4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
70 #include <trace/events/task.h>
73 #include <trace/events/sched.h>
75 int suid_dumpable
= 0;
77 static LIST_HEAD(formats
);
78 static DEFINE_RWLOCK(binfmt_lock
);
80 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
83 if (WARN_ON(!fmt
->load_binary
))
85 write_lock(&binfmt_lock
);
86 insert
? list_add(&fmt
->lh
, &formats
) :
87 list_add_tail(&fmt
->lh
, &formats
);
88 write_unlock(&binfmt_lock
);
91 EXPORT_SYMBOL(__register_binfmt
);
93 void unregister_binfmt(struct linux_binfmt
* fmt
)
95 write_lock(&binfmt_lock
);
97 write_unlock(&binfmt_lock
);
100 EXPORT_SYMBOL(unregister_binfmt
);
102 static inline void put_binfmt(struct linux_binfmt
* fmt
)
104 module_put(fmt
->module
);
107 bool path_noexec(const struct path
*path
)
109 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
110 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
115 * Note that a shared library must be both readable and executable due to
118 * Also note that we take the address to load from from the file itself.
120 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
122 struct linux_binfmt
*fmt
;
124 struct filename
*tmp
= getname(library
);
125 int error
= PTR_ERR(tmp
);
126 static const struct open_flags uselib_flags
= {
127 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
128 .acc_mode
= MAY_READ
| MAY_EXEC
,
129 .intent
= LOOKUP_OPEN
,
130 .lookup_flags
= LOOKUP_FOLLOW
,
136 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
138 error
= PTR_ERR(file
);
143 if (!S_ISREG(file_inode(file
)->i_mode
))
147 if (path_noexec(&file
->f_path
))
154 read_lock(&binfmt_lock
);
155 list_for_each_entry(fmt
, &formats
, lh
) {
156 if (!fmt
->load_shlib
)
158 if (!try_module_get(fmt
->module
))
160 read_unlock(&binfmt_lock
);
161 error
= fmt
->load_shlib(file
);
162 read_lock(&binfmt_lock
);
164 if (error
!= -ENOEXEC
)
167 read_unlock(&binfmt_lock
);
173 #endif /* #ifdef CONFIG_USELIB */
177 * The nascent bprm->mm is not visible until exec_mmap() but it can
178 * use a lot of memory, account these pages in current->mm temporary
179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180 * change the counter back via acct_arg_size(0).
182 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
184 struct mm_struct
*mm
= current
->mm
;
185 long diff
= (long)(pages
- bprm
->vma_pages
);
190 bprm
->vma_pages
= pages
;
191 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
194 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
199 unsigned int gup_flags
= FOLL_FORCE
;
201 #ifdef CONFIG_STACK_GROWSUP
203 ret
= expand_downwards(bprm
->vma
, pos
);
210 gup_flags
|= FOLL_WRITE
;
213 * We are doing an exec(). 'current' is the process
214 * doing the exec and bprm->mm is the new process's mm.
216 ret
= get_user_pages_remote(current
, bprm
->mm
, pos
, 1, gup_flags
,
222 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
223 unsigned long ptr_size
, limit
;
226 * Since the stack will hold pointers to the strings, we
227 * must account for them as well.
229 * The size calculation is the entire vma while each arg page is
230 * built, so each time we get here it's calculating how far it
231 * is currently (rather than each call being just the newly
232 * added size from the arg page). As a result, we need to
233 * always add the entire size of the pointers, so that on the
234 * last call to get_arg_page() we'll actually have the entire
237 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
238 if (ptr_size
> ULONG_MAX
- size
)
242 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
245 * We've historically supported up to 32 pages (ARG_MAX)
246 * of argument strings even with small stacks
252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 * (whichever is smaller) for the argv+env strings.
255 * - the remaining binfmt code will not run out of stack space,
256 * - the program will have a reasonable amount of stack left
259 limit
= _STK_LIM
/ 4 * 3;
260 limit
= min(limit
, bprm
->rlim_stack
.rlim_cur
/ 4);
272 static void put_arg_page(struct page
*page
)
277 static void free_arg_pages(struct linux_binprm
*bprm
)
281 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
284 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
287 static int __bprm_mm_init(struct linux_binprm
*bprm
)
290 struct vm_area_struct
*vma
= NULL
;
291 struct mm_struct
*mm
= bprm
->mm
;
293 bprm
->vma
= vma
= vm_area_alloc(mm
);
296 vma_set_anonymous(vma
);
298 if (down_write_killable(&mm
->mmap_sem
)) {
304 * Place the stack at the largest stack address the architecture
305 * supports. Later, we'll move this to an appropriate place. We don't
306 * use STACK_TOP because that can depend on attributes which aren't
309 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
310 vma
->vm_end
= STACK_TOP_MAX
;
311 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
312 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
313 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
315 err
= insert_vm_struct(mm
, vma
);
319 mm
->stack_vm
= mm
->total_vm
= 1;
320 arch_bprm_mm_init(mm
, vma
);
321 up_write(&mm
->mmap_sem
);
322 bprm
->p
= vma
->vm_end
- sizeof(void *);
325 up_write(&mm
->mmap_sem
);
332 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
334 return len
<= MAX_ARG_STRLEN
;
339 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
343 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
348 page
= bprm
->page
[pos
/ PAGE_SIZE
];
349 if (!page
&& write
) {
350 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
353 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
359 static void put_arg_page(struct page
*page
)
363 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
366 __free_page(bprm
->page
[i
]);
367 bprm
->page
[i
] = NULL
;
371 static void free_arg_pages(struct linux_binprm
*bprm
)
375 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
376 free_arg_page(bprm
, i
);
379 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
384 static int __bprm_mm_init(struct linux_binprm
*bprm
)
386 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
390 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
392 return len
<= bprm
->p
;
395 #endif /* CONFIG_MMU */
398 * Create a new mm_struct and populate it with a temporary stack
399 * vm_area_struct. We don't have enough context at this point to set the stack
400 * flags, permissions, and offset, so we use temporary values. We'll update
401 * them later in setup_arg_pages().
