fscrypt: new helper function - fscrypt_prepare_link()
[linux/fpc-iii.git] / drivers / base / dma-coherent.c
blob744f64f43454314c35acc4341def004968aeff87
1 /*
2 * Coherent per-device memory handling.
3 * Borrowed from i386
4 */
5 #include <linux/io.h>
6 #include <linux/slab.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/dma-mapping.h>
11 struct dma_coherent_mem {
12 void *virt_base;
13 dma_addr_t device_base;
14 unsigned long pfn_base;
15 int size;
16 int flags;
17 unsigned long *bitmap;
18 spinlock_t spinlock;
19 bool use_dev_dma_pfn_offset;
22 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
24 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
26 if (dev && dev->dma_mem)
27 return dev->dma_mem;
28 return NULL;
31 static inline dma_addr_t dma_get_device_base(struct device *dev,
32 struct dma_coherent_mem * mem)
34 if (mem->use_dev_dma_pfn_offset)
35 return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
36 else
37 return mem->device_base;
40 static int dma_init_coherent_memory(
41 phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags,
42 struct dma_coherent_mem **mem)
44 struct dma_coherent_mem *dma_mem = NULL;
45 void __iomem *mem_base = NULL;
46 int pages = size >> PAGE_SHIFT;
47 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
48 int ret;
50 if (!size) {
51 ret = -EINVAL;
52 goto out;
55 mem_base = memremap(phys_addr, size, MEMREMAP_WC);
56 if (!mem_base) {
57 ret = -EINVAL;
58 goto out;
60 dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
61 if (!dma_mem) {
62 ret = -ENOMEM;
63 goto out;
65 dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
66 if (!dma_mem->bitmap) {
67 ret = -ENOMEM;
68 goto out;
71 dma_mem->virt_base = mem_base;
72 dma_mem->device_base = device_addr;
73 dma_mem->pfn_base = PFN_DOWN(phys_addr);
74 dma_mem->size = pages;
75 dma_mem->flags = flags;
76 spin_lock_init(&dma_mem->spinlock);
78 *mem = dma_mem;
79 return 0;
81 out:
82 kfree(dma_mem);
83 if (mem_base)
84 memunmap(mem_base);
85 return ret;
88 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
90 if (!mem)
91 return;
93 memunmap(mem->virt_base);
94 kfree(mem->bitmap);
95 kfree(mem);
98 static int dma_assign_coherent_memory(struct device *dev,
99 struct dma_coherent_mem *mem)
101 if (!dev)
102 return -ENODEV;
104 if (dev->dma_mem)
105 return -EBUSY;
107 dev->dma_mem = mem;
108 return 0;
111 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
112 dma_addr_t device_addr, size_t size, int flags)
114 struct dma_coherent_mem *mem;
115 int ret;
117 ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags, &mem);
118 if (ret)
119 return ret;
121 ret = dma_assign_coherent_memory(dev, mem);
122 if (ret)
123 dma_release_coherent_memory(mem);
124 return ret;
126 EXPORT_SYMBOL(dma_declare_coherent_memory);
128 void dma_release_declared_memory(struct device *dev)
130 struct dma_coherent_mem *mem = dev->dma_mem;
132 if (!mem)
133 return;
134 dma_release_coherent_memory(mem);
135 dev->dma_mem = NULL;
137 EXPORT_SYMBOL(dma_release_declared_memory);
139 void *dma_mark_declared_memory_occupied(struct device *dev,
140 dma_addr_t device_addr, size_t size)
142 struct dma_coherent_mem *mem = dev->dma_mem;
143 unsigned long flags;
144 int pos, err;
146 size += device_addr & ~PAGE_MASK;
148 if (!mem)
149 return ERR_PTR(-EINVAL);
151 spin_lock_irqsave(&mem->spinlock, flags);
152 pos = PFN_DOWN(device_addr - dma_get_device_base(dev, mem));
153 err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
154 spin_unlock_irqrestore(&mem->spinlock, flags);
156 if (err != 0)
157 return ERR_PTR(err);
158 return mem->virt_base + (pos << PAGE_SHIFT);
160 EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
162 static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem,
163 ssize_t size, dma_addr_t *dma_handle)
165 int order = get_order(size);
166 unsigned long flags;
167 int pageno;
168 void *ret;
170 spin_lock_irqsave(&mem->spinlock, flags);
172 if (unlikely(size > (mem->size << PAGE_SHIFT)))
173 goto err;
175 pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
176 if (unlikely(pageno < 0))
177 goto err;
180 * Memory was found in the coherent area.
182 *dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
183 ret = mem->virt_base + (pageno << PAGE_SHIFT);
184 spin_unlock_irqrestore(&mem->spinlock, flags);
185 memset(ret, 0, size);
186 return ret;
187 err:
188 spin_unlock_irqrestore(&mem->spinlock, flags);
189 return NULL;
193 * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
194 * @dev: device from which we allocate memory
195 * @size: size of requested memory area
196 * @dma_handle: This will be filled with the correct dma handle
197 * @ret: This pointer will be filled with the virtual address
198 * to allocated area.
200 * This function should be only called from per-arch dma_alloc_coherent()
201 * to support allocation from per-device coherent memory pools.
203 * Returns 0 if dma_alloc_coherent should continue with allocating from
204 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
206 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
207 dma_addr_t *dma_handle, void **ret)
209 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
211 if (!mem)
212 return 0;
214 *ret = __dma_alloc_from_coherent(mem, size, dma_handle);
215 if (*ret)
216 return 1;
219 * In the case where the allocation can not be satisfied from the
220 * per-device area, try to fall back to generic memory if the
221 * constraints allow it.
