vmalloc: fix __GFP_HIGHMEM usage for vmalloc_32 on 32b systems
[linux/fpc-iii.git] / sound / soc / intel / skylake / skl-sst-cldma.c
blobd2b1d60fec021cdf00e5e264f50c111d9f163fa8
1 /*
2 * skl-sst-cldma.c - Code Loader DMA handler
4 * Copyright (C) 2015, Intel Corporation.
5 * Author: Subhransu S. Prusty <subhransu.s.prusty@intel.com>
6 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as version 2, as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
18 #include <linux/device.h>
19 #include <linux/mm.h>
20 #include <linux/delay.h>
21 #include "../common/sst-dsp.h"
22 #include "../common/sst-dsp-priv.h"
24 static void skl_cldma_int_enable(struct sst_dsp *ctx)
26 sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC,
27 SKL_ADSPIC_CL_DMA, SKL_ADSPIC_CL_DMA);
30 void skl_cldma_int_disable(struct sst_dsp *ctx)
32 sst_dsp_shim_update_bits_unlocked(ctx,
33 SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, 0);
36 static void skl_cldma_stream_run(struct sst_dsp *ctx, bool enable)
38 unsigned char val;
39 int timeout;
41 sst_dsp_shim_update_bits_unlocked(ctx,
42 SKL_ADSP_REG_CL_SD_CTL,
43 CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(enable));
45 udelay(3);
46 timeout = 300;
47 do {
48 /* waiting for hardware to report that the stream Run bit set */
49 val = sst_dsp_shim_read(ctx, SKL_ADSP_REG_CL_SD_CTL) &
50 CL_SD_CTL_RUN_MASK;
51 if (enable && val)
52 break;
53 else if (!enable && !val)
54 break;
55 udelay(3);
56 } while (--timeout);
58 if (timeout == 0)
59 dev_err(ctx->dev, "Failed to set Run bit=%d enable=%d\n", val, enable);
62 static void skl_cldma_stream_clear(struct sst_dsp *ctx)
64 /* make sure Run bit is cleared before setting stream register */
65 skl_cldma_stream_run(ctx, 0);
67 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
68 CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(0));
69 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
70 CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(0));
71 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
72 CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(0));
73 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
74 CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(0));
76 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(0));
77 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 0);
79 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, 0);
80 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, 0);
83 /* Code loader helper APIs */
84 static void skl_cldma_setup_bdle(struct sst_dsp *ctx,
85 struct snd_dma_buffer *dmab_data,
86 u32 **bdlp, int size, int with_ioc)
88 u32 *bdl = *bdlp;
90 ctx->cl_dev.frags = 0;
91 while (size > 0) {
92 phys_addr_t addr = virt_to_phys(dmab_data->area +
93 (ctx->cl_dev.frags * ctx->cl_dev.bufsize));
95 bdl[0] = cpu_to_le32(lower_32_bits(addr));
96 bdl[1] = cpu_to_le32(upper_32_bits(addr));
98 bdl[2] = cpu_to_le32(ctx->cl_dev.bufsize);
100 size -= ctx->cl_dev.bufsize;
101 bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01);
103 bdl += 4;
104 ctx->cl_dev.frags++;
109 * Setup controller
110 * Configure the registers to update the dma buffer address and
111 * enable interrupts.