403 static int bprm_mm_init(struct linux_binprm
*bprm
)
406 struct mm_struct
*mm
= NULL
;
408 bprm
->mm
= mm
= mm_alloc();
413 /* Save current stack limit for all calculations made during exec. */
414 task_lock(current
->group_leader
);
415 bprm
->rlim_stack
= current
->signal
->rlim
[RLIMIT_STACK
];
416 task_unlock(current
->group_leader
);
418 err
= __bprm_mm_init(bprm
);
433 struct user_arg_ptr
{
438 const char __user
*const __user
*native
;
440 const compat_uptr_t __user
*compat
;
445 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
447 const char __user
*native
;
450 if (unlikely(argv
.is_compat
)) {
451 compat_uptr_t compat
;
453 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
454 return ERR_PTR(-EFAULT
);
456 return compat_ptr(compat
);
460 if (get_user(native
, argv
.ptr
.native
+ nr
))
461 return ERR_PTR(-EFAULT
);
467 * count() counts the number of strings in array ARGV.
469 static int count(struct user_arg_ptr argv
, int max
)
473 if (argv
.ptr
.native
!= NULL
) {
475 const char __user
*p
= get_user_arg_ptr(argv
, i
);
487 if (fatal_signal_pending(current
))
488 return -ERESTARTNOHAND
;
496 * 'copy_strings()' copies argument/environment strings from the old
497 * processes's memory to the new process's stack. The call to get_user_pages()
498 * ensures the destination page is created and not swapped out.
500 static int copy_strings(int argc
, struct user_arg_ptr argv
,
501 struct linux_binprm
*bprm
)
503 struct page
*kmapped_page
= NULL
;
505 unsigned long kpos
= 0;
509 const char __user
*str
;
514 str
= get_user_arg_ptr(argv
, argc
);
518 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
523 if (!valid_arg_len(bprm
, len
))
526 /* We're going to work our way backwords. */
532 int offset
, bytes_to_copy
;
534 if (fatal_signal_pending(current
)) {
535 ret
= -ERESTARTNOHAND
;
540 offset
= pos
% PAGE_SIZE
;
544 bytes_to_copy
= offset
;
545 if (bytes_to_copy
> len
)
548 offset
-= bytes_to_copy
;
549 pos
-= bytes_to_copy
;
550 str
-= bytes_to_copy
;
551 len
-= bytes_to_copy
;
553 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
556 page
= get_arg_page(bprm
, pos
, 1);
563 flush_kernel_dcache_page(kmapped_page
);
564 kunmap(kmapped_page
);
565 put_arg_page(kmapped_page
);
568 kaddr
= kmap(kmapped_page
);
569 kpos
= pos
& PAGE_MASK
;
570 flush_arg_page(bprm
, kpos
, kmapped_page
);
572 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
581 flush_kernel_dcache_page(kmapped_page
);
582 kunmap(kmapped_page
);
583 put_arg_page(kmapped_page
);
589 * Like copy_strings, but get argv and its values from kernel memory.
591 int copy_strings_kernel(int argc
, const char *const *__argv
,
592 struct linux_binprm
*bprm
)
595 mm_segment_t oldfs
= get_fs();
596 struct user_arg_ptr argv
= {
597 .ptr
.native
= (const char __user
*const __user
*)__argv
,
601 r
= copy_strings(argc
, argv
, bprm
);
606 EXPORT_SYMBOL(copy_strings_kernel
);
611 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
612 * the binfmt code determines where the new stack should reside, we shift it to
613 * its final location. The process proceeds as follows:
615 * 1) Use shift to calculate the new vma endpoints.
616 * 2) Extend vma to cover both the old and new ranges. This ensures the
617 * arguments passed to subsequent functions are consistent.
618 * 3) Move vma's page tables to the new range.
619 * 4) Free up any cleared pgd range.
620 * 5) Shrink the vma to cover only the new range.
622 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
624 struct mm_struct
*mm
= vma
->vm_mm
;
625 unsigned long old_start
= vma
->vm_start
;
626 unsigned long old_end
= vma
->vm_end
;
627 unsigned long length
= old_end
- old_start
;
628 unsigned long new_start
= old_start
- shift
;
629 unsigned long new_end
= old_end
- shift
;
630 struct mmu_gather tlb
;
632 BUG_ON(new_start
> new_end
);
635 * ensure there are no vmas between where we want to go
638 if (vma
!= find_vma(mm
, new_start
))
642 * cover the whole range: [new_start, old_end)
644 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
648 * move the page tables downwards, on failure we rely on
649 * process cleanup to remove whatever mess we made.
