2 * drivers/dma/imx-sdma.c
4 * This file contains a driver for the Freescale Smart DMA engine
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 * Based on code from Freescale:
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
50 #include "dmaengine.h"
53 #define SDMA_H_C0PTR 0x000
54 #define SDMA_H_INTR 0x004
55 #define SDMA_H_STATSTOP 0x008
56 #define SDMA_H_START 0x00c
57 #define SDMA_H_EVTOVR 0x010
58 #define SDMA_H_DSPOVR 0x014
59 #define SDMA_H_HOSTOVR 0x018
60 #define SDMA_H_EVTPEND 0x01c
61 #define SDMA_H_DSPENBL 0x020
62 #define SDMA_H_RESET 0x024
63 #define SDMA_H_EVTERR 0x028
64 #define SDMA_H_INTRMSK 0x02c
65 #define SDMA_H_PSW 0x030
66 #define SDMA_H_EVTERRDBG 0x034
67 #define SDMA_H_CONFIG 0x038
68 #define SDMA_ONCE_ENB 0x040
69 #define SDMA_ONCE_DATA 0x044
70 #define SDMA_ONCE_INSTR 0x048
71 #define SDMA_ONCE_STAT 0x04c
72 #define SDMA_ONCE_CMD 0x050
73 #define SDMA_EVT_MIRROR 0x054
74 #define SDMA_ILLINSTADDR 0x058
75 #define SDMA_CHN0ADDR 0x05c
76 #define SDMA_ONCE_RTB 0x060
77 #define SDMA_XTRIG_CONF1 0x070
78 #define SDMA_XTRIG_CONF2 0x074
79 #define SDMA_CHNENBL0_IMX35 0x200
80 #define SDMA_CHNENBL0_IMX31 0x080
81 #define SDMA_CHNPRI_0 0x100
84 * Buffer descriptor status values.
95 * Data Node descriptor status values.
97 #define DND_END_OF_FRAME 0x80
98 #define DND_END_OF_XFER 0x40
100 #define DND_UNUSED 0x01
103 * IPCV2 descriptor status values.
105 #define BD_IPCV2_END_OF_FRAME 0x40
107 #define IPCV2_MAX_NODES 50
109 * Error bit set in the CCB status field by the SDMA,
110 * in setbd routine, in case of a transfer error
112 #define DATA_ERROR 0x10000000
115 * Buffer descriptor commands.
120 #define C0_SETCTX 0x07
121 #define C0_GETCTX 0x03
122 #define C0_SETDM 0x01
123 #define C0_SETPM 0x04
124 #define C0_GETDM 0x02
125 #define C0_GETPM 0x08
127 * Change endianness indicator in the BD command field
129 #define CHANGE_ENDIANNESS 0x80
132 * p_2_p watermark_level description
133 * Bits Name Description
134 * 0-7 Lower WML Lower watermark level
135 * 8 PS 1: Pad Swallowing
136 * 0: No Pad Swallowing
139 * 10 SPDIF If this bit is set both source
140 * and destination are on SPBA
141 * 11 Source Bit(SP) 1: Source on SPBA
143 * 12 Destination Bit(DP) 1: Destination on SPBA
144 * 0: Destination on AIPS
145 * 13-15 --------- MUST BE 0
146 * 16-23 Higher WML HWML
147 * 24-27 N Total number of samples after
148 * which Pad adding/Swallowing
149 * must be done. It must be odd.
150 * 28 Lower WML Event(LWE) SDMA events reg to check for
152 * 0: LWE in EVENTS register
153 * 1: LWE in EVENTS2 register
154 * 29 Higher WML Event(HWE) SDMA events reg to check for
156 * 0: HWE in EVENTS register
157 * 1: HWE in EVENTS2 register
158 * 30 --------- MUST BE 0
159 * 31 CONT 1: Amount of samples to be
160 * transferred is unknown and
161 * script will keep on
162 * transferring samples as long as
163 * both events are detected and
164 * script must be manually stopped
166 * 0: The amount of samples to be
167 * transferred is equal to the
168 * count field of mode word
170 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
171 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
181 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
182 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
183 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
185 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
186 BIT(DMA_MEM_TO_DEV) | \
190 * Mode/Count of data node descriptors - IPCv2
192 struct sdma_mode_count
{
193 u32 count
: 16; /* size of the buffer pointed by this BD */
194 u32 status
: 8; /* E,R,I,C,W,D status bits stored here */
195 u32 command
: 8; /* command mostly used for channel 0 */
201 struct sdma_buffer_descriptor
{
202 struct sdma_mode_count mode
;
203 u32 buffer_addr
; /* address of the buffer described */
204 u32 ext_buffer_addr
; /* extended buffer address */
205 } __attribute__ ((packed
));
208 * struct sdma_channel_control - Channel control Block
210 * @current_bd_ptr current buffer descriptor processed
211 * @base_bd_ptr first element of buffer descriptor array
212 * @unused padding. The SDMA engine expects an array of 128 byte
215 struct sdma_channel_control
{
219 } __attribute__ ((packed
));
222 * struct sdma_state_registers - SDMA context for a channel
224 * @pc: program counter
225 * @t: test bit: status of arithmetic & test instruction
226 * @rpc: return program counter
227 * @sf: source fault while loading data
228 * @spc: loop start program counter
229 * @df: destination fault while storing data
230 * @epc: loop end program counter
233 struct sdma_state_registers
{
245 } __attribute__ ((packed
));
248 * struct sdma_context_data - sdma context specific to a channel
250 * @channel_state: channel state bits
251 * @gReg: general registers
252 * @mda: burst dma destination address register
253 * @msa: burst dma source address register
254 * @ms: burst dma status register
255 * @md: burst dma data register
256 * @pda: peripheral dma destination address register
257 * @psa: peripheral dma source address register
258 * @ps: peripheral dma status register
259 * @pd: peripheral dma data register
260 * @ca: CRC polynomial register
261 * @cs: CRC accumulator register
262 * @dda: dedicated core destination address register
263 * @dsa: dedicated core source address register
264 * @ds: dedicated core status register
265 * @dd: dedicated core data register
267 struct sdma_context_data
{
268 struct sdma_state_registers channel_state
;
292 } __attribute__ ((packed
));
294 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
299 * struct sdma_channel - housekeeping for a SDMA channel
301 * @sdma pointer to the SDMA engine for this channel
302 * @channel the channel number, matches dmaengine chan_id + 1
303 * @direction transfer type. Needed for setting SDMA script
304 * @peripheral_type Peripheral type. Needed for setting SDMA script
305 * @event_id0 aka dma request line
306 * @event_id1 for channels that use 2 events
