vmalloc: fix __GFP_HIGHMEM usage for vmalloc_32 on 32b systems
[linux/fpc-iii.git] / mm / vmscan.c
blob47d5ced51f2d44cddc559814b42caa0ea9bf5863
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
59 #include "internal.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
71 /* Allocation order */
72 int order;
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
78 nodemask_t *nodemask;
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
84 struct mem_cgroup *target_mem_cgroup;
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage:1;
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
109 unsigned int hibernation_mode:1;
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
130 } while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
144 } while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
150 * From 0 .. 100. Higher means more swappy.
152 int vm_swappiness = 60;
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
157 unsigned long vm_total_pages;
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
165 return !sc->target_mem_cgroup;
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
181 static bool sane_reclaim(struct scan_control *sc)
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
185 if (!memcg)
186 return true;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 return true;
190 #endif
191 return false;
193 #else
194 static bool global_reclaim(struct scan_control *sc)
196 return true;
199 static bool sane_reclaim(struct scan_control *sc)
201 return true;
203 #endif
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
210 unsigned long zone_reclaimable_pages(struct zone *zone)
212 unsigned long nr;
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
220 return nr;
223 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
225 unsigned long nr;
227 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
229 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
231 if (get_nr_swap_pages() > 0)
232 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
234 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
236 return nr;
240 * lruvec_lru_size - Returns the number of pages on the given LRU list.
241 * @lruvec: lru vector
242 * @lru: lru to use
243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
245 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
247 unsigned long lru_size;
248 int zid;
250 if (!mem_cgroup_disabled())
251 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
252 else
253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
257 unsigned long size;
259 if (!managed_zone(zone))
260 continue;
262 if (!mem_cgroup_disabled())
263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
264 else
265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 NR_ZONE_LRU_BASE + lru);
267 lru_size -= min(size, lru_size);
270 return lru_size;
275 * Add a shrinker callback to be called from the vm.
277 int register_shrinker(struct shrinker *shrinker)
279 size_t size = sizeof(*shrinker->nr_deferred);
281 if (shrinker->flags & SHRINKER_NUMA_AWARE)
282 size *= nr_node_ids;
284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 if (!shrinker->nr_deferred)
286 return -ENOMEM;
288 down_write(&shrinker_rwsem);
289 list_add_tail(&shrinker->list, &shrinker_list);
290 up_write(&shrinker_rwsem);
291 return 0;
293 EXPORT_SYMBOL(register_shrinker);
296 * Remove one
298 void unregister_shrinker(struct shrinker *shrinker)
300 if (!shrinker->nr_deferred)
301 return;
302 down_write(&shrinker_rwsem);
303 list_del(&shrinker->list);
304 up_write(&shrinker_rwsem);
305 kfree(shrinker->nr_deferred);
306 shrinker->nr_deferred = NULL;
308 EXPORT_SYMBOL(unregister_shrinker);
310 #define SHRINK_BATCH 128
312 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
313 struct shrinker *shrinker,
314 unsigned long nr_scanned,
315 unsigned long nr_eligible)
317 unsigned long freed = 0;
318 unsigned long long delta;
319 long total_scan;
320 long freeable;
321 long nr;
322 long new_nr;
323 int nid = shrinkctl->nid;
324 long batch_size = shrinker->batch ? shrinker->batch
325 : SHRINK_BATCH;
326 long scanned = 0, next_deferred;
328 freeable = shrinker->count_objects(shrinker, shrinkctl);
329 if (freeable == 0)
330 return 0;
333 * copy the current shrinker scan count into a local variable
334 * and zero it so that other concurrent shrinker invocations
335 * don't also do this scanning work.
337 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
339 total_scan = nr;
340 delta = (4 * nr_scanned) / shrinker->seeks;
341 delta *= freeable;
342 do_div(delta, nr_eligible + 1);
343 total_scan += delta;
344 if (total_scan < 0) {
345 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
346 shrinker->scan_objects, total_scan);
347 total_scan = freeable;
348 next_deferred = nr;
349 } else
350 next_deferred = total_scan;
353 * We need to avoid excessive windup on filesystem shrinkers
354 * due to large numbers of GFP_NOFS allocations causing the
355 * shrinkers to return -1 all the time. This results in a large
356 * nr being built up so when a shrink that can do some work
357 * comes along it empties the entire cache due to nr >>>
358 * freeable. This is bad for sustaining a working set in
359 * memory.
361 * Hence only allow the shrinker to scan the entire cache when
362 * a large delta change is calculated directly.
364 if (delta < freeable / 4)
365 total_scan = min(total_scan, freeable / 2);
368 * Avoid risking looping forever due to too large nr value:
369 * never try to free more than twice the estimate number of
370 * freeable entries.
372 if (total_scan > freeable * 2)
373 total_scan = freeable * 2;
375 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
376 nr_scanned, nr_eligible,
377 freeable, delta, total_scan);
380 * Normally, we should not scan less than batch_size objects in one
381 * pass to avoid too frequent shrinker calls, but if the slab has less
382 * than batch_size objects in total and we are really tight on memory,
383 * we will try to reclaim all available objects, otherwise we can end
384 * up failing allocations although there are plenty of reclaimable
385 * objects spread over several slabs with usage less than the
386 * batch_size.
388 * We detect the "tight on memory" situations by looking at the total
389 * number of objects we want to scan (total_scan). If it is greater
390 * than the total number of objects on slab (freeable), we must be
391 * scanning at high prio and therefore should try to reclaim as much as
392 * possible.
394 while (total_scan >= batch_size ||
395 total_scan >= freeable) {
396 unsigned long ret;
397 unsigned long nr_to_scan = min(batch_size, total_scan);
399 shrinkctl->nr_to_scan = nr_to_scan;
400 shrinkctl->nr_scanned = nr_to_scan;
401 ret = shrinker->scan_objects(shrinker, shrinkctl);
402 if (ret == SHRINK_STOP)
403 break;
404 freed += ret;
406 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
407 total_scan -= shrinkctl->nr_scanned;
408 scanned += shrinkctl->nr_scanned;
410 cond_resched();
413 if (next_deferred >= scanned)
414 next_deferred -= scanned;
415 else
416 next_deferred = 0;
418 * move the unused scan count back into the shrinker in a
419 * manner that handles concurrent updates. If we exhausted the
420 * scan, there is no need to do an update.
422 if (next_deferred > 0)
423 new_nr = atomic_long_add_return(next_deferred,
424 &shrinker->nr_deferred[nid]);
425 else
426 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
428 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
429 return freed;
433 * shrink_slab - shrink slab caches
434 * @gfp_mask: allocation context
435 * @nid: node whose slab caches to target
436 * @memcg: memory cgroup whose slab caches to target
437 * @nr_scanned: pressure numerator
438 * @nr_eligible: pressure denominator
440 * Call the shrink functions to age shrinkable caches.
442 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
443 * unaware shrinkers will receive a node id of 0 instead.
445 * @memcg specifies the memory cgroup to target. If it is not NULL,
446 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
447 * objects from the memory cgroup specified. Otherwise, only unaware
448 * shrinkers are called.
450 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
451 * the available objects should be scanned. Page reclaim for example
452 * passes the number of pages scanned and the number of pages on the
453 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
454 * when it encountered mapped pages. The ratio is further biased by
455 * the ->seeks setting of the shrink function, which indicates the
456 * cost to recreate an object relative to that of an LRU page.
458 * Returns the number of reclaimed slab objects.
460 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
461 struct mem_cgroup *memcg,
462 unsigned long nr_scanned,
463 unsigned long nr_eligible)
465 struct shrinker *shrinker;
466 unsigned long freed = 0;
468 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
469 return 0;
471 if (nr_scanned == 0)
472 nr_scanned = SWAP_CLUSTER_MAX;
474 if (!down_read_trylock(&shrinker_rwsem)) {
476 * If we would return 0, our callers would understand that we
477 * have nothing else to shrink and give up trying. By returning
478 * 1 we keep it going and assume we'll be able to shrink next
479 * time.
481 freed = 1;
482 goto out;
485 list_for_each_entry(shrinker, &shrinker_list, list) {
486 struct shrink_control sc = {
487 .gfp_mask = gfp_mask,
488 .nid = nid,
489 .memcg = memcg,
493 * If kernel memory accounting is disabled, we ignore
494 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
495 * passing NULL for memcg.
497 if (memcg_kmem_enabled() &&
498 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
499 continue;
501 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
502 sc.nid = 0;
504 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
507 up_read(&shrinker_rwsem);
508 out:
509 cond_resched();
510 return freed;
513 void drop_slab_node(int nid)
515 unsigned long freed;
517 do {
518 struct mem_cgroup *memcg = NULL;
520 freed = 0;
521 do {
522 freed += shrink_slab(GFP_KERNEL, nid, memcg,
523 1000, 1000);
524 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
525 } while (freed > 10);
528 void drop_slab(void)
530 int nid;
532 for_each_online_node(nid)
533 drop_slab_node(nid);
536 static inline int is_page_cache_freeable(struct page *page)
539 * A freeable page cache page is referenced only by the caller
540 * that isolated the page, the page cache radix tree and
541 * optional buffer heads at page->private.
543 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
544 HPAGE_PMD_NR : 1;
545 return page_count(page) - page_has_private(page) == 1 + radix_pins;
548 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
550 if (current->flags & PF_SWAPWRITE)
551 return 1;
552 if (!inode_write_congested(inode))
553 return 1;
554 if (inode_to_bdi(inode) == current->backing_dev_info)
555 return 1;
556 return 0;
560 * We detected a synchronous write error writing a page out. Probably
561 * -ENOSPC. We need to propagate that into the address_space for a subsequent
562 * fsync(), msync() or close().
564 * The tricky part is that after writepage we cannot touch the mapping: nothing
565 * prevents it from being freed up. But we have a ref on the page and once
566 * that page is locked, the mapping is pinned.
568 * We're allowed to run sleeping lock_page() here because we know the caller has
569 * __GFP_FS.
571 static void handle_write_error(struct address_space *mapping,
572 struct page *page, int error)
574 lock_page(page);
575 if (page_mapping(page) == mapping)
576 mapping_set_error(mapping, error);
577 unlock_page(page);
580 /* possible outcome of pageout() */
581 typedef enum {
582 /* failed to write page out, page is locked */
583 PAGE_KEEP,
584 /* move page to the active list, page is locked */
585 PAGE_ACTIVATE,
586 /* page has been sent to the disk successfully, page is unlocked */
587 PAGE_SUCCESS,
588 /* page is clean and locked */
589 PAGE_CLEAN,
590 } pageout_t;
593 * pageout is called by shrink_page_list() for each dirty page.
594 * Calls ->writepage().
596 static pageout_t pageout(struct page *page, struct address_space *mapping,
597 struct scan_control *sc)
600 * If the page is dirty, only perform writeback if that write
601 * will be non-blocking. To prevent this allocation from being
602 * stalled by pagecache activity. But note that there may be
603 * stalls if we need to run get_block(). We could test
604 * PagePrivate for that.
606 * If this process is currently in __generic_file_write_iter() against
607 * this page's queue, we can perform writeback even if that
608 * will block.
610 * If the page is swapcache, write it back even if that would
611 * block, for some throttling. This happens by accident, because
612 * swap_backing_dev_info is bust: it doesn't reflect the
613 * congestion state of the swapdevs. Easy to fix, if needed.
615 if (!is_page_cache_freeable(page))
616 return PAGE_KEEP;
617 if (!mapping) {
619 * Some data journaling orphaned pages can have
620 * page->mapping == NULL while being dirty with clean buffers.
622 if (page_has_private(page)) {
623 if (try_to_free_buffers(page)) {
624 ClearPageDirty(page);
625 pr_info("%s: orphaned page\n", __func__);
626 return PAGE_CLEAN;
629 return PAGE_KEEP;
631 if (mapping->a_ops->writepage == NULL)
632 return PAGE_ACTIVATE;
633 if (!may_write_to_inode(mapping->host, sc))
634 return PAGE_KEEP;
636 if (clear_page_dirty_for_io(page)) {
637 int res;
638 struct writeback_control wbc = {
639 .sync_mode = WB_SYNC_NONE,
640 .nr_to_write = SWAP_CLUSTER_MAX,
641 .range_start = 0,
642 .range_end = LLONG_MAX,
643 .for_reclaim = 1,
646 SetPageReclaim(page);
647 res = mapping->a_ops->writepage(page, &wbc);
648 if (res < 0)
649 handle_write_error(mapping, page, res);
650 if (res == AOP_WRITEPAGE_ACTIVATE) {
651 ClearPageReclaim(page);
652 return PAGE_ACTIVATE;
655 if (!PageWriteback(page)) {
656 /* synchronous write or broken a_ops? */
657 ClearPageReclaim(page);
659 trace_mm_vmscan_writepage(page);
660 inc_node_page_state(page, NR_VMSCAN_WRITE);
661 return PAGE_SUCCESS;
664 return PAGE_CLEAN;
668 * Same as remove_mapping, but if the page is removed from the mapping, it
669 * gets returned with a refcount of 0.
671 static int __remove_mapping(struct address_space *mapping, struct page *page,
672 bool reclaimed)
674 unsigned long flags;
675 int refcount;
677 BUG_ON(!PageLocked(page));
678 BUG_ON(mapping != page_mapping(page));
680 spin_lock_irqsave(&mapping->tree_lock, flags);
682 * The non racy check for a busy page.