651 if (length
!= move_page_tables(vma
, old_start
,
652 vma
, new_start
, length
, false))
656 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
657 if (new_end
> old_start
) {
659 * when the old and new regions overlap clear from new_end.
661 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
662 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
665 * otherwise, clean from old_start; this is done to not touch
666 * the address space in [new_end, old_start) some architectures
667 * have constraints on va-space that make this illegal (IA64) -
668 * for the others its just a little faster.
670 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
671 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
673 tlb_finish_mmu(&tlb
, old_start
, old_end
);
676 * Shrink the vma to just the new range. Always succeeds.
678 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
684 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
685 * the stack is optionally relocated, and some extra space is added.
687 int setup_arg_pages(struct linux_binprm
*bprm
,
688 unsigned long stack_top
,
689 int executable_stack
)
692 unsigned long stack_shift
;
693 struct mm_struct
*mm
= current
->mm
;
694 struct vm_area_struct
*vma
= bprm
->vma
;
695 struct vm_area_struct
*prev
= NULL
;
696 unsigned long vm_flags
;
697 unsigned long stack_base
;
698 unsigned long stack_size
;
699 unsigned long stack_expand
;
700 unsigned long rlim_stack
;
702 #ifdef CONFIG_STACK_GROWSUP
703 /* Limit stack size */
704 stack_base
= bprm
->rlim_stack
.rlim_max
;
705 if (stack_base
> STACK_SIZE_MAX
)
706 stack_base
= STACK_SIZE_MAX
;
708 /* Add space for stack randomization. */
709 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
711 /* Make sure we didn't let the argument array grow too large. */
712 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
715 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
717 stack_shift
= vma
->vm_start
- stack_base
;
718 mm
->arg_start
= bprm
->p
- stack_shift
;
719 bprm
->p
= vma
->vm_end
- stack_shift
;
721 stack_top
= arch_align_stack(stack_top
);
722 stack_top
= PAGE_ALIGN(stack_top
);
724 if (unlikely(stack_top
< mmap_min_addr
) ||
725 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
728 stack_shift
= vma
->vm_end
- stack_top
;
730 bprm
->p
-= stack_shift
;
731 mm
->arg_start
= bprm
->p
;
735 bprm
->loader
-= stack_shift
;
736 bprm
->exec
-= stack_shift
;
738 if (down_write_killable(&mm
->mmap_sem
))
741 vm_flags
= VM_STACK_FLAGS
;
744 * Adjust stack execute permissions; explicitly enable for
745 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
746 * (arch default) otherwise.
748 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
750 else if (executable_stack
== EXSTACK_DISABLE_X
)
751 vm_flags
&= ~VM_EXEC
;
752 vm_flags
|= mm
->def_flags
;
753 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
755 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
761 /* Move stack pages down in memory. */
763 ret
= shift_arg_pages(vma
, stack_shift
);
768 /* mprotect_fixup is overkill to remove the temporary stack flags */
769 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
771 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
772 stack_size
= vma
->vm_end
- vma
->vm_start
;
774 * Align this down to a page boundary as expand_stack
777 rlim_stack
= bprm
->rlim_stack
.rlim_cur
& PAGE_MASK
;
778 #ifdef CONFIG_STACK_GROWSUP
779 if (stack_size
+ stack_expand
> rlim_stack
)
780 stack_base
= vma
->vm_start
+ rlim_stack
;
782 stack_base
= vma
->vm_end
+ stack_expand
;
784 if (stack_size
+ stack_expand
> rlim_stack
)
785 stack_base
= vma
->vm_end
- rlim_stack
;
787 stack_base
= vma
->vm_start
- stack_expand
;
789 current
->mm
->start_stack
= bprm
->p
;
790 ret
= expand_stack(vma
, stack_base
);
795 up_write(&mm
->mmap_sem
);
798 EXPORT_SYMBOL(setup_arg_pages
);
803 * Transfer the program arguments and environment from the holding pages
804 * onto the stack. The provided stack pointer is adjusted accordingly.