307 * @word_size peripheral access size
308 * @buf_tail ID of the buffer that was processed
309 * @buf_ptail ID of the previous buffer that was processed
310 * @num_bd max NUM_BD. number of descriptors currently handling
312 struct sdma_channel
{
313 struct sdma_engine
*sdma
;
314 unsigned int channel
;
315 enum dma_transfer_direction direction
;
316 enum sdma_peripheral_type peripheral_type
;
317 unsigned int event_id0
;
318 unsigned int event_id1
;
319 enum dma_slave_buswidth word_size
;
320 unsigned int buf_tail
;
321 unsigned int buf_ptail
;
323 unsigned int period_len
;
324 struct sdma_buffer_descriptor
*bd
;
326 unsigned int pc_from_device
, pc_to_device
;
327 unsigned int device_to_device
;
329 dma_addr_t per_address
, per_address2
;
330 unsigned long event_mask
[2];
331 unsigned long watermark_level
;
332 u32 shp_addr
, per_addr
;
333 struct dma_chan chan
;
335 struct dma_async_tx_descriptor desc
;
336 enum dma_status status
;
337 unsigned int chn_count
;
338 unsigned int chn_real_count
;
339 struct tasklet_struct tasklet
;
340 struct imx_dma_data data
;
343 #define IMX_DMA_SG_LOOP BIT(0)
345 #define MAX_DMA_CHANNELS 32
346 #define MXC_SDMA_DEFAULT_PRIORITY 1
347 #define MXC_SDMA_MIN_PRIORITY 1
348 #define MXC_SDMA_MAX_PRIORITY 7
350 #define SDMA_FIRMWARE_MAGIC 0x414d4453
353 * struct sdma_firmware_header - Layout of the firmware image
356 * @version_major increased whenever layout of struct sdma_script_start_addrs
358 * @version_minor firmware minor version (for binary compatible changes)
359 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
360 * @num_script_addrs Number of script addresses in this image
361 * @ram_code_start offset of SDMA ram image in this firmware image
362 * @ram_code_size size of SDMA ram image
363 * @script_addrs Stores the start address of the SDMA scripts
364 * (in SDMA memory space)
366 struct sdma_firmware_header
{
370 u32 script_addrs_start
;
371 u32 num_script_addrs
;
376 struct sdma_driver_data
{
379 struct sdma_script_start_addrs
*script_addrs
;
384 struct device_dma_parameters dma_parms
;
385 struct sdma_channel channel
[MAX_DMA_CHANNELS
];
386 struct sdma_channel_control
*channel_control
;
388 struct sdma_context_data
*context
;
389 dma_addr_t context_phys
;
390 struct dma_device dma_device
;
393 spinlock_t channel_0_lock
;
395 struct sdma_script_start_addrs
*script_addrs
;
396 const struct sdma_driver_data
*drvdata
;
402 static struct sdma_driver_data sdma_imx31
= {
403 .chnenbl0
= SDMA_CHNENBL0_IMX31
,
407 static struct sdma_script_start_addrs sdma_script_imx25
= {
409 .uart_2_mcu_addr
= 904,
410 .per_2_app_addr
= 1255,
411 .mcu_2_app_addr
= 834,
412 .uartsh_2_mcu_addr
= 1120,
413 .per_2_shp_addr
= 1329,
414 .mcu_2_shp_addr
= 1048,
415 .ata_2_mcu_addr
= 1560,
416 .mcu_2_ata_addr
= 1479,
417 .app_2_per_addr
= 1189,
418 .app_2_mcu_addr
= 770,
419 .shp_2_per_addr
= 1407,
420 .shp_2_mcu_addr
= 979,
423 static struct sdma_driver_data sdma_imx25
= {
424 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
426 .script_addrs
= &sdma_script_imx25
,
429 static struct sdma_driver_data sdma_imx35
= {
430 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
434 static struct sdma_script_start_addrs sdma_script_imx51
= {
436 .uart_2_mcu_addr
= 817,
437 .mcu_2_app_addr
= 747,
438 .mcu_2_shp_addr
= 961,
439 .ata_2_mcu_addr
= 1473,
440 .mcu_2_ata_addr
= 1392,
441 .app_2_per_addr
= 1033,
442 .app_2_mcu_addr
= 683,
443 .shp_2_per_addr
= 1251,
444 .shp_2_mcu_addr
= 892,
447 static struct sdma_driver_data sdma_imx51
= {
448 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
450 .script_addrs
= &sdma_script_imx51
,
453 static struct sdma_script_start_addrs sdma_script_imx53
= {
455 .app_2_mcu_addr
= 683,
456 .mcu_2_app_addr
= 747,
457 .uart_2_mcu_addr
= 817,
458 .shp_2_mcu_addr
= 891,
459 .mcu_2_shp_addr
= 960,
460 .uartsh_2_mcu_addr
= 1032,
461 .spdif_2_mcu_addr
= 1100,
462 .mcu_2_spdif_addr
= 1134,
463 .firi_2_mcu_addr
= 1193,
464 .mcu_2_firi_addr
= 1290,
467 static struct sdma_driver_data sdma_imx53
= {
468 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
470 .script_addrs
= &sdma_script_imx53
,
473 static struct sdma_script_start_addrs sdma_script_imx6q
= {
475 .uart_2_mcu_addr
= 817,
476 .mcu_2_app_addr
= 747,
477 .per_2_per_addr
= 6331,
478 .uartsh_2_mcu_addr
= 1032,
479 .mcu_2_shp_addr
= 960,
480 .app_2_mcu_addr
= 683,
481 .shp_2_mcu_addr
= 891,
482 .spdif_2_mcu_addr
= 1100,
483 .mcu_2_spdif_addr
= 1134,
486 static struct sdma_driver_data sdma_imx6q
= {
487 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
489 .script_addrs
= &sdma_script_imx6q
,
492 static struct sdma_script_start_addrs sdma_script_imx7d
= {
494 .uart_2_mcu_addr
= 819,
495 .mcu_2_app_addr
= 749,
496 .uartsh_2_mcu_addr
= 1034,
497 .mcu_2_shp_addr
= 962,
498 .app_2_mcu_addr
= 685,
499 .shp_2_mcu_addr
= 893,
500 .spdif_2_mcu_addr
= 1102,
501 .mcu_2_spdif_addr
= 1136,
504 static struct sdma_driver_data sdma_imx7d
= {
505 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
507 .script_addrs
= &sdma_script_imx7d
,
510 static const struct platform_device_id sdma_devtypes
[] = {
512 .name
= "imx25-sdma",
513 .driver_data
= (unsigned long)&sdma_imx25
,
515 .name
= "imx31-sdma",
516 .driver_data
= (unsigned long)&sdma_imx31
,
518 .name
= "imx35-sdma",
519 .driver_data
= (unsigned long)&sdma_imx35
,
521 .name
= "imx51-sdma",
522 .driver_data
= (unsigned long)&sdma_imx51
,
524 .name
= "imx53-sdma",
525 .driver_data
= (unsigned long)&sdma_imx53
,
527 .name
= "imx6q-sdma",
528 .driver_data
= (unsigned long)&sdma_imx6q
,
530 .name
= "imx7d-sdma",
531 .driver_data
= (unsigned long)&sdma_imx7d
,
536 MODULE_DEVICE_TABLE(platform
, sdma_devtypes
);
538 static const struct of_device_id sdma_dt_ids
[] = {
539 { .compatible
= "fsl,imx6q-sdma", .data
= &sdma_imx6q
, },
540 { .compatible
= "fsl,imx53-sdma", .data
= &sdma_imx53
, },
541 { .compatible
= "fsl,imx51-sdma", .data
= &sdma_imx51
, },
542 { .compatible
= "fsl,imx35-sdma", .data
= &sdma_imx35
, },