684 * Must be careful with the order of the tests. When someone has
685 * a ref to the page, it may be possible that they dirty it then
686 * drop the reference. So if PageDirty is tested before page_count
687 * here, then the following race may occur:
689 * get_user_pages(&page);
690 * [user mapping goes away]
691 * write_to(page);
692 * !PageDirty(page) [good]
693 * SetPageDirty(page);
694 * put_page(page);
695 * !page_count(page) [good, discard it]
697 * [oops, our write_to data is lost]
699 * Reversing the order of the tests ensures such a situation cannot
700 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
701 * load is not satisfied before that of page->_refcount.
703 * Note that if SetPageDirty is always performed via set_page_dirty,
704 * and thus under tree_lock, then this ordering is not required.
706 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
707 refcount = 1 + HPAGE_PMD_NR;
708 else
709 refcount = 2;
710 if (!page_ref_freeze(page, refcount))
711 goto cannot_free;
712 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
713 if (unlikely(PageDirty(page))) {
714 page_ref_unfreeze(page, refcount);
715 goto cannot_free;
718 if (PageSwapCache(page)) {
719 swp_entry_t swap = { .val = page_private(page) };
720 mem_cgroup_swapout(page, swap);
721 __delete_from_swap_cache(page);
722 spin_unlock_irqrestore(&mapping->tree_lock, flags);
723 put_swap_page(page, swap);
724 } else {
725 void (*freepage)(struct page *);
726 void *shadow = NULL;
728 freepage = mapping->a_ops->freepage;
730 * Remember a shadow entry for reclaimed file cache in
731 * order to detect refaults, thus thrashing, later on.
733 * But don't store shadows in an address space that is
734 * already exiting. This is not just an optizimation,
735 * inode reclaim needs to empty out the radix tree or
736 * the nodes are lost. Don't plant shadows behind its
737 * back.
739 * We also don't store shadows for DAX mappings because the
740 * only page cache pages found in these are zero pages
741 * covering holes, and because we don't want to mix DAX
742 * exceptional entries and shadow exceptional entries in the
743 * same page_tree.
745 if (reclaimed && page_is_file_cache(page) &&
746 !mapping_exiting(mapping) && !dax_mapping(mapping))
747 shadow = workingset_eviction(mapping, page);
748 __delete_from_page_cache(page, shadow);
749 spin_unlock_irqrestore(&mapping->tree_lock, flags);
751 if (freepage != NULL)
752 freepage(page);
755 return 1;
757 cannot_free:
758 spin_unlock_irqrestore(&mapping->tree_lock, flags);
759 return 0;
763 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
764 * someone else has a ref on the page, abort and return 0. If it was
765 * successfully detached, return 1. Assumes the caller has a single ref on
766 * this page.
768 int remove_mapping(struct address_space *mapping, struct page *page)
770 if (__remove_mapping(mapping, page, false)) {
772 * Unfreezing the refcount with 1 rather than 2 effectively
773 * drops the pagecache ref for us without requiring another
774 * atomic operation.
776 page_ref_unfreeze(page, 1);
777 return 1;
779 return 0;
783 * putback_lru_page - put previously isolated page onto appropriate LRU list
784 * @page: page to be put back to appropriate lru list
786 * Add previously isolated @page to appropriate LRU list.
787 * Page may still be unevictable for other reasons.
789 * lru_lock must not be held, interrupts must be enabled.
791 void putback_lru_page(struct page *page)
793 bool is_unevictable;
794 int was_unevictable = PageUnevictable(page);
796 VM_BUG_ON_PAGE(PageLRU(page), page);
798 redo:
799 ClearPageUnevictable(page);
801 if (page_evictable(page)) {
803 * For evictable pages, we can use the cache.
804 * In event of a race, worst case is we end up with an
805 * unevictable page on [in]active list.
806 * We know how to handle that.
808 is_unevictable = false;
809 lru_cache_add(page);
810 } else {
812 * Put unevictable pages directly on zone's unevictable
813 * list.
815 is_unevictable = true;
816 add_page_to_unevictable_list(page);
818 * When racing with an mlock or AS_UNEVICTABLE clearing
819 * (page is unlocked) make sure that if the other thread
820 * does not observe our setting of PG_lru and fails
821 * isolation/check_move_unevictable_pages,
822 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
823 * the page back to the evictable list.
825 * The other side is TestClearPageMlocked() or shmem_lock().
827 smp_mb();
831 * page's status can change while we move it among lru. If an evictable
832 * page is on unevictable list, it never be freed. To avoid that,
833 * check after we added it to the list, again.
835 if (is_unevictable && page_evictable(page)) {
836 if (!isolate_lru_page(page)) {
837 put_page(page);
838 goto redo;
840 /* This means someone else dropped this page from LRU
841 * So, it will be freed or putback to LRU again. There is
842 * nothing to do here.
846 if (was_unevictable && !is_unevictable)
847 count_vm_event(UNEVICTABLE_PGRESCUED);
848 else if (!was_unevictable && is_unevictable)
849 count_vm_event(UNEVICTABLE_PGCULLED);
851 put_page(page); /* drop ref from isolate */
854 enum page_references {
855 PAGEREF_RECLAIM,
856 PAGEREF_RECLAIM_CLEAN,
857 PAGEREF_KEEP,
858 PAGEREF_ACTIVATE,
861 static enum page_references page_check_references(struct page *page,
862 struct scan_control *sc)
864 int referenced_ptes, referenced_page;
865 unsigned long vm_flags;
867 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
868 &vm_flags);
869 referenced_page = TestClearPageReferenced(page);
872 * Mlock lost the isolation race with us. Let try_to_unmap()
873 * move the page to the unevictable list.
875 if (vm_flags & VM_LOCKED)
876 return PAGEREF_RECLAIM;
878 if (referenced_ptes) {
879 if (PageSwapBacked(page))
880 return PAGEREF_ACTIVATE;
882 * All mapped pages start out with page table
883 * references from the instantiating fault, so we need
884 * to look twice if a mapped file page is used more
885 * than once.
887 * Mark it and spare it for another trip around the
888 * inactive list. Another page table reference will
889 * lead to its activation.
891 * Note: the mark is set for activated pages as well
892 * so that recently deactivated but used pages are
893 * quickly recovered.
895 SetPageReferenced(page);
897 if (referenced_page || referenced_ptes > 1)
898 return PAGEREF_ACTIVATE;
901 * Activate file-backed executable pages after first usage.
903 if (vm_flags & VM_EXEC)
904 return PAGEREF_ACTIVATE;
906 return PAGEREF_KEEP;
909 /* Reclaim if clean, defer dirty pages to writeback */
910 if (referenced_page && !PageSwapBacked(page))
911 return PAGEREF_RECLAIM_CLEAN;
913 return PAGEREF_RECLAIM;
916 /* Check if a page is dirty or under writeback */
917 static void page_check_dirty_writeback(struct page *page,
918 bool *dirty, bool *writeback)
920 struct address_space *mapping;
923 * Anonymous pages are not handled by flushers and must be written
924 * from reclaim context. Do not stall reclaim based on them
926 if (!page_is_file_cache(page) ||
927 (PageAnon(page) && !PageSwapBacked(page))) {
928 *dirty = false;
929 *writeback = false;
930 return;
933 /* By default assume that the page flags are accurate */
934 *dirty = PageDirty(page);
935 *writeback = PageWriteback(page);
937 /* Verify dirty/writeback state if the filesystem supports it */
938 if (!page_has_private(page))
939 return;
941 mapping = page_mapping(page);
942 if (mapping && mapping->a_ops->is_dirty_writeback)
943 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
946 struct reclaim_stat {
947 unsigned nr_dirty;
948 unsigned nr_unqueued_dirty;
949 unsigned nr_congested;
950 unsigned nr_writeback;
951 unsigned nr_immediate;
952 unsigned nr_activate;
953 unsigned nr_ref_keep;
954 unsigned nr_unmap_fail;
958 * shrink_page_list() returns the number of reclaimed pages
960 static unsigned long shrink_page_list(struct list_head *page_list,
961 struct pglist_data *pgdat,
962 struct scan_control *sc,
963 enum ttu_flags ttu_flags,
964 struct reclaim_stat *stat,
965 bool force_reclaim)
967 LIST_HEAD(ret_pages);
968 LIST_HEAD(free_pages);
969 int pgactivate = 0;
970 unsigned nr_unqueued_dirty = 0;
971 unsigned nr_dirty = 0;
972 unsigned nr_congested = 0;
973 unsigned nr_reclaimed = 0;
974 unsigned nr_writeback = 0;
975 unsigned nr_immediate = 0;
976 unsigned nr_ref_keep = 0;
977 unsigned nr_unmap_fail = 0;
979 cond_resched();
981 while (!list_empty(page_list)) {
982 struct address_space *mapping;
983 struct page *page;
984 int may_enter_fs;
985 enum page_references references = PAGEREF_RECLAIM_CLEAN;
986 bool dirty, writeback;
988 cond_resched();
990 page = lru_to_page(page_list);
991 list_del(&page->lru);
993 if (!trylock_page(page))
994 goto keep;
996 VM_BUG_ON_PAGE(PageActive(page), page);
998 sc->nr_scanned++;
1000 if (unlikely(!page_evictable(page)))
1001 goto activate_locked;
1003 if (!sc->may_unmap && page_mapped(page))
1004 goto keep_locked;
1006 /* Double the slab pressure for mapped and swapcache pages */
1007 if ((page_mapped(page) || PageSwapCache(page)) &&
1008 !(PageAnon(page) && !PageSwapBacked(page)))
1009 sc->nr_scanned++;
1011 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1012 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1015 * The number of dirty pages determines if a zone is marked
1016 * reclaim_congested which affects wait_iff_congested. kswapd
1017 * will stall and start writing pages if the tail of the LRU
1018 * is all dirty unqueued pages.
1020 page_check_dirty_writeback(page, &dirty, &writeback);
1021 if (dirty || writeback)
1022 nr_dirty++;
1024 if (dirty && !writeback)
1025 nr_unqueued_dirty++;
1028 * Treat this page as congested if the underlying BDI is or if
1029 * pages are cycling through the LRU so quickly that the
1030 * pages marked for immediate reclaim are making it to the
1031 * end of the LRU a second time.
1033 mapping = page_mapping(page);
1034 if (((dirty || writeback) && mapping &&
1035 inode_write_congested(mapping->host)) ||
1036 (writeback && PageReclaim(page)))
1037 nr_congested++;
1040 * If a page at the tail of the LRU is under writeback, there
1041 * are three cases to consider.
1043 * 1) If reclaim is encountering an excessive number of pages
1044 * under writeback and this page is both under writeback and
1045 * PageReclaim then it indicates that pages are being queued
1046 * for IO but are being recycled through the LRU before the
1047 * IO can complete. Waiting on the page itself risks an
1048 * indefinite stall if it is impossible to writeback the
1049 * page due to IO error or disconnected storage so instead
1050 * note that the LRU is being scanned too quickly and the
1051 * caller can stall after page list has been processed.
1053 * 2) Global or new memcg reclaim encounters a page that is
1054 * not marked for immediate reclaim, or the caller does not
1055 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1056 * not to fs). In this case mark the page for immediate
1057 * reclaim and continue scanning.
1059 * Require may_enter_fs because we would wait on fs, which
1060 * may not have submitted IO yet. And the loop driver might
1061 * enter reclaim, and deadlock if it waits on a page for
1062 * which it is needed to do the write (loop masks off
1063 * __GFP_IO|__GFP_FS for this reason); but more thought
1064 * would probably show more reasons.
1066 * 3) Legacy memcg encounters a page that is already marked
1067 * PageReclaim. memcg does not have any dirty pages
1068 * throttling so we could easily OOM just because too many
1069 * pages are in writeback and there is nothing else to
1070 * reclaim. Wait for the writeback to complete.
1072 * In cases 1) and 2) we activate the pages to get them out of
1073 * the way while we continue scanning for clean pages on the
1074 * inactive list and refilling from the active list. The
1075 * observation here is that waiting for disk writes is more
1076 * expensive than potentially causing reloads down the line.
1077 * Since they're marked for immediate reclaim, they won't put
1078 * memory pressure on the cache working set any longer than it
1079 * takes to write them to disk.
1081 if (PageWriteback(page)) {
1082 /* Case 1 above */
1083 if (current_is_kswapd() &&
1084 PageReclaim(page) &&
1085 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1086 nr_immediate++;
1087 goto activate_locked;
1089 /* Case 2 above */
1090 } else if (sane_reclaim(sc) ||
1091 !PageReclaim(page) || !may_enter_fs) {
1093 * This is slightly racy - end_page_writeback()
1094 * might have just cleared PageReclaim, then
1095 * setting PageReclaim here end up interpreted
1096 * as PageReadahead - but that does not matter
1097 * enough to care. What we do want is for this
1098 * page to have PageReclaim set next time memcg
1099 * reclaim reaches the tests above, so it will
1100 * then wait_on_page_writeback() to avoid OOM;
1101 * and it's also appropriate in global reclaim.
1103 SetPageReclaim(page);
1104 nr_writeback++;
1105 goto activate_locked;
1107 /* Case 3 above */
1108 } else {
1109 unlock_page(page);
1110 wait_on_page_writeback(page);
1111 /* then go back and try same page again */
1112 list_add_tail(&page->lru, page_list);
1113 continue;
1117 if (!force_reclaim)
1118 references = page_check_references(page, sc);
1120 switch (references) {
1121 case PAGEREF_ACTIVATE:
1122 goto activate_locked;
1123 case PAGEREF_KEEP:
1124 nr_ref_keep++;
1125 goto keep_locked;
1126 case PAGEREF_RECLAIM:
1127 case PAGEREF_RECLAIM_CLEAN:
1128 ; /* try to reclaim the page below */
1132 * Anonymous process memory has backing store?