806 int transfer_args_to_stack(struct linux_binprm
*bprm
,
807 unsigned long *sp_location
)
809 unsigned long index
, stop
, sp
;
812 stop
= bprm
->p
>> PAGE_SHIFT
;
815 for (index
= MAX_ARG_PAGES
- 1; index
>= stop
; index
--) {
816 unsigned int offset
= index
== stop
? bprm
->p
& ~PAGE_MASK
: 0;
817 char *src
= kmap(bprm
->page
[index
]) + offset
;
818 sp
-= PAGE_SIZE
- offset
;
819 if (copy_to_user((void *) sp
, src
, PAGE_SIZE
- offset
) != 0)
821 kunmap(bprm
->page
[index
]);
831 EXPORT_SYMBOL(transfer_args_to_stack
);
833 #endif /* CONFIG_MMU */
835 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
839 struct open_flags open_exec_flags
= {
840 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
841 .acc_mode
= MAY_EXEC
,
842 .intent
= LOOKUP_OPEN
,
843 .lookup_flags
= LOOKUP_FOLLOW
,
846 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
847 return ERR_PTR(-EINVAL
);
848 if (flags
& AT_SYMLINK_NOFOLLOW
)
849 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
850 if (flags
& AT_EMPTY_PATH
)
851 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
853 file
= do_filp_open(fd
, name
, &open_exec_flags
);
858 if (!S_ISREG(file_inode(file
)->i_mode
))
861 if (path_noexec(&file
->f_path
))
864 err
= deny_write_access(file
);
868 if (name
->name
[0] != '\0')
879 struct file
*open_exec(const char *name
)
881 struct filename
*filename
= getname_kernel(name
);
882 struct file
*f
= ERR_CAST(filename
);
884 if (!IS_ERR(filename
)) {
885 f
= do_open_execat(AT_FDCWD
, filename
, 0);
890 EXPORT_SYMBOL(open_exec
);
892 int kernel_read_file(struct file
*file
, void **buf
, loff_t
*size
,
893 loff_t max_size
, enum kernel_read_file_id id
)
899 if (!S_ISREG(file_inode(file
)->i_mode
) || max_size
< 0)
902 ret
= deny_write_access(file
);
906 ret
= security_kernel_read_file(file
, id
);
910 i_size
= i_size_read(file_inode(file
));
911 if (max_size
> 0 && i_size
> max_size
) {
920 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
)
921 *buf
= vmalloc(i_size
);
928 while (pos
< i_size
) {
929 bytes
= kernel_read(file
, *buf
+ pos
, i_size
- pos
, &pos
);
944 ret
= security_kernel_post_read_file(file
, *buf
, i_size
, id
);
950 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
) {
957 allow_write_access(file
);
960 EXPORT_SYMBOL_GPL(kernel_read_file
);
962 int kernel_read_file_from_path(const char *path
, void **buf
, loff_t
*size
,
963 loff_t max_size
, enum kernel_read_file_id id
)
971 file
= filp_open(path
, O_RDONLY
, 0);
973 return PTR_ERR(file
);
975 ret
= kernel_read_file(file
, buf
, size
, max_size
, id
);
979 EXPORT_SYMBOL_GPL(kernel_read_file_from_path
);
981 int kernel_read_file_from_fd(int fd
, void **buf
, loff_t
*size
, loff_t max_size
,
982 enum kernel_read_file_id id
)
984 struct fd f
= fdget(fd
);
990 ret
= kernel_read_file(f
.file
, buf
, size
, max_size
, id
);
995 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd
);
997 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
999 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
1001 flush_icache_range(addr
, addr
+ len
);
1004 EXPORT_SYMBOL(read_code
);
1006 static int exec_mmap(struct mm_struct
*mm
)
1008 struct task_struct
*tsk
;
1009 struct mm_struct
*old_mm
, *active_mm
;
1011 /* Notify parent that we're no longer interested in the old VM */
1013 old_mm
= current
->mm
;
1014 mm_release(tsk
, old_mm
);
1017 sync_mm_rss(old_mm
);
1019 * Make sure that if there is a core dump in progress
1020 * for the old mm, we get out and die instead of going
1021 * through with the exec. We must hold mmap_sem around
1022 * checking core_state and changing tsk->mm.
1024 down_read(&old_mm
->mmap_sem
);
1025 if (unlikely(old_mm
->core_state
)) {
1026 up_read(&old_mm
->mmap_sem
);
1031 active_mm
= tsk
->active_mm
;
1033 tsk
->active_mm
= mm
;
1034 activate_mm(active_mm
, mm
);
1035 tsk
->mm
->vmacache_seqnum
= 0;
1036 vmacache_flush(tsk
);
1039 up_read(&old_mm
->mmap_sem
);
1040 BUG_ON(active_mm
!= old_mm
);
1041 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
1042 mm_update_next_owner(old_mm
);
1051 * This function makes sure the current process has its own signal table,
1052 * so that flush_signal_handlers can later reset the handlers without
1053 * disturbing other processes. (Other processes might share the signal
1054 * table via the CLONE_SIGHAND option to clone().)
1056 static int de_thread(struct task_struct
*tsk
)
1058 struct signal_struct
*sig
= tsk
->signal
;
1059 struct sighand_struct
*oldsighand
= tsk
->sighand
;
1060 spinlock_t
*lock
= &oldsighand
->siglock
;
1062 if (thread_group_empty(tsk
))
1063 goto no_thread_group
;
1066 * Kill all other threads in the thread group.
1068 spin_lock_irq(lock
);
1069 if (signal_group_exit(sig
)) {
1071 * Another group action in progress, just
1072 * return so that the signal is processed.
1074 spin_unlock_irq(lock
);
1078 sig
->group_exit_task
= tsk
;
1079 sig
->notify_count
= zap_other_threads(tsk
);
1080 if (!thread_group_leader(tsk
))
1081 sig
->notify_count
--;
1083 while (sig
->notify_count
) {
1084 __set_current_state(TASK_KILLABLE
);
1085 spin_unlock_irq(lock
);
1087 if (unlikely(__fatal_signal_pending(tsk
)))
1089 spin_lock_irq(lock
);
1091 spin_unlock_irq(lock
);
1094 * At this point all other threads have exited, all we have to
1095 * do is to wait for the thread group leader to become inactive,
1096 * and to assume its PID:
1098 if (!thread_group_leader(tsk
)) {
1099 struct task_struct
*leader
= tsk
->group_leader
;
1102 cgroup_threadgroup_change_begin(tsk
);
1103 write_lock_irq(&tasklist_lock
);
1105 * Do this under tasklist_lock to ensure that
1106 * exit_notify() can't miss ->group_exit_task
1108 sig
->notify_count
= -1;
1109 if (likely(leader
->exit_state
))
1111 __set_current_state(TASK_KILLABLE
);
1112 write_unlock_irq(&tasklist_lock
);
1113 cgroup_threadgroup_change_end(tsk
);
1115 if (unlikely(__fatal_signal_pending(tsk
)))
1120 * The only record we have of the real-time age of a
1121 * process, regardless of execs it's done, is start_time.