543 { .compatible
= "fsl,imx31-sdma", .data
= &sdma_imx31
, },
544 { .compatible
= "fsl,imx25-sdma", .data
= &sdma_imx25
, },
545 { .compatible
= "fsl,imx7d-sdma", .data
= &sdma_imx7d
, },
548 MODULE_DEVICE_TABLE(of
, sdma_dt_ids
);
550 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
551 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
552 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
553 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
555 static inline u32
chnenbl_ofs(struct sdma_engine
*sdma
, unsigned int event
)
557 u32 chnenbl0
= sdma
->drvdata
->chnenbl0
;
558 return chnenbl0
+ event
* 4;
561 static int sdma_config_ownership(struct sdma_channel
*sdmac
,
562 bool event_override
, bool mcu_override
, bool dsp_override
)
564 struct sdma_engine
*sdma
= sdmac
->sdma
;
565 int channel
= sdmac
->channel
;
566 unsigned long evt
, mcu
, dsp
;
568 if (event_override
&& mcu_override
&& dsp_override
)
571 evt
= readl_relaxed(sdma
->regs
+ SDMA_H_EVTOVR
);
572 mcu
= readl_relaxed(sdma
->regs
+ SDMA_H_HOSTOVR
);
573 dsp
= readl_relaxed(sdma
->regs
+ SDMA_H_DSPOVR
);
576 __clear_bit(channel
, &dsp
);
578 __set_bit(channel
, &dsp
);
581 __clear_bit(channel
, &evt
);
583 __set_bit(channel
, &evt
);
586 __clear_bit(channel
, &mcu
);
588 __set_bit(channel
, &mcu
);
590 writel_relaxed(evt
, sdma
->regs
+ SDMA_H_EVTOVR
);
591 writel_relaxed(mcu
, sdma
->regs
+ SDMA_H_HOSTOVR
);
592 writel_relaxed(dsp
, sdma
->regs
+ SDMA_H_DSPOVR
);
597 static void sdma_enable_channel(struct sdma_engine
*sdma
, int channel
)
599 writel(BIT(channel
), sdma
->regs
+ SDMA_H_START
);
603 * sdma_run_channel0 - run a channel and wait till it's done
605 static int sdma_run_channel0(struct sdma_engine
*sdma
)
610 sdma_enable_channel(sdma
, 0);
612 ret
= readl_relaxed_poll_timeout_atomic(sdma
->regs
+ SDMA_H_STATSTOP
,
613 reg
, !(reg
& 1), 1, 500);
615 dev_err(sdma
->dev
, "Timeout waiting for CH0 ready\n");
617 /* Set bits of CONFIG register with dynamic context switching */
618 if (readl(sdma
->regs
+ SDMA_H_CONFIG
) == 0)
619 writel_relaxed(SDMA_H_CONFIG_CSM
, sdma
->regs
+ SDMA_H_CONFIG
);
624 static int sdma_load_script(struct sdma_engine
*sdma
, void *buf
, int size
,
627 struct sdma_buffer_descriptor
*bd0
= sdma
->channel
[0].bd
;
633 buf_virt
= dma_alloc_coherent(NULL
,
635 &buf_phys
, GFP_KERNEL
);
640 spin_lock_irqsave(&sdma
->channel_0_lock
, flags
);
642 bd0
->mode
.command
= C0_SETPM
;
643 bd0
->mode
.status
= BD_DONE
| BD_INTR
| BD_WRAP
| BD_EXTD
;
644 bd0
->mode
.count
= size
/ 2;
645 bd0
->buffer_addr
= buf_phys
;
646 bd0
->ext_buffer_addr
= address
;
648 memcpy(buf_virt
, buf
, size
);
650 ret
= sdma_run_channel0(sdma
);
652 spin_unlock_irqrestore(&sdma
->channel_0_lock
, flags
);
654 dma_free_coherent(NULL
, size
, buf_virt
, buf_phys
);
659 static void sdma_event_enable(struct sdma_channel
*sdmac
, unsigned int event
)
661 struct sdma_engine
*sdma
= sdmac
->sdma
;
662 int channel
= sdmac
->channel
;
664 u32 chnenbl
= chnenbl_ofs(sdma
, event
);
666 val
= readl_relaxed(sdma
->regs
+ chnenbl
);
667 __set_bit(channel
, &val
);
668 writel_relaxed(val
, sdma
->regs
+ chnenbl
);
671 static void sdma_event_disable(struct sdma_channel
*sdmac
, unsigned int event
)
673 struct sdma_engine
*sdma
= sdmac
->sdma
;
674 int channel
= sdmac
->channel
;
675 u32 chnenbl
= chnenbl_ofs(sdma
, event
);
678 val
= readl_relaxed(sdma
->regs
+ chnenbl
);
679 __clear_bit(channel
, &val
);
680 writel_relaxed(val
, sdma
->regs
+ chnenbl
);
683 static void sdma_update_channel_loop(struct sdma_channel
*sdmac
)
685 struct sdma_buffer_descriptor
*bd
;
687 enum dma_status old_status
= sdmac
->status
;
690 * loop mode. Iterate over descriptors, re-setup them and
691 * call callback function.
694 bd
= &sdmac
->bd
[sdmac
->buf_tail
];
696 if (bd
->mode
.status
& BD_DONE
)
699 if (bd
->mode
.status
& BD_RROR
) {
700 bd
->mode
.status
&= ~BD_RROR
;
701 sdmac
->status
= DMA_ERROR
;
706 * We use bd->mode.count to calculate the residue, since contains
707 * the number of bytes present in the current buffer descriptor.
710 sdmac
->chn_real_count
= bd
->mode
.count
;
711 bd
->mode
.status
|= BD_DONE
;
712 bd
->mode
.count
= sdmac
->period_len
;
713 sdmac
->buf_ptail
= sdmac
->buf_tail
;
714 sdmac
->buf_tail
= (sdmac
->buf_tail
+ 1) % sdmac
->num_bd
;
717 * The callback is called from the interrupt context in order
718 * to reduce latency and to avoid the risk of altering the
719 * SDMA transaction status by the time the client tasklet is
723 dmaengine_desc_get_callback_invoke(&sdmac
->desc
, NULL
);
726 sdmac
->status
= old_status
;
730 static void mxc_sdma_handle_channel_normal(unsigned long data
)
732 struct sdma_channel
*sdmac
= (struct sdma_channel
*) data
;
733 struct sdma_buffer_descriptor
*bd
;
736 sdmac
->chn_real_count
= 0;
738 * non loop mode. Iterate over all descriptors, collect
739 * errors and call callback function
741 for (i
= 0; i
< sdmac
->num_bd
; i
++) {
744 if (bd
->mode
.status
& (BD_DONE
| BD_RROR
))
746 sdmac
->chn_real_count
+= bd
->mode
.count
;
750 sdmac
->status
= DMA_ERROR
;
752 sdmac
->status
= DMA_COMPLETE
;
754 dma_cookie_complete(&sdmac
->desc
);
756 dmaengine_desc_get_callback_invoke(&sdmac
->desc
, NULL
);
759 static irqreturn_t
sdma_int_handler(int irq
, void *dev_id
)
761 struct sdma_engine
*sdma
= dev_id
;
764 stat
= readl_relaxed(sdma
->regs
+ SDMA_H_INTR
);
765 writel_relaxed(stat
, sdma
->regs
+ SDMA_H_INTR
);
766 /* channel 0 is special and not handled here, see run_channel0() */
770 int channel
= fls(stat
) - 1;
771 struct sdma_channel
*sdmac
= &sdma
->channel
[channel
];
773 if (sdmac
->flags
& IMX_DMA_SG_LOOP
)
774 sdma_update_channel_loop(sdmac
);
776 tasklet_schedule(&sdmac
->tasklet
);
778 __clear_bit(channel
, &stat
);
785 * sets the pc of SDMA script according to the peripheral type
787 static void sdma_get_pc(struct sdma_channel
*sdmac
,
788 enum sdma_peripheral_type peripheral_type
)
790 struct sdma_engine
*sdma
= sdmac
->sdma
;