1133 * Try to allocate it some swap space here.
1134 * Lazyfree page could be freed directly
1136 if (PageAnon(page) && PageSwapBacked(page)) {
1137 if (!PageSwapCache(page)) {
1138 if (!(sc->gfp_mask & __GFP_IO))
1139 goto keep_locked;
1140 if (PageTransHuge(page)) {
1141 /* cannot split THP, skip it */
1142 if (!can_split_huge_page(page, NULL))
1143 goto activate_locked;
1145 * Split pages without a PMD map right
1146 * away. Chances are some or all of the
1147 * tail pages can be freed without IO.
1149 if (!compound_mapcount(page) &&
1150 split_huge_page_to_list(page,
1151 page_list))
1152 goto activate_locked;
1154 if (!add_to_swap(page)) {
1155 if (!PageTransHuge(page))
1156 goto activate_locked;
1157 /* Fallback to swap normal pages */
1158 if (split_huge_page_to_list(page,
1159 page_list))
1160 goto activate_locked;
1161 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1162 count_vm_event(THP_SWPOUT_FALLBACK);
1163 #endif
1164 if (!add_to_swap(page))
1165 goto activate_locked;
1168 may_enter_fs = 1;
1170 /* Adding to swap updated mapping */
1171 mapping = page_mapping(page);
1173 } else if (unlikely(PageTransHuge(page))) {
1174 /* Split file THP */
1175 if (split_huge_page_to_list(page, page_list))
1176 goto keep_locked;
1180 * The page is mapped into the page tables of one or more
1181 * processes. Try to unmap it here.
1183 if (page_mapped(page)) {
1184 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1186 if (unlikely(PageTransHuge(page)))
1187 flags |= TTU_SPLIT_HUGE_PMD;
1188 if (!try_to_unmap(page, flags)) {
1189 nr_unmap_fail++;
1190 goto activate_locked;
1194 if (PageDirty(page)) {
1196 * Only kswapd can writeback filesystem pages
1197 * to avoid risk of stack overflow. But avoid
1198 * injecting inefficient single-page IO into
1199 * flusher writeback as much as possible: only
1200 * write pages when we've encountered many
1201 * dirty pages, and when we've already scanned
1202 * the rest of the LRU for clean pages and see
1203 * the same dirty pages again (PageReclaim).
1205 if (page_is_file_cache(page) &&
1206 (!current_is_kswapd() || !PageReclaim(page) ||
1207 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1209 * Immediately reclaim when written back.
1210 * Similar in principal to deactivate_page()
1211 * except we already have the page isolated
1212 * and know it's dirty
1214 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1215 SetPageReclaim(page);
1217 goto activate_locked;
1220 if (references == PAGEREF_RECLAIM_CLEAN)
1221 goto keep_locked;
1222 if (!may_enter_fs)
1223 goto keep_locked;
1224 if (!sc->may_writepage)
1225 goto keep_locked;
1228 * Page is dirty. Flush the TLB if a writable entry
1229 * potentially exists to avoid CPU writes after IO
1230 * starts and then write it out here.
1232 try_to_unmap_flush_dirty();
1233 switch (pageout(page, mapping, sc)) {
1234 case PAGE_KEEP:
1235 goto keep_locked;
1236 case PAGE_ACTIVATE:
1237 goto activate_locked;
1238 case PAGE_SUCCESS:
1239 if (PageWriteback(page))
1240 goto keep;
1241 if (PageDirty(page))
1242 goto keep;
1245 * A synchronous write - probably a ramdisk. Go
1246 * ahead and try to reclaim the page.
1248 if (!trylock_page(page))
1249 goto keep;
1250 if (PageDirty(page) || PageWriteback(page))
1251 goto keep_locked;
1252 mapping = page_mapping(page);
1253 case PAGE_CLEAN:
1254 ; /* try to free the page below */
1259 * If the page has buffers, try to free the buffer mappings
1260 * associated with this page. If we succeed we try to free
1261 * the page as well.
1263 * We do this even if the page is PageDirty().
1264 * try_to_release_page() does not perform I/O, but it is
1265 * possible for a page to have PageDirty set, but it is actually
1266 * clean (all its buffers are clean). This happens if the
1267 * buffers were written out directly, with submit_bh(). ext3
1268 * will do this, as well as the blockdev mapping.
1269 * try_to_release_page() will discover that cleanness and will
1270 * drop the buffers and mark the page clean - it can be freed.
1272 * Rarely, pages can have buffers and no ->mapping. These are
1273 * the pages which were not successfully invalidated in
1274 * truncate_complete_page(). We try to drop those buffers here
1275 * and if that worked, and the page is no longer mapped into
1276 * process address space (page_count == 1) it can be freed.
1277 * Otherwise, leave the page on the LRU so it is swappable.
1279 if (page_has_private(page)) {
1280 if (!try_to_release_page(page, sc->gfp_mask))
1281 goto activate_locked;
1282 if (!mapping && page_count(page) == 1) {
1283 unlock_page(page);
1284 if (put_page_testzero(page))
1285 goto free_it;
1286 else {
1288 * rare race with speculative reference.
1289 * the speculative reference will free
1290 * this page shortly, so we may
1291 * increment nr_reclaimed here (and
1292 * leave it off the LRU).
1294 nr_reclaimed++;
1295 continue;
1300 if (PageAnon(page) && !PageSwapBacked(page)) {
1301 /* follow __remove_mapping for reference */
1302 if (!page_ref_freeze(page, 1))
1303 goto keep_locked;
1304 if (PageDirty(page)) {
1305 page_ref_unfreeze(page, 1);
1306 goto keep_locked;
1309 count_vm_event(PGLAZYFREED);
1310 count_memcg_page_event(page, PGLAZYFREED);
1311 } else if (!mapping || !__remove_mapping(mapping, page, true))
1312 goto keep_locked;
1314 * At this point, we have no other references and there is
1315 * no way to pick any more up (removed from LRU, removed
1316 * from pagecache). Can use non-atomic bitops now (and
1317 * we obviously don't have to worry about waking up a process
1318 * waiting on the page lock, because there are no references.
1320 __ClearPageLocked(page);
1321 free_it:
1322 nr_reclaimed++;
1325 * Is there need to periodically free_page_list? It would
1326 * appear not as the counts should be low
1328 if (unlikely(PageTransHuge(page))) {
1329 mem_cgroup_uncharge(page);
1330 (*get_compound_page_dtor(page))(page);
1331 } else
1332 list_add(&page->lru, &free_pages);
1333 continue;
1335 activate_locked:
1336 /* Not a candidate for swapping, so reclaim swap space. */
1337 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1338 PageMlocked(page)))
1339 try_to_free_swap(page);
1340 VM_BUG_ON_PAGE(PageActive(page), page);
1341 if (!PageMlocked(page)) {
1342 SetPageActive(page);
1343 pgactivate++;
1344 count_memcg_page_event(page, PGACTIVATE);
1346 keep_locked:
1347 unlock_page(page);
1348 keep:
1349 list_add(&page->lru, &ret_pages);
1350 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1353 mem_cgroup_uncharge_list(&free_pages);
1354 try_to_unmap_flush();
1355 free_unref_page_list(&free_pages);
1357 list_splice(&ret_pages, page_list);
1358 count_vm_events(PGACTIVATE, pgactivate);
1360 if (stat) {
1361 stat->nr_dirty = nr_dirty;
1362 stat->nr_congested = nr_congested;
1363 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1364 stat->nr_writeback = nr_writeback;
1365 stat->nr_immediate = nr_immediate;
1366 stat->nr_activate = pgactivate;
1367 stat->nr_ref_keep = nr_ref_keep;
1368 stat->nr_unmap_fail = nr_unmap_fail;
1370 return nr_reclaimed;
1373 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1374 struct list_head *page_list)
1376 struct scan_control sc = {
1377 .gfp_mask = GFP_KERNEL,
1378 .priority = DEF_PRIORITY,
1379 .may_unmap = 1,
1381 unsigned long ret;
1382 struct page *page, *next;
1383 LIST_HEAD(clean_pages);
1385 list_for_each_entry_safe(page, next, page_list, lru) {
1386 if (page_is_file_cache(page) && !PageDirty(page) &&
1387 !__PageMovable(page)) {
1388 ClearPageActive(page);
1389 list_move(&page->lru, &clean_pages);
1393 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1394 TTU_IGNORE_ACCESS, NULL, true);
1395 list_splice(&clean_pages, page_list);
1396 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1397 return ret;
1401 * Attempt to remove the specified page from its LRU. Only take this page
1402 * if it is of the appropriate PageActive status. Pages which are being
1403 * freed elsewhere are also ignored.
1405 * page: page to consider
1406 * mode: one of the LRU isolation modes defined above
1408 * returns 0 on success, -ve errno on failure.
1410 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1412 int ret = -EINVAL;
1414 /* Only take pages on the LRU. */
1415 if (!PageLRU(page))
1416 return ret;
1418 /* Compaction should not handle unevictable pages but CMA can do so */
1419 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1420 return ret;
1422 ret = -EBUSY;
1425 * To minimise LRU disruption, the caller can indicate that it only
1426 * wants to isolate pages it will be able to operate on without
1427 * blocking - clean pages for the most part.
1429 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1430 * that it is possible to migrate without blocking
1432 if (mode & ISOLATE_ASYNC_MIGRATE) {
1433 /* All the caller can do on PageWriteback is block */
1434 if (PageWriteback(page))
1435 return ret;
1437 if (PageDirty(page)) {
1438 struct address_space *mapping;
1441 * Only pages without mappings or that have a
1442 * ->migratepage callback are possible to migrate
1443 * without blocking
1445 mapping = page_mapping(page);
1446 if (mapping && !mapping->a_ops->migratepage)
1447 return ret;
1451 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1452 return ret;
1454 if (likely(get_page_unless_zero(page))) {
1456 * Be careful not to clear PageLRU until after we're
1457 * sure the page is not being freed elsewhere -- the
1458 * page release code relies on it.
1460 ClearPageLRU(page);
1461 ret = 0;
1464 return ret;
1469 * Update LRU sizes after isolating pages. The LRU size updates must
1470 * be complete before mem_cgroup_update_lru_size due to a santity check.
1472 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1473 enum lru_list lru, unsigned long *nr_zone_taken)
1475 int zid;
1477 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1478 if (!nr_zone_taken[zid])
1479 continue;
1481 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1482 #ifdef CONFIG_MEMCG
1483 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1484 #endif
1490 * zone_lru_lock is heavily contended. Some of the functions that
1491 * shrink the lists perform better by taking out a batch of pages
1492 * and working on them outside the LRU lock.
1494 * For pagecache intensive workloads, this function is the hottest
1495 * spot in the kernel (apart from copy_*_user functions).
1497 * Appropriate locks must be held before calling this function.
1499 * @nr_to_scan: The number of eligible pages to look through on the list.
1500 * @lruvec: The LRU vector to pull pages from.
1501 * @dst: The temp list to put pages on to.
1502 * @nr_scanned: The number of pages that were scanned.
1503 * @sc: The scan_control struct for this reclaim session
1504 * @mode: One of the LRU isolation modes
1505 * @lru: LRU list id for isolating
1507 * returns how many pages were moved onto *@dst.
1509 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1510 struct lruvec *lruvec, struct list_head *dst,
1511 unsigned long *nr_scanned, struct scan_control *sc,
1512 isolate_mode_t mode, enum lru_list lru)
1514 struct list_head *src = &lruvec->lists[lru];
1515 unsigned long nr_taken = 0;
1516 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1517 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1518 unsigned long skipped = 0;
1519 unsigned long scan, total_scan, nr_pages;
1520 LIST_HEAD(pages_skipped);
1522 scan = 0;
1523 for (total_scan = 0;
1524 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1525 total_scan++) {
1526 struct page *page;
1528 page = lru_to_page(src);
1529 prefetchw_prev_lru_page(page, src, flags);
1531 VM_BUG_ON_PAGE(!PageLRU(page), page);
1533 if (page_zonenum(page) > sc->reclaim_idx) {
1534 list_move(&page->lru, &pages_skipped);
1535 nr_skipped[page_zonenum(page)]++;
1536 continue;
1540 * Do not count skipped pages because that makes the function
1541 * return with no isolated pages if the LRU mostly contains
1542 * ineligible pages. This causes the VM to not reclaim any
1543 * pages, triggering a premature OOM.
1545 scan++;
1546 switch (__isolate_lru_page(page, mode)) {
1547 case 0:
1548 nr_pages = hpage_nr_pages(page);
1549 nr_taken += nr_pages;
1550 nr_zone_taken[page_zonenum(page)] += nr_pages;
1551 list_move(&page->lru, dst);
1552 break;
1554 case -EBUSY:
1555 /* else it is being freed elsewhere */
1556 list_move(&page->lru, src);
1557 continue;
1559 default:
1560 BUG();
1565 * Splice any skipped pages to the start of the LRU list. Note that
1566 * this disrupts the LRU order when reclaiming for lower zones but
1567 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1568 * scanning would soon rescan the same pages to skip and put the
1569 * system at risk of premature OOM.
