4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
70 #include <trace/events/task.h>
73 #include <trace/events/sched.h>
75 int suid_dumpable
= 0;
77 static LIST_HEAD(formats
);
78 static DEFINE_RWLOCK(binfmt_lock
);
80 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
83 if (WARN_ON(!fmt
->load_binary
))
85 write_lock(&binfmt_lock
);
86 insert
? list_add(&fmt
->lh
, &formats
) :
87 list_add_tail(&fmt
->lh
, &formats
);
88 write_unlock(&binfmt_lock
);
91 EXPORT_SYMBOL(__register_binfmt
);
93 void unregister_binfmt(struct linux_binfmt
* fmt
)
95 write_lock(&binfmt_lock
);
97 write_unlock(&binfmt_lock
);
100 EXPORT_SYMBOL(unregister_binfmt
);
102 static inline void put_binfmt(struct linux_binfmt
* fmt
)
104 module_put(fmt
->module
);
107 bool path_noexec(const struct path
*path
)
109 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
110 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
115 * Note that a shared library must be both readable and executable due to
118 * Also note that we take the address to load from from the file itself.
120 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
122 struct linux_binfmt
*fmt
;
124 struct filename
*tmp
= getname(library
);
125 int error
= PTR_ERR(tmp
);
126 static const struct open_flags uselib_flags
= {
127 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
128 .acc_mode
= MAY_READ
| MAY_EXEC
,
129 .intent
= LOOKUP_OPEN
,
130 .lookup_flags
= LOOKUP_FOLLOW
,
136 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
138 error
= PTR_ERR(file
);
143 if (!S_ISREG(file_inode(file
)->i_mode
))
147 if (path_noexec(&file
->f_path
))
154 read_lock(&binfmt_lock
);
155 list_for_each_entry(fmt
, &formats
, lh
) {
156 if (!fmt
->load_shlib
)
158 if (!try_module_get(fmt
->module
))
160 read_unlock(&binfmt_lock
);
161 error
= fmt
->load_shlib(file
);
162 read_lock(&binfmt_lock
);
164 if (error
!= -ENOEXEC
)
167 read_unlock(&binfmt_lock
);
173 #endif /* #ifdef CONFIG_USELIB */
177 * The nascent bprm->mm is not visible until exec_mmap() but it can
178 * use a lot of memory, account these pages in current->mm temporary
179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180 * change the counter back via acct_arg_size(0).
182 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
184 struct mm_struct
*mm
= current
->mm
;
185 long diff
= (long)(pages
- bprm
->vma_pages
);
190 bprm
->vma_pages
= pages
;
191 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
194 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
199 unsigned int gup_flags
= FOLL_FORCE
;
201 #ifdef CONFIG_STACK_GROWSUP
203 ret
= expand_downwards(bprm
->vma
, pos
);
210 gup_flags
|= FOLL_WRITE
;
213 * We are doing an exec(). 'current' is the process
214 * doing the exec and bprm->mm is the new process's mm.
216 ret
= get_user_pages_remote(current
, bprm
->mm
, pos
, 1, gup_flags
,
222 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
223 unsigned long ptr_size
, limit
;
226 * Since the stack will hold pointers to the strings, we
227 * must account for them as well.
229 * The size calculation is the entire vma while each arg page is
230 * built, so each time we get here it's calculating how far it
231 * is currently (rather than each call being just the newly
232 * added size from the arg page). As a result, we need to
233 * always add the entire size of the pointers, so that on the
234 * last call to get_arg_page() we'll actually have the entire
237 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
238 if (ptr_size
> ULONG_MAX
- size
)
242 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
245 * We've historically supported up to 32 pages (ARG_MAX)
246 * of argument strings even with small stacks
252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 * (whichever is smaller) for the argv+env strings.