791 int per_2_emi
= 0, emi_2_per
= 0;
793 * These are needed once we start to support transfers between
794 * two peripherals or memory-to-memory transfers
798 sdmac
->pc_from_device
= 0;
799 sdmac
->pc_to_device
= 0;
800 sdmac
->device_to_device
= 0;
802 switch (peripheral_type
) {
803 case IMX_DMATYPE_MEMORY
:
805 case IMX_DMATYPE_DSP
:
806 emi_2_per
= sdma
->script_addrs
->bp_2_ap_addr
;
807 per_2_emi
= sdma
->script_addrs
->ap_2_bp_addr
;
809 case IMX_DMATYPE_FIRI
:
810 per_2_emi
= sdma
->script_addrs
->firi_2_mcu_addr
;
811 emi_2_per
= sdma
->script_addrs
->mcu_2_firi_addr
;
813 case IMX_DMATYPE_UART
:
814 per_2_emi
= sdma
->script_addrs
->uart_2_mcu_addr
;
815 emi_2_per
= sdma
->script_addrs
->mcu_2_app_addr
;
817 case IMX_DMATYPE_UART_SP
:
818 per_2_emi
= sdma
->script_addrs
->uartsh_2_mcu_addr
;
819 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
821 case IMX_DMATYPE_ATA
:
822 per_2_emi
= sdma
->script_addrs
->ata_2_mcu_addr
;
823 emi_2_per
= sdma
->script_addrs
->mcu_2_ata_addr
;
825 case IMX_DMATYPE_CSPI
:
826 case IMX_DMATYPE_EXT
:
827 case IMX_DMATYPE_SSI
:
828 case IMX_DMATYPE_SAI
:
829 per_2_emi
= sdma
->script_addrs
->app_2_mcu_addr
;
830 emi_2_per
= sdma
->script_addrs
->mcu_2_app_addr
;
832 case IMX_DMATYPE_SSI_DUAL
:
833 per_2_emi
= sdma
->script_addrs
->ssish_2_mcu_addr
;
834 emi_2_per
= sdma
->script_addrs
->mcu_2_ssish_addr
;
836 case IMX_DMATYPE_SSI_SP
:
837 case IMX_DMATYPE_MMC
:
838 case IMX_DMATYPE_SDHC
:
839 case IMX_DMATYPE_CSPI_SP
:
840 case IMX_DMATYPE_ESAI
:
841 case IMX_DMATYPE_MSHC_SP
:
842 per_2_emi
= sdma
->script_addrs
->shp_2_mcu_addr
;
843 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
845 case IMX_DMATYPE_ASRC
:
846 per_2_emi
= sdma
->script_addrs
->asrc_2_mcu_addr
;
847 emi_2_per
= sdma
->script_addrs
->asrc_2_mcu_addr
;
848 per_2_per
= sdma
->script_addrs
->per_2_per_addr
;
850 case IMX_DMATYPE_ASRC_SP
:
851 per_2_emi
= sdma
->script_addrs
->shp_2_mcu_addr
;
852 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
853 per_2_per
= sdma
->script_addrs
->per_2_per_addr
;
855 case IMX_DMATYPE_MSHC
:
856 per_2_emi
= sdma
->script_addrs
->mshc_2_mcu_addr
;
857 emi_2_per
= sdma
->script_addrs
->mcu_2_mshc_addr
;
859 case IMX_DMATYPE_CCM
:
860 per_2_emi
= sdma
->script_addrs
->dptc_dvfs_addr
;
862 case IMX_DMATYPE_SPDIF
:
863 per_2_emi
= sdma
->script_addrs
->spdif_2_mcu_addr
;
864 emi_2_per
= sdma
->script_addrs
->mcu_2_spdif_addr
;
866 case IMX_DMATYPE_IPU_MEMORY
:
867 emi_2_per
= sdma
->script_addrs
->ext_mem_2_ipu_addr
;
873 sdmac
->pc_from_device
= per_2_emi
;
874 sdmac
->pc_to_device
= emi_2_per
;
875 sdmac
->device_to_device
= per_2_per
;
878 static int sdma_load_context(struct sdma_channel
*sdmac
)
880 struct sdma_engine
*sdma
= sdmac
->sdma
;
881 int channel
= sdmac
->channel
;
883 struct sdma_context_data
*context
= sdma
->context
;
884 struct sdma_buffer_descriptor
*bd0
= sdma
->channel
[0].bd
;
888 if (sdmac
->direction
== DMA_DEV_TO_MEM
)
889 load_address
= sdmac
->pc_from_device
;
890 else if (sdmac
->direction
== DMA_DEV_TO_DEV
)
891 load_address
= sdmac
->device_to_device
;
893 load_address
= sdmac
->pc_to_device
;
895 if (load_address
< 0)
898 dev_dbg(sdma
->dev
, "load_address = %d\n", load_address
);
899 dev_dbg(sdma
->dev
, "wml = 0x%08x\n", (u32
)sdmac
->watermark_level
);
900 dev_dbg(sdma
->dev
, "shp_addr = 0x%08x\n", sdmac
->shp_addr
);
901 dev_dbg(sdma
->dev
, "per_addr = 0x%08x\n", sdmac
->per_addr
);
902 dev_dbg(sdma
->dev
, "event_mask0 = 0x%08x\n", (u32
)sdmac
->event_mask
[0]);
903 dev_dbg(sdma
->dev
, "event_mask1 = 0x%08x\n", (u32
)sdmac
->event_mask
[1]);
905 spin_lock_irqsave(&sdma
->channel_0_lock
, flags
);
907 memset(context
, 0, sizeof(*context
));
908 context
->channel_state
.pc
= load_address
;
910 /* Send by context the event mask,base address for peripheral
911 * and watermark level
913 context
->gReg
[0] = sdmac
->event_mask
[1];
914 context
->gReg
[1] = sdmac
->event_mask
[0];
915 context
->gReg
[2] = sdmac
->per_addr
;
916 context
->gReg
[6] = sdmac
->shp_addr
;
917 context
->gReg
[7] = sdmac
->watermark_level
;
919 bd0
->mode
.command
= C0_SETDM
;
920 bd0
->mode
.status
= BD_DONE
| BD_INTR
| BD_WRAP
| BD_EXTD
;
921 bd0
->mode
.count
= sizeof(*context
) / 4;
922 bd0
->buffer_addr
= sdma
->context_phys
;
923 bd0
->ext_buffer_addr
= 2048 + (sizeof(*context
) / 4) * channel
;
924 ret
= sdma_run_channel0(sdma
);
926 spin_unlock_irqrestore(&sdma
->channel_0_lock
, flags
);
931 static struct sdma_channel
*to_sdma_chan(struct dma_chan
*chan
)
933 return container_of(chan
, struct sdma_channel
, chan
);
936 static int sdma_disable_channel(struct dma_chan
*chan
)
938 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
939 struct sdma_engine
*sdma
= sdmac
->sdma
;
940 int channel
= sdmac
->channel
;
942 writel_relaxed(BIT(channel
), sdma
->regs
+ SDMA_H_STATSTOP
);
943 sdmac
->status
= DMA_ERROR
;
948 static int sdma_disable_channel_with_delay(struct dma_chan
*chan
)
950 sdma_disable_channel(chan
);
953 * According to NXP R&D team a delay of one BD SDMA cost time
954 * (maximum is 1ms) should be added after disable of the channel
955 * bit, to ensure SDMA core has really been stopped after SDMA
956 * clients call .device_terminate_all.
963 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel
*sdmac
)
965 struct sdma_engine
*sdma
= sdmac
->sdma
;
967 int lwml
= sdmac
->watermark_level
& SDMA_WATERMARK_LEVEL_LWML
;
968 int hwml
= (sdmac
->watermark_level
& SDMA_WATERMARK_LEVEL_HWML
) >> 16;
970 set_bit(sdmac
->event_id0
% 32, &sdmac
->event_mask
[1]);
971 set_bit(sdmac
->event_id1
% 32, &sdmac
->event_mask
[0]);
973 if (sdmac
->event_id0
> 31)
974 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_LWE
;
976 if (sdmac
->event_id1
> 31)
977 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_HWE
;
980 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
981 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
982 * r0(event_mask[1]) and r1(event_mask[0]).