223 return mem->flags & DMA_MEMORY_EXCLUSIVE;
225 EXPORT_SYMBOL(dma_alloc_from_dev_coherent);
227 void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle)
229 if (!dma_coherent_default_memory)
230 return NULL;
232 return __dma_alloc_from_coherent(dma_coherent_default_memory, size,
233 dma_handle);
236 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
237 int order, void *vaddr)
239 if (mem && vaddr >= mem->virt_base && vaddr <
240 (mem->virt_base + (mem->size << PAGE_SHIFT))) {
241 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
242 unsigned long flags;
244 spin_lock_irqsave(&mem->spinlock, flags);
245 bitmap_release_region(mem->bitmap, page, order);
246 spin_unlock_irqrestore(&mem->spinlock, flags);
247 return 1;
249 return 0;
253 * dma_release_from_dev_coherent() - free memory to device coherent memory pool
254 * @dev: device from which the memory was allocated
255 * @order: the order of pages allocated
256 * @vaddr: virtual address of allocated pages
258 * This checks whether the memory was allocated from the per-device
259 * coherent memory pool and if so, releases that memory.
261 * Returns 1 if we correctly released the memory, or 0 if the caller should
262 * proceed with releasing memory from generic pools.
264 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
266 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
268 return __dma_release_from_coherent(mem, order, vaddr);
270 EXPORT_SYMBOL(dma_release_from_dev_coherent);
272 int dma_release_from_global_coherent(int order, void *vaddr)
274 if (!dma_coherent_default_memory)
275 return 0;
277 return __dma_release_from_coherent(dma_coherent_default_memory, order,
278 vaddr);
281 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
282 struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
284 if (mem && vaddr >= mem->virt_base && vaddr + size <=
285 (mem->virt_base + (mem->size << PAGE_SHIFT))) {
286 unsigned long off = vma->vm_pgoff;
287 int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
288 int user_count = vma_pages(vma);
289 int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
291 *ret = -ENXIO;
292 if (off < count && user_count <= count - off) {
293 unsigned long pfn = mem->pfn_base + start + off;
294 *ret = remap_pfn_range(vma, vma->vm_start, pfn,
295 user_count << PAGE_SHIFT,
296 vma->vm_page_prot);
298 return 1;
300 return 0;
304 * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
305 * @dev: device from which the memory was allocated
306 * @vma: vm_area for the userspace memory
307 * @vaddr: cpu address returned by dma_alloc_from_dev_coherent
308 * @size: size of the memory buffer allocated
309 * @ret: result from remap_pfn_range()
311 * This checks whether the memory was allocated from the per-device
312 * coherent memory pool and if so, maps that memory to the provided vma.
314 * Returns 1 if we correctly mapped the memory, or 0 if the caller should
315 * proceed with mapping memory from generic pools.
317 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
318 void *vaddr, size_t size, int *ret)
320 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
322 return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
324 EXPORT_SYMBOL(dma_mmap_from_dev_coherent);
326 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
327 size_t size, int *ret)
329 if (!dma_coherent_default_memory)
330 return 0;
332 return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
333 vaddr, size, ret);
337 * Support for reserved memory regions defined in device tree
339 #ifdef CONFIG_OF_RESERVED_MEM
340 #include <linux/of.h>
341 #include <linux/of_fdt.h>
342 #include <linux/of_reserved_mem.h>
344 static struct reserved_mem *dma_reserved_default_memory __initdata;
346 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
348 struct dma_coherent_mem *mem = rmem->priv;
349 int ret;
351 if (!mem) {
352 ret = dma_init_coherent_memory(rmem->base, rmem->base,
353 rmem->size,
354 DMA_MEMORY_EXCLUSIVE, &mem);
355 if (ret) {
356 pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
357 &rmem->base, (unsigned long)rmem->size / SZ_1M);
358 return ret;
361 mem->use_dev_dma_pfn_offset = true;
362 rmem->priv = mem;
363 dma_assign_coherent_memory(dev, mem);
364 return 0;
367 static void rmem_dma_device_release(struct reserved_mem *rmem,
368 struct device *dev)
370 if (dev)
371 dev->dma_mem = NULL;
374 static const struct reserved_mem_ops rmem_dma_ops = {
375 .device_init = rmem_dma_device_init,
376 .device_release = rmem_dma_device_release,
379 static int __init rmem_dma_setup(struct reserved_mem *rmem)
381 unsigned long node = rmem->fdt_node;
383 if (of_get_flat_dt_prop(node, "reusable", NULL))
384 return -EINVAL;
386 #ifdef CONFIG_ARM
387 if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
388 pr_err("Reserved memory: regions without no-map are not yet supported\n");
389 return -EINVAL;
392 if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
393 WARN(dma_reserved_default_memory,
394 "Reserved memory: region for default DMA coherent area is redefined\n");
395 dma_reserved_default_memory = rmem;
397 #endif
399 rmem->ops = &rmem_dma_ops;
400 pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
401 &rmem->base, (unsigned long)rmem->size / SZ_1M);
402 return 0;
405 static int __init dma_init_reserved_memory(void)
407 const struct reserved_mem_ops *ops;
408 int ret;
410 if (!dma_reserved_default_memory)
411 return -ENOMEM;
413 ops = dma_reserved_default_memory->ops;
416 * We rely on rmem_dma_device_init() does not propagate error of
417 * dma_assign_coherent_memory() for "NULL" device.
419 ret = ops->device_init(dma_reserved_default_memory, NULL);
421 if (!ret) {
422 dma_coherent_default_memory = dma_reserved_default_memory->priv;
423 pr_info("DMA: default coherent area is set\n");
426 return ret;
429 core_initcall(dma_init_reserved_memory);
431 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
432 #endif