255 * - the remaining binfmt code will not run out of stack space,
256 * - the program will have a reasonable amount of stack left
259 limit
= _STK_LIM
/ 4 * 3;
260 limit
= min(limit
, rlimit(RLIMIT_STACK
) / 4);
272 static void put_arg_page(struct page
*page
)
277 static void free_arg_pages(struct linux_binprm
*bprm
)
281 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
284 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
287 static int __bprm_mm_init(struct linux_binprm
*bprm
)
290 struct vm_area_struct
*vma
= NULL
;
291 struct mm_struct
*mm
= bprm
->mm
;
293 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
297 if (down_write_killable(&mm
->mmap_sem
)) {
304 * Place the stack at the largest stack address the architecture
305 * supports. Later, we'll move this to an appropriate place. We don't
306 * use STACK_TOP because that can depend on attributes which aren't
309 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
310 vma
->vm_end
= STACK_TOP_MAX
;
311 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
312 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
313 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
314 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
316 err
= insert_vm_struct(mm
, vma
);
320 mm
->stack_vm
= mm
->total_vm
= 1;
321 arch_bprm_mm_init(mm
, vma
);
322 up_write(&mm
->mmap_sem
);
323 bprm
->p
= vma
->vm_end
- sizeof(void *);
326 up_write(&mm
->mmap_sem
);
329 kmem_cache_free(vm_area_cachep
, vma
);
333 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
335 return len
<= MAX_ARG_STRLEN
;
340 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
344 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
349 page
= bprm
->page
[pos
/ PAGE_SIZE
];
350 if (!page
&& write
) {
351 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
354 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
360 static void put_arg_page(struct page
*page
)
364 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
367 __free_page(bprm
->page
[i
]);
368 bprm
->page
[i
] = NULL
;
372 static void free_arg_pages(struct linux_binprm
*bprm
)
376 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
377 free_arg_page(bprm
, i
);
380 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
385 static int __bprm_mm_init(struct linux_binprm
*bprm
)
387 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
391 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
393 return len
<= bprm
->p
;
396 #endif /* CONFIG_MMU */
399 * Create a new mm_struct and populate it with a temporary stack
400 * vm_area_struct. We don't have enough context at this point to set the stack
401 * flags, permissions, and offset, so we use temporary values. We'll update
402 * them later in setup_arg_pages().
404 static int bprm_mm_init(struct linux_binprm
*bprm
)
407 struct mm_struct
*mm
= NULL
;
409 bprm
->mm
= mm
= mm_alloc();
414 err
= __bprm_mm_init(bprm
);
429 struct user_arg_ptr
{
434 const char __user
*const __user
*native
;
436 const compat_uptr_t __user
*compat
;
441 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
443 const char __user
*native
;
446 if (unlikely(argv
.is_compat
)) {
447 compat_uptr_t compat
;
449 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
450 return ERR_PTR(-EFAULT
);
452 return compat_ptr(compat
);
456 if (get_user(native
, argv
.ptr
.native
+ nr
))
457 return ERR_PTR(-EFAULT
);
463 * count() counts the number of strings in array ARGV.
465 static int count(struct user_arg_ptr argv
, int max
)
469 if (argv
.ptr
.native
!= NULL
) {
471 const char __user
*p
= get_user_arg_ptr(argv
, i
);
483 if (fatal_signal_pending(current
))
484 return -ERESTARTNOHAND
;
492 * 'copy_strings()' copies argument/environment strings from the old
493 * processes's memory to the new process's stack. The call to get_user_pages()
494 * ensures the destination page is created and not swapped out.
496 static int copy_strings(int argc
, struct user_arg_ptr argv
,
497 struct linux_binprm
*bprm
)
499 struct page
*kmapped_page
= NULL
;
501 unsigned long kpos
= 0;
505 const char __user
*str
;
510 str
= get_user_arg_ptr(argv
, argc
);
514 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
519 if (!valid_arg_len(bprm
, len
))
522 /* We're going to work our way backwords. */
528 int offset
, bytes_to_copy
;
530 if (fatal_signal_pending(current
)) {
531 ret
= -ERESTARTNOHAND
;
536 offset
= pos
% PAGE_SIZE
;
540 bytes_to_copy
= offset
;
541 if (bytes_to_copy
> len
)
544 offset
-= bytes_to_copy
;
545 pos
-= bytes_to_copy
;
546 str
-= bytes_to_copy
;
547 len
-= bytes_to_copy
;
549 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
552 page
= get_arg_page(bprm
, pos
, 1);
559 flush_kernel_dcache_page(kmapped_page
);
560 kunmap(kmapped_page
);
561 put_arg_page(kmapped_page
);
564 kaddr
= kmap(kmapped_page
);
565 kpos
= pos
& PAGE_MASK
;
566 flush_arg_page(bprm
, kpos
, kmapped_page
);
568 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
577 flush_kernel_dcache_page(kmapped_page
);
578 kunmap(kmapped_page
);
579 put_arg_page(kmapped_page
);
585 * Like copy_strings, but get argv and its values from kernel memory.
587 int copy_strings_kernel(int argc
, const char *const *__argv
,
588 struct linux_binprm
*bprm
)
591 mm_segment_t oldfs
= get_fs();
592 struct user_arg_ptr argv
= {
593 .ptr
.native
= (const char __user
*const __user
*)__argv
,
597 r
= copy_strings(argc
, argv
, bprm
);
602 EXPORT_SYMBOL(copy_strings_kernel
);
607 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
608 * the binfmt code determines where the new stack should reside, we shift it to
609 * its final location. The process proceeds as follows:
611 * 1) Use shift to calculate the new vma endpoints.
