1405 * page: page to consider
1406 * mode: one of the LRU isolation modes defined above
1408 * returns 0 on success, -ve errno on failure.
1410 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1414 /* Only take pages on the LRU. */
1418 /* Compaction should not handle unevictable pages but CMA can do so */
1419 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1425 * To minimise LRU disruption, the caller can indicate that it only
1426 * wants to isolate pages it will be able to operate on without
1427 * blocking - clean pages for the most part.
1429 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1430 * that it is possible to migrate without blocking
1432 if (mode
& ISOLATE_ASYNC_MIGRATE
) {
1433 /* All the caller can do on PageWriteback is block */
1434 if (PageWriteback(page
))
1437 if (PageDirty(page
)) {
1438 struct address_space
*mapping
;
1441 * Only pages without mappings or that have a
1442 * ->migratepage callback are possible to migrate
1445 mapping
= page_mapping(page
);
1446 if (mapping
&& !mapping
->a_ops
->migratepage
)
1451 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1454 if (likely(get_page_unless_zero(page
))) {
1456 * Be careful not to clear PageLRU until after we're
1457 * sure the page is not being freed elsewhere -- the
1458 * page release code relies on it.
1469 * Update LRU sizes after isolating pages. The LRU size updates must
1470 * be complete before mem_cgroup_update_lru_size due to a santity check.
1472 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1473 enum lru_list lru
, unsigned long *nr_zone_taken
)
1477 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1478 if (!nr_zone_taken
[zid
])
1481 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1483 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1490 * zone_lru_lock is heavily contended. Some of the functions that
1491 * shrink the lists perform better by taking out a batch of pages
1492 * and working on them outside the LRU lock.
1494 * For pagecache intensive workloads, this function is the hottest
1495 * spot in the kernel (apart from copy_*_user functions).
1497 * Appropriate locks must be held before calling this function.
1499 * @nr_to_scan: The number of eligible pages to look through on the list.
1500 * @lruvec: The LRU vector to pull pages from.
1501 * @dst: The temp list to put pages on to.
1502 * @nr_scanned: The number of pages that were scanned.
1503 * @sc: The scan_control struct for this reclaim session
1504 * @mode: One of the LRU isolation modes
1505 * @lru: LRU list id for isolating
1507 * returns how many pages were moved onto *@dst.
1509 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1510 struct lruvec
*lruvec
, struct list_head
*dst
,
1511 unsigned long *nr_scanned
, struct scan_control
*sc
,
1512 isolate_mode_t mode
, enum lru_list lru
)
1514 struct list_head
*src
= &lruvec
->lists
[lru
];
1515 unsigned long nr_taken
= 0;
1516 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1517 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1518 unsigned long skipped
= 0;
1519 unsigned long scan
, total_scan
, nr_pages
;
1520 LIST_HEAD(pages_skipped
);
1523 for (total_scan
= 0;
1524 scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&& !list_empty(src
);
1528 page
= lru_to_page(src
);
1529 prefetchw_prev_lru_page(page
, src
, flags
);
1531 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1533 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1534 list_move(&page
->lru
, &pages_skipped
);
1535 nr_skipped
[page_zonenum(page
)]++;
1540 * Do not count skipped pages because that makes the function
1541 * return with no isolated pages if the LRU mostly contains
1542 * ineligible pages. This causes the VM to not reclaim any
1543 * pages, triggering a premature OOM.
1546 switch (__isolate_lru_page(page
, mode
)) {
1548 nr_pages
= hpage_nr_pages(page
);
1549 nr_taken
+= nr_pages
;
1550 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1551 list_move(&page
->lru
, dst
);
1555 /* else it is being freed elsewhere */
1556 list_move(&page
->lru
, src
);
1565 * Splice any skipped pages to the start of the LRU list. Note that
1566 * this disrupts the LRU order when reclaiming for lower zones but
1567 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1568 * scanning would soon rescan the same pages to skip and put the
1569 * system at risk of premature OOM.
1571 if (!list_empty(&pages_skipped
)) {
1574 list_splice(&pages_skipped
, src
);
1575 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1576 if (!nr_skipped
[zid
])
1579 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1580 skipped
+= nr_skipped
[zid
];
1583 *nr_scanned
= total_scan
;
1584 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
,
1585 total_scan
, skipped
, nr_taken
, mode
, lru
);
1586 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1591 * isolate_lru_page - tries to isolate a page from its LRU list
1592 * @page: page to isolate from its LRU list
1594 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1595 * vmstat statistic corresponding to whatever LRU list the page was on.
1597 * Returns 0 if the page was removed from an LRU list.
1598 * Returns -EBUSY if the page was not on an LRU list.
1600 * The returned page will have PageLRU() cleared. If it was found on
1601 * the active list, it will have PageActive set. If it was found on
1602 * the unevictable list, it will have the PageUnevictable bit set. That flag
1603 * may need to be cleared by the caller before letting the page go.
1605 * The vmstat statistic corresponding to the list on which the page was
1606 * found will be decremented.
1609 * (1) Must be called with an elevated refcount on the page. This is a
1610 * fundamentnal difference from isolate_lru_pages (which is called
1611 * without a stable reference).
1612 * (2) the lru_lock must not be held.
1613 * (3) interrupts must be enabled.
1615 int isolate_lru_page(struct page
*page
)
1619 VM_BUG_ON_PAGE(!page_count(page
), page
);
1620 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1622 if (PageLRU(page
)) {
1623 struct zone
*zone
= page_zone(page
);
1624 struct lruvec
*lruvec
;
1626 spin_lock_irq(zone_lru_lock(zone
));
1627 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1628 if (PageLRU(page
)) {
1629 int lru
= page_lru(page
);
1632 del_page_from_lru_list(page
, lruvec
, lru
);
1635 spin_unlock_irq(zone_lru_lock(zone
));
1641 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1642 * then get resheduled. When there are massive number of tasks doing page
1643 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1644 * the LRU list will go small and be scanned faster than necessary, leading to
1645 * unnecessary swapping, thrashing and OOM.
1647 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1648 struct scan_control
*sc
)
1650 unsigned long inactive
, isolated
;
1652 if (current_is_kswapd())
1655 if (!sane_reclaim(sc
))
1659 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1660 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1662 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1663 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1667 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1668 * won't get blocked by normal direct-reclaimers, forming a circular
1671 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1674 return isolated
> inactive
;
1677 static noinline_for_stack
void
1678 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1680 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1681 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1682 LIST_HEAD(pages_to_free
);
1685 * Put back any unfreeable pages.
1687 while (!list_empty(page_list
)) {
1688 struct page
*page
= lru_to_page(page_list
);
1691 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1692 list_del(&page
->lru
);
1693 if (unlikely(!page_evictable(page
))) {
1694 spin_unlock_irq(&pgdat
->lru_lock
);
1695 putback_lru_page(page
);
1696 spin_lock_irq(&pgdat
->lru_lock
);
1700 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1703 lru
= page_lru(page
);
1704 add_page_to_lru_list(page
, lruvec
, lru
);
1706 if (is_active_lru(lru
)) {
1707 int file
= is_file_lru(lru
);
1708 int numpages
= hpage_nr_pages(page
);
1709 reclaim_stat
->recent_rotated
[file
] += numpages
;
1711 if (put_page_testzero(page
)) {
1712 __ClearPageLRU(page
);
1713 __ClearPageActive(page
);
1714 del_page_from_lru_list(page
, lruvec
, lru
);
1716 if (unlikely(PageCompound(page
))) {
1717 spin_unlock_irq(&pgdat
->lru_lock
);
1718 mem_cgroup_uncharge(page
);
1719 (*get_compound_page_dtor(page
))(page
);
1720 spin_lock_irq(&pgdat
->lru_lock
);
1722 list_add(&page
->lru
, &pages_to_free
);
1727 * To save our caller's stack, now use input list for pages to free.
1729 list_splice(&pages_to_free
, page_list
);
1733 * If a kernel thread (such as nfsd for loop-back mounts) services
1734 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1735 * In that case we should only throttle if the backing device it is
1736 * writing to is congested. In other cases it is safe to throttle.