1571 if (!list_empty(&pages_skipped)) {
1572 int zid;
1574 list_splice(&pages_skipped, src);
1575 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1576 if (!nr_skipped[zid])
1577 continue;
1579 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1580 skipped += nr_skipped[zid];
1583 *nr_scanned = total_scan;
1584 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1585 total_scan, skipped, nr_taken, mode, lru);
1586 update_lru_sizes(lruvec, lru, nr_zone_taken);
1587 return nr_taken;
1591 * isolate_lru_page - tries to isolate a page from its LRU list
1592 * @page: page to isolate from its LRU list
1594 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1595 * vmstat statistic corresponding to whatever LRU list the page was on.
1597 * Returns 0 if the page was removed from an LRU list.
1598 * Returns -EBUSY if the page was not on an LRU list.
1600 * The returned page will have PageLRU() cleared. If it was found on
1601 * the active list, it will have PageActive set. If it was found on
1602 * the unevictable list, it will have the PageUnevictable bit set. That flag
1603 * may need to be cleared by the caller before letting the page go.
1605 * The vmstat statistic corresponding to the list on which the page was
1606 * found will be decremented.
1608 * Restrictions:
1609 * (1) Must be called with an elevated refcount on the page. This is a
1610 * fundamentnal difference from isolate_lru_pages (which is called
1611 * without a stable reference).
1612 * (2) the lru_lock must not be held.
1613 * (3) interrupts must be enabled.
1615 int isolate_lru_page(struct page *page)
1617 int ret = -EBUSY;
1619 VM_BUG_ON_PAGE(!page_count(page), page);
1620 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1622 if (PageLRU(page)) {
1623 struct zone *zone = page_zone(page);
1624 struct lruvec *lruvec;
1626 spin_lock_irq(zone_lru_lock(zone));
1627 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1628 if (PageLRU(page)) {
1629 int lru = page_lru(page);
1630 get_page(page);
1631 ClearPageLRU(page);
1632 del_page_from_lru_list(page, lruvec, lru);
1633 ret = 0;
1635 spin_unlock_irq(zone_lru_lock(zone));
1637 return ret;
1641 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1642 * then get resheduled. When there are massive number of tasks doing page
1643 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1644 * the LRU list will go small and be scanned faster than necessary, leading to
1645 * unnecessary swapping, thrashing and OOM.
1647 static int too_many_isolated(struct pglist_data *pgdat, int file,
1648 struct scan_control *sc)
1650 unsigned long inactive, isolated;
1652 if (current_is_kswapd())
1653 return 0;
1655 if (!sane_reclaim(sc))
1656 return 0;
1658 if (file) {
1659 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1660 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1661 } else {
1662 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1663 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1667 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1668 * won't get blocked by normal direct-reclaimers, forming a circular
1669 * deadlock.
1671 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1672 inactive >>= 3;
1674 return isolated > inactive;
1677 static noinline_for_stack void
1678 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1680 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1681 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1682 LIST_HEAD(pages_to_free);
1685 * Put back any unfreeable pages.
1687 while (!list_empty(page_list)) {
1688 struct page *page = lru_to_page(page_list);
1689 int lru;
1691 VM_BUG_ON_PAGE(PageLRU(page), page);
1692 list_del(&page->lru);
1693 if (unlikely(!page_evictable(page))) {
1694 spin_unlock_irq(&pgdat->lru_lock);
1695 putback_lru_page(page);
1696 spin_lock_irq(&pgdat->lru_lock);
1697 continue;
1700 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1702 SetPageLRU(page);
1703 lru = page_lru(page);
1704 add_page_to_lru_list(page, lruvec, lru);
1706 if (is_active_lru(lru)) {
1707 int file = is_file_lru(lru);
1708 int numpages = hpage_nr_pages(page);
1709 reclaim_stat->recent_rotated[file] += numpages;
1711 if (put_page_testzero(page)) {
1712 __ClearPageLRU(page);
1713 __ClearPageActive(page);
1714 del_page_from_lru_list(page, lruvec, lru);
1716 if (unlikely(PageCompound(page))) {
1717 spin_unlock_irq(&pgdat->lru_lock);
1718 mem_cgroup_uncharge(page);
1719 (*get_compound_page_dtor(page))(page);
1720 spin_lock_irq(&pgdat->lru_lock);
1721 } else
1722 list_add(&page->lru, &pages_to_free);
1727 * To save our caller's stack, now use input list for pages to free.
1729 list_splice(&pages_to_free, page_list);
1733 * If a kernel thread (such as nfsd for loop-back mounts) services
1734 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1735 * In that case we should only throttle if the backing device it is
1736 * writing to is congested. In other cases it is safe to throttle.
1738 static int current_may_throttle(void)
1740 return !(current->flags & PF_LESS_THROTTLE) ||
1741 current->backing_dev_info == NULL ||
1742 bdi_write_congested(current->backing_dev_info);
1746 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1747 * of reclaimed pages
1749 static noinline_for_stack unsigned long
1750 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1751 struct scan_control *sc, enum lru_list lru)
1753 LIST_HEAD(page_list);
1754 unsigned long nr_scanned;
1755 unsigned long nr_reclaimed = 0;
1756 unsigned long nr_taken;
1757 struct reclaim_stat stat = {};
1758 isolate_mode_t isolate_mode = 0;
1759 int file = is_file_lru(lru);
1760 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1761 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1762 bool stalled = false;
1764 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1765 if (stalled)
1766 return 0;
1768 /* wait a bit for the reclaimer. */
1769 msleep(100);
1770 stalled = true;
1772 /* We are about to die and free our memory. Return now. */
1773 if (fatal_signal_pending(current))
1774 return SWAP_CLUSTER_MAX;
1777 lru_add_drain();
1779 if (!sc->may_unmap)
1780 isolate_mode |= ISOLATE_UNMAPPED;
1782 spin_lock_irq(&pgdat->lru_lock);
1784 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1785 &nr_scanned, sc, isolate_mode, lru);
1787 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1788 reclaim_stat->recent_scanned[file] += nr_taken;
1790 if (current_is_kswapd()) {
1791 if (global_reclaim(sc))
1792 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1793 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1794 nr_scanned);
1795 } else {
1796 if (global_reclaim(sc))
1797 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1798 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1799 nr_scanned);
1801 spin_unlock_irq(&pgdat->lru_lock);
1803 if (nr_taken == 0)
1804 return 0;
1806 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1807 &stat, false);
1809 spin_lock_irq(&pgdat->lru_lock);
1811 if (current_is_kswapd()) {
1812 if (global_reclaim(sc))
1813 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1814 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1815 nr_reclaimed);
1816 } else {
1817 if (global_reclaim(sc))
1818 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1819 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1820 nr_reclaimed);
1823 putback_inactive_pages(lruvec, &page_list);
1825 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1827 spin_unlock_irq(&pgdat->lru_lock);
1829 mem_cgroup_uncharge_list(&page_list);
1830 free_unref_page_list(&page_list);
1833 * If reclaim is isolating dirty pages under writeback, it implies
1834 * that the long-lived page allocation rate is exceeding the page
1835 * laundering rate. Either the global limits are not being effective
1836 * at throttling processes due to the page distribution throughout
1837 * zones or there is heavy usage of a slow backing device. The
1838 * only option is to throttle from reclaim context which is not ideal
1839 * as there is no guarantee the dirtying process is throttled in the
1840 * same way balance_dirty_pages() manages.
1842 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1843 * of pages under pages flagged for immediate reclaim and stall if any
1844 * are encountered in the nr_immediate check below.
1846 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1847 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1850 * Legacy memcg will stall in page writeback so avoid forcibly
1851 * stalling here.
1853 if (sane_reclaim(sc)) {
1855 * Tag a zone as congested if all the dirty pages scanned were
1856 * backed by a congested BDI and wait_iff_congested will stall.
1858 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1859 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1862 * If dirty pages are scanned that are not queued for IO, it
1863 * implies that flushers are not doing their job. This can
1864 * happen when memory pressure pushes dirty pages to the end of
1865 * the LRU before the dirty limits are breached and the dirty
1866 * data has expired. It can also happen when the proportion of
1867 * dirty pages grows not through writes but through memory
1868 * pressure reclaiming all the clean cache. And in some cases,
1869 * the flushers simply cannot keep up with the allocation
1870 * rate. Nudge the flusher threads in case they are asleep, but
1871 * also allow kswapd to start writing pages during reclaim.
1873 if (stat.nr_unqueued_dirty == nr_taken) {
1874 wakeup_flusher_threads(WB_REASON_VMSCAN);
1875 set_bit(PGDAT_DIRTY, &pgdat->flags);
1879 * If kswapd scans pages marked marked for immediate
1880 * reclaim and under writeback (nr_immediate), it implies
1881 * that pages are cycling through the LRU faster than
1882 * they are written so also forcibly stall.
1884 if (stat.nr_immediate && current_may_throttle())
1885 congestion_wait(BLK_RW_ASYNC, HZ/10);
1889 * Stall direct reclaim for IO completions if underlying BDIs or zone
1890 * is congested. Allow kswapd to continue until it starts encountering
1891 * unqueued dirty pages or cycling through the LRU too quickly.
1893 if (!sc->hibernation_mode && !current_is_kswapd() &&
1894 current_may_throttle())
1895 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1897 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1898 nr_scanned, nr_reclaimed,
1899 stat.nr_dirty, stat.nr_writeback,
1900 stat.nr_congested, stat.nr_immediate,
1901 stat.nr_activate, stat.nr_ref_keep,
1902 stat.nr_unmap_fail,
1903 sc->priority, file);
1904 return nr_reclaimed;
1908 * This moves pages from the active list to the inactive list.
1910 * We move them the other way if the page is referenced by one or more
1911 * processes, from rmap.
1913 * If the pages are mostly unmapped, the processing is fast and it is
1914 * appropriate to hold zone_lru_lock across the whole operation. But if
1915 * the pages are mapped, the processing is slow (page_referenced()) so we
1916 * should drop zone_lru_lock around each page. It's impossible to balance
1917 * this, so instead we remove the pages from the LRU while processing them.
1918 * It is safe to rely on PG_active against the non-LRU pages in here because
1919 * nobody will play with that bit on a non-LRU page.
1921 * The downside is that we have to touch page->_refcount against each page.
1922 * But we had to alter page->flags anyway.
1924 * Returns the number of pages moved to the given lru.
1927 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1928 struct list_head *list,
1929 struct list_head *pages_to_free,
1930 enum lru_list lru)
1932 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1933 struct page *page;
1934 int nr_pages;
1935 int nr_moved = 0;
1937 while (!list_empty(list)) {
1938 page = lru_to_page(list);
1939 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1941 VM_BUG_ON_PAGE(PageLRU(page), page);
1942 SetPageLRU(page);
1944 nr_pages = hpage_nr_pages(page);
1945 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1946 list_move(&page->lru, &lruvec->lists[lru]);
1948 if (put_page_testzero(page)) {
1949 __ClearPageLRU(page);
1950 __ClearPageActive(page);
1951 del_page_from_lru_list(page, lruvec, lru);
1953 if (unlikely(PageCompound(page))) {
1954 spin_unlock_irq(&pgdat->lru_lock);
1955 mem_cgroup_uncharge(page);
1956 (*get_compound_page_dtor(page))(page);
1957 spin_lock_irq(&pgdat->lru_lock);
1958 } else
1959 list_add(&page->lru, pages_to_free);
1960 } else {
1961 nr_moved += nr_pages;
1965 if (!is_active_lru(lru)) {
1966 __count_vm_events(PGDEACTIVATE, nr_moved);
1967 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1968 nr_moved);
1971 return nr_moved;
1974 static void shrink_active_list(unsigned long nr_to_scan,
1975 struct lruvec *lruvec,
1976 struct scan_control *sc,
1977 enum lru_list lru)
1979 unsigned long nr_taken;
1980 unsigned long nr_scanned;
1981 unsigned long vm_flags;
1982 LIST_HEAD(l_hold); /* The pages which were snipped off */
1983 LIST_HEAD(l_active);
1984 LIST_HEAD(l_inactive);
1985 struct page *page;
1986 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1987 unsigned nr_deactivate, nr_activate;
1988 unsigned nr_rotated = 0;
1989 isolate_mode_t isolate_mode = 0;
1990 int file = is_file_lru(lru);
1991 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1993 lru_add_drain();
1995 if (!sc->may_unmap)
1996 isolate_mode |= ISOLATE_UNMAPPED;
1998 spin_lock_irq(&pgdat->lru_lock);
2000 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2001 &nr_scanned, sc, isolate_mode, lru);
2003 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2004 reclaim_stat->recent_scanned[file] += nr_taken;
2006 __count_vm_events(PGREFILL, nr_scanned);
2007 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2009 spin_unlock_irq(&pgdat->lru_lock);
2011 while (!list_empty(&l_hold)) {
2012 cond_resched();
2013 page = lru_to_page(&l_hold);
2014 list_del(&page->lru);
2016 if (unlikely(!page_evictable(page))) {
2017 putback_lru_page(page);
2018 continue;
2021 if (unlikely(buffer_heads_over_limit)) {
2022 if (page_has_private(page) && trylock_page(page)) {
2023 if (page_has_private(page))
2024 try_to_release_page(page, 0);
2025 unlock_page(page);
2029 if (page_referenced(page, 0, sc->target_mem_cgroup,
2030 &vm_flags)) {
2031 nr_rotated += hpage_nr_pages(page);
2033 * Identify referenced, file-backed active pages and
2034 * give them one more trip around the active list. So
2035 * that executable code get better chances to stay in
2036 * memory under moderate memory pressure. Anon pages
2037 * are not likely to be evicted by use-once streaming
2038 * IO, plus JVM can create lots of anon VM_EXEC pages,
2039 * so we ignore them here.