1122 * All the past CPU time is accumulated in signal_struct
1123 * from sister threads now dead. But in this non-leader
1124 * exec, nothing survives from the original leader thread,
1125 * whose birth marks the true age of this process now.
1126 * When we take on its identity by switching to its PID, we
1127 * also take its birthdate (always earlier than our own).
1129 tsk
->start_time
= leader
->start_time
;
1130 tsk
->real_start_time
= leader
->real_start_time
;
1132 BUG_ON(!same_thread_group(leader
, tsk
));
1133 BUG_ON(has_group_leader_pid(tsk
));
1135 * An exec() starts a new thread group with the
1136 * TGID of the previous thread group. Rehash the
1137 * two threads with a switched PID, and release
1138 * the former thread group leader:
1141 /* Become a process group leader with the old leader's pid.
1142 * The old leader becomes a thread of the this thread group.
1143 * Note: The old leader also uses this pid until release_task
1144 * is called. Odd but simple and correct.
1146 tsk
->pid
= leader
->pid
;
1147 change_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
1148 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1149 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1151 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1152 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1154 tsk
->group_leader
= tsk
;
1155 leader
->group_leader
= tsk
;
1157 tsk
->exit_signal
= SIGCHLD
;
1158 leader
->exit_signal
= -1;
1160 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1161 leader
->exit_state
= EXIT_DEAD
;
1164 * We are going to release_task()->ptrace_unlink() silently,
1165 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1166 * the tracer wont't block again waiting for this thread.
1168 if (unlikely(leader
->ptrace
))
1169 __wake_up_parent(leader
, leader
->parent
);
1170 write_unlock_irq(&tasklist_lock
);
1171 cgroup_threadgroup_change_end(tsk
);
1173 release_task(leader
);
1176 sig
->group_exit_task
= NULL
;
1177 sig
->notify_count
= 0;
1180 /* we have changed execution domain */
1181 tsk
->exit_signal
= SIGCHLD
;
1183 #ifdef CONFIG_POSIX_TIMERS
1185 flush_itimer_signals();
1188 if (atomic_read(&oldsighand
->count
) != 1) {
1189 struct sighand_struct
*newsighand
;
1191 * This ->sighand is shared with the CLONE_SIGHAND
1192 * but not CLONE_THREAD task, switch to the new one.
1194 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1198 atomic_set(&newsighand
->count
, 1);
1199 memcpy(newsighand
->action
, oldsighand
->action
,
1200 sizeof(newsighand
->action
));
1202 write_lock_irq(&tasklist_lock
);
1203 spin_lock(&oldsighand
->siglock
);
1204 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1205 spin_unlock(&oldsighand
->siglock
);
1206 write_unlock_irq(&tasklist_lock
);
1208 __cleanup_sighand(oldsighand
);
1211 BUG_ON(!thread_group_leader(tsk
));
1215 /* protects against exit_notify() and __exit_signal() */
1216 read_lock(&tasklist_lock
);
1217 sig
->group_exit_task
= NULL
;
1218 sig
->notify_count
= 0;
1219 read_unlock(&tasklist_lock
);
1223 char *__get_task_comm(char *buf
, size_t buf_size
, struct task_struct
*tsk
)
1226 strncpy(buf
, tsk
->comm
, buf_size
);
1230 EXPORT_SYMBOL_GPL(__get_task_comm
);
1233 * These functions flushes out all traces of the currently running executable
1234 * so that a new one can be started
1237 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1240 trace_task_rename(tsk
, buf
);
1241 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1243 perf_event_comm(tsk
, exec
);
1247 * Calling this is the point of no return. None of the failures will be
1248 * seen by userspace since either the process is already taking a fatal
1249 * signal (via de_thread() or coredump), or will have SEGV raised
1250 * (after exec_mmap()) by search_binary_handlers (see below).
1252 int flush_old_exec(struct linux_binprm
* bprm
)
1257 * Make sure we have a private signal table and that
1258 * we are unassociated from the previous thread group.
1260 retval
= de_thread(current
);
1265 * Must be called _before_ exec_mmap() as bprm->mm is
1266 * not visibile until then. This also enables the update
1269 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1272 * Release all of the old mmap stuff
1274 acct_arg_size(bprm
, 0);
1275 retval
= exec_mmap(bprm
->mm
);
1280 * After clearing bprm->mm (to mark that current is using the
1281 * prepared mm now), we have nothing left of the original
1282 * process. If anything from here on returns an error, the check
1283 * in search_binary_handler() will SEGV current.
1288 current
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1289 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1291 current
->personality
&= ~bprm
->per_clear
;
1294 * We have to apply CLOEXEC before we change whether the process is
1295 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1296 * trying to access the should-be-closed file descriptors of a process
1297 * undergoing exec(2).