1738 static int current_may_throttle(void)
1740 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1741 current
->backing_dev_info
== NULL
||
1742 bdi_write_congested(current
->backing_dev_info
);
1746 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1747 * of reclaimed pages
1749 static noinline_for_stack
unsigned long
1750 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1751 struct scan_control
*sc
, enum lru_list lru
)
1753 LIST_HEAD(page_list
);
1754 unsigned long nr_scanned
;
1755 unsigned long nr_reclaimed
= 0;
1756 unsigned long nr_taken
;
1757 struct reclaim_stat stat
= {};
1758 isolate_mode_t isolate_mode
= 0;
1759 int file
= is_file_lru(lru
);
1760 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1761 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1762 bool stalled
= false;
1764 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1768 /* wait a bit for the reclaimer. */
1772 /* We are about to die and free our memory. Return now. */
1773 if (fatal_signal_pending(current
))
1774 return SWAP_CLUSTER_MAX
;
1780 isolate_mode
|= ISOLATE_UNMAPPED
;
1782 spin_lock_irq(&pgdat
->lru_lock
);
1784 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1785 &nr_scanned
, sc
, isolate_mode
, lru
);
1787 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1788 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1790 if (current_is_kswapd()) {
1791 if (global_reclaim(sc
))
1792 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1793 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_KSWAPD
,
1796 if (global_reclaim(sc
))
1797 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1798 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_DIRECT
,
1801 spin_unlock_irq(&pgdat
->lru_lock
);
1806 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, 0,
1809 spin_lock_irq(&pgdat
->lru_lock
);
1811 if (current_is_kswapd()) {
1812 if (global_reclaim(sc
))
1813 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1814 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_KSWAPD
,
1817 if (global_reclaim(sc
))
1818 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1819 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_DIRECT
,
1823 putback_inactive_pages(lruvec
, &page_list
);
1825 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1827 spin_unlock_irq(&pgdat
->lru_lock
);
1829 mem_cgroup_uncharge_list(&page_list
);
1830 free_unref_page_list(&page_list
);
1833 * If reclaim is isolating dirty pages under writeback, it implies
1834 * that the long-lived page allocation rate is exceeding the page
1835 * laundering rate. Either the global limits are not being effective
1836 * at throttling processes due to the page distribution throughout
1837 * zones or there is heavy usage of a slow backing device. The
1838 * only option is to throttle from reclaim context which is not ideal
1839 * as there is no guarantee the dirtying process is throttled in the
1840 * same way balance_dirty_pages() manages.
1842 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1843 * of pages under pages flagged for immediate reclaim and stall if any
1844 * are encountered in the nr_immediate check below.
1846 if (stat
.nr_writeback
&& stat
.nr_writeback
== nr_taken
)
1847 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
1850 * Legacy memcg will stall in page writeback so avoid forcibly
1853 if (sane_reclaim(sc
)) {
1855 * Tag a zone as congested if all the dirty pages scanned were
1856 * backed by a congested BDI and wait_iff_congested will stall.
1858 if (stat
.nr_dirty
&& stat
.nr_dirty
== stat
.nr_congested
)
1859 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
1862 * If dirty pages are scanned that are not queued for IO, it
1863 * implies that flushers are not doing their job. This can
1864 * happen when memory pressure pushes dirty pages to the end of
1865 * the LRU before the dirty limits are breached and the dirty
1866 * data has expired. It can also happen when the proportion of
1867 * dirty pages grows not through writes but through memory
1868 * pressure reclaiming all the clean cache. And in some cases,
1869 * the flushers simply cannot keep up with the allocation
1870 * rate. Nudge the flusher threads in case they are asleep, but
1871 * also allow kswapd to start writing pages during reclaim.
1873 if (stat
.nr_unqueued_dirty
== nr_taken
) {
1874 wakeup_flusher_threads(WB_REASON_VMSCAN
);
1875 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
1879 * If kswapd scans pages marked marked for immediate
1880 * reclaim and under writeback (nr_immediate), it implies
1881 * that pages are cycling through the LRU faster than
1882 * they are written so also forcibly stall.
1884 if (stat
.nr_immediate
&& current_may_throttle())
1885 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1889 * Stall direct reclaim for IO completions if underlying BDIs or zone
1890 * is congested. Allow kswapd to continue until it starts encountering
1891 * unqueued dirty pages or cycling through the LRU too quickly.
1893 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
1894 current_may_throttle())
1895 wait_iff_congested(pgdat
, BLK_RW_ASYNC
, HZ
/10);
1897 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
1898 nr_scanned
, nr_reclaimed
,
1899 stat
.nr_dirty
, stat
.nr_writeback
,
1900 stat
.nr_congested
, stat
.nr_immediate
,
1901 stat
.nr_activate
, stat
.nr_ref_keep
,
1903 sc
->priority
, file
);
1904 return nr_reclaimed
;
1908 * This moves pages from the active list to the inactive list.
1910 * We move them the other way if the page is referenced by one or more
1911 * processes, from rmap.
1913 * If the pages are mostly unmapped, the processing is fast and it is
1914 * appropriate to hold zone_lru_lock across the whole operation. But if
1915 * the pages are mapped, the processing is slow (page_referenced()) so we
1916 * should drop zone_lru_lock around each page. It's impossible to balance
1917 * this, so instead we remove the pages from the LRU while processing them.
1918 * It is safe to rely on PG_active against the non-LRU pages in here because
1919 * nobody will play with that bit on a non-LRU page.
1921 * The downside is that we have to touch page->_refcount against each page.
1922 * But we had to alter page->flags anyway.
1924 * Returns the number of pages moved to the given lru.
1927 static unsigned move_active_pages_to_lru(struct lruvec
*lruvec
,
1928 struct list_head
*list
,
1929 struct list_head
*pages_to_free
,
1932 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1937 while (!list_empty(list
)) {
1938 page
= lru_to_page(list
);
1939 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1941 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1944 nr_pages
= hpage_nr_pages(page
);
1945 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
1946 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1948 if (put_page_testzero(page
)) {
1949 __ClearPageLRU(page
);
1950 __ClearPageActive(page
);
1951 del_page_from_lru_list(page
, lruvec
, lru
);
1953 if (unlikely(PageCompound(page
))) {
1954 spin_unlock_irq(&pgdat
->lru_lock
);
1955 mem_cgroup_uncharge(page
);
1956 (*get_compound_page_dtor(page
))(page
);
1957 spin_lock_irq(&pgdat
->lru_lock
);
1959 list_add(&page
->lru
, pages_to_free
);
1961 nr_moved
+= nr_pages
;
1965 if (!is_active_lru(lru
)) {
1966 __count_vm_events(PGDEACTIVATE
, nr_moved
);
1967 count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
,
1974 static void shrink_active_list(unsigned long nr_to_scan
,
1975 struct lruvec
*lruvec
,
1976 struct scan_control
*sc
,
1979 unsigned long nr_taken
;
1980 unsigned long nr_scanned
;
1981 unsigned long vm_flags
;
1982 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1983 LIST_HEAD(l_active
);
1984 LIST_HEAD(l_inactive
);
1986 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1987 unsigned nr_deactivate
, nr_activate
;
1988 unsigned nr_rotated
= 0;
1989 isolate_mode_t isolate_mode
= 0;
1990 int file
= is_file_lru(lru
);
1991 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1996 isolate_mode
|= ISOLATE_UNMAPPED
;
1998 spin_lock_irq(&pgdat
->lru_lock
);
2000 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
2001 &nr_scanned
, sc
, isolate_mode
, lru
);
2003 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
2004 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
2006 __count_vm_events(PGREFILL
, nr_scanned
);
2007 count_memcg_events(lruvec_memcg(lruvec
), PGREFILL
, nr_scanned
);
2009 spin_unlock_irq(&pgdat
->lru_lock
);
2011 while (!list_empty(&l_hold
)) {
2013 page
= lru_to_page(&l_hold
);
2014 list_del(&page
->lru
);
2016 if (unlikely(!page_evictable(page
))) {
2017 putback_lru_page(page
);
2021 if (unlikely(buffer_heads_over_limit
)) {
2022 if (page_has_private(page
) && trylock_page(page
)) {
2023 if (page_has_private(page
))
2024 try_to_release_page(page
, 0);
2029 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
2031 nr_rotated
+= hpage_nr_pages(page
);
2033 * Identify referenced, file-backed active pages and
2034 * give them one more trip around the active list. So
2035 * that executable code get better chances to stay in
2036 * memory under moderate memory pressure. Anon pages
2037 * are not likely to be evicted by use-once streaming
2038 * IO, plus JVM can create lots of anon VM_EXEC pages,
2039 * so we ignore them here.