2041 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2042 list_add(&page->lru, &l_active);
2043 continue;
2047 ClearPageActive(page); /* we are de-activating */
2048 list_add(&page->lru, &l_inactive);
2052 * Move pages back to the lru list.
2054 spin_lock_irq(&pgdat->lru_lock);
2056 * Count referenced pages from currently used mappings as rotated,
2057 * even though only some of them are actually re-activated. This
2058 * helps balance scan pressure between file and anonymous pages in
2059 * get_scan_count.
2061 reclaim_stat->recent_rotated[file] += nr_rotated;
2063 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2064 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2065 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2066 spin_unlock_irq(&pgdat->lru_lock);
2068 mem_cgroup_uncharge_list(&l_hold);
2069 free_unref_page_list(&l_hold);
2070 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2071 nr_deactivate, nr_rotated, sc->priority, file);
2075 * The inactive anon list should be small enough that the VM never has
2076 * to do too much work.
2078 * The inactive file list should be small enough to leave most memory
2079 * to the established workingset on the scan-resistant active list,
2080 * but large enough to avoid thrashing the aggregate readahead window.
2082 * Both inactive lists should also be large enough that each inactive
2083 * page has a chance to be referenced again before it is reclaimed.
2085 * If that fails and refaulting is observed, the inactive list grows.
2087 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2088 * on this LRU, maintained by the pageout code. An inactive_ratio
2089 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2091 * total target max
2092 * memory ratio inactive
2093 * -------------------------------------
2094 * 10MB 1 5MB
2095 * 100MB 1 50MB
2096 * 1GB 3 250MB
2097 * 10GB 10 0.9GB
2098 * 100GB 31 3GB
2099 * 1TB 101 10GB
2100 * 10TB 320 32GB
2102 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2103 struct mem_cgroup *memcg,
2104 struct scan_control *sc, bool actual_reclaim)
2106 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2107 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2108 enum lru_list inactive_lru = file * LRU_FILE;
2109 unsigned long inactive, active;
2110 unsigned long inactive_ratio;
2111 unsigned long refaults;
2112 unsigned long gb;
2115 * If we don't have swap space, anonymous page deactivation
2116 * is pointless.
2118 if (!file && !total_swap_pages)
2119 return false;
2121 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2122 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2124 if (memcg)
2125 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2126 else
2127 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2130 * When refaults are being observed, it means a new workingset
2131 * is being established. Disable active list protection to get
2132 * rid of the stale workingset quickly.
2134 if (file && actual_reclaim && lruvec->refaults != refaults) {
2135 inactive_ratio = 0;
2136 } else {
2137 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2138 if (gb)
2139 inactive_ratio = int_sqrt(10 * gb);
2140 else
2141 inactive_ratio = 1;
2144 if (actual_reclaim)
2145 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2146 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2147 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2148 inactive_ratio, file);
2150 return inactive * inactive_ratio < active;
2153 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2154 struct lruvec *lruvec, struct mem_cgroup *memcg,
2155 struct scan_control *sc)
2157 if (is_active_lru(lru)) {
2158 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2159 memcg, sc, true))
2160 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2161 return 0;
2164 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2167 enum scan_balance {
2168 SCAN_EQUAL,
2169 SCAN_FRACT,
2170 SCAN_ANON,
2171 SCAN_FILE,
2175 * Determine how aggressively the anon and file LRU lists should be
2176 * scanned. The relative value of each set of LRU lists is determined
2177 * by looking at the fraction of the pages scanned we did rotate back
2178 * onto the active list instead of evict.
2180 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2181 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2183 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2184 struct scan_control *sc, unsigned long *nr,
2185 unsigned long *lru_pages)
2187 int swappiness = mem_cgroup_swappiness(memcg);
2188 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2189 u64 fraction[2];
2190 u64 denominator = 0; /* gcc */
2191 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2192 unsigned long anon_prio, file_prio;
2193 enum scan_balance scan_balance;
2194 unsigned long anon, file;
2195 unsigned long ap, fp;
2196 enum lru_list lru;
2198 /* If we have no swap space, do not bother scanning anon pages. */
2199 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2200 scan_balance = SCAN_FILE;
2201 goto out;
2205 * Global reclaim will swap to prevent OOM even with no
2206 * swappiness, but memcg users want to use this knob to
2207 * disable swapping for individual groups completely when
2208 * using the memory controller's swap limit feature would be
2209 * too expensive.
2211 if (!global_reclaim(sc) && !swappiness) {
2212 scan_balance = SCAN_FILE;
2213 goto out;
2217 * Do not apply any pressure balancing cleverness when the
2218 * system is close to OOM, scan both anon and file equally
2219 * (unless the swappiness setting disagrees with swapping).
2221 if (!sc->priority && swappiness) {
2222 scan_balance = SCAN_EQUAL;
2223 goto out;
2227 * Prevent the reclaimer from falling into the cache trap: as
2228 * cache pages start out inactive, every cache fault will tip
2229 * the scan balance towards the file LRU. And as the file LRU
2230 * shrinks, so does the window for rotation from references.
2231 * This means we have a runaway feedback loop where a tiny
2232 * thrashing file LRU becomes infinitely more attractive than
2233 * anon pages. Try to detect this based on file LRU size.
2235 if (global_reclaim(sc)) {
2236 unsigned long pgdatfile;
2237 unsigned long pgdatfree;
2238 int z;
2239 unsigned long total_high_wmark = 0;
2241 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2242 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2243 node_page_state(pgdat, NR_INACTIVE_FILE);
2245 for (z = 0; z < MAX_NR_ZONES; z++) {
2246 struct zone *zone = &pgdat->node_zones[z];
2247 if (!managed_zone(zone))
2248 continue;
2250 total_high_wmark += high_wmark_pages(zone);
2253 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2255 * Force SCAN_ANON if there are enough inactive
2256 * anonymous pages on the LRU in eligible zones.
2257 * Otherwise, the small LRU gets thrashed.
2259 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2260 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2261 >> sc->priority) {
2262 scan_balance = SCAN_ANON;
2263 goto out;
2269 * If there is enough inactive page cache, i.e. if the size of the
2270 * inactive list is greater than that of the active list *and* the
2271 * inactive list actually has some pages to scan on this priority, we
2272 * do not reclaim anything from the anonymous working set right now.
2273 * Without the second condition we could end up never scanning an
2274 * lruvec even if it has plenty of old anonymous pages unless the
2275 * system is under heavy pressure.
2277 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2278 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2279 scan_balance = SCAN_FILE;
2280 goto out;
2283 scan_balance = SCAN_FRACT;
2286 * With swappiness at 100, anonymous and file have the same priority.
2287 * This scanning priority is essentially the inverse of IO cost.
2289 anon_prio = swappiness;
2290 file_prio = 200 - anon_prio;
2293 * OK, so we have swap space and a fair amount of page cache
2294 * pages. We use the recently rotated / recently scanned
2295 * ratios to determine how valuable each cache is.
2297 * Because workloads change over time (and to avoid overflow)
2298 * we keep these statistics as a floating average, which ends
2299 * up weighing recent references more than old ones.
2301 * anon in [0], file in [1]
2304 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2305 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2306 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2307 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2309 spin_lock_irq(&pgdat->lru_lock);
2310 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2311 reclaim_stat->recent_scanned[0] /= 2;
2312 reclaim_stat->recent_rotated[0] /= 2;
2315 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2316 reclaim_stat->recent_scanned[1] /= 2;
2317 reclaim_stat->recent_rotated[1] /= 2;
2321 * The amount of pressure on anon vs file pages is inversely
2322 * proportional to the fraction of recently scanned pages on
2323 * each list that were recently referenced and in active use.
2325 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2326 ap /= reclaim_stat->recent_rotated[0] + 1;
2328 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2329 fp /= reclaim_stat->recent_rotated[1] + 1;
2330 spin_unlock_irq(&pgdat->lru_lock);
2332 fraction[0] = ap;
2333 fraction[1] = fp;
2334 denominator = ap + fp + 1;
2335 out:
2336 *lru_pages = 0;
2337 for_each_evictable_lru(lru) {
2338 int file = is_file_lru(lru);
2339 unsigned long size;
2340 unsigned long scan;
2342 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2343 scan = size >> sc->priority;
2345 * If the cgroup's already been deleted, make sure to
2346 * scrape out the remaining cache.
2348 if (!scan && !mem_cgroup_online(memcg))
2349 scan = min(size, SWAP_CLUSTER_MAX);
2351 switch (scan_balance) {
2352 case SCAN_EQUAL:
2353 /* Scan lists relative to size */
2354 break;
2355 case SCAN_FRACT:
2357 * Scan types proportional to swappiness and
2358 * their relative recent reclaim efficiency.
2360 scan = div64_u64(scan * fraction[file],
2361 denominator);
2362 break;
2363 case SCAN_FILE:
2364 case SCAN_ANON:
2365 /* Scan one type exclusively */
2366 if ((scan_balance == SCAN_FILE) != file) {
2367 size = 0;
2368 scan = 0;
2370 break;
2371 default:
2372 /* Look ma, no brain */
2373 BUG();
2376 *lru_pages += size;
2377 nr[lru] = scan;
2382 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2384 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2385 struct scan_control *sc, unsigned long *lru_pages)
2387 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2388 unsigned long nr[NR_LRU_LISTS];
2389 unsigned long targets[NR_LRU_LISTS];
2390 unsigned long nr_to_scan;
2391 enum lru_list lru;
2392 unsigned long nr_reclaimed = 0;
2393 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2394 struct blk_plug plug;
2395 bool scan_adjusted;
2397 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2399 /* Record the original scan target for proportional adjustments later */
2400 memcpy(targets, nr, sizeof(nr));
2403 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2404 * event that can occur when there is little memory pressure e.g.
2405 * multiple streaming readers/writers. Hence, we do not abort scanning
2406 * when the requested number of pages are reclaimed when scanning at
2407 * DEF_PRIORITY on the assumption that the fact we are direct
2408 * reclaiming implies that kswapd is not keeping up and it is best to
2409 * do a batch of work at once. For memcg reclaim one check is made to
2410 * abort proportional reclaim if either the file or anon lru has already
2411 * dropped to zero at the first pass.
2413 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2414 sc->priority == DEF_PRIORITY);
2416 blk_start_plug(&plug);
2417 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2418 nr[LRU_INACTIVE_FILE]) {
2419 unsigned long nr_anon, nr_file, percentage;
2420 unsigned long nr_scanned;
2422 for_each_evictable_lru(lru) {
2423 if (nr[lru]) {
2424 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2425 nr[lru] -= nr_to_scan;
2427 nr_reclaimed += shrink_list(lru, nr_to_scan,
2428 lruvec, memcg, sc);
2432 cond_resched();
2434 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2435 continue;
2438 * For kswapd and memcg, reclaim at least the number of pages
2439 * requested. Ensure that the anon and file LRUs are scanned
2440 * proportionally what was requested by get_scan_count(). We
2441 * stop reclaiming one LRU and reduce the amount scanning
2442 * proportional to the original scan target.
2444 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2445 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2448 * It's just vindictive to attack the larger once the smaller
2449 * has gone to zero. And given the way we stop scanning the
2450 * smaller below, this makes sure that we only make one nudge
2451 * towards proportionality once we've got nr_to_reclaim.
2453 if (!nr_file || !nr_anon)
2454 break;
2456 if (nr_file > nr_anon) {
2457 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2458 targets[LRU_ACTIVE_ANON] + 1;
2459 lru = LRU_BASE;
2460 percentage = nr_anon * 100 / scan_target;
2461 } else {
2462 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2463 targets[LRU_ACTIVE_FILE] + 1;
2464 lru = LRU_FILE;
2465 percentage = nr_file * 100 / scan_target;
2468 /* Stop scanning the smaller of the LRU */
2469 nr[lru] = 0;
2470 nr[lru + LRU_ACTIVE] = 0;
2473 * Recalculate the other LRU scan count based on its original
2474 * scan target and the percentage scanning already complete
2476 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2477 nr_scanned = targets[lru] - nr[lru];
2478 nr[lru] = targets[lru] * (100 - percentage) / 100;
2479 nr[lru] -= min(nr[lru], nr_scanned);
2481 lru += LRU_ACTIVE;
2482 nr_scanned = targets[lru] - nr[lru];
2483 nr[lru] = targets[lru] * (100 - percentage) / 100;
2484 nr[lru] -= min(nr[lru], nr_scanned);
2486 scan_adjusted = true;
2488 blk_finish_plug(&plug);
2489 sc->nr_reclaimed += nr_reclaimed;
2492 * Even if we did not try to evict anon pages at all, we want to
2493 * rebalance the anon lru active/inactive ratio.
2495 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2496 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2497 sc, LRU_ACTIVE_ANON);
2500 /* Use reclaim/compaction for costly allocs or under memory pressure */
2501 static bool in_reclaim_compaction(struct scan_control *sc)
2503 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2504 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2505 sc->priority < DEF_PRIORITY - 2))
2506 return true;
2508 return false;
2512 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2513 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2514 * true if more pages should be reclaimed such that when the page allocator
2515 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2516 * It will give up earlier than that if there is difficulty reclaiming pages.