612 * 2) Extend vma to cover both the old and new ranges. This ensures the
613 * arguments passed to subsequent functions are consistent.
614 * 3) Move vma's page tables to the new range.
615 * 4) Free up any cleared pgd range.
616 * 5) Shrink the vma to cover only the new range.
618 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
620 struct mm_struct
*mm
= vma
->vm_mm
;
621 unsigned long old_start
= vma
->vm_start
;
622 unsigned long old_end
= vma
->vm_end
;
623 unsigned long length
= old_end
- old_start
;
624 unsigned long new_start
= old_start
- shift
;
625 unsigned long new_end
= old_end
- shift
;
626 struct mmu_gather tlb
;
628 BUG_ON(new_start
> new_end
);
631 * ensure there are no vmas between where we want to go
634 if (vma
!= find_vma(mm
, new_start
))
638 * cover the whole range: [new_start, old_end)
640 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
644 * move the page tables downwards, on failure we rely on
645 * process cleanup to remove whatever mess we made.
647 if (length
!= move_page_tables(vma
, old_start
,
648 vma
, new_start
, length
, false))
652 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
653 if (new_end
> old_start
) {
655 * when the old and new regions overlap clear from new_end.
657 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
658 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
661 * otherwise, clean from old_start; this is done to not touch
662 * the address space in [new_end, old_start) some architectures
663 * have constraints on va-space that make this illegal (IA64) -
664 * for the others its just a little faster.
666 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
667 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
669 tlb_finish_mmu(&tlb
, old_start
, old_end
);
672 * Shrink the vma to just the new range. Always succeeds.
674 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
680 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
681 * the stack is optionally relocated, and some extra space is added.
683 int setup_arg_pages(struct linux_binprm
*bprm
,
684 unsigned long stack_top
,
685 int executable_stack
)
688 unsigned long stack_shift
;
689 struct mm_struct
*mm
= current
->mm
;
690 struct vm_area_struct
*vma
= bprm
->vma
;
691 struct vm_area_struct
*prev
= NULL
;
692 unsigned long vm_flags
;
693 unsigned long stack_base
;
694 unsigned long stack_size
;
695 unsigned long stack_expand
;
696 unsigned long rlim_stack
;
698 #ifdef CONFIG_STACK_GROWSUP
699 /* Limit stack size */
700 stack_base
= rlimit_max(RLIMIT_STACK
);
701 if (stack_base
> STACK_SIZE_MAX
)
702 stack_base
= STACK_SIZE_MAX
;
704 /* Add space for stack randomization. */
705 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
707 /* Make sure we didn't let the argument array grow too large. */
708 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
711 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
713 stack_shift
= vma
->vm_start
- stack_base
;
714 mm
->arg_start
= bprm
->p
- stack_shift
;
715 bprm
->p
= vma
->vm_end
- stack_shift
;
717 stack_top
= arch_align_stack(stack_top
);
718 stack_top
= PAGE_ALIGN(stack_top
);
720 if (unlikely(stack_top
< mmap_min_addr
) ||
721 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
724 stack_shift
= vma
->vm_end
- stack_top
;
726 bprm
->p
-= stack_shift
;
727 mm
->arg_start
= bprm
->p
;
731 bprm
->loader
-= stack_shift
;
732 bprm
->exec
-= stack_shift
;
734 if (down_write_killable(&mm
->mmap_sem
))
737 vm_flags
= VM_STACK_FLAGS
;
740 * Adjust stack execute permissions; explicitly enable for
741 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
742 * (arch default) otherwise.
744 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
746 else if (executable_stack
== EXSTACK_DISABLE_X
)
747 vm_flags
&= ~VM_EXEC
;
748 vm_flags
|= mm
->def_flags
;
749 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
751 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
757 /* Move stack pages down in memory. */
759 ret
= shift_arg_pages(vma
, stack_shift
);
764 /* mprotect_fixup is overkill to remove the temporary stack flags */
765 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
767 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
768 stack_size
= vma
->vm_end
- vma
->vm_start
;
770 * Align this down to a page boundary as expand_stack
773 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
774 #ifdef CONFIG_STACK_GROWSUP
775 if (stack_size
+ stack_expand
> rlim_stack
)
776 stack_base
= vma
->vm_start
+ rlim_stack
;
778 stack_base
= vma
->vm_end
+ stack_expand
;
780 if (stack_size
+ stack_expand
> rlim_stack
)
781 stack_base
= vma
->vm_end
- rlim_stack
;
783 stack_base
= vma
->vm_start
- stack_expand
;
785 current
->mm
->start_stack
= bprm
->p
;
786 ret
= expand_stack(vma
, stack_base
);
791 up_write(&mm
->mmap_sem
);
794 EXPORT_SYMBOL(setup_arg_pages
);
799 * Transfer the program arguments and environment from the holding pages
800 * onto the stack. The provided stack pointer is adjusted accordingly.