985 sdmac
->watermark_level
&= ~(SDMA_WATERMARK_LEVEL_LWML
|
986 SDMA_WATERMARK_LEVEL_HWML
);
987 sdmac
->watermark_level
|= hwml
;
988 sdmac
->watermark_level
|= lwml
<< 16;
989 swap(sdmac
->event_mask
[0], sdmac
->event_mask
[1]);
992 if (sdmac
->per_address2
>= sdma
->spba_start_addr
&&
993 sdmac
->per_address2
<= sdma
->spba_end_addr
)
994 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_SP
;
996 if (sdmac
->per_address
>= sdma
->spba_start_addr
&&
997 sdmac
->per_address
<= sdma
->spba_end_addr
)
998 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_DP
;
1000 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_CONT
;
1003 static int sdma_config_channel(struct dma_chan
*chan
)
1005 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1008 sdma_disable_channel(chan
);
1010 sdmac
->event_mask
[0] = 0;
1011 sdmac
->event_mask
[1] = 0;
1012 sdmac
->shp_addr
= 0;
1013 sdmac
->per_addr
= 0;
1015 if (sdmac
->event_id0
) {
1016 if (sdmac
->event_id0
>= sdmac
->sdma
->drvdata
->num_events
)
1018 sdma_event_enable(sdmac
, sdmac
->event_id0
);
1021 if (sdmac
->event_id1
) {
1022 if (sdmac
->event_id1
>= sdmac
->sdma
->drvdata
->num_events
)
1024 sdma_event_enable(sdmac
, sdmac
->event_id1
);
1027 switch (sdmac
->peripheral_type
) {
1028 case IMX_DMATYPE_DSP
:
1029 sdma_config_ownership(sdmac
, false, true, true);
1031 case IMX_DMATYPE_MEMORY
:
1032 sdma_config_ownership(sdmac
, false, true, false);
1035 sdma_config_ownership(sdmac
, true, true, false);
1039 sdma_get_pc(sdmac
, sdmac
->peripheral_type
);
1041 if ((sdmac
->peripheral_type
!= IMX_DMATYPE_MEMORY
) &&
1042 (sdmac
->peripheral_type
!= IMX_DMATYPE_DSP
)) {
1043 /* Handle multiple event channels differently */
1044 if (sdmac
->event_id1
) {
1045 if (sdmac
->peripheral_type
== IMX_DMATYPE_ASRC_SP
||
1046 sdmac
->peripheral_type
== IMX_DMATYPE_ASRC
)
1047 sdma_set_watermarklevel_for_p2p(sdmac
);
1049 __set_bit(sdmac
->event_id0
, sdmac
->event_mask
);
1052 sdmac
->shp_addr
= sdmac
->per_address
;
1053 sdmac
->per_addr
= sdmac
->per_address2
;
1055 sdmac
->watermark_level
= 0; /* FIXME: M3_BASE_ADDRESS */
1058 ret
= sdma_load_context(sdmac
);
1063 static int sdma_set_channel_priority(struct sdma_channel
*sdmac
,
1064 unsigned int priority
)
1066 struct sdma_engine
*sdma
= sdmac
->sdma
;
1067 int channel
= sdmac
->channel
;
1069 if (priority
< MXC_SDMA_MIN_PRIORITY
1070 || priority
> MXC_SDMA_MAX_PRIORITY
) {
1074 writel_relaxed(priority
, sdma
->regs
+ SDMA_CHNPRI_0
+ 4 * channel
);
1079 static int sdma_request_channel(struct sdma_channel
*sdmac
)
1081 struct sdma_engine
*sdma
= sdmac
->sdma
;
1082 int channel
= sdmac
->channel
;
1085 sdmac
->bd
= dma_zalloc_coherent(NULL
, PAGE_SIZE
, &sdmac
->bd_phys
,
1092 sdma
->channel_control
[channel
].base_bd_ptr
= sdmac
->bd_phys
;
1093 sdma
->channel_control
[channel
].current_bd_ptr
= sdmac
->bd_phys
;
1095 sdma_set_channel_priority(sdmac
, MXC_SDMA_DEFAULT_PRIORITY
);
1102 static dma_cookie_t
sdma_tx_submit(struct dma_async_tx_descriptor
*tx
)
1104 unsigned long flags
;
1105 struct sdma_channel
*sdmac
= to_sdma_chan(tx
->chan
);
1106 dma_cookie_t cookie
;
1108 spin_lock_irqsave(&sdmac
->lock
, flags
);
1110 cookie
= dma_cookie_assign(tx
);
1112 spin_unlock_irqrestore(&sdmac
->lock
, flags
);
1117 static int sdma_alloc_chan_resources(struct dma_chan
*chan
)
1119 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1120 struct imx_dma_data
*data
= chan
->private;
1126 switch (data
->priority
) {
1130 case DMA_PRIO_MEDIUM
:
1139 sdmac
->peripheral_type
= data
->peripheral_type
;
1140 sdmac
->event_id0
= data
->dma_request
;
1141 sdmac
->event_id1
= data
->dma_request2
;
1143 ret
= clk_enable(sdmac
->sdma
->clk_ipg
);
1146 ret
= clk_enable(sdmac
->sdma
->clk_ahb
);
1148 goto disable_clk_ipg
;
1150 ret
= sdma_request_channel(sdmac
);
1152 goto disable_clk_ahb
;
1154 ret
= sdma_set_channel_priority(sdmac
, prio
);
1156 goto disable_clk_ahb
;
1158 dma_async_tx_descriptor_init(&sdmac
->desc
, chan
);
1159 sdmac
->desc
.tx_submit
= sdma_tx_submit
;
1160 /* txd.flags will be overwritten in prep funcs */
1161 sdmac
->desc
.flags
= DMA_CTRL_ACK
;
1166 clk_disable(sdmac
->sdma
->clk_ahb
);
1168 clk_disable(sdmac
->sdma
->clk_ipg
);
1172 static void sdma_free_chan_resources(struct dma_chan
*chan
)
1174 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1175 struct sdma_engine
*sdma
= sdmac
->sdma
;
1177 sdma_disable_channel(chan
);
1179 if (sdmac
->event_id0
)
1180 sdma_event_disable(sdmac
, sdmac
->event_id0
);
1181 if (sdmac
->event_id1
)
1182 sdma_event_disable(sdmac
, sdmac
->event_id1
);
1184 sdmac
->event_id0
= 0;
1185 sdmac
->event_id1
= 0;
1187 sdma_set_channel_priority(sdmac
, 0);
1189 dma_free_coherent(NULL
, PAGE_SIZE
, sdmac
->bd
, sdmac
->bd_phys
);
1191 clk_disable(sdma
->clk_ipg
);
1192 clk_disable(sdma
->clk_ahb
);
1195 static struct dma_async_tx_descriptor
*sdma_prep_slave_sg(
1196 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1197 unsigned int sg_len
, enum dma_transfer_direction direction
,
1198 unsigned long flags
, void *context
)
1200 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1201 struct sdma_engine
*sdma
= sdmac
->sdma
;
1203 int channel
= sdmac
->channel
;
1204 struct scatterlist
*sg
;
1206 if (sdmac
->status
== DMA_IN_PROGRESS
)
1208 sdmac
->status
= DMA_IN_PROGRESS
;
1212 sdmac
->buf_tail
= 0;
1213 sdmac
->buf_ptail
= 0;
1214 sdmac
->chn_real_count
= 0;
1216 dev_dbg(sdma
->dev
, "setting up %d entries for channel %d.\n",
1219 sdmac
->direction
= direction
;
1220 ret
= sdma_load_context(sdmac
);
1224 if (sg_len
> NUM_BD
) {
1225 dev_err(sdma
->dev
, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1226 channel
, sg_len
, NUM_BD
);
1231 sdmac
->chn_count
= 0;
1232 for_each_sg(sgl
, sg
, sg_len
, i
) {
1233 struct sdma_buffer_descriptor
*bd
= &sdmac
->bd
[i
];
1236 bd
->buffer_addr
= sg
->dma_address
;
1238 count
= sg_dma_len(sg
);
1240 if (count
> 0xffff) {