1299 do_close_on_exec(current
->files
);
1305 EXPORT_SYMBOL(flush_old_exec
);
1307 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1309 struct inode
*inode
= file_inode(file
);
1310 if (inode_permission(inode
, MAY_READ
) < 0) {
1311 struct user_namespace
*old
, *user_ns
;
1312 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1314 /* Ensure mm->user_ns contains the executable */
1315 user_ns
= old
= bprm
->mm
->user_ns
;
1316 while ((user_ns
!= &init_user_ns
) &&
1317 !privileged_wrt_inode_uidgid(user_ns
, inode
))
1318 user_ns
= user_ns
->parent
;
1320 if (old
!= user_ns
) {
1321 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1326 EXPORT_SYMBOL(would_dump
);
1328 void setup_new_exec(struct linux_binprm
* bprm
)
1331 * Once here, prepare_binrpm() will not be called any more, so
1332 * the final state of setuid/setgid/fscaps can be merged into the
1335 bprm
->secureexec
|= bprm
->cap_elevated
;
1337 if (bprm
->secureexec
) {
1338 /* Make sure parent cannot signal privileged process. */
1339 current
->pdeath_signal
= 0;
1342 * For secureexec, reset the stack limit to sane default to
1343 * avoid bad behavior from the prior rlimits. This has to
1344 * happen before arch_pick_mmap_layout(), which examines
1345 * RLIMIT_STACK, but after the point of no return to avoid
1346 * needing to clean up the change on failure.
1348 if (bprm
->rlim_stack
.rlim_cur
> _STK_LIM
)
1349 bprm
->rlim_stack
.rlim_cur
= _STK_LIM
;
1352 arch_pick_mmap_layout(current
->mm
, &bprm
->rlim_stack
);
1354 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1357 * Figure out dumpability. Note that this checking only of current
1358 * is wrong, but userspace depends on it. This should be testing
1359 * bprm->secureexec instead.
1361 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
||
1362 !(uid_eq(current_euid(), current_uid()) &&
1363 gid_eq(current_egid(), current_gid())))
1364 set_dumpable(current
->mm
, suid_dumpable
);
1366 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1368 arch_setup_new_exec();
1370 __set_task_comm(current
, kbasename(bprm
->filename
), true);
1372 /* Set the new mm task size. We have to do that late because it may
1373 * depend on TIF_32BIT which is only updated in flush_thread() on
1374 * some architectures like powerpc
1376 current
->mm
->task_size
= TASK_SIZE
;
1378 /* An exec changes our domain. We are no longer part of the thread
1380 current
->self_exec_id
++;
1381 flush_signal_handlers(current
, 0);
1383 EXPORT_SYMBOL(setup_new_exec
);
1385 /* Runs immediately before start_thread() takes over. */
1386 void finalize_exec(struct linux_binprm
*bprm
)
1388 /* Store any stack rlimit changes before starting thread. */
1389 task_lock(current
->group_leader
);
1390 current
->signal
->rlim
[RLIMIT_STACK
] = bprm
->rlim_stack
;
1391 task_unlock(current
->group_leader
);
1393 EXPORT_SYMBOL(finalize_exec
);
1396 * Prepare credentials and lock ->cred_guard_mutex.
1397 * install_exec_creds() commits the new creds and drops the lock.
1398 * Or, if exec fails before, free_bprm() should release ->cred and
1401 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1403 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1404 return -ERESTARTNOINTR
;
1406 bprm
->cred
= prepare_exec_creds();
1407 if (likely(bprm
->cred
))
1410 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1414 static void free_bprm(struct linux_binprm
*bprm
)
1416 free_arg_pages(bprm
);
1418 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1419 abort_creds(bprm
->cred
);
1422 allow_write_access(bprm
->file
);
1425 /* If a binfmt changed the interp, free it. */
1426 if (bprm
->interp
!= bprm
->filename
)
1427 kfree(bprm
->interp
);
1431 int bprm_change_interp(const char *interp
, struct linux_binprm
*bprm
)
1433 /* If a binfmt changed the interp, free it first. */
1434 if (bprm
->interp
!= bprm
->filename
)
1435 kfree(bprm
->interp
);
1436 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1441 EXPORT_SYMBOL(bprm_change_interp
);
1444 * install the new credentials for this executable
1446 void install_exec_creds(struct linux_binprm
*bprm
)
1448 security_bprm_committing_creds(bprm
);
1450 commit_creds(bprm
->cred
);
1454 * Disable monitoring for regular users
1455 * when executing setuid binaries. Must
1456 * wait until new credentials are committed
1457 * by commit_creds() above
1459 if (get_dumpable(current
->mm
) != SUID_DUMP_USER
)
1460 perf_event_exit_task(current
);
1462 * cred_guard_mutex must be held at least to this point to prevent
1463 * ptrace_attach() from altering our determination of the task's
1464 * credentials; any time after this it may be unlocked.
1466 security_bprm_committed_creds(bprm
);
1467 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1469 EXPORT_SYMBOL(install_exec_creds
);
1472 * determine how safe it is to execute the proposed program
1473 * - the caller must hold ->cred_guard_mutex to protect against
1474 * PTRACE_ATTACH or seccomp thread-sync
1476 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1478 struct task_struct
*p
= current
, *t
;
1482 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1485 * This isn't strictly necessary, but it makes it harder for LSMs to
1488 if (task_no_new_privs(current
))
1489 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1493 spin_lock(&p
->fs
->lock
);
1495 while_each_thread(p
, t
) {
1501 if (p
->fs
->users
> n_fs
)
1502 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1505 spin_unlock(&p
->fs
->lock
);
1508 static void bprm_fill_uid(struct linux_binprm
*bprm
)
1510 struct inode
*inode
;
1516 * Since this can be called multiple times (via prepare_binprm),
1517 * we must clear any previous work done when setting set[ug]id
1518 * bits from any earlier bprm->file uses (for example when run
1519 * first for a setuid script then again for its interpreter).