2041 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
2042 list_add(&page
->lru
, &l_active
);
2047 ClearPageActive(page
); /* we are de-activating */
2048 list_add(&page
->lru
, &l_inactive
);
2052 * Move pages back to the lru list.
2054 spin_lock_irq(&pgdat
->lru_lock
);
2056 * Count referenced pages from currently used mappings as rotated,
2057 * even though only some of them are actually re-activated. This
2058 * helps balance scan pressure between file and anonymous pages in
2061 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
2063 nr_activate
= move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
2064 nr_deactivate
= move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
2065 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2066 spin_unlock_irq(&pgdat
->lru_lock
);
2068 mem_cgroup_uncharge_list(&l_hold
);
2069 free_unref_page_list(&l_hold
);
2070 trace_mm_vmscan_lru_shrink_active(pgdat
->node_id
, nr_taken
, nr_activate
,
2071 nr_deactivate
, nr_rotated
, sc
->priority
, file
);
2075 * The inactive anon list should be small enough that the VM never has
2076 * to do too much work.
2078 * The inactive file list should be small enough to leave most memory
2079 * to the established workingset on the scan-resistant active list,
2080 * but large enough to avoid thrashing the aggregate readahead window.
2082 * Both inactive lists should also be large enough that each inactive
2083 * page has a chance to be referenced again before it is reclaimed.
2085 * If that fails and refaulting is observed, the inactive list grows.
2087 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2088 * on this LRU, maintained by the pageout code. An inactive_ratio
2089 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2092 * memory ratio inactive
2093 * -------------------------------------
2102 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2103 struct mem_cgroup
*memcg
,
2104 struct scan_control
*sc
, bool actual_reclaim
)
2106 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2107 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2108 enum lru_list inactive_lru
= file
* LRU_FILE
;
2109 unsigned long inactive
, active
;
2110 unsigned long inactive_ratio
;
2111 unsigned long refaults
;
2115 * If we don't have swap space, anonymous page deactivation
2118 if (!file
&& !total_swap_pages
)
2121 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2122 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2125 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
2127 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
2130 * When refaults are being observed, it means a new workingset
2131 * is being established. Disable active list protection to get
2132 * rid of the stale workingset quickly.
2134 if (file
&& actual_reclaim
&& lruvec
->refaults
!= refaults
) {
2137 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2139 inactive_ratio
= int_sqrt(10 * gb
);
2145 trace_mm_vmscan_inactive_list_is_low(pgdat
->node_id
, sc
->reclaim_idx
,
2146 lruvec_lru_size(lruvec
, inactive_lru
, MAX_NR_ZONES
), inactive
,
2147 lruvec_lru_size(lruvec
, active_lru
, MAX_NR_ZONES
), active
,
2148 inactive_ratio
, file
);
2150 return inactive
* inactive_ratio
< active
;
2153 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2154 struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2155 struct scan_control
*sc
)
2157 if (is_active_lru(lru
)) {
2158 if (inactive_list_is_low(lruvec
, is_file_lru(lru
),
2160 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2164 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2175 * Determine how aggressively the anon and file LRU lists should be
2176 * scanned. The relative value of each set of LRU lists is determined
2177 * by looking at the fraction of the pages scanned we did rotate back
2178 * onto the active list instead of evict.
2180 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2181 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2183 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2184 struct scan_control
*sc
, unsigned long *nr
,
2185 unsigned long *lru_pages
)
2187 int swappiness
= mem_cgroup_swappiness(memcg
);
2188 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2190 u64 denominator
= 0; /* gcc */
2191 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2192 unsigned long anon_prio
, file_prio
;
2193 enum scan_balance scan_balance
;
2194 unsigned long anon
, file
;
2195 unsigned long ap
, fp
;
2198 /* If we have no swap space, do not bother scanning anon pages. */
2199 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2200 scan_balance
= SCAN_FILE
;
2205 * Global reclaim will swap to prevent OOM even with no
2206 * swappiness, but memcg users want to use this knob to
2207 * disable swapping for individual groups completely when
2208 * using the memory controller's swap limit feature would be
2211 if (!global_reclaim(sc
) && !swappiness
) {
2212 scan_balance
= SCAN_FILE
;
2217 * Do not apply any pressure balancing cleverness when the
2218 * system is close to OOM, scan both anon and file equally
2219 * (unless the swappiness setting disagrees with swapping).
2221 if (!sc
->priority
&& swappiness
) {
2222 scan_balance
= SCAN_EQUAL
;
2227 * Prevent the reclaimer from falling into the cache trap: as
2228 * cache pages start out inactive, every cache fault will tip
2229 * the scan balance towards the file LRU. And as the file LRU
2230 * shrinks, so does the window for rotation from references.
2231 * This means we have a runaway feedback loop where a tiny
2232 * thrashing file LRU becomes infinitely more attractive than
2233 * anon pages. Try to detect this based on file LRU size.
2235 if (global_reclaim(sc
)) {
2236 unsigned long pgdatfile
;
2237 unsigned long pgdatfree
;
2239 unsigned long total_high_wmark
= 0;
2241 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2242 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2243 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2245 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2246 struct zone
*zone
= &pgdat
->node_zones
[z
];
2247 if (!managed_zone(zone
))
2250 total_high_wmark
+= high_wmark_pages(zone
);
2253 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2255 * Force SCAN_ANON if there are enough inactive
2256 * anonymous pages on the LRU in eligible zones.
2257 * Otherwise, the small LRU gets thrashed.
2259 if (!inactive_list_is_low(lruvec
, false, memcg
, sc
, false) &&
2260 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, sc
->reclaim_idx
)
2262 scan_balance
= SCAN_ANON
;
2269 * If there is enough inactive page cache, i.e. if the size of the
2270 * inactive list is greater than that of the active list *and* the
2271 * inactive list actually has some pages to scan on this priority, we
2272 * do not reclaim anything from the anonymous working set right now.
2273 * Without the second condition we could end up never scanning an
2274 * lruvec even if it has plenty of old anonymous pages unless the
2275 * system is under heavy pressure.
2277 if (!inactive_list_is_low(lruvec
, true, memcg
, sc
, false) &&
2278 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2279 scan_balance
= SCAN_FILE
;
2283 scan_balance
= SCAN_FRACT
;
2286 * With swappiness at 100, anonymous and file have the same priority.
2287 * This scanning priority is essentially the inverse of IO cost.
2289 anon_prio
= swappiness
;
2290 file_prio
= 200 - anon_prio
;
2293 * OK, so we have swap space and a fair amount of page cache
2294 * pages. We use the recently rotated / recently scanned
2295 * ratios to determine how valuable each cache is.
2297 * Because workloads change over time (and to avoid overflow)
2298 * we keep these statistics as a floating average, which ends
2299 * up weighing recent references more than old ones.
2301 * anon in [0], file in [1]
2304 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2305 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2306 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2307 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2309 spin_lock_irq(&pgdat
->lru_lock
);
2310 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2311 reclaim_stat
->recent_scanned
[0] /= 2;
2312 reclaim_stat
->recent_rotated
[0] /= 2;
2315 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2316 reclaim_stat
->recent_scanned
[1] /= 2;
2317 reclaim_stat
->recent_rotated
[1] /= 2;
2321 * The amount of pressure on anon vs file pages is inversely
2322 * proportional to the fraction of recently scanned pages on
2323 * each list that were recently referenced and in active use.
2325 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2326 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2328 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2329 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2330 spin_unlock_irq(&pgdat
->lru_lock
);
2334 denominator
= ap
+ fp
+ 1;
2337 for_each_evictable_lru(lru
) {
2338 int file
= is_file_lru(lru
);
2342 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2343 scan
= size
>> sc
->priority
;
2345 * If the cgroup's already been deleted, make sure to
2346 * scrape out the remaining cache.