1241 dev_err(sdma
->dev
, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1242 channel
, count
, 0xffff);
1247 bd
->mode
.count
= count
;
1248 sdmac
->chn_count
+= count
;
1250 if (sdmac
->word_size
> DMA_SLAVE_BUSWIDTH_4_BYTES
) {
1255 switch (sdmac
->word_size
) {
1256 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1257 bd
->mode
.command
= 0;
1258 if (count
& 3 || sg
->dma_address
& 3)
1261 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1262 bd
->mode
.command
= 2;
1263 if (count
& 1 || sg
->dma_address
& 1)
1266 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1267 bd
->mode
.command
= 1;
1273 param
= BD_DONE
| BD_EXTD
| BD_CONT
;
1275 if (i
+ 1 == sg_len
) {
1281 dev_dbg(sdma
->dev
, "entry %d: count: %d dma: %#llx %s%s\n",
1282 i
, count
, (u64
)sg
->dma_address
,
1283 param
& BD_WRAP
? "wrap" : "",
1284 param
& BD_INTR
? " intr" : "");
1286 bd
->mode
.status
= param
;
1289 sdmac
->num_bd
= sg_len
;
1290 sdma
->channel_control
[channel
].current_bd_ptr
= sdmac
->bd_phys
;
1292 return &sdmac
->desc
;
1294 sdmac
->status
= DMA_ERROR
;
1298 static struct dma_async_tx_descriptor
*sdma_prep_dma_cyclic(
1299 struct dma_chan
*chan
, dma_addr_t dma_addr
, size_t buf_len
,
1300 size_t period_len
, enum dma_transfer_direction direction
,
1301 unsigned long flags
)
1303 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1304 struct sdma_engine
*sdma
= sdmac
->sdma
;
1305 int num_periods
= buf_len
/ period_len
;
1306 int channel
= sdmac
->channel
;
1307 int ret
, i
= 0, buf
= 0;
1309 dev_dbg(sdma
->dev
, "%s channel: %d\n", __func__
, channel
);
1311 if (sdmac
->status
== DMA_IN_PROGRESS
)
1314 sdmac
->status
= DMA_IN_PROGRESS
;
1316 sdmac
->buf_tail
= 0;
1317 sdmac
->buf_ptail
= 0;
1318 sdmac
->chn_real_count
= 0;
1319 sdmac
->period_len
= period_len
;
1321 sdmac
->flags
|= IMX_DMA_SG_LOOP
;
1322 sdmac
->direction
= direction
;
1323 ret
= sdma_load_context(sdmac
);
1327 if (num_periods
> NUM_BD
) {
1328 dev_err(sdma
->dev
, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1329 channel
, num_periods
, NUM_BD
);
1333 if (period_len
> 0xffff) {
1334 dev_err(sdma
->dev
, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1335 channel
, period_len
, 0xffff);
1339 while (buf
< buf_len
) {
1340 struct sdma_buffer_descriptor
*bd
= &sdmac
->bd
[i
];
1343 bd
->buffer_addr
= dma_addr
;
1345 bd
->mode
.count
= period_len
;
1347 if (sdmac
->word_size
> DMA_SLAVE_BUSWIDTH_4_BYTES
)
1349 if (sdmac
->word_size
== DMA_SLAVE_BUSWIDTH_4_BYTES
)
1350 bd
->mode
.command
= 0;
1352 bd
->mode
.command
= sdmac
->word_size
;
1354 param
= BD_DONE
| BD_EXTD
| BD_CONT
| BD_INTR
;
1355 if (i
+ 1 == num_periods
)
1358 dev_dbg(sdma
->dev
, "entry %d: count: %zu dma: %#llx %s%s\n",
1359 i
, period_len
, (u64
)dma_addr
,
1360 param
& BD_WRAP
? "wrap" : "",
1361 param
& BD_INTR
? " intr" : "");
1363 bd
->mode
.status
= param
;
1365 dma_addr
+= period_len
;
1371 sdmac
->num_bd
= num_periods
;
1372 sdma
->channel_control
[channel
].current_bd_ptr
= sdmac
->bd_phys
;
1374 return &sdmac
->desc
;
1376 sdmac
->status
= DMA_ERROR
;
1380 static int sdma_config(struct dma_chan
*chan
,
1381 struct dma_slave_config
*dmaengine_cfg
)
1383 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1385 if (dmaengine_cfg
->direction
== DMA_DEV_TO_MEM
) {
1386 sdmac
->per_address
= dmaengine_cfg
->src_addr
;
1387 sdmac
->watermark_level
= dmaengine_cfg
->src_maxburst
*
1388 dmaengine_cfg
->src_addr_width
;
1389 sdmac
->word_size
= dmaengine_cfg
->src_addr_width
;
1390 } else if (dmaengine_cfg
->direction
== DMA_DEV_TO_DEV
) {
1391 sdmac
->per_address2
= dmaengine_cfg
->src_addr
;
1392 sdmac
->per_address
= dmaengine_cfg
->dst_addr
;
1393 sdmac
->watermark_level
= dmaengine_cfg
->src_maxburst
&
1394 SDMA_WATERMARK_LEVEL_LWML
;
1395 sdmac
->watermark_level
|= (dmaengine_cfg
->dst_maxburst
<< 16) &
1396 SDMA_WATERMARK_LEVEL_HWML
;
1397 sdmac
->word_size
= dmaengine_cfg
->dst_addr_width
;
1399 sdmac
->per_address
= dmaengine_cfg
->dst_addr
;
1400 sdmac
->watermark_level
= dmaengine_cfg
->dst_maxburst
*
1401 dmaengine_cfg
->dst_addr_width
;
1402 sdmac
->word_size
= dmaengine_cfg
->dst_addr_width
;
1404 sdmac
->direction
= dmaengine_cfg
->direction
;
1405 return sdma_config_channel(chan
);
1408 static enum dma_status
sdma_tx_status(struct dma_chan
*chan
,
1409 dma_cookie_t cookie
,
1410 struct dma_tx_state
*txstate
)
1412 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1415 if (sdmac
->flags
& IMX_DMA_SG_LOOP
)
1416 residue
= (sdmac
->num_bd
- sdmac
->buf_ptail
) *
1417 sdmac
->period_len
- sdmac
->chn_real_count
;
1419 residue
= sdmac
->chn_count
- sdmac
->chn_real_count
;
1421 dma_set_tx_state(txstate
, chan
->completed_cookie
, chan
->cookie
,
1424 return sdmac
->status
;
1427 static void sdma_issue_pending(struct dma_chan
*chan
)
1429 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1430 struct sdma_engine
*sdma
= sdmac
->sdma
;
1432 if (sdmac
->status
== DMA_IN_PROGRESS
)
1433 sdma_enable_channel(sdma
, sdmac
->channel
);
1436 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1437 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1438 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1439 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1441 static void sdma_add_scripts(struct sdma_engine
*sdma
,
1442 const struct sdma_script_start_addrs
*addr
)
1444 s32
*addr_arr
= (u32
*)addr
;
1445 s32
*saddr_arr
= (u32
*)sdma
->script_addrs
;
1448 /* use the default firmware in ROM if missing external firmware */
1449 if (!sdma
->script_number
)
1450 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
;
1452 for (i
= 0; i
< sdma
->script_number
; i
++)
1453 if (addr_arr
[i
] > 0)
1454 saddr_arr
[i
] = addr_arr
[i
];
1457 static void sdma_load_firmware(const struct firmware
*fw
, void *context
)
1459 struct sdma_engine
*sdma
= context
;
1460 const struct sdma_firmware_header
*header
;
1461 const struct sdma_script_start_addrs