1521 bprm
->cred
->euid
= current_euid();
1522 bprm
->cred
->egid
= current_egid();
1524 if (!mnt_may_suid(bprm
->file
->f_path
.mnt
))
1527 if (task_no_new_privs(current
))
1530 inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1531 mode
= READ_ONCE(inode
->i_mode
);
1532 if (!(mode
& (S_ISUID
|S_ISGID
)))
1535 /* Be careful if suid/sgid is set */
1538 /* reload atomically mode/uid/gid now that lock held */
1539 mode
= inode
->i_mode
;
1542 inode_unlock(inode
);
1544 /* We ignore suid/sgid if there are no mappings for them in the ns */
1545 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1546 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1549 if (mode
& S_ISUID
) {
1550 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1551 bprm
->cred
->euid
= uid
;
1554 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1555 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1556 bprm
->cred
->egid
= gid
;
1561 * Fill the binprm structure from the inode.
1562 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1564 * This may be called multiple times for binary chains (scripts for example).
1566 int prepare_binprm(struct linux_binprm
*bprm
)
1571 bprm_fill_uid(bprm
);
1573 /* fill in binprm security blob */
1574 retval
= security_bprm_set_creds(bprm
);
1577 bprm
->called_set_creds
= 1;
1579 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1580 return kernel_read(bprm
->file
, bprm
->buf
, BINPRM_BUF_SIZE
, &pos
);
1583 EXPORT_SYMBOL(prepare_binprm
);
1586 * Arguments are '\0' separated strings found at the location bprm->p
1587 * points to; chop off the first by relocating brpm->p to right after
1588 * the first '\0' encountered.
1590 int remove_arg_zero(struct linux_binprm
*bprm
)
1593 unsigned long offset
;
1601 offset
= bprm
->p
& ~PAGE_MASK
;
1602 page
= get_arg_page(bprm
, bprm
->p
, 0);
1607 kaddr
= kmap_atomic(page
);
1609 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1610 offset
++, bprm
->p
++)
1613 kunmap_atomic(kaddr
);
1615 } while (offset
== PAGE_SIZE
);
1624 EXPORT_SYMBOL(remove_arg_zero
);
1626 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1628 * cycle the list of binary formats handler, until one recognizes the image
1630 int search_binary_handler(struct linux_binprm
*bprm
)
1632 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1633 struct linux_binfmt
*fmt
;
1636 /* This allows 4 levels of binfmt rewrites before failing hard. */
1637 if (bprm
->recursion_depth
> 5)
1640 retval
= security_bprm_check(bprm
);
1646 read_lock(&binfmt_lock
);
1647 list_for_each_entry(fmt
, &formats
, lh
) {
1648 if (!try_module_get(fmt
->module
))
1650 read_unlock(&binfmt_lock
);
1651 bprm
->recursion_depth
++;
1652 retval
= fmt
->load_binary(bprm
);
1653 read_lock(&binfmt_lock
);
1655 bprm
->recursion_depth
--;
1656 if (retval
< 0 && !bprm
->mm
) {
1657 /* we got to flush_old_exec() and failed after it */
1658 read_unlock(&binfmt_lock
);
1659 force_sigsegv(SIGSEGV
, current
);
1662 if (retval
!= -ENOEXEC
|| !bprm
->file
) {
1663 read_unlock(&binfmt_lock
);
1667 read_unlock(&binfmt_lock
);
1670 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1671 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1673 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1681 EXPORT_SYMBOL(search_binary_handler
);
1683 static int exec_binprm(struct linux_binprm
*bprm
)
1685 pid_t old_pid
, old_vpid
;
1688 /* Need to fetch pid before load_binary changes it */
1689 old_pid
= current
->pid
;
1691 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1694 ret
= search_binary_handler(bprm
);
1697 trace_sched_process_exec(current
, old_pid
, bprm
);
1698 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1699 proc_exec_connector(current
);
1706 * sys_execve() executes a new program.
1708 static int __do_execve_file(int fd
, struct filename
*filename
,
1709 struct user_arg_ptr argv
,
1710 struct user_arg_ptr envp
,
1711 int flags
, struct file
*file
)
1713 char *pathbuf
= NULL
;
1714 struct linux_binprm
*bprm
;
1715 struct files_struct
*displaced
;
1718 if (IS_ERR(filename
))
1719 return PTR_ERR(filename
);
1722 * We move the actual failure in case of RLIMIT_NPROC excess from
1723 * set*uid() to execve() because too many poorly written programs
1724 * don't check setuid() return code. Here we additionally recheck
1725 * whether NPROC limit is still exceeded.