2518 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2519 unsigned long nr_reclaimed,
2520 unsigned long nr_scanned,
2521 struct scan_control *sc)
2523 unsigned long pages_for_compaction;
2524 unsigned long inactive_lru_pages;
2525 int z;
2527 /* If not in reclaim/compaction mode, stop */
2528 if (!in_reclaim_compaction(sc))
2529 return false;
2531 /* Consider stopping depending on scan and reclaim activity */
2532 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2534 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2535 * full LRU list has been scanned and we are still failing
2536 * to reclaim pages. This full LRU scan is potentially
2537 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2539 if (!nr_reclaimed && !nr_scanned)
2540 return false;
2541 } else {
2543 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2544 * fail without consequence, stop if we failed to reclaim
2545 * any pages from the last SWAP_CLUSTER_MAX number of
2546 * pages that were scanned. This will return to the
2547 * caller faster at the risk reclaim/compaction and
2548 * the resulting allocation attempt fails
2550 if (!nr_reclaimed)
2551 return false;
2555 * If we have not reclaimed enough pages for compaction and the
2556 * inactive lists are large enough, continue reclaiming
2558 pages_for_compaction = compact_gap(sc->order);
2559 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2560 if (get_nr_swap_pages() > 0)
2561 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2562 if (sc->nr_reclaimed < pages_for_compaction &&
2563 inactive_lru_pages > pages_for_compaction)
2564 return true;
2566 /* If compaction would go ahead or the allocation would succeed, stop */
2567 for (z = 0; z <= sc->reclaim_idx; z++) {
2568 struct zone *zone = &pgdat->node_zones[z];
2569 if (!managed_zone(zone))
2570 continue;
2572 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2573 case COMPACT_SUCCESS:
2574 case COMPACT_CONTINUE:
2575 return false;
2576 default:
2577 /* check next zone */
2581 return true;
2584 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2586 struct reclaim_state *reclaim_state = current->reclaim_state;
2587 unsigned long nr_reclaimed, nr_scanned;
2588 bool reclaimable = false;
2590 do {
2591 struct mem_cgroup *root = sc->target_mem_cgroup;
2592 struct mem_cgroup_reclaim_cookie reclaim = {
2593 .pgdat = pgdat,
2594 .priority = sc->priority,
2596 unsigned long node_lru_pages = 0;
2597 struct mem_cgroup *memcg;
2599 nr_reclaimed = sc->nr_reclaimed;
2600 nr_scanned = sc->nr_scanned;
2602 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2603 do {
2604 unsigned long lru_pages;
2605 unsigned long reclaimed;
2606 unsigned long scanned;
2608 if (mem_cgroup_low(root, memcg)) {
2609 if (!sc->memcg_low_reclaim) {
2610 sc->memcg_low_skipped = 1;
2611 continue;
2613 mem_cgroup_event(memcg, MEMCG_LOW);
2616 reclaimed = sc->nr_reclaimed;
2617 scanned = sc->nr_scanned;
2619 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2620 node_lru_pages += lru_pages;
2622 if (memcg)
2623 shrink_slab(sc->gfp_mask, pgdat->node_id,
2624 memcg, sc->nr_scanned - scanned,
2625 lru_pages);
2627 /* Record the group's reclaim efficiency */
2628 vmpressure(sc->gfp_mask, memcg, false,
2629 sc->nr_scanned - scanned,
2630 sc->nr_reclaimed - reclaimed);
2633 * Direct reclaim and kswapd have to scan all memory
2634 * cgroups to fulfill the overall scan target for the
2635 * node.
2637 * Limit reclaim, on the other hand, only cares about
2638 * nr_to_reclaim pages to be reclaimed and it will
2639 * retry with decreasing priority if one round over the
2640 * whole hierarchy is not sufficient.
2642 if (!global_reclaim(sc) &&
2643 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2644 mem_cgroup_iter_break(root, memcg);
2645 break;
2647 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2650 * Shrink the slab caches in the same proportion that
2651 * the eligible LRU pages were scanned.
2653 if (global_reclaim(sc))
2654 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2655 sc->nr_scanned - nr_scanned,
2656 node_lru_pages);
2658 if (reclaim_state) {
2659 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2660 reclaim_state->reclaimed_slab = 0;
2663 /* Record the subtree's reclaim efficiency */
2664 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2665 sc->nr_scanned - nr_scanned,
2666 sc->nr_reclaimed - nr_reclaimed);
2668 if (sc->nr_reclaimed - nr_reclaimed)
2669 reclaimable = true;
2671 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2672 sc->nr_scanned - nr_scanned, sc));
2675 * Kswapd gives up on balancing particular nodes after too
2676 * many failures to reclaim anything from them and goes to
2677 * sleep. On reclaim progress, reset the failure counter. A
2678 * successful direct reclaim run will revive a dormant kswapd.
2680 if (reclaimable)
2681 pgdat->kswapd_failures = 0;
2683 return reclaimable;
2687 * Returns true if compaction should go ahead for a costly-order request, or
2688 * the allocation would already succeed without compaction. Return false if we
2689 * should reclaim first.
2691 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2693 unsigned long watermark;
2694 enum compact_result suitable;
2696 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2697 if (suitable == COMPACT_SUCCESS)
2698 /* Allocation should succeed already. Don't reclaim. */
2699 return true;
2700 if (suitable == COMPACT_SKIPPED)
2701 /* Compaction cannot yet proceed. Do reclaim. */
2702 return false;
2705 * Compaction is already possible, but it takes time to run and there
2706 * are potentially other callers using the pages just freed. So proceed
2707 * with reclaim to make a buffer of free pages available to give
2708 * compaction a reasonable chance of completing and allocating the page.
2709 * Note that we won't actually reclaim the whole buffer in one attempt
2710 * as the target watermark in should_continue_reclaim() is lower. But if
2711 * we are already above the high+gap watermark, don't reclaim at all.
2713 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2715 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2719 * This is the direct reclaim path, for page-allocating processes. We only
2720 * try to reclaim pages from zones which will satisfy the caller's allocation
2721 * request.
2723 * If a zone is deemed to be full of pinned pages then just give it a light
2724 * scan then give up on it.
2726 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2728 struct zoneref *z;
2729 struct zone *zone;
2730 unsigned long nr_soft_reclaimed;
2731 unsigned long nr_soft_scanned;
2732 gfp_t orig_mask;
2733 pg_data_t *last_pgdat = NULL;
2736 * If the number of buffer_heads in the machine exceeds the maximum
2737 * allowed level, force direct reclaim to scan the highmem zone as
2738 * highmem pages could be pinning lowmem pages storing buffer_heads
2740 orig_mask = sc->gfp_mask;
2741 if (buffer_heads_over_limit) {
2742 sc->gfp_mask |= __GFP_HIGHMEM;
2743 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2746 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2747 sc->reclaim_idx, sc->nodemask) {
2749 * Take care memory controller reclaiming has small influence
2750 * to global LRU.
2752 if (global_reclaim(sc)) {
2753 if (!cpuset_zone_allowed(zone,
2754 GFP_KERNEL | __GFP_HARDWALL))
2755 continue;
2758 * If we already have plenty of memory free for
2759 * compaction in this zone, don't free any more.
2760 * Even though compaction is invoked for any
2761 * non-zero order, only frequent costly order
2762 * reclamation is disruptive enough to become a
2763 * noticeable problem, like transparent huge
2764 * page allocations.
2766 if (IS_ENABLED(CONFIG_COMPACTION) &&
2767 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2768 compaction_ready(zone, sc)) {
2769 sc->compaction_ready = true;
2770 continue;
2774 * Shrink each node in the zonelist once. If the
2775 * zonelist is ordered by zone (not the default) then a
2776 * node may be shrunk multiple times but in that case
2777 * the user prefers lower zones being preserved.
2779 if (zone->zone_pgdat == last_pgdat)
2780 continue;
2783 * This steals pages from memory cgroups over softlimit
2784 * and returns the number of reclaimed pages and
2785 * scanned pages. This works for global memory pressure
2786 * and balancing, not for a memcg's limit.
2788 nr_soft_scanned = 0;
2789 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2790 sc->order, sc->gfp_mask,
2791 &nr_soft_scanned);
2792 sc->nr_reclaimed += nr_soft_reclaimed;
2793 sc->nr_scanned += nr_soft_scanned;
2794 /* need some check for avoid more shrink_zone() */
2797 /* See comment about same check for global reclaim above */
2798 if (zone->zone_pgdat == last_pgdat)
2799 continue;
2800 last_pgdat = zone->zone_pgdat;
2801 shrink_node(zone->zone_pgdat, sc);
2805 * Restore to original mask to avoid the impact on the caller if we
2806 * promoted it to __GFP_HIGHMEM.
2808 sc->gfp_mask = orig_mask;
2811 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2813 struct mem_cgroup *memcg;
2815 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2816 do {
2817 unsigned long refaults;
2818 struct lruvec *lruvec;
2820 if (memcg)
2821 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2822 else
2823 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2825 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2826 lruvec->refaults = refaults;
2827 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2831 * This is the main entry point to direct page reclaim.
2833 * If a full scan of the inactive list fails to free enough memory then we
2834 * are "out of memory" and something needs to be killed.
2836 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2837 * high - the zone may be full of dirty or under-writeback pages, which this
2838 * caller can't do much about. We kick the writeback threads and take explicit
2839 * naps in the hope that some of these pages can be written. But if the
2840 * allocating task holds filesystem locks which prevent writeout this might not
2841 * work, and the allocation attempt will fail.
2843 * returns: 0, if no pages reclaimed
2844 * else, the number of pages reclaimed
2846 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2847 struct scan_control *sc)
2849 int initial_priority = sc->priority;
2850 pg_data_t *last_pgdat;
2851 struct zoneref *z;
2852 struct zone *zone;
2853 retry:
2854 delayacct_freepages_start();
2856 if (global_reclaim(sc))
2857 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2859 do {
2860 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2861 sc->priority);
2862 sc->nr_scanned = 0;
2863 shrink_zones(zonelist, sc);
2865 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2866 break;
2868 if (sc->compaction_ready)
2869 break;
2872 * If we're getting trouble reclaiming, start doing
2873 * writepage even in laptop mode.
2875 if (sc->priority < DEF_PRIORITY - 2)
2876 sc->may_writepage = 1;
2877 } while (--sc->priority >= 0);
2879 last_pgdat = NULL;
2880 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2881 sc->nodemask) {
2882 if (zone->zone_pgdat == last_pgdat)
2883 continue;
2884 last_pgdat = zone->zone_pgdat;
2885 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2888 delayacct_freepages_end();
2890 if (sc->nr_reclaimed)
2891 return sc->nr_reclaimed;
2893 /* Aborted reclaim to try compaction? don't OOM, then */
2894 if (sc->compaction_ready)
2895 return 1;
2897 /* Untapped cgroup reserves? Don't OOM, retry. */
2898 if (sc->memcg_low_skipped) {
2899 sc->priority = initial_priority;
2900 sc->memcg_low_reclaim = 1;
2901 sc->memcg_low_skipped = 0;
2902 goto retry;
2905 return 0;
2908 static bool allow_direct_reclaim(pg_data_t *pgdat)
2910 struct zone *zone;
2911 unsigned long pfmemalloc_reserve = 0;
2912 unsigned long free_pages = 0;
2913 int i;
2914 bool wmark_ok;
2916 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2917 return true;
2919 for (i = 0; i <= ZONE_NORMAL; i++) {
2920 zone = &pgdat->node_zones[i];
2921 if (!managed_zone(zone))
2922 continue;
2924 if (!zone_reclaimable_pages(zone))
2925 continue;
2927 pfmemalloc_reserve += min_wmark_pages(zone);
2928 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2931 /* If there are no reserves (unexpected config) then do not throttle */
2932 if (!pfmemalloc_reserve)
2933 return true;
2935 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2937 /* kswapd must be awake if processes are being throttled */
2938 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2939 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2940 (enum zone_type)ZONE_NORMAL);
2941 wake_up_interruptible(&pgdat->kswapd_wait);
2944 return wmark_ok;
2948 * Throttle direct reclaimers if backing storage is backed by the network
2949 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2950 * depleted. kswapd will continue to make progress and wake the processes
2951 * when the low watermark is reached.
2953 * Returns true if a fatal signal was delivered during throttling. If this
2954 * happens, the page allocator should not consider triggering the OOM killer.
2956 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2957 nodemask_t *nodemask)
2959 struct zoneref *z;
2960 struct zone *zone;
2961 pg_data_t *pgdat = NULL;
2964 * Kernel threads should not be throttled as they may be indirectly
2965 * responsible for cleaning pages necessary for reclaim to make forward
2966 * progress. kjournald for example may enter direct reclaim while
2967 * committing a transaction where throttling it could forcing other
2968 * processes to block on log_wait_commit().
2970 if (current->flags & PF_KTHREAD)
2971 goto out;
2974 * If a fatal signal is pending, this process should not throttle.
2975 * It should return quickly so it can exit and free its memory
2977 if (fatal_signal_pending(current))
2978 goto out;
2981 * Check if the pfmemalloc reserves are ok by finding the first node
2982 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2983 * GFP_KERNEL will be required for allocating network buffers when
2984 * swapping over the network so ZONE_HIGHMEM is unusable.
2986 * Throttling is based on the first usable node and throttled processes
2987 * wait on a queue until kswapd makes progress and wakes them. There
2988 * is an affinity then between processes waking up and where reclaim
2989 * progress has been made assuming the process wakes on the same node.