*addr
;
1462 unsigned short *ram_code
;
1465 dev_info(sdma
->dev
, "external firmware not found, using ROM firmware\n");
1466 /* In this case we just use the ROM firmware. */
1470 if (fw
->size
< sizeof(*header
))
1473 header
= (struct sdma_firmware_header
*)fw
->data
;
1475 if (header
->magic
!= SDMA_FIRMWARE_MAGIC
)
1477 if (header
->ram_code_start
+ header
->ram_code_size
> fw
->size
)
1479 switch (header
->version_major
) {
1481 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
;
1484 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2
;
1487 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3
;
1490 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4
;
1493 dev_err(sdma
->dev
, "unknown firmware version\n");
1497 addr
= (void *)header
+ header
->script_addrs_start
;
1498 ram_code
= (void *)header
+ header
->ram_code_start
;
1500 clk_enable(sdma
->clk_ipg
);
1501 clk_enable(sdma
->clk_ahb
);
1502 /* download the RAM image for SDMA */
1503 sdma_load_script(sdma
, ram_code
,
1504 header
->ram_code_size
,
1505 addr
->ram_code_start_addr
);
1506 clk_disable(sdma
->clk_ipg
);
1507 clk_disable(sdma
->clk_ahb
);
1509 sdma_add_scripts(sdma
, addr
);
1511 dev_info(sdma
->dev
, "loaded firmware %d.%d\n",
1512 header
->version_major
,
1513 header
->version_minor
);
1516 release_firmware(fw
);
1519 #define EVENT_REMAP_CELLS 3
1521 static int sdma_event_remap(struct sdma_engine
*sdma
)
1523 struct device_node
*np
= sdma
->dev
->of_node
;
1524 struct device_node
*gpr_np
= of_parse_phandle(np
, "gpr", 0);
1525 struct property
*event_remap
;
1527 char propname
[] = "fsl,sdma-event-remap";
1528 u32 reg
, val
, shift
, num_map
, i
;
1531 if (IS_ERR(np
) || IS_ERR(gpr_np
))
1534 event_remap
= of_find_property(np
, propname
, NULL
);
1535 num_map
= event_remap
? (event_remap
->length
/ sizeof(u32
)) : 0;
1537 dev_dbg(sdma
->dev
, "no event needs to be remapped\n");
1539 } else if (num_map
% EVENT_REMAP_CELLS
) {
1540 dev_err(sdma
->dev
, "the property %s must modulo %d\n",
1541 propname
, EVENT_REMAP_CELLS
);
1546 gpr
= syscon_node_to_regmap(gpr_np
);
1548 dev_err(sdma
->dev
, "failed to get gpr regmap\n");
1553 for (i
= 0; i
< num_map
; i
+= EVENT_REMAP_CELLS
) {
1554 ret
= of_property_read_u32_index(np
, propname
, i
, ®
);
1556 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1561 ret
= of_property_read_u32_index(np
, propname
, i
+ 1, &shift
);
1563 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1568 ret
= of_property_read_u32_index(np
, propname
, i
+ 2, &val
);
1570 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1575 regmap_update_bits(gpr
, reg
, BIT(shift
), val
<< shift
);
1579 if (!IS_ERR(gpr_np
))
1580 of_node_put(gpr_np
);
1585 static int sdma_get_firmware(struct sdma_engine
*sdma
,
1586 const char *fw_name
)
1590 ret
= request_firmware_nowait(THIS_MODULE
,
1591 FW_ACTION_HOTPLUG
, fw_name
, sdma
->dev
,
1592 GFP_KERNEL
, sdma
, sdma_load_firmware
);
1597 static int sdma_init(struct sdma_engine
*sdma
)
1600 dma_addr_t ccb_phys
;
1602 ret
= clk_enable(sdma
->clk_ipg
);
1605 ret
= clk_enable(sdma
->clk_ahb
);
1607 goto disable_clk_ipg
;
1609 /* Be sure SDMA has not started yet */
1610 writel_relaxed(0, sdma
->regs
+ SDMA_H_C0PTR
);
1612 sdma
->channel_control
= dma_alloc_coherent(NULL
,
1613 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
) +
1614 sizeof(struct sdma_context_data
),
1615 &ccb_phys
, GFP_KERNEL
);
1617 if (!sdma
->channel_control
) {
1622 sdma
->context
= (void *)sdma
->channel_control
+
1623 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
);
1624 sdma
->context_phys
= ccb_phys
+
1625 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
);
1627 /* Zero-out the CCB structures array just allocated */
1628 memset(sdma
->channel_control
, 0,
1629 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
));
1631 /* disable all channels */
1632 for (i
= 0; i
< sdma
->drvdata
->num_events
; i
++)
1633 writel_relaxed(0, sdma
->regs
+ chnenbl_ofs(sdma
, i
));
1635 /* All channels have priority 0 */
1636 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++)
1637 writel_relaxed(0, sdma
->regs
+ SDMA_CHNPRI_0
+ i
* 4);
1639 ret
= sdma_request_channel(&sdma
->channel
[0]);
1643 sdma_config_ownership(&sdma
->channel
[0], false, true, false);
1645 /* Set Command Channel (Channel Zero) */
1646 writel_relaxed(0x4050, sdma
->regs
+ SDMA_CHN0ADDR
);
1648 /* Set bits of CONFIG register but with static context switching */
1649 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1650 writel_relaxed(0, sdma
->regs
+ SDMA_H_CONFIG
);
1652 writel_relaxed(ccb_phys
, sdma
->regs
+ SDMA_H_C0PTR
);
1654 /* Initializes channel's priorities */
1655 sdma_set_channel_priority(&sdma
->channel
[0], 7);
1657 clk_disable(sdma
->clk_ipg
);
1658 clk_disable(sdma
->clk_ahb
);
1663 clk_disable(sdma
->clk_ahb
);
1665 clk_disable(sdma
->clk_ipg
);
1666 dev_err(sdma
->dev
, "initialisation failed with %d\n", ret
);
1670 static bool sdma_filter_fn(struct dma_chan
*chan
, void *fn_param
)
1672 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1673 struct imx_dma_data
*data
= fn_param
;
1675 if (!imx_dma_is_general_purpose(chan
))
1678 sdmac
->data
= *data
;
1679 chan
->private = &sdmac
->data
;
1684 static struct dma_chan
*sdma_xlate(struct of_phandle_args
*dma_spec
,
1685 struct of_dma
*ofdma
)
1687 struct sdma_engine
*sdma
= ofdma
->of_dma_data
;
1688 dma_cap_mask_t mask
= sdma
->dma_device
.cap_mask
;
1689 struct imx_dma_data data
;
1691 if (dma_spec
->args_count
!= 3)
1694 data
.dma_request
= dma_spec
->args
[0];
1695 data
.peripheral_type
= dma_spec
->args
[1];
1696 data
.priority
= dma_spec
->args
[2];
1698 * init dma_request2 to zero, which is not used by the dts.
1699 * For P2P, dma_request2 is init from dma_request_channel(),
1700 * chan->private will point to the imx_dma_data, and in
1701 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1702 * be set to sdmac->event_id1.