2348 if (!scan
&& !mem_cgroup_online(memcg
))
2349 scan
= min(size
, SWAP_CLUSTER_MAX
);
2351 switch (scan_balance
) {
2353 /* Scan lists relative to size */
2357 * Scan types proportional to swappiness and
2358 * their relative recent reclaim efficiency.
2360 scan
= div64_u64(scan
* fraction
[file
],
2365 /* Scan one type exclusively */
2366 if ((scan_balance
== SCAN_FILE
) != file
) {
2372 /* Look ma, no brain */
2382 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2384 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2385 struct scan_control
*sc
, unsigned long *lru_pages
)
2387 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2388 unsigned long nr
[NR_LRU_LISTS
];
2389 unsigned long targets
[NR_LRU_LISTS
];
2390 unsigned long nr_to_scan
;
2392 unsigned long nr_reclaimed
= 0;
2393 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2394 struct blk_plug plug
;
2397 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2399 /* Record the original scan target for proportional adjustments later */
2400 memcpy(targets
, nr
, sizeof(nr
));
2403 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2404 * event that can occur when there is little memory pressure e.g.
2405 * multiple streaming readers/writers. Hence, we do not abort scanning
2406 * when the requested number of pages are reclaimed when scanning at
2407 * DEF_PRIORITY on the assumption that the fact we are direct
2408 * reclaiming implies that kswapd is not keeping up and it is best to
2409 * do a batch of work at once. For memcg reclaim one check is made to
2410 * abort proportional reclaim if either the file or anon lru has already
2411 * dropped to zero at the first pass.
2413 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2414 sc
->priority
== DEF_PRIORITY
);
2416 blk_start_plug(&plug
);
2417 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2418 nr
[LRU_INACTIVE_FILE
]) {
2419 unsigned long nr_anon
, nr_file
, percentage
;
2420 unsigned long nr_scanned
;
2422 for_each_evictable_lru(lru
) {
2424 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2425 nr
[lru
] -= nr_to_scan
;
2427 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2434 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2438 * For kswapd and memcg, reclaim at least the number of pages
2439 * requested. Ensure that the anon and file LRUs are scanned
2440 * proportionally what was requested by get_scan_count(). We
2441 * stop reclaiming one LRU and reduce the amount scanning
2442 * proportional to the original scan target.
2444 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2445 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2448 * It's just vindictive to attack the larger once the smaller
2449 * has gone to zero. And given the way we stop scanning the
2450 * smaller below, this makes sure that we only make one nudge
2451 * towards proportionality once we've got nr_to_reclaim.
2453 if (!nr_file
|| !nr_anon
)
2456 if (nr_file
> nr_anon
) {
2457 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2458 targets
[LRU_ACTIVE_ANON
] + 1;
2460 percentage
= nr_anon
* 100 / scan_target
;
2462 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2463 targets
[LRU_ACTIVE_FILE
] + 1;
2465 percentage
= nr_file
* 100 / scan_target
;
2468 /* Stop scanning the smaller of the LRU */
2470 nr
[lru
+ LRU_ACTIVE
] = 0;
2473 * Recalculate the other LRU scan count based on its original
2474 * scan target and the percentage scanning already complete
2476 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2477 nr_scanned
= targets
[lru
] - nr
[lru
];
2478 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2479 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2482 nr_scanned
= targets
[lru
] - nr
[lru
];
2483 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2484 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2486 scan_adjusted
= true;
2488 blk_finish_plug(&plug
);
2489 sc
->nr_reclaimed
+= nr_reclaimed
;
2492 * Even if we did not try to evict anon pages at all, we want to
2493 * rebalance the anon lru active/inactive ratio.
2495 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
2496 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2497 sc
, LRU_ACTIVE_ANON
);
2500 /* Use reclaim/compaction for costly allocs or under memory pressure */
2501 static bool in_reclaim_compaction(struct scan_control
*sc
)
2503 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2504 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2505 sc
->priority
< DEF_PRIORITY
- 2))
2512 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2513 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2514 * true if more pages should be reclaimed such that when the page allocator
2515 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2516 * It will give up earlier than that if there is difficulty reclaiming pages.
2518 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2519 unsigned long nr_reclaimed
,
2520 unsigned long nr_scanned
,
2521 struct scan_control
*sc
)
2523 unsigned long pages_for_compaction
;
2524 unsigned long inactive_lru_pages
;
2527 /* If not in reclaim/compaction mode, stop */
2528 if (!in_reclaim_compaction(sc
))
2531 /* Consider stopping depending on scan and reclaim activity */
2532 if (sc
->gfp_mask
& __GFP_RETRY_MAYFAIL
) {
2534 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2535 * full LRU list has been scanned and we are still failing
2536 * to reclaim pages. This full LRU scan is potentially
2537 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2539 if (!nr_reclaimed
&& !nr_scanned
)
2543 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2544 * fail without consequence, stop if we failed to reclaim
2545 * any pages from the last SWAP_CLUSTER_MAX number of
2546 * pages that were scanned. This will return to the
2547 * caller faster at the risk reclaim/compaction and
2548 * the resulting allocation attempt fails
2555 * If we have not reclaimed enough pages for compaction and the
2556 * inactive lists are large enough, continue reclaiming
2558 pages_for_compaction
= compact_gap(sc
->order
);
2559 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2560 if (get_nr_swap_pages() > 0)
2561 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2562 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2563 inactive_lru_pages
> pages_for_compaction
)
2566 /* If compaction would go ahead or the allocation would succeed, stop */
2567 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2568 struct zone
*zone
= &pgdat
->node_zones
[z
];
2569 if (!managed_zone(zone
))
2572 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2573 case COMPACT_SUCCESS
:
2574 case COMPACT_CONTINUE
:
2577 /* check next zone */
2584 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2586 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2587 unsigned long nr_reclaimed
, nr_scanned
;
2588 bool reclaimable
= false;
2591 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2592 struct mem_cgroup_reclaim_cookie reclaim
= {
2594 .priority
= sc
->priority
,
2596 unsigned long node_lru_pages
= 0;
2597 struct mem_cgroup
*memcg
;
2599 nr_reclaimed
= sc
->nr_reclaimed
;
2600 nr_scanned
= sc
->nr_scanned
;
2602 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2604 unsigned long lru_pages
;
2605 unsigned long reclaimed
;
2606 unsigned long scanned
;
2608 if (mem_cgroup_low(root
, memcg
)) {
2609 if (!sc
->memcg_low_reclaim
) {
2610 sc
->memcg_low_skipped
= 1;
2613 mem_cgroup_event(memcg
, MEMCG_LOW
);
2616 reclaimed
= sc
->nr_reclaimed
;
2617 scanned
= sc
->nr_scanned
;
2619 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2620 node_lru_pages
+= lru_pages
;
2623 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2624 memcg
, sc
->nr_scanned
- scanned
,
2627 /* Record the group's reclaim efficiency */
2628 vmpressure(sc
->gfp_mask
, memcg
, false,
2629 sc
->nr_scanned
- scanned
,
2630 sc
->nr_reclaimed
- reclaimed
);
2633 * Direct reclaim and kswapd have to scan all memory
2634 * cgroups to fulfill the overall scan target for the
2637 * Limit reclaim, on the other hand, only cares about
2638 * nr_to_reclaim pages to be reclaimed and it will
2639 * retry with decreasing priority if one round over the
2640 * whole hierarchy is not sufficient.
2642 if (!global_reclaim(sc
) &&
2643 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2644 mem_cgroup_iter_break(root
, memcg
);
2647 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2650 * Shrink the slab caches in the same proportion that
2651 * the eligible LRU pages were scanned.
2653 if (global_reclaim(sc
))
2654 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
, NULL
,
2655 sc
->nr_scanned
- nr_scanned
,
2658 if (reclaim_state
) {
2659 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2660 reclaim_state
->reclaimed_slab
= 0;
2663 /* Record the subtree's reclaim efficiency */
2664 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2665 sc
->nr_scanned
- nr_scanned
,
2666 sc
->nr_reclaimed
- nr_reclaimed
);
2668 if (sc
->nr_reclaimed
- nr_reclaimed
)
2671 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2672 sc
->nr_scanned
- nr_scanned
, sc
));
2675 * Kswapd gives up on balancing particular nodes after too
2676 * many failures to reclaim anything from them and goes to
2677 * sleep. On reclaim progress, reset the failure counter. A
2678 * successful direct reclaim run will revive a dormant kswapd.