1727 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1728 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1733 /* We're below the limit (still or again), so we don't want to make
1734 * further execve() calls fail. */
1735 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1737 retval
= unshare_files(&displaced
);
1742 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1746 retval
= prepare_bprm_creds(bprm
);
1750 check_unsafe_exec(bprm
);
1751 current
->in_execve
= 1;
1754 file
= do_open_execat(fd
, filename
, flags
);
1755 retval
= PTR_ERR(file
);
1763 bprm
->filename
= "none";
1764 } else if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1765 bprm
->filename
= filename
->name
;
1767 if (filename
->name
[0] == '\0')
1768 pathbuf
= kasprintf(GFP_KERNEL
, "/dev/fd/%d", fd
);
1770 pathbuf
= kasprintf(GFP_KERNEL
, "/dev/fd/%d/%s",
1771 fd
, filename
->name
);
1777 * Record that a name derived from an O_CLOEXEC fd will be
1778 * inaccessible after exec. Relies on having exclusive access to
1779 * current->files (due to unshare_files above).
1781 if (close_on_exec(fd
, rcu_dereference_raw(current
->files
->fdt
)))
1782 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1783 bprm
->filename
= pathbuf
;
1785 bprm
->interp
= bprm
->filename
;
1787 retval
= bprm_mm_init(bprm
);
1791 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1792 if ((retval
= bprm
->argc
) < 0)
1795 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1796 if ((retval
= bprm
->envc
) < 0)
1799 retval
= prepare_binprm(bprm
);
1803 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1807 bprm
->exec
= bprm
->p
;
1808 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1812 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1816 would_dump(bprm
, bprm
->file
);
1818 retval
= exec_binprm(bprm
);
1822 /* execve succeeded */
1823 current
->fs
->in_exec
= 0;
1824 current
->in_execve
= 0;
1825 membarrier_execve(current
);
1826 rseq_execve(current
);
1827 acct_update_integrals(current
);
1828 task_numa_free(current
);
1834 put_files_struct(displaced
);
1839 acct_arg_size(bprm
, 0);
1844 current
->fs
->in_exec
= 0;
1845 current
->in_execve
= 0;
1853 reset_files_struct(displaced
);
1860 static int do_execveat_common(int fd
, struct filename
*filename
,
1861 struct user_arg_ptr argv
,
1862 struct user_arg_ptr envp
,
1865 return __do_execve_file(fd
, filename
, argv
, envp
, flags
, NULL
);
1868 int do_execve_file(struct file
*file
, void *__argv
, void *__envp
)
1870 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1871 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1873 return __do_execve_file(AT_FDCWD
, NULL
, argv
, envp
, 0, file
);
1876 int do_execve(struct filename
*filename
,
1877 const char __user
*const __user
*__argv
,
1878 const char __user
*const __user
*__envp
)
1880 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1881 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1882 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1885 int do_execveat(int fd
, struct filename
*filename
,
1886 const char __user
*const __user
*__argv
,
1887 const char __user
*const __user
*__envp
,
1890 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1891 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1893 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1896 #ifdef CONFIG_COMPAT
1897 static int compat_do_execve(struct filename
*filename
,
1898 const compat_uptr_t __user
*__argv
,
1899 const compat_uptr_t __user
*__envp
)
1901 struct user_arg_ptr argv
= {
1903 .ptr
.compat
= __argv
,
1905 struct user_arg_ptr envp
= {
1907 .ptr
.compat
= __envp
,
1909 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1912 static int compat_do_execveat(int fd
, struct filename
*filename
,
1913 const compat_uptr_t __user
*__argv
,
1914 const compat_uptr_t __user
*__envp
,
1917 struct user_arg_ptr argv
= {
1919 .ptr
.compat
= __argv
,
1921 struct user_arg_ptr envp
= {
1923 .ptr
.compat
= __envp
,
1925 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1929 void set_binfmt(struct linux_binfmt
*new)
1931 struct mm_struct
*mm
= current
->mm
;
1934 module_put(mm
->binfmt
->module
);
1938 __module_get(new->module
);
1940 EXPORT_SYMBOL(set_binfmt
);
1943 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1945 void set_dumpable(struct mm_struct
*mm
, int value
)
1947 unsigned long old
, new;
1949 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
1953 old
= READ_ONCE(mm
->flags
);
1954 new = (old
& ~MMF_DUMPABLE_MASK
) | value
;
1955 } while (cmpxchg(&mm
->flags
, old
, new) != old
);
1958 SYSCALL_DEFINE3(execve
,
1959 const char __user
*, filename
,
1960 const char __user
*const __user
*, argv
,
1961 const char __user
*const __user
*, envp
)
1963 return do_execve(getname(filename
), argv
, envp
);
1966 SYSCALL_DEFINE5(execveat
,
1967 int, fd
, const char __user
*, filename
,
1968 const char __user
*const __user
*, argv
,
1969 const char __user
*const __user
*, envp
,
1972 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1974 return do_execveat(fd
,
1975 getname_flags(filename
, lookup_flags
, NULL
),
1979 #ifdef CONFIG_COMPAT
1980 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
1981 const compat_uptr_t __user
*, argv
,
1982 const compat_uptr_t __user
*, envp
)
1984 return compat_do_execve(getname(filename
), argv
, envp
);
1987 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
1988 const char __user
*, filename
,
1989 const compat_uptr_t __user
*, argv
,
1990 const compat_uptr_t __user
*, envp
,
1993 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1995 return compat_do_execveat(fd
,
1996 getname_flags(filename
, lookup_flags
, NULL
),