802 int transfer_args_to_stack(struct linux_binprm
*bprm
,
803 unsigned long *sp_location
)
805 unsigned long index
, stop
, sp
;
808 stop
= bprm
->p
>> PAGE_SHIFT
;
811 for (index
= MAX_ARG_PAGES
- 1; index
>= stop
; index
--) {
812 unsigned int offset
= index
== stop
? bprm
->p
& ~PAGE_MASK
: 0;
813 char *src
= kmap(bprm
->page
[index
]) + offset
;
814 sp
-= PAGE_SIZE
- offset
;
815 if (copy_to_user((void *) sp
, src
, PAGE_SIZE
- offset
) != 0)
817 kunmap(bprm
->page
[index
]);
827 EXPORT_SYMBOL(transfer_args_to_stack
);
829 #endif /* CONFIG_MMU */
831 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
835 struct open_flags open_exec_flags
= {
836 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
837 .acc_mode
= MAY_EXEC
,
838 .intent
= LOOKUP_OPEN
,
839 .lookup_flags
= LOOKUP_FOLLOW
,
842 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
843 return ERR_PTR(-EINVAL
);
844 if (flags
& AT_SYMLINK_NOFOLLOW
)
845 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
846 if (flags
& AT_EMPTY_PATH
)
847 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
849 file
= do_filp_open(fd
, name
, &open_exec_flags
);
854 if (!S_ISREG(file_inode(file
)->i_mode
))
857 if (path_noexec(&file
->f_path
))
860 err
= deny_write_access(file
);
864 if (name
->name
[0] != '\0')
875 struct file
*open_exec(const char *name
)
877 struct filename
*filename
= getname_kernel(name
);
878 struct file
*f
= ERR_CAST(filename
);
880 if (!IS_ERR(filename
)) {
881 f
= do_open_execat(AT_FDCWD
, filename
, 0);
886 EXPORT_SYMBOL(open_exec
);
888 int kernel_read(struct file
*file
, loff_t offset
,
889 char *addr
, unsigned long count
)
897 /* The cast to a user pointer is valid due to the set_fs() */
898 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
903 EXPORT_SYMBOL(kernel_read
);
905 int kernel_read_file(struct file
*file
, void **buf
, loff_t
*size
,
906 loff_t max_size
, enum kernel_read_file_id id
)
912 if (!S_ISREG(file_inode(file
)->i_mode
) || max_size
< 0)
915 ret
= security_kernel_read_file(file
, id
);
919 ret
= deny_write_access(file
);
923 i_size
= i_size_read(file_inode(file
));
924 if (max_size
> 0 && i_size
> max_size
) {
933 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
)
934 *buf
= vmalloc(i_size
);
941 while (pos
< i_size
) {
942 bytes
= kernel_read(file
, pos
, (char *)(*buf
) + pos
,
959 ret
= security_kernel_post_read_file(file
, *buf
, i_size
, id
);
965 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
) {
972 allow_write_access(file
);
975 EXPORT_SYMBOL_GPL(kernel_read_file
);
977 int kernel_read_file_from_path(char *path
, void **buf
, loff_t
*size
,
978 loff_t max_size
, enum kernel_read_file_id id
)
986 file
= filp_open(path
, O_RDONLY
, 0);
988 return PTR_ERR(file
);
990 ret
= kernel_read_file(file
, buf
, size
, max_size
, id
);
994 EXPORT_SYMBOL_GPL(kernel_read_file_from_path
);
996 int kernel_read_file_from_fd(int fd
, void **buf
, loff_t
*size
, loff_t max_size
,
997 enum kernel_read_file_id id
)
999 struct fd f
= fdget(fd
);
1005 ret
= kernel_read_file(f
.file
, buf
, size
, max_size
, id
);
1010 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd
);
1012 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
1014 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
1016 flush_icache_range(addr
, addr
+ len
);
1019 EXPORT_SYMBOL(read_code
);
1021 static int exec_mmap(struct mm_struct
*mm
)
1023 struct task_struct
*tsk
;
1024 struct mm_struct
*old_mm
, *active_mm
;
1026 /* Notify parent that we're no longer interested in the old VM */
1028 old_mm
= current
->mm
;
1029 mm_release(tsk
, old_mm
);
1032 sync_mm_rss(old_mm
);
1034 * Make sure that if there is a core dump in progress
1035 * for the old mm, we get out and die instead of going
1036 * through with the exec. We must hold mmap_sem around
1037 * checking core_state and changing tsk->mm.