2681 pgdat
->kswapd_failures
= 0;
2687 * Returns true if compaction should go ahead for a costly-order request, or
2688 * the allocation would already succeed without compaction. Return false if we
2689 * should reclaim first.
2691 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2693 unsigned long watermark
;
2694 enum compact_result suitable
;
2696 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2697 if (suitable
== COMPACT_SUCCESS
)
2698 /* Allocation should succeed already. Don't reclaim. */
2700 if (suitable
== COMPACT_SKIPPED
)
2701 /* Compaction cannot yet proceed. Do reclaim. */
2705 * Compaction is already possible, but it takes time to run and there
2706 * are potentially other callers using the pages just freed. So proceed
2707 * with reclaim to make a buffer of free pages available to give
2708 * compaction a reasonable chance of completing and allocating the page.
2709 * Note that we won't actually reclaim the whole buffer in one attempt
2710 * as the target watermark in should_continue_reclaim() is lower. But if
2711 * we are already above the high+gap watermark, don't reclaim at all.
2713 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2715 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2719 * This is the direct reclaim path, for page-allocating processes. We only
2720 * try to reclaim pages from zones which will satisfy the caller's allocation
2723 * If a zone is deemed to be full of pinned pages then just give it a light
2724 * scan then give up on it.
2726 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2730 unsigned long nr_soft_reclaimed
;
2731 unsigned long nr_soft_scanned
;
2733 pg_data_t
*last_pgdat
= NULL
;
2736 * If the number of buffer_heads in the machine exceeds the maximum
2737 * allowed level, force direct reclaim to scan the highmem zone as
2738 * highmem pages could be pinning lowmem pages storing buffer_heads
2740 orig_mask
= sc
->gfp_mask
;
2741 if (buffer_heads_over_limit
) {
2742 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2743 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2746 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2747 sc
->reclaim_idx
, sc
->nodemask
) {
2749 * Take care memory controller reclaiming has small influence
2752 if (global_reclaim(sc
)) {
2753 if (!cpuset_zone_allowed(zone
,
2754 GFP_KERNEL
| __GFP_HARDWALL
))
2758 * If we already have plenty of memory free for
2759 * compaction in this zone, don't free any more.
2760 * Even though compaction is invoked for any
2761 * non-zero order, only frequent costly order
2762 * reclamation is disruptive enough to become a
2763 * noticeable problem, like transparent huge
2766 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2767 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2768 compaction_ready(zone
, sc
)) {
2769 sc
->compaction_ready
= true;
2774 * Shrink each node in the zonelist once. If the
2775 * zonelist is ordered by zone (not the default) then a
2776 * node may be shrunk multiple times but in that case
2777 * the user prefers lower zones being preserved.
2779 if (zone
->zone_pgdat
== last_pgdat
)
2783 * This steals pages from memory cgroups over softlimit
2784 * and returns the number of reclaimed pages and
2785 * scanned pages. This works for global memory pressure
2786 * and balancing, not for a memcg's limit.
2788 nr_soft_scanned
= 0;
2789 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2790 sc
->order
, sc
->gfp_mask
,
2792 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2793 sc
->nr_scanned
+= nr_soft_scanned
;
2794 /* need some check for avoid more shrink_zone() */
2797 /* See comment about same check for global reclaim above */
2798 if (zone
->zone_pgdat
== last_pgdat
)
2800 last_pgdat
= zone
->zone_pgdat
;
2801 shrink_node(zone
->zone_pgdat
, sc
);
2805 * Restore to original mask to avoid the impact on the caller if we
2806 * promoted it to __GFP_HIGHMEM.
2808 sc
->gfp_mask
= orig_mask
;
2811 static void snapshot_refaults(struct mem_cgroup
*root_memcg
, pg_data_t
*pgdat
)
2813 struct mem_cgroup
*memcg
;
2815 memcg
= mem_cgroup_iter(root_memcg
, NULL
, NULL
);
2817 unsigned long refaults
;
2818 struct lruvec
*lruvec
;
2821 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
2823 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
2825 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2826 lruvec
->refaults
= refaults
;
2827 } while ((memcg
= mem_cgroup_iter(root_memcg
, memcg
, NULL
)));
2831 * This is the main entry point to direct page reclaim.
2833 * If a full scan of the inactive list fails to free enough memory then we
2834 * are "out of memory" and something needs to be killed.
2836 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2837 * high - the zone may be full of dirty or under-writeback pages, which this
2838 * caller can't do much about. We kick the writeback threads and take explicit
2839 * naps in the hope that some of these pages can be written. But if the
2840 * allocating task holds filesystem locks which prevent writeout this might not
2841 * work, and the allocation attempt will fail.
2843 * returns: 0, if no pages reclaimed
2844 * else, the number of pages reclaimed
2846 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2847 struct scan_control
*sc
)
2849 int initial_priority
= sc
->priority
;
2850 pg_data_t
*last_pgdat
;
2854 delayacct_freepages_start();
2856 if (global_reclaim(sc
))
2857 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
2860 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2863 shrink_zones(zonelist
, sc
);
2865 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2868 if (sc
->compaction_ready
)
2872 * If we're getting trouble reclaiming, start doing
2873 * writepage even in laptop mode.
2875 if (sc
->priority
< DEF_PRIORITY
- 2)
2876 sc
->may_writepage
= 1;
2877 } while (--sc
->priority
>= 0);
2880 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, sc
->reclaim_idx
,
2882 if (zone
->zone_pgdat
== last_pgdat
)
2884 last_pgdat
= zone
->zone_pgdat
;
2885 snapshot_refaults(sc
->target_mem_cgroup
, zone
->zone_pgdat
);
2888 delayacct_freepages_end();
2890 if (sc
->nr_reclaimed
)
2891 return sc
->nr_reclaimed
;
2893 /* Aborted reclaim to try compaction? don't OOM, then */
2894 if (sc
->compaction_ready
)
2897 /* Untapped cgroup reserves? Don't OOM, retry. */
2898 if (sc
->memcg_low_skipped
) {
2899 sc
->priority
= initial_priority
;
2900 sc
->memcg_low_reclaim
= 1;
2901 sc
->memcg_low_skipped
= 0;
2908 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
2911 unsigned long pfmemalloc_reserve
= 0;
2912 unsigned long free_pages
= 0;
2916 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
2919 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2920 zone
= &pgdat
->node_zones
[i
];
2921 if (!managed_zone(zone
))
2924 if (!zone_reclaimable_pages(zone
))
2927 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2928 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2931 /* If there are no reserves (unexpected config) then do not throttle */
2932 if (!pfmemalloc_reserve
)
2935 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2937 /* kswapd must be awake if processes are being throttled */
2938 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2939 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
2940 (enum zone_type
)ZONE_NORMAL
);
2941 wake_up_interruptible(&pgdat
->kswapd_wait
);
2948 * Throttle direct reclaimers if backing storage is backed by the network
2949 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2950 * depleted. kswapd will continue to make progress and wake the processes
2951 * when the low watermark is reached.
2953 * Returns true if a fatal signal was delivered during throttling. If this
2954 * happens, the page allocator should not consider triggering the OOM killer.
2956 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2957 nodemask_t
*nodemask
)
2961 pg_data_t
*pgdat
= NULL
;
2964 * Kernel threads should not be throttled as they may be indirectly
2965 * responsible for cleaning pages necessary for reclaim to make forward
2966 * progress. kjournald for example may enter direct reclaim while
2967 * committing a transaction where throttling it could forcing other
2968 * processes to block on log_wait_commit().
2970 if (current
->flags
& PF_KTHREAD
)
2974 * If a fatal signal is pending, this process should not throttle.
2975 * It should return quickly so it can exit and free its memory
2977 if (fatal_signal_pending(current
))
2981 * Check if the pfmemalloc reserves are ok by finding the first node
2982 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2983 * GFP_KERNEL will be required for allocating network buffers when
2984 * swapping over the network so ZONE_HIGHMEM is unusable.