2990 * More importantly, processes running on remote nodes will not compete
2991 * for remote pfmemalloc reserves and processes on different nodes
2992 * should make reasonable progress.
2994 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2995 gfp_zone(gfp_mask), nodemask) {
2996 if (zone_idx(zone) > ZONE_NORMAL)
2997 continue;
2999 /* Throttle based on the first usable node */
3000 pgdat = zone->zone_pgdat;
3001 if (allow_direct_reclaim(pgdat))
3002 goto out;
3003 break;
3006 /* If no zone was usable by the allocation flags then do not throttle */
3007 if (!pgdat)
3008 goto out;
3010 /* Account for the throttling */
3011 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3014 * If the caller cannot enter the filesystem, it's possible that it
3015 * is due to the caller holding an FS lock or performing a journal
3016 * transaction in the case of a filesystem like ext[3|4]. In this case,
3017 * it is not safe to block on pfmemalloc_wait as kswapd could be
3018 * blocked waiting on the same lock. Instead, throttle for up to a
3019 * second before continuing.
3021 if (!(gfp_mask & __GFP_FS)) {
3022 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3023 allow_direct_reclaim(pgdat), HZ);
3025 goto check_pending;
3028 /* Throttle until kswapd wakes the process */
3029 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3030 allow_direct_reclaim(pgdat));
3032 check_pending:
3033 if (fatal_signal_pending(current))
3034 return true;
3036 out:
3037 return false;
3040 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3041 gfp_t gfp_mask, nodemask_t *nodemask)
3043 unsigned long nr_reclaimed;
3044 struct scan_control sc = {
3045 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3046 .gfp_mask = current_gfp_context(gfp_mask),
3047 .reclaim_idx = gfp_zone(gfp_mask),
3048 .order = order,
3049 .nodemask = nodemask,
3050 .priority = DEF_PRIORITY,
3051 .may_writepage = !laptop_mode,
3052 .may_unmap = 1,
3053 .may_swap = 1,
3057 * Do not enter reclaim if fatal signal was delivered while throttled.
3058 * 1 is returned so that the page allocator does not OOM kill at this
3059 * point.
3061 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3062 return 1;
3064 trace_mm_vmscan_direct_reclaim_begin(order,
3065 sc.may_writepage,
3066 sc.gfp_mask,
3067 sc.reclaim_idx);
3069 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3071 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3073 return nr_reclaimed;
3076 #ifdef CONFIG_MEMCG
3078 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3079 gfp_t gfp_mask, bool noswap,
3080 pg_data_t *pgdat,
3081 unsigned long *nr_scanned)
3083 struct scan_control sc = {
3084 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3085 .target_mem_cgroup = memcg,
3086 .may_writepage = !laptop_mode,
3087 .may_unmap = 1,
3088 .reclaim_idx = MAX_NR_ZONES - 1,
3089 .may_swap = !noswap,
3091 unsigned long lru_pages;
3093 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3094 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3096 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3097 sc.may_writepage,
3098 sc.gfp_mask,
3099 sc.reclaim_idx);
3102 * NOTE: Although we can get the priority field, using it
3103 * here is not a good idea, since it limits the pages we can scan.
3104 * if we don't reclaim here, the shrink_node from balance_pgdat
3105 * will pick up pages from other mem cgroup's as well. We hack
3106 * the priority and make it zero.
3108 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3110 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3112 *nr_scanned = sc.nr_scanned;
3113 return sc.nr_reclaimed;
3116 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3117 unsigned long nr_pages,
3118 gfp_t gfp_mask,
3119 bool may_swap)
3121 struct zonelist *zonelist;
3122 unsigned long nr_reclaimed;
3123 int nid;
3124 unsigned int noreclaim_flag;
3125 struct scan_control sc = {
3126 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3127 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3128 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3129 .reclaim_idx = MAX_NR_ZONES - 1,
3130 .target_mem_cgroup = memcg,
3131 .priority = DEF_PRIORITY,
3132 .may_writepage = !laptop_mode,
3133 .may_unmap = 1,
3134 .may_swap = may_swap,
3138 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3139 * take care of from where we get pages. So the node where we start the
3140 * scan does not need to be the current node.
3142 nid = mem_cgroup_select_victim_node(memcg);
3144 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3146 trace_mm_vmscan_memcg_reclaim_begin(0,
3147 sc.may_writepage,
3148 sc.gfp_mask,
3149 sc.reclaim_idx);
3151 noreclaim_flag = memalloc_noreclaim_save();
3152 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3153 memalloc_noreclaim_restore(noreclaim_flag);
3155 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3157 return nr_reclaimed;
3159 #endif
3161 static void age_active_anon(struct pglist_data *pgdat,
3162 struct scan_control *sc)
3164 struct mem_cgroup *memcg;
3166 if (!total_swap_pages)
3167 return;
3169 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3170 do {
3171 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3173 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3174 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3175 sc, LRU_ACTIVE_ANON);
3177 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3178 } while (memcg);
3182 * Returns true if there is an eligible zone balanced for the request order
3183 * and classzone_idx
3185 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3187 int i;
3188 unsigned long mark = -1;
3189 struct zone *zone;
3191 for (i = 0; i <= classzone_idx; i++) {
3192 zone = pgdat->node_zones + i;
3194 if (!managed_zone(zone))
3195 continue;
3197 mark = high_wmark_pages(zone);
3198 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3199 return true;
3203 * If a node has no populated zone within classzone_idx, it does not
3204 * need balancing by definition. This can happen if a zone-restricted
3205 * allocation tries to wake a remote kswapd.
3207 if (mark == -1)
3208 return true;
3210 return false;
3213 /* Clear pgdat state for congested, dirty or under writeback. */
3214 static void clear_pgdat_congested(pg_data_t *pgdat)
3216 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3217 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3218 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3222 * Prepare kswapd for sleeping. This verifies that there are no processes
3223 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3225 * Returns true if kswapd is ready to sleep
3227 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3230 * The throttled processes are normally woken up in balance_pgdat() as
3231 * soon as allow_direct_reclaim() is true. But there is a potential
3232 * race between when kswapd checks the watermarks and a process gets
3233 * throttled. There is also a potential race if processes get
3234 * throttled, kswapd wakes, a large process exits thereby balancing the
3235 * zones, which causes kswapd to exit balance_pgdat() before reaching
3236 * the wake up checks. If kswapd is going to sleep, no process should
3237 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3238 * the wake up is premature, processes will wake kswapd and get
3239 * throttled again. The difference from wake ups in balance_pgdat() is
3240 * that here we are under prepare_to_wait().
3242 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3243 wake_up_all(&pgdat->pfmemalloc_wait);
3245 /* Hopeless node, leave it to direct reclaim */
3246 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3247 return true;
3249 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3250 clear_pgdat_congested(pgdat);
3251 return true;
3254 return false;
3258 * kswapd shrinks a node of pages that are at or below the highest usable
3259 * zone that is currently unbalanced.
3261 * Returns true if kswapd scanned at least the requested number of pages to
3262 * reclaim or if the lack of progress was due to pages under writeback.
3263 * This is used to determine if the scanning priority needs to be raised.
3265 static bool kswapd_shrink_node(pg_data_t *pgdat,
3266 struct scan_control *sc)
3268 struct zone *zone;
3269 int z;
3271 /* Reclaim a number of pages proportional to the number of zones */
3272 sc->nr_to_reclaim = 0;
3273 for (z = 0; z <= sc->reclaim_idx; z++) {
3274 zone = pgdat->node_zones + z;
3275 if (!managed_zone(zone))
3276 continue;
3278 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3282 * Historically care was taken to put equal pressure on all zones but
3283 * now pressure is applied based on node LRU order.
3285 shrink_node(pgdat, sc);
3288 * Fragmentation may mean that the system cannot be rebalanced for
3289 * high-order allocations. If twice the allocation size has been
3290 * reclaimed then recheck watermarks only at order-0 to prevent
3291 * excessive reclaim. Assume that a process requested a high-order
3292 * can direct reclaim/compact.
3294 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3295 sc->order = 0;
3297 return sc->nr_scanned >= sc->nr_to_reclaim;
3301 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3302 * that are eligible for use by the caller until at least one zone is
3303 * balanced.
3305 * Returns the order kswapd finished reclaiming at.
3307 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3308 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3309 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3310 * or lower is eligible for reclaim until at least one usable zone is
3311 * balanced.
3313 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3315 int i;
3316 unsigned long nr_soft_reclaimed;
3317 unsigned long nr_soft_scanned;
3318 struct zone *zone;
3319 struct scan_control sc = {
3320 .gfp_mask = GFP_KERNEL,
3321 .order = order,
3322 .priority = DEF_PRIORITY,
3323 .may_writepage = !laptop_mode,
3324 .may_unmap = 1,
3325 .may_swap = 1,
3327 count_vm_event(PAGEOUTRUN);
3329 do {
3330 unsigned long nr_reclaimed = sc.nr_reclaimed;
3331 bool raise_priority = true;
3333 sc.reclaim_idx = classzone_idx;
3336 * If the number of buffer_heads exceeds the maximum allowed
3337 * then consider reclaiming from all zones. This has a dual
3338 * purpose -- on 64-bit systems it is expected that
3339 * buffer_heads are stripped during active rotation. On 32-bit
3340 * systems, highmem pages can pin lowmem memory and shrinking
3341 * buffers can relieve lowmem pressure. Reclaim may still not
3342 * go ahead if all eligible zones for the original allocation
3343 * request are balanced to avoid excessive reclaim from kswapd.
3345 if (buffer_heads_over_limit) {
3346 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3347 zone = pgdat->node_zones + i;
3348 if (!managed_zone(zone))
3349 continue;
3351 sc.reclaim_idx = i;
3352 break;
3357 * Only reclaim if there are no eligible zones. Note that
3358 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3359 * have adjusted it.
3361 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3362 goto out;
3365 * Do some background aging of the anon list, to give
3366 * pages a chance to be referenced before reclaiming. All
3367 * pages are rotated regardless of classzone as this is
3368 * about consistent aging.
3370 age_active_anon(pgdat, &sc);
3373 * If we're getting trouble reclaiming, start doing writepage
3374 * even in laptop mode.
3376 if (sc.priority < DEF_PRIORITY - 2)
3377 sc.may_writepage = 1;
3379 /* Call soft limit reclaim before calling shrink_node. */
3380 sc.nr_scanned = 0;
3381 nr_soft_scanned = 0;
3382 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3383 sc.gfp_mask, &nr_soft_scanned);
3384 sc.nr_reclaimed += nr_soft_reclaimed;
3387 * There should be no need to raise the scanning priority if
3388 * enough pages are already being scanned that that high
3389 * watermark would be met at 100% efficiency.
3391 if (kswapd_shrink_node(pgdat, &sc))
3392 raise_priority = false;
3395 * If the low watermark is met there is no need for processes
3396 * to be throttled on pfmemalloc_wait as they should not be
3397 * able to safely make forward progress. Wake them
3399 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3400 allow_direct_reclaim(pgdat))
3401 wake_up_all(&pgdat->pfmemalloc_wait);
3403 /* Check if kswapd should be suspending */
3404 if (try_to_freeze() || kthread_should_stop())
3405 break;
3408 * Raise priority if scanning rate is too low or there was no
3409 * progress in reclaiming pages
3411 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3412 if (raise_priority || !nr_reclaimed)
3413 sc.priority--;
3414 } while (sc.priority >= 1);
3416 if (!sc.nr_reclaimed)
3417 pgdat->kswapd_failures++;
3419 out:
3420 snapshot_refaults(NULL, pgdat);
3422 * Return the order kswapd stopped reclaiming at as
3423 * prepare_kswapd_sleep() takes it into account. If another caller
3424 * entered the allocator slow path while kswapd was awake, order will
3425 * remain at the higher level.
3427 return sc.order;
3431 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3432 * allocation request woke kswapd for. When kswapd has not woken recently,
3433 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3434 * given classzone and returns it or the highest classzone index kswapd
3435 * was recently woke for.
3437 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3438 enum zone_type classzone_idx)
3440 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3441 return classzone_idx;
3443 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3446 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3447 unsigned int classzone_idx)
3449 long remaining = 0;
3450 DEFINE_WAIT(wait);
3452 if (freezing(current) || kthread_should_stop())
3453 return;
3455 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3458 * Try to sleep for a short interval. Note that kcompactd will only be
3459 * woken if it is possible to sleep for a short interval. This is
3460 * deliberate on the assumption that if reclaim cannot keep an
3461 * eligible zone balanced that it's also unlikely that compaction will
3462 * succeed.
3464 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3466 * Compaction records what page blocks it recently failed to
3467 * isolate pages from and skips them in the future scanning.
3468 * When kswapd is going to sleep, it is reasonable to assume
3469 * that pages and compaction may succeed so reset the cache.
3471 reset_isolation_suitable(pgdat);
3474 * We have freed the memory, now we should compact it to make
3475 * allocation of the requested order possible.
3477 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3479 remaining = schedule_timeout(HZ/10);
3482 * If woken prematurely then reset kswapd_classzone_idx and
3483 * order. The values will either be from a wakeup request or
3484 * the previous request that slept prematurely.
3486 if (remaining) {
3487 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3488 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3491 finish_wait(&pgdat->kswapd_wait, &wait);
3492 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3496 * After a short sleep, check if it was a premature sleep. If not, then
3497 * go fully to sleep until explicitly woken up.