1704 data
.dma_request2
= 0;
1706 return dma_request_channel(mask
, sdma_filter_fn
, &data
);
1709 static int sdma_probe(struct platform_device
*pdev
)
1711 const struct of_device_id
*of_id
=
1712 of_match_device(sdma_dt_ids
, &pdev
->dev
);
1713 struct device_node
*np
= pdev
->dev
.of_node
;
1714 struct device_node
*spba_bus
;
1715 const char *fw_name
;
1718 struct resource
*iores
;
1719 struct resource spba_res
;
1720 struct sdma_platform_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1722 struct sdma_engine
*sdma
;
1724 const struct sdma_driver_data
*drvdata
= NULL
;
1727 drvdata
= of_id
->data
;
1728 else if (pdev
->id_entry
)
1729 drvdata
= (void *)pdev
->id_entry
->driver_data
;
1732 dev_err(&pdev
->dev
, "unable to find driver data\n");
1736 ret
= dma_coerce_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
1740 sdma
= devm_kzalloc(&pdev
->dev
, sizeof(*sdma
), GFP_KERNEL
);
1744 spin_lock_init(&sdma
->channel_0_lock
);
1746 sdma
->dev
= &pdev
->dev
;
1747 sdma
->drvdata
= drvdata
;
1749 irq
= platform_get_irq(pdev
, 0);
1753 iores
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1754 sdma
->regs
= devm_ioremap_resource(&pdev
->dev
, iores
);
1755 if (IS_ERR(sdma
->regs
))
1756 return PTR_ERR(sdma
->regs
);
1758 sdma
->clk_ipg
= devm_clk_get(&pdev
->dev
, "ipg");
1759 if (IS_ERR(sdma
->clk_ipg
))
1760 return PTR_ERR(sdma
->clk_ipg
);
1762 sdma
->clk_ahb
= devm_clk_get(&pdev
->dev
, "ahb");
1763 if (IS_ERR(sdma
->clk_ahb
))
1764 return PTR_ERR(sdma
->clk_ahb
);
1766 ret
= clk_prepare(sdma
->clk_ipg
);
1770 ret
= clk_prepare(sdma
->clk_ahb
);
1774 ret
= devm_request_irq(&pdev
->dev
, irq
, sdma_int_handler
, 0, "sdma",
1781 sdma
->script_addrs
= kzalloc(sizeof(*sdma
->script_addrs
), GFP_KERNEL
);
1782 if (!sdma
->script_addrs
) {
1787 /* initially no scripts available */
1788 saddr_arr
= (s32
*)sdma
->script_addrs
;
1789 for (i
= 0; i
< SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
; i
++)
1790 saddr_arr
[i
] = -EINVAL
;
1792 dma_cap_set(DMA_SLAVE
, sdma
->dma_device
.cap_mask
);
1793 dma_cap_set(DMA_CYCLIC
, sdma
->dma_device
.cap_mask
);
1795 INIT_LIST_HEAD(&sdma
->dma_device
.channels
);
1796 /* Initialize channel parameters */
1797 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++) {
1798 struct sdma_channel
*sdmac
= &sdma
->channel
[i
];
1801 spin_lock_init(&sdmac
->lock
);
1803 sdmac
->chan
.device
= &sdma
->dma_device
;
1804 dma_cookie_init(&sdmac
->chan
);
1807 tasklet_init(&sdmac
->tasklet
, mxc_sdma_handle_channel_normal
,
1808 (unsigned long) sdmac
);
1810 * Add the channel to the DMAC list. Do not add channel 0 though
1811 * because we need it internally in the SDMA driver. This also means
1812 * that channel 0 in dmaengine counting matches sdma channel 1.
1815 list_add_tail(&sdmac
->chan
.device_node
,
1816 &sdma
->dma_device
.channels
);
1819 ret
= sdma_init(sdma
);
1823 ret
= sdma_event_remap(sdma
);
1827 if (sdma
->drvdata
->script_addrs
)
1828 sdma_add_scripts(sdma
, sdma
->drvdata
->script_addrs
);
1829 if (pdata
&& pdata
->script_addrs
)
1830 sdma_add_scripts(sdma
, pdata
->script_addrs
);
1833 ret
= sdma_get_firmware(sdma
, pdata
->fw_name
);
1835 dev_warn(&pdev
->dev
, "failed to get firmware from platform data\n");
1838 * Because that device tree does not encode ROM script address,
1839 * the RAM script in firmware is mandatory for device tree
1840 * probe, otherwise it fails.
1842 ret
= of_property_read_string(np
, "fsl,sdma-ram-script-name",
1845 dev_warn(&pdev
->dev
, "failed to get firmware name\n");
1847 ret
= sdma_get_firmware(sdma
, fw_name
);
1849 dev_warn(&pdev
->dev
, "failed to get firmware from device tree\n");
1853 sdma
->dma_device
.dev
= &pdev
->dev
;
1855 sdma
->dma_device
.device_alloc_chan_resources
= sdma_alloc_chan_resources
;
1856 sdma
->dma_device
.device_free_chan_resources
= sdma_free_chan_resources
;
1857 sdma
->dma_device
.device_tx_status
= sdma_tx_status
;
1858 sdma
->dma_device
.device_prep_slave_sg
= sdma_prep_slave_sg
;
1859 sdma
->dma_device
.device_prep_dma_cyclic
= sdma_prep_dma_cyclic
;
1860 sdma
->dma_device
.device_config
= sdma_config
;
1861 sdma
->dma_device
.device_terminate_all
= sdma_disable_channel_with_delay
;
1862 sdma
->dma_device
.src_addr_widths
= SDMA_DMA_BUSWIDTHS
;
1863 sdma
->dma_device
.dst_addr_widths
= SDMA_DMA_BUSWIDTHS
;
1864 sdma
->dma_device
.directions
= SDMA_DMA_DIRECTIONS
;
1865 sdma
->dma_device
.residue_granularity
= DMA_RESIDUE_GRANULARITY_SEGMENT
;
1866 sdma
->dma_device
.device_issue_pending
= sdma_issue_pending
;
1867 sdma
->dma_device
.dev
->dma_parms
= &sdma
->dma_parms
;
1868 dma_set_max_seg_size(sdma
->dma_device
.dev
, 65535);
1870 platform_set_drvdata(pdev
, sdma
);
1872 ret
= dma_async_device_register(&sdma
->dma_device
);
1874 dev_err(&pdev
->dev
, "unable to register\n");
1879 ret
= of_dma_controller_register(np
, sdma_xlate
, sdma
);
1881 dev_err(&pdev
->dev
, "failed to register controller\n");
1885 spba_bus
= of_find_compatible_node(NULL
, NULL
, "fsl,spba-bus");
1886 ret
= of_address_to_resource(spba_bus
, 0, &spba_res
);
1888 sdma
->spba_start_addr
= spba_res
.start
;
1889 sdma
->spba_end_addr
= spba_res
.end
;
1891 of_node_put(spba_bus
);
1897 dma_async_device_unregister(&sdma
->dma_device
);
1899 kfree(sdma
->script_addrs
);
1901 clk_unprepare(sdma
->clk_ahb
);
1903 clk_unprepare(sdma
->clk_ipg
);
1907 static int sdma_remove(struct platform_device
*pdev
)
1909 struct sdma_engine
*sdma
= platform_get_drvdata(pdev
);
1912 devm_free_irq(&pdev
->dev
, sdma
->irq
, sdma
);
1913 dma_async_device_unregister(&sdma
->dma_device
);
1914 kfree(sdma
->script_addrs
);
1915 clk_unprepare(sdma
->clk_ahb
);
1916 clk_unprepare(sdma
->clk_ipg
);
1917 /* Kill the tasklet */
1918 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++) {
1919 struct sdma_channel
*sdmac
= &sdma
->channel
[i
];
1921 tasklet_kill(&sdmac
->tasklet
);
1924 platform_set_drvdata(pdev
, NULL
);
1928 static struct platform_driver sdma_driver
= {
1931 .of_match_table
= sdma_dt_ids
,
1933 .id_table
= sdma_devtypes
,
1934 .remove
= sdma_remove
,
1935 .probe
= sdma_probe
,
1938 module_platform_driver(sdma_driver
);
1940 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1941 MODULE_DESCRIPTION("i.MX SDMA driver");
1942 MODULE_LICENSE("GPL");