2986 * Throttling is based on the first usable node and throttled processes
2987 * wait on a queue until kswapd makes progress and wakes them. There
2988 * is an affinity then between processes waking up and where reclaim
2989 * progress has been made assuming the process wakes on the same node.
2990 * More importantly, processes running on remote nodes will not compete
2991 * for remote pfmemalloc reserves and processes on different nodes
2992 * should make reasonable progress.
2994 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2995 gfp_zone(gfp_mask
), nodemask
) {
2996 if (zone_idx(zone
) > ZONE_NORMAL
)
2999 /* Throttle based on the first usable node */
3000 pgdat
= zone
->zone_pgdat
;
3001 if (allow_direct_reclaim(pgdat
))
3006 /* If no zone was usable by the allocation flags then do not throttle */
3010 /* Account for the throttling */
3011 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
3014 * If the caller cannot enter the filesystem, it's possible that it
3015 * is due to the caller holding an FS lock or performing a journal
3016 * transaction in the case of a filesystem like ext[3|4]. In this case,
3017 * it is not safe to block on pfmemalloc_wait as kswapd could be
3018 * blocked waiting on the same lock. Instead, throttle for up to a
3019 * second before continuing.
3021 if (!(gfp_mask
& __GFP_FS
)) {
3022 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
3023 allow_direct_reclaim(pgdat
), HZ
);
3028 /* Throttle until kswapd wakes the process */
3029 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
3030 allow_direct_reclaim(pgdat
));
3033 if (fatal_signal_pending(current
))
3040 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
3041 gfp_t gfp_mask
, nodemask_t
*nodemask
)
3043 unsigned long nr_reclaimed
;
3044 struct scan_control sc
= {
3045 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3046 .gfp_mask
= current_gfp_context(gfp_mask
),
3047 .reclaim_idx
= gfp_zone(gfp_mask
),
3049 .nodemask
= nodemask
,
3050 .priority
= DEF_PRIORITY
,
3051 .may_writepage
= !laptop_mode
,
3057 * Do not enter reclaim if fatal signal was delivered while throttled.
3058 * 1 is returned so that the page allocator does not OOM kill at this
3061 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
3064 trace_mm_vmscan_direct_reclaim_begin(order
,
3069 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3071 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
3073 return nr_reclaimed
;
3078 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
3079 gfp_t gfp_mask
, bool noswap
,
3081 unsigned long *nr_scanned
)
3083 struct scan_control sc
= {
3084 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3085 .target_mem_cgroup
= memcg
,
3086 .may_writepage
= !laptop_mode
,
3088 .reclaim_idx
= MAX_NR_ZONES
- 1,
3089 .may_swap
= !noswap
,
3091 unsigned long lru_pages
;
3093 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3094 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3096 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3102 * NOTE: Although we can get the priority field, using it
3103 * here is not a good idea, since it limits the pages we can scan.
3104 * if we don't reclaim here, the shrink_node from balance_pgdat
3105 * will pick up pages from other mem cgroup's as well. We hack
3106 * the priority and make it zero.
3108 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3110 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3112 *nr_scanned
= sc
.nr_scanned
;
3113 return sc
.nr_reclaimed
;
3116 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3117 unsigned long nr_pages
,
3121 struct zonelist
*zonelist
;
3122 unsigned long nr_reclaimed
;
3124 unsigned int noreclaim_flag
;
3125 struct scan_control sc
= {
3126 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3127 .gfp_mask
= (current_gfp_context(gfp_mask
) & GFP_RECLAIM_MASK
) |
3128 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3129 .reclaim_idx
= MAX_NR_ZONES
- 1,
3130 .target_mem_cgroup
= memcg
,
3131 .priority
= DEF_PRIORITY
,
3132 .may_writepage
= !laptop_mode
,
3134 .may_swap
= may_swap
,
3138 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3139 * take care of from where we get pages. So the node where we start the
3140 * scan does not need to be the current node.
3142 nid
= mem_cgroup_select_victim_node(memcg
);
3144 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3146 trace_mm_vmscan_memcg_reclaim_begin(0,
3151 noreclaim_flag
= memalloc_noreclaim_save();
3152 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3153 memalloc_noreclaim_restore(noreclaim_flag
);
3155 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3157 return nr_reclaimed
;
3161 static void age_active_anon(struct pglist_data
*pgdat
,
3162 struct scan_control
*sc
)
3164 struct mem_cgroup
*memcg
;
3166 if (!total_swap_pages
)
3169 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3171 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3173 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
3174 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3175 sc
, LRU_ACTIVE_ANON
);
3177 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3182 * Returns true if there is an eligible zone balanced for the request order
3185 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3188 unsigned long mark
= -1;
3191 for (i
= 0; i
<= classzone_idx
; i
++) {
3192 zone
= pgdat
->node_zones
+ i
;
3194 if (!managed_zone(zone
))
3197 mark
= high_wmark_pages(zone
);
3198 if (zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3203 * If a node has no populated zone within classzone_idx, it does not
3204 * need balancing by definition. This can happen if a zone-restricted
3205 * allocation tries to wake a remote kswapd.
3213 /* Clear pgdat state for congested, dirty or under writeback. */
3214 static void clear_pgdat_congested(pg_data_t
*pgdat
)
3216 clear_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
3217 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
3218 clear_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
3222 * Prepare kswapd for sleeping. This verifies that there are no processes
3223 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3225 * Returns true if kswapd is ready to sleep
3227 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3230 * The throttled processes are normally woken up in balance_pgdat() as
3231 * soon as allow_direct_reclaim() is true. But there is a potential
3232 * race between when kswapd checks the watermarks and a process gets
3233 * throttled. There is also a potential race if processes get
3234 * throttled, kswapd wakes, a large process exits thereby balancing the
3235 * zones, which causes kswapd to exit balance_pgdat() before reaching
3236 * the wake up checks. If kswapd is going to sleep, no process should
3237 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3238 * the wake up is premature, processes will wake kswapd and get
3239 * throttled again. The difference from wake ups in balance_pgdat() is
3240 * that here we are under prepare_to_wait().
3242 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3243 wake_up_all(&pgdat
->pfmemalloc_wait
);
3245 /* Hopeless node, leave it to direct reclaim */
3246 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3249 if (pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3250 clear_pgdat_congested(pgdat
);
3258 * kswapd shrinks a node of pages that are at or below the highest usable
3259 * zone that is currently unbalanced.
3261 * Returns true if kswapd scanned at least the requested number of pages to
3262 * reclaim or if the lack of progress was due to pages under writeback.
3263 * This is used to determine if the scanning priority needs to be raised.
3265 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3266 struct scan_control
*sc
)
3271 /* Reclaim a number of pages proportional to the number of zones */
3272 sc
->nr_to_reclaim
= 0;
3273 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3274 zone
= pgdat
->node_zones
+ z
;
3275 if (!managed_zone(zone
))
3278 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3282 * Historically care was taken to put equal pressure on all zones but
3283 * now pressure is applied based on node LRU order.
3285 shrink_node(pgdat
, sc
);
3288 * Fragmentation may mean that the system cannot be rebalanced for
3289 * high-order allocations. If twice the allocation size has been
3290 * reclaimed then recheck watermarks only at order-0 to prevent
3291 * excessive reclaim. Assume that a process requested a high-order
3292 * can direct reclaim/compact.
3294 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3297 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3301 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3302 * that are eligible for use by the caller until at least one zone is
3305 * Returns the order kswapd finished reclaiming at.
3307 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3308 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3309 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3310 * or lower is eligible for reclaim until at least one usable zone is
3313 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3316 unsigned long nr_soft_reclaimed
;
3317 unsigned long nr_soft_scanned
;
3319 struct scan_control sc
= {
3320 .gfp_mask
= GFP_KERNEL
,
3322 .priority
= DEF_PRIORITY
,
3323 .may_writepage
= !laptop_mode
,
3327 count_vm_event(PAGEOUTRUN
);
3330 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
3331 bool raise_priority
= true;
3333 sc
.reclaim_idx
= classzone_idx
;
3336 * If the number of buffer_heads exceeds the maximum allowed
3337 * then consider reclaiming from all zones. This has a dual
3338 * purpose -- on 64-bit systems it is expected that
3339 * buffer_heads are stripped during active rotation. On 32-bit
3340 * systems, highmem pages can pin lowmem memory and shrinking
3341 * buffers can relieve lowmem pressure. Reclaim may still not
3342 * go ahead if all eligible zones for the original allocation
3343 * request are balanced to avoid excessive reclaim from kswapd.