112 * Note: Using the channel 1 for transfer
114 static void skl_cldma_setup_controller(struct sst_dsp *ctx,
115 struct snd_dma_buffer *dmab_bdl, unsigned int max_size,
116 u32 count)
118 skl_cldma_stream_clear(ctx);
119 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL,
120 CL_SD_BDLPLBA(dmab_bdl->addr));
121 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU,
122 CL_SD_BDLPUBA(dmab_bdl->addr));
124 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, max_size);
125 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, count - 1);
126 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
127 CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(1));
128 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
129 CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(1));
130 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
131 CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(1));
132 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
133 CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(FW_CL_STREAM_NUMBER));
136 static void skl_cldma_setup_spb(struct sst_dsp *ctx,
137 unsigned int size, bool enable)
139 if (enable)
140 sst_dsp_shim_update_bits_unlocked(ctx,
141 SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
142 CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
143 CL_SPBFIFO_SPBFCCTL_SPIBE(1));
145 sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, size);
148 static void skl_cldma_cleanup_spb(struct sst_dsp *ctx)
150 sst_dsp_shim_update_bits_unlocked(ctx,
151 SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
152 CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
153 CL_SPBFIFO_SPBFCCTL_SPIBE(0));
155 sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, 0);
158 static void skl_cldma_cleanup(struct sst_dsp *ctx)
160 skl_cldma_cleanup_spb(ctx);
161 skl_cldma_stream_clear(ctx);
163 ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
164 ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_bdl);
167 int skl_cldma_wait_interruptible(struct sst_dsp *ctx)
169 int ret = 0;
171 if (!wait_event_timeout(ctx->cl_dev.wait_queue,
172 ctx->cl_dev.wait_condition,
173 msecs_to_jiffies(SKL_WAIT_TIMEOUT))) {
174 dev_err(ctx->dev, "%s: Wait timeout\n", __func__);
175 ret = -EIO;
176 goto cleanup;
179 dev_dbg(ctx->dev, "%s: Event wake\n", __func__);
180 if (ctx->cl_dev.wake_status != SKL_CL_DMA_BUF_COMPLETE) {
181 dev_err(ctx->dev, "%s: DMA Error\n", __func__);
182 ret = -EIO;
185 cleanup:
186 ctx->cl_dev.wake_status = SKL_CL_DMA_STATUS_NONE;
187 return ret;
190 static void skl_cldma_stop(struct sst_dsp *ctx)
192 skl_cldma_stream_run(ctx, false);
195 static void skl_cldma_fill_buffer(struct sst_dsp *ctx, unsigned int size,
196 const void *curr_pos, bool intr_enable, bool trigger)
198 dev_dbg(ctx->dev, "Size: %x, intr_enable: %d\n", size, intr_enable);
199 dev_dbg(ctx->dev, "buf_pos_index:%d, trigger:%d\n",
200 ctx->cl_dev.dma_buffer_offset, trigger);
201 dev_dbg(ctx->dev, "spib position: %d\n", ctx->cl_dev.curr_spib_pos);
204 * Check if the size exceeds buffer boundary. If it exceeds
205 * max_buffer size, then copy till buffer size and then copy
206 * remaining buffer from the start of ring buffer.
208 if (ctx->cl_dev.dma_buffer_offset + size > ctx->cl_dev.bufsize) {
209 unsigned int size_b = ctx->cl_dev.bufsize -
210 ctx->cl_dev.dma_buffer_offset;
211 memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
212 curr_pos, size_b);
213 size -= size_b;
214 curr_pos += size_b;
215 ctx->cl_dev.dma_buffer_offset = 0;
218 memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
219 curr_pos, size);
221 if (ctx->cl_dev.curr_spib_pos == ctx->cl_dev.bufsize)
222 ctx->cl_dev.dma_buffer_offset = 0;
223 else
224 ctx->cl_dev.dma_buffer_offset = ctx->cl_dev.curr_spib_pos;
226 ctx->cl_dev.wait_condition = false;
228 if (intr_enable)
229 skl_cldma_int_enable(ctx);
231 ctx->cl_dev.ops.cl_setup_spb(ctx, ctx->cl_dev.curr_spib_pos, trigger);
232 if (trigger)
233 ctx->cl_dev.ops.cl_trigger(ctx, true);
237 * The CL dma doesn't have any way to update the transfer status until a BDL
238 * buffer is fully transferred
240 * So Copying is divided in two parts.
241 * 1. Interrupt on buffer done where the size to be transferred is more than
242 * ring buffer size.
243 * 2. Polling on fw register to identify if data left to transferred doesn't
244 * fill the ring buffer. Caller takes care of polling the required status
245 * register to identify the transfer status.
246 * 3. if wait flag is set, waits for DBL interrupt to copy the next chunk till
247 * bytes_left is 0.
248 * if wait flag is not set, doesn't wait for BDL interrupt. after ccopying
249 * the first chunk return the no of bytes_left to be copied.