3499 if (!remaining &&
3500 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3501 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3504 * vmstat counters are not perfectly accurate and the estimated
3505 * value for counters such as NR_FREE_PAGES can deviate from the
3506 * true value by nr_online_cpus * threshold. To avoid the zone
3507 * watermarks being breached while under pressure, we reduce the
3508 * per-cpu vmstat threshold while kswapd is awake and restore
3509 * them before going back to sleep.
3511 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3513 if (!kthread_should_stop())
3514 schedule();
3516 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3517 } else {
3518 if (remaining)
3519 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3520 else
3521 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3523 finish_wait(&pgdat->kswapd_wait, &wait);
3527 * The background pageout daemon, started as a kernel thread
3528 * from the init process.
3530 * This basically trickles out pages so that we have _some_
3531 * free memory available even if there is no other activity
3532 * that frees anything up. This is needed for things like routing
3533 * etc, where we otherwise might have all activity going on in
3534 * asynchronous contexts that cannot page things out.
3536 * If there are applications that are active memory-allocators
3537 * (most normal use), this basically shouldn't matter.
3539 static int kswapd(void *p)
3541 unsigned int alloc_order, reclaim_order;
3542 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3543 pg_data_t *pgdat = (pg_data_t*)p;
3544 struct task_struct *tsk = current;
3546 struct reclaim_state reclaim_state = {
3547 .reclaimed_slab = 0,
3549 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3551 if (!cpumask_empty(cpumask))
3552 set_cpus_allowed_ptr(tsk, cpumask);
3553 current->reclaim_state = &reclaim_state;
3556 * Tell the memory management that we're a "memory allocator",
3557 * and that if we need more memory we should get access to it
3558 * regardless (see "__alloc_pages()"). "kswapd" should
3559 * never get caught in the normal page freeing logic.
3561 * (Kswapd normally doesn't need memory anyway, but sometimes
3562 * you need a small amount of memory in order to be able to
3563 * page out something else, and this flag essentially protects
3564 * us from recursively trying to free more memory as we're
3565 * trying to free the first piece of memory in the first place).
3567 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3568 set_freezable();
3570 pgdat->kswapd_order = 0;
3571 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3572 for ( ; ; ) {
3573 bool ret;
3575 alloc_order = reclaim_order = pgdat->kswapd_order;
3576 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3578 kswapd_try_sleep:
3579 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3580 classzone_idx);
3582 /* Read the new order and classzone_idx */
3583 alloc_order = reclaim_order = pgdat->kswapd_order;
3584 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3585 pgdat->kswapd_order = 0;
3586 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3588 ret = try_to_freeze();
3589 if (kthread_should_stop())
3590 break;
3593 * We can speed up thawing tasks if we don't call balance_pgdat
3594 * after returning from the refrigerator
3596 if (ret)
3597 continue;
3600 * Reclaim begins at the requested order but if a high-order
3601 * reclaim fails then kswapd falls back to reclaiming for
3602 * order-0. If that happens, kswapd will consider sleeping
3603 * for the order it finished reclaiming at (reclaim_order)
3604 * but kcompactd is woken to compact for the original
3605 * request (alloc_order).
3607 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3608 alloc_order);
3609 fs_reclaim_acquire(GFP_KERNEL);
3610 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3611 fs_reclaim_release(GFP_KERNEL);
3612 if (reclaim_order < alloc_order)
3613 goto kswapd_try_sleep;
3616 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3617 current->reclaim_state = NULL;
3619 return 0;
3623 * A zone is low on free memory, so wake its kswapd task to service it.
3625 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3627 pg_data_t *pgdat;
3629 if (!managed_zone(zone))
3630 return;
3632 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3633 return;
3634 pgdat = zone->zone_pgdat;
3635 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3636 classzone_idx);
3637 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3638 if (!waitqueue_active(&pgdat->kswapd_wait))
3639 return;
3641 /* Hopeless node, leave it to direct reclaim */
3642 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3643 return;
3645 if (pgdat_balanced(pgdat, order, classzone_idx))
3646 return;
3648 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3649 wake_up_interruptible(&pgdat->kswapd_wait);
3652 #ifdef CONFIG_HIBERNATION
3654 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3655 * freed pages.
3657 * Rather than trying to age LRUs the aim is to preserve the overall
3658 * LRU order by reclaiming preferentially
3659 * inactive > active > active referenced > active mapped
3661 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3663 struct reclaim_state reclaim_state;
3664 struct scan_control sc = {
3665 .nr_to_reclaim = nr_to_reclaim,
3666 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3667 .reclaim_idx = MAX_NR_ZONES - 1,
3668 .priority = DEF_PRIORITY,
3669 .may_writepage = 1,
3670 .may_unmap = 1,
3671 .may_swap = 1,
3672 .hibernation_mode = 1,
3674 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3675 struct task_struct *p = current;
3676 unsigned long nr_reclaimed;
3677 unsigned int noreclaim_flag;
3679 noreclaim_flag = memalloc_noreclaim_save();
3680 fs_reclaim_acquire(sc.gfp_mask);
3681 reclaim_state.reclaimed_slab = 0;
3682 p->reclaim_state = &reclaim_state;
3684 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3686 p->reclaim_state = NULL;
3687 fs_reclaim_release(sc.gfp_mask);
3688 memalloc_noreclaim_restore(noreclaim_flag);
3690 return nr_reclaimed;
3692 #endif /* CONFIG_HIBERNATION */
3694 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3695 not required for correctness. So if the last cpu in a node goes
3696 away, we get changed to run anywhere: as the first one comes back,
3697 restore their cpu bindings. */
3698 static int kswapd_cpu_online(unsigned int cpu)
3700 int nid;
3702 for_each_node_state(nid, N_MEMORY) {
3703 pg_data_t *pgdat = NODE_DATA(nid);
3704 const struct cpumask *mask;
3706 mask = cpumask_of_node(pgdat->node_id);
3708 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3709 /* One of our CPUs online: restore mask */
3710 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3712 return 0;
3716 * This kswapd start function will be called by init and node-hot-add.
3717 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3719 int kswapd_run(int nid)
3721 pg_data_t *pgdat = NODE_DATA(nid);
3722 int ret = 0;
3724 if (pgdat->kswapd)
3725 return 0;
3727 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3728 if (IS_ERR(pgdat->kswapd)) {
3729 /* failure at boot is fatal */
3730 BUG_ON(system_state < SYSTEM_RUNNING);
3731 pr_err("Failed to start kswapd on node %d\n", nid);
3732 ret = PTR_ERR(pgdat->kswapd);
3733 pgdat->kswapd = NULL;
3735 return ret;
3739 * Called by memory hotplug when all memory in a node is offlined. Caller must
3740 * hold mem_hotplug_begin/end().
3742 void kswapd_stop(int nid)
3744 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3746 if (kswapd) {
3747 kthread_stop(kswapd);
3748 NODE_DATA(nid)->kswapd = NULL;
3752 static int __init kswapd_init(void)
3754 int nid, ret;
3756 swap_setup();
3757 for_each_node_state(nid, N_MEMORY)
3758 kswapd_run(nid);
3759 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3760 "mm/vmscan:online", kswapd_cpu_online,
3761 NULL);
3762 WARN_ON(ret < 0);
3763 return 0;
3766 module_init(kswapd_init)
3768 #ifdef CONFIG_NUMA
3770 * Node reclaim mode
3772 * If non-zero call node_reclaim when the number of free pages falls below
3773 * the watermarks.
3775 int node_reclaim_mode __read_mostly;
3777 #define RECLAIM_OFF 0
3778 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3779 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3780 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3783 * Priority for NODE_RECLAIM. This determines the fraction of pages
3784 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3785 * a zone.
3787 #define NODE_RECLAIM_PRIORITY 4
3790 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3791 * occur.
3793 int sysctl_min_unmapped_ratio = 1;
3796 * If the number of slab pages in a zone grows beyond this percentage then
3797 * slab reclaim needs to occur.
3799 int sysctl_min_slab_ratio = 5;
3801 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3803 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3804 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3805 node_page_state(pgdat, NR_ACTIVE_FILE);
3808 * It's possible for there to be more file mapped pages than
3809 * accounted for by the pages on the file LRU lists because
3810 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3812 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3815 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3816 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3818 unsigned long nr_pagecache_reclaimable;
3819 unsigned long delta = 0;
3822 * If RECLAIM_UNMAP is set, then all file pages are considered
3823 * potentially reclaimable. Otherwise, we have to worry about
3824 * pages like swapcache and node_unmapped_file_pages() provides
3825 * a better estimate
3827 if (node_reclaim_mode & RECLAIM_UNMAP)
3828 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3829 else
3830 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3832 /* If we can't clean pages, remove dirty pages from consideration */
3833 if (!(node_reclaim_mode & RECLAIM_WRITE))
3834 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3836 /* Watch for any possible underflows due to delta */
3837 if (unlikely(delta > nr_pagecache_reclaimable))
3838 delta = nr_pagecache_reclaimable;
3840 return nr_pagecache_reclaimable - delta;
3844 * Try to free up some pages from this node through reclaim.
3846 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3848 /* Minimum pages needed in order to stay on node */
3849 const unsigned long nr_pages = 1 << order;
3850 struct task_struct *p = current;
3851 struct reclaim_state reclaim_state;
3852 unsigned int noreclaim_flag;
3853 struct scan_control sc = {
3854 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3855 .gfp_mask = current_gfp_context(gfp_mask),
3856 .order = order,
3857 .priority = NODE_RECLAIM_PRIORITY,
3858 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3859 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3860 .may_swap = 1,
3861 .reclaim_idx = gfp_zone(gfp_mask),
3864 cond_resched();
3866 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3867 * and we also need to be able to write out pages for RECLAIM_WRITE
3868 * and RECLAIM_UNMAP.
3870 noreclaim_flag = memalloc_noreclaim_save();
3871 p->flags |= PF_SWAPWRITE;
3872 fs_reclaim_acquire(sc.gfp_mask);
3873 reclaim_state.reclaimed_slab = 0;
3874 p->reclaim_state = &reclaim_state;
3876 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3878 * Free memory by calling shrink zone with increasing
3879 * priorities until we have enough memory freed.
3881 do {
3882 shrink_node(pgdat, &sc);
3883 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3886 p->reclaim_state = NULL;
3887 fs_reclaim_release(gfp_mask);
3888 current->flags &= ~PF_SWAPWRITE;
3889 memalloc_noreclaim_restore(noreclaim_flag);
3890 return sc.nr_reclaimed >= nr_pages;
3893 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3895 int ret;
3898 * Node reclaim reclaims unmapped file backed pages and
3899 * slab pages if we are over the defined limits.
3901 * A small portion of unmapped file backed pages is needed for
3902 * file I/O otherwise pages read by file I/O will be immediately
3903 * thrown out if the node is overallocated. So we do not reclaim
3904 * if less than a specified percentage of the node is used by
3905 * unmapped file backed pages.
3907 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3908 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3909 return NODE_RECLAIM_FULL;
3912 * Do not scan if the allocation should not be delayed.
3914 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3915 return NODE_RECLAIM_NOSCAN;
3918 * Only run node reclaim on the local node or on nodes that do not
3919 * have associated processors. This will favor the local processor
3920 * over remote processors and spread off node memory allocations
3921 * as wide as possible.
3923 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3924 return NODE_RECLAIM_NOSCAN;
3926 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3927 return NODE_RECLAIM_NOSCAN;
3929 ret = __node_reclaim(pgdat, gfp_mask, order);
3930 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3932 if (!ret)
3933 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3935 return ret;
3937 #endif
3940 * page_evictable - test whether a page is evictable
3941 * @page: the page to test
3943 * Test whether page is evictable--i.e., should be placed on active/inactive
3944 * lists vs unevictable list.
3946 * Reasons page might not be evictable:
3947 * (1) page's mapping marked unevictable
3948 * (2) page is part of an mlocked VMA
3951 int page_evictable(struct page *page)
3953 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3956 #ifdef CONFIG_SHMEM
3958 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3959 * @pages: array of pages to check
3960 * @nr_pages: number of pages to check
3962 * Checks pages for evictability and moves them to the appropriate lru list.
3964 * This function is only used for SysV IPC SHM_UNLOCK.
3966 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3968 struct lruvec *lruvec;
3969 struct pglist_data *pgdat = NULL;
3970 int pgscanned = 0;
3971 int pgrescued = 0;
3972 int i;
3974 for (i = 0; i < nr_pages; i++) {
3975 struct page *page = pages[i];
3976 struct pglist_data *pagepgdat = page_pgdat(page);
3978 pgscanned++;
3979 if (pagepgdat != pgdat) {
3980 if (pgdat)
3981 spin_unlock_irq(&pgdat->lru_lock);
3982 pgdat = pagepgdat;
3983 spin_lock_irq(&pgdat->lru_lock);
3985 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3987 if (!PageLRU(page) || !PageUnevictable(page))
3988 continue;
3990 if (page_evictable(page)) {
3991 enum lru_list lru = page_lru_base_type(page);
3993 VM_BUG_ON_PAGE(PageActive(page), page);
3994 ClearPageUnevictable(page);
3995 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3996 add_page_to_lru_list(page, lruvec, lru);
3997 pgrescued++;
4001 if (pgdat) {
4002 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4003 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4004 spin_unlock_irq(&pgdat->lru_lock);
4007 #endif /* CONFIG_SHMEM */