3345 if (buffer_heads_over_limit
) {
3346 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3347 zone
= pgdat
->node_zones
+ i
;
3348 if (!managed_zone(zone
))
3357 * Only reclaim if there are no eligible zones. Note that
3358 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3361 if (pgdat_balanced(pgdat
, sc
.order
, classzone_idx
))
3365 * Do some background aging of the anon list, to give
3366 * pages a chance to be referenced before reclaiming. All
3367 * pages are rotated regardless of classzone as this is
3368 * about consistent aging.
3370 age_active_anon(pgdat
, &sc
);
3373 * If we're getting trouble reclaiming, start doing writepage
3374 * even in laptop mode.
3376 if (sc
.priority
< DEF_PRIORITY
- 2)
3377 sc
.may_writepage
= 1;
3379 /* Call soft limit reclaim before calling shrink_node. */
3381 nr_soft_scanned
= 0;
3382 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3383 sc
.gfp_mask
, &nr_soft_scanned
);
3384 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3387 * There should be no need to raise the scanning priority if
3388 * enough pages are already being scanned that that high
3389 * watermark would be met at 100% efficiency.
3391 if (kswapd_shrink_node(pgdat
, &sc
))
3392 raise_priority
= false;
3395 * If the low watermark is met there is no need for processes
3396 * to be throttled on pfmemalloc_wait as they should not be
3397 * able to safely make forward progress. Wake them
3399 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3400 allow_direct_reclaim(pgdat
))
3401 wake_up_all(&pgdat
->pfmemalloc_wait
);
3403 /* Check if kswapd should be suspending */
3404 if (try_to_freeze() || kthread_should_stop())
3408 * Raise priority if scanning rate is too low or there was no
3409 * progress in reclaiming pages
3411 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
3412 if (raise_priority
|| !nr_reclaimed
)
3414 } while (sc
.priority
>= 1);
3416 if (!sc
.nr_reclaimed
)
3417 pgdat
->kswapd_failures
++;
3420 snapshot_refaults(NULL
, pgdat
);
3422 * Return the order kswapd stopped reclaiming at as
3423 * prepare_kswapd_sleep() takes it into account. If another caller
3424 * entered the allocator slow path while kswapd was awake, order will
3425 * remain at the higher level.
3431 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3432 * allocation request woke kswapd for. When kswapd has not woken recently,
3433 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3434 * given classzone and returns it or the highest classzone index kswapd
3435 * was recently woke for.
3437 static enum zone_type
kswapd_classzone_idx(pg_data_t
*pgdat
,
3438 enum zone_type classzone_idx
)
3440 if (pgdat
->kswapd_classzone_idx
== MAX_NR_ZONES
)
3441 return classzone_idx
;
3443 return max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3446 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3447 unsigned int classzone_idx
)
3452 if (freezing(current
) || kthread_should_stop())
3455 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3458 * Try to sleep for a short interval. Note that kcompactd will only be
3459 * woken if it is possible to sleep for a short interval. This is
3460 * deliberate on the assumption that if reclaim cannot keep an
3461 * eligible zone balanced that it's also unlikely that compaction will
3464 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3466 * Compaction records what page blocks it recently failed to
3467 * isolate pages from and skips them in the future scanning.
3468 * When kswapd is going to sleep, it is reasonable to assume
3469 * that pages and compaction may succeed so reset the cache.
3471 reset_isolation_suitable(pgdat
);
3474 * We have freed the memory, now we should compact it to make
3475 * allocation of the requested order possible.
3477 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3479 remaining
= schedule_timeout(HZ
/10);
3482 * If woken prematurely then reset kswapd_classzone_idx and
3483 * order. The values will either be from a wakeup request or
3484 * the previous request that slept prematurely.
3487 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3488 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3491 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3492 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3496 * After a short sleep, check if it was a premature sleep. If not, then
3497 * go fully to sleep until explicitly woken up.
3500 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3501 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3504 * vmstat counters are not perfectly accurate and the estimated
3505 * value for counters such as NR_FREE_PAGES can deviate from the
3506 * true value by nr_online_cpus * threshold. To avoid the zone
3507 * watermarks being breached while under pressure, we reduce the
3508 * per-cpu vmstat threshold while kswapd is awake and restore
3509 * them before going back to sleep.
3511 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3513 if (!kthread_should_stop())
3516 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3519 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3521 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3523 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3527 * The background pageout daemon, started as a kernel thread
3528 * from the init process.
3530 * This basically trickles out pages so that we have _some_
3531 * free memory available even if there is no other activity
3532 * that frees anything up. This is needed for things like routing
3533 * etc, where we otherwise might have all activity going on in
3534 * asynchronous contexts that cannot page things out.
3536 * If there are applications that are active memory-allocators
3537 * (most normal use), this basically shouldn't matter.
3539 static int kswapd(void *p
)
3541 unsigned int alloc_order
, reclaim_order
;
3542 unsigned int classzone_idx
= MAX_NR_ZONES
- 1;
3543 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3544 struct task_struct
*tsk
= current
;
3546 struct reclaim_state reclaim_state
= {
3547 .reclaimed_slab
= 0,
3549 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3551 if (!cpumask_empty(cpumask
))
3552 set_cpus_allowed_ptr(tsk
, cpumask
);
3553 current
->reclaim_state
= &reclaim_state
;
3556 * Tell the memory management that we're a "memory allocator",
3557 * and that if we need more memory we should get access to it
3558 * regardless (see "__alloc_pages()"). "kswapd" should
3559 * never get caught in the normal page freeing logic.
3561 * (Kswapd normally doesn't need memory anyway, but sometimes
3562 * you need a small amount of memory in order to be able to
3563 * page out something else, and this flag essentially protects
3564 * us from recursively trying to free more memory as we're
3565 * trying to free the first piece of memory in the first place).
3567 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3570 pgdat
->kswapd_order
= 0;
3571 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3575 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3576 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3579 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3582 /* Read the new order and classzone_idx */
3583 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3584 classzone_idx
= kswapd_classzone_idx(pgdat
, 0);
3585 pgdat
->kswapd_order
= 0;
3586 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3588 ret
= try_to_freeze();
3589 if (kthread_should_stop())
3593 * We can speed up thawing tasks if we don't call balance_pgdat
3594 * after returning from the refrigerator
3600 * Reclaim begins at the requested order but if a high-order
3601 * reclaim fails then kswapd falls back to reclaiming for
3602 * order-0. If that happens, kswapd will consider sleeping
3603 * for the order it finished reclaiming at (reclaim_order)
3604 * but kcompactd is woken to compact for the original
3605 * request (alloc_order).
3607 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3609 fs_reclaim_acquire(GFP_KERNEL
);
3610 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3611 fs_reclaim_release(GFP_KERNEL
);
3612 if (reclaim_order
< alloc_order
)
3613 goto kswapd_try_sleep
;
3616 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3617 current
->reclaim_state
= NULL
;
3623 * A zone is low on free memory, so wake its kswapd task to service it.