251 static int
252 skl_cldma_copy_to_buf(struct sst_dsp *ctx, const void *bin,
253 u32 total_size, bool wait)
255 int ret = 0;
256 bool start = true;
257 unsigned int excess_bytes;
258 u32 size;
259 unsigned int bytes_left = total_size;
260 const void *curr_pos = bin;
262 if (total_size <= 0)
263 return -EINVAL;
265 dev_dbg(ctx->dev, "%s: Total binary size: %u\n", __func__, bytes_left);
267 while (bytes_left) {
268 if (bytes_left > ctx->cl_dev.bufsize) {
271 * dma transfers only till the write pointer as
272 * updated in spib
274 if (ctx->cl_dev.curr_spib_pos == 0)
275 ctx->cl_dev.curr_spib_pos = ctx->cl_dev.bufsize;
277 size = ctx->cl_dev.bufsize;
278 skl_cldma_fill_buffer(ctx, size, curr_pos, true, start);
280 if (wait) {
281 start = false;
282 ret = skl_cldma_wait_interruptible(ctx);
283 if (ret < 0) {
284 skl_cldma_stop(ctx);
285 return ret;
288 } else {
289 skl_cldma_int_disable(ctx);
291 if ((ctx->cl_dev.curr_spib_pos + bytes_left)
292 <= ctx->cl_dev.bufsize) {
293 ctx->cl_dev.curr_spib_pos += bytes_left;
294 } else {
295 excess_bytes = bytes_left -
296 (ctx->cl_dev.bufsize -
297 ctx->cl_dev.curr_spib_pos);
298 ctx->cl_dev.curr_spib_pos = excess_bytes;
301 size = bytes_left;
302 skl_cldma_fill_buffer(ctx, size,
303 curr_pos, false, start);
305 bytes_left -= size;
306 curr_pos = curr_pos + size;
307 if (!wait)
308 return bytes_left;
311 return bytes_left;
314 void skl_cldma_process_intr(struct sst_dsp *ctx)
316 u8 cl_dma_intr_status;
318 cl_dma_intr_status =
319 sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_CL_SD_STS);
321 if (!(cl_dma_intr_status & SKL_CL_DMA_SD_INT_COMPLETE))
322 ctx->cl_dev.wake_status = SKL_CL_DMA_ERR;
323 else
324 ctx->cl_dev.wake_status = SKL_CL_DMA_BUF_COMPLETE;
326 ctx->cl_dev.wait_condition = true;
327 wake_up(&ctx->cl_dev.wait_queue);
330 int skl_cldma_prepare(struct sst_dsp *ctx)
332 int ret;
333 u32 *bdl;
335 ctx->cl_dev.bufsize = SKL_MAX_BUFFER_SIZE;
337 /* Allocate cl ops */
338 ctx->cl_dev.ops.cl_setup_bdle = skl_cldma_setup_bdle;
339 ctx->cl_dev.ops.cl_setup_controller = skl_cldma_setup_controller;
340 ctx->cl_dev.ops.cl_setup_spb = skl_cldma_setup_spb;
341 ctx->cl_dev.ops.cl_cleanup_spb = skl_cldma_cleanup_spb;
342 ctx->cl_dev.ops.cl_trigger = skl_cldma_stream_run;
343 ctx->cl_dev.ops.cl_cleanup_controller = skl_cldma_cleanup;
344 ctx->cl_dev.ops.cl_copy_to_dmabuf = skl_cldma_copy_to_buf;
345 ctx->cl_dev.ops.cl_stop_dma = skl_cldma_stop;
347 /* Allocate buffer*/
348 ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
349 &ctx->cl_dev.dmab_data, ctx->cl_dev.bufsize);
350 if (ret < 0) {
351 dev_err(ctx->dev, "Alloc buffer for base fw failed: %x\n", ret);
352 return ret;
354 /* Setup Code loader BDL */
355 ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
356 &ctx->cl_dev.dmab_bdl, PAGE_SIZE);
357 if (ret < 0) {
358 dev_err(ctx->dev, "Alloc buffer for blde failed: %x\n", ret);
359 ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
360 return ret;
362 bdl = (u32 *)ctx->cl_dev.dmab_bdl.area;
364 /* Allocate BDLs */
365 ctx->cl_dev.ops.cl_setup_bdle(ctx, &ctx->cl_dev.dmab_data,
366 &bdl, ctx->cl_dev.bufsize, 1);
367 ctx->cl_dev.ops.cl_setup_controller(ctx, &ctx->cl_dev.dmab_bdl,
368 ctx->cl_dev.bufsize, ctx->cl_dev.frags);
370 ctx->cl_dev.curr_spib_pos = 0;
371 ctx->cl_dev.dma_buffer_offset = 0;
372 init_waitqueue_head(&ctx->cl_dev.wait_queue);
374 return ret;