3625 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3629 if (!managed_zone(zone
))
3632 if (!cpuset_zone_allowed(zone
, GFP_KERNEL
| __GFP_HARDWALL
))
3634 pgdat
= zone
->zone_pgdat
;
3635 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
,
3637 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3638 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3641 /* Hopeless node, leave it to direct reclaim */
3642 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3645 if (pgdat_balanced(pgdat
, order
, classzone_idx
))
3648 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, classzone_idx
, order
);
3649 wake_up_interruptible(&pgdat
->kswapd_wait
);
3652 #ifdef CONFIG_HIBERNATION
3654 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3657 * Rather than trying to age LRUs the aim is to preserve the overall
3658 * LRU order by reclaiming preferentially
3659 * inactive > active > active referenced > active mapped
3661 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3663 struct reclaim_state reclaim_state
;
3664 struct scan_control sc
= {
3665 .nr_to_reclaim
= nr_to_reclaim
,
3666 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3667 .reclaim_idx
= MAX_NR_ZONES
- 1,
3668 .priority
= DEF_PRIORITY
,
3672 .hibernation_mode
= 1,
3674 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3675 struct task_struct
*p
= current
;
3676 unsigned long nr_reclaimed
;
3677 unsigned int noreclaim_flag
;
3679 noreclaim_flag
= memalloc_noreclaim_save();
3680 fs_reclaim_acquire(sc
.gfp_mask
);
3681 reclaim_state
.reclaimed_slab
= 0;
3682 p
->reclaim_state
= &reclaim_state
;
3684 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3686 p
->reclaim_state
= NULL
;
3687 fs_reclaim_release(sc
.gfp_mask
);
3688 memalloc_noreclaim_restore(noreclaim_flag
);
3690 return nr_reclaimed
;
3692 #endif /* CONFIG_HIBERNATION */
3694 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3695 not required for correctness. So if the last cpu in a node goes
3696 away, we get changed to run anywhere: as the first one comes back,
3697 restore their cpu bindings. */
3698 static int kswapd_cpu_online(unsigned int cpu
)
3702 for_each_node_state(nid
, N_MEMORY
) {
3703 pg_data_t
*pgdat
= NODE_DATA(nid
);
3704 const struct cpumask
*mask
;
3706 mask
= cpumask_of_node(pgdat
->node_id
);
3708 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3709 /* One of our CPUs online: restore mask */
3710 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3716 * This kswapd start function will be called by init and node-hot-add.
3717 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3719 int kswapd_run(int nid
)
3721 pg_data_t
*pgdat
= NODE_DATA(nid
);
3727 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3728 if (IS_ERR(pgdat
->kswapd
)) {
3729 /* failure at boot is fatal */
3730 BUG_ON(system_state
< SYSTEM_RUNNING
);
3731 pr_err("Failed to start kswapd on node %d\n", nid
);
3732 ret
= PTR_ERR(pgdat
->kswapd
);
3733 pgdat
->kswapd
= NULL
;
3739 * Called by memory hotplug when all memory in a node is offlined. Caller must
3740 * hold mem_hotplug_begin/end().
3742 void kswapd_stop(int nid
)
3744 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3747 kthread_stop(kswapd
);
3748 NODE_DATA(nid
)->kswapd
= NULL
;
3752 static int __init
kswapd_init(void)
3757 for_each_node_state(nid
, N_MEMORY
)
3759 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
3760 "mm/vmscan:online", kswapd_cpu_online
,
3766 module_init(kswapd_init
)
3772 * If non-zero call node_reclaim when the number of free pages falls below
3775 int node_reclaim_mode __read_mostly
;
3777 #define RECLAIM_OFF 0
3778 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3779 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3780 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3783 * Priority for NODE_RECLAIM. This determines the fraction of pages
3784 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3787 #define NODE_RECLAIM_PRIORITY 4
3790 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3793 int sysctl_min_unmapped_ratio
= 1;
3796 * If the number of slab pages in a zone grows beyond this percentage then
3797 * slab reclaim needs to occur.
3799 int sysctl_min_slab_ratio
= 5;
3801 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
3803 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
3804 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
3805 node_page_state(pgdat
, NR_ACTIVE_FILE
);
3808 * It's possible for there to be more file mapped pages than
3809 * accounted for by the pages on the file LRU lists because
3810 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3812 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3815 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3816 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
3818 unsigned long nr_pagecache_reclaimable
;
3819 unsigned long delta
= 0;
3822 * If RECLAIM_UNMAP is set, then all file pages are considered
3823 * potentially reclaimable. Otherwise, we have to worry about
3824 * pages like swapcache and node_unmapped_file_pages() provides
3827 if (node_reclaim_mode
& RECLAIM_UNMAP
)
3828 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
3830 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
3832 /* If we can't clean pages, remove dirty pages from consideration */
3833 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
3834 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
3836 /* Watch for any possible underflows due to delta */
3837 if (unlikely(delta
> nr_pagecache_reclaimable
))
3838 delta
= nr_pagecache_reclaimable
;
3840 return nr_pagecache_reclaimable
- delta
;
3844 * Try to free up some pages from this node through reclaim.
3846 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3848 /* Minimum pages needed in order to stay on node */
3849 const unsigned long nr_pages
= 1 << order
;
3850 struct task_struct
*p
= current
;
3851 struct reclaim_state reclaim_state
;
3852 unsigned int noreclaim_flag
;
3853 struct scan_control sc
= {
3854 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3855 .gfp_mask
= current_gfp_context(gfp_mask
),
3857 .priority
= NODE_RECLAIM_PRIORITY
,
3858 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
3859 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
3861 .reclaim_idx
= gfp_zone(gfp_mask
),
3866 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3867 * and we also need to be able to write out pages for RECLAIM_WRITE
3868 * and RECLAIM_UNMAP.
3870 noreclaim_flag
= memalloc_noreclaim_save();
3871 p
->flags
|= PF_SWAPWRITE
;
3872 fs_reclaim_acquire(sc
.gfp_mask
);
3873 reclaim_state
.reclaimed_slab
= 0;
3874 p
->reclaim_state
= &reclaim_state
;
3876 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
3878 * Free memory by calling shrink zone with increasing
3879 * priorities until we have enough memory freed.
3882 shrink_node(pgdat
, &sc
);
3883 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3886 p
->reclaim_state
= NULL
;
3887 fs_reclaim_release(gfp_mask
);
3888 current
->flags
&= ~PF_SWAPWRITE
;
3889 memalloc_noreclaim_restore(noreclaim_flag
);
3890 return sc
.nr_reclaimed
>= nr_pages
;
3893 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3898 * Node reclaim reclaims unmapped file backed pages and
3899 * slab pages if we are over the defined limits.
3901 * A small portion of unmapped file backed pages is needed for
3902 * file I/O otherwise pages read by file I/O will be immediately
3903 * thrown out if the node is overallocated. So we do not reclaim
3904 * if less than a specified percentage of the node is used by
3905 * unmapped file backed pages.
3907 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
3908 node_page_state(pgdat
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
3909 return NODE_RECLAIM_FULL
;
3912 * Do not scan if the allocation should not be delayed.
3914 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
3915 return NODE_RECLAIM_NOSCAN
;
3918 * Only run node reclaim on the local node or on nodes that do not
3919 * have associated processors. This will favor the local processor
3920 * over remote processors and spread off node memory allocations
3921 * as wide as possible.
3923 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
3924 return NODE_RECLAIM_NOSCAN
;
3926 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
3927 return NODE_RECLAIM_NOSCAN
;
3929 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
3930 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
3933 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3940 * page_evictable - test whether a page is evictable
3941 * @page: the page to test
3943 * Test whether page is evictable--i.e., should be placed on active/inactive
3944 * lists vs unevictable list.
3946 * Reasons page might not be evictable:
3947 * (1) page's mapping marked unevictable
3948 * (2) page is part of an mlocked VMA
3951 int page_evictable(struct page
*page
)
3953 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3958 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3959 * @pages: array of pages to check
3960 * @nr_pages: number of pages to check
3962 * Checks pages for evictability and moves them to the appropriate lru list.
3964 * This function is only used for SysV IPC SHM_UNLOCK.
3966 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3968 struct lruvec
*lruvec
;
3969 struct pglist_data
*pgdat
= NULL
;
3974 for (i
= 0; i
< nr_pages
; i
++) {
3975 struct page
*page
= pages
[i
];
3976 struct pglist_data
*pagepgdat
= page_pgdat(page
);
3979 if (pagepgdat
!= pgdat
) {
3981 spin_unlock_irq(&pgdat
->lru_lock
);
3983 spin_lock_irq(&pgdat
->lru_lock
);
3985 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
3987 if (!PageLRU(page
) || !PageUnevictable(page
))
3990 if (page_evictable(page
)) {
3991 enum lru_list lru
= page_lru_base_type(page
);
3993 VM_BUG_ON_PAGE(PageActive(page
), page
);
3994 ClearPageUnevictable(page
);
3995 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3996 add_page_to_lru_list(page
, lruvec
, lru
);
4002 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
4003 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
4004 spin_unlock_irq(&pgdat
->lru_lock
);
4007 #endif /* CONFIG_SHMEM */