1039 down_read(&old_mm
->mmap_sem
);
1040 if (unlikely(old_mm
->core_state
)) {
1041 up_read(&old_mm
->mmap_sem
);
1046 active_mm
= tsk
->active_mm
;
1048 tsk
->active_mm
= mm
;
1049 activate_mm(active_mm
, mm
);
1050 tsk
->mm
->vmacache_seqnum
= 0;
1051 vmacache_flush(tsk
);
1054 up_read(&old_mm
->mmap_sem
);
1055 BUG_ON(active_mm
!= old_mm
);
1056 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
1057 mm_update_next_owner(old_mm
);
1066 * This function makes sure the current process has its own signal table,
1067 * so that flush_signal_handlers can later reset the handlers without
1068 * disturbing other processes. (Other processes might share the signal
1069 * table via the CLONE_SIGHAND option to clone().)
1071 static int de_thread(struct task_struct
*tsk
)
1073 struct signal_struct
*sig
= tsk
->signal
;
1074 struct sighand_struct
*oldsighand
= tsk
->sighand
;
1075 spinlock_t
*lock
= &oldsighand
->siglock
;
1077 if (thread_group_empty(tsk
))
1078 goto no_thread_group
;
1081 * Kill all other threads in the thread group.
1083 spin_lock_irq(lock
);
1084 if (signal_group_exit(sig
)) {
1086 * Another group action in progress, just
1087 * return so that the signal is processed.
1089 spin_unlock_irq(lock
);
1093 sig
->group_exit_task
= tsk
;
1094 sig
->notify_count
= zap_other_threads(tsk
);
1095 if (!thread_group_leader(tsk
))
1096 sig
->notify_count
--;
1098 while (sig
->notify_count
) {
1099 __set_current_state(TASK_KILLABLE
);
1100 spin_unlock_irq(lock
);
1102 if (unlikely(__fatal_signal_pending(tsk
)))
1104 spin_lock_irq(lock
);
1106 spin_unlock_irq(lock
);
1109 * At this point all other threads have exited, all we have to
1110 * do is to wait for the thread group leader to become inactive,
1111 * and to assume its PID:
1113 if (!thread_group_leader(tsk
)) {
1114 struct task_struct
*leader
= tsk
->group_leader
;
1117 cgroup_threadgroup_change_begin(tsk
);
1118 write_lock_irq(&tasklist_lock
);
1120 * Do this under tasklist_lock to ensure that
1121 * exit_notify() can't miss ->group_exit_task
1123 sig
->notify_count
= -1;
1124 if (likely(leader
->exit_state
))
1126 __set_current_state(TASK_KILLABLE
);
1127 write_unlock_irq(&tasklist_lock
);
1128 cgroup_threadgroup_change_end(tsk
);
1130 if (unlikely(__fatal_signal_pending(tsk
)))
1135 * The only record we have of the real-time age of a
1136 * process, regardless of execs it's done, is start_time.
1137 * All the past CPU time is accumulated in signal_struct
1138 * from sister threads now dead. But in this non-leader
1139 * exec, nothing survives from the original leader thread,
1140 * whose birth marks the true age of this process now.
1141 * When we take on its identity by switching to its PID, we
1142 * also take its birthdate (always earlier than our own).
1144 tsk
->start_time
= leader
->start_time
;
1145 tsk
->real_start_time
= leader
->real_start_time
;
1147 BUG_ON(!same_thread_group(leader
, tsk
));
1148 BUG_ON(has_group_leader_pid(tsk
));
1150 * An exec() starts a new thread group with the
1151 * TGID of the previous thread group. Rehash the
1152 * two threads with a switched PID, and release
1153 * the former thread group leader:
1156 /* Become a process group leader with the old leader's pid.
1157 * The old leader becomes a thread of the this thread group.
1158 * Note: The old leader also uses this pid until release_task
1159 * is called. Odd but simple and correct.
1161 tsk
->pid
= leader
->pid
;
1162 change_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
1163 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1164 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1166 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1167 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1169 tsk
->group_leader
= tsk
;
1170 leader
->group_leader
= tsk
;
1172 tsk
->exit_signal
= SIGCHLD
;
1173 leader
->exit_signal
= -1;
1175 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1176 leader
->exit_state
= EXIT_DEAD
;
1179 * We are going to release_task()->ptrace_unlink() silently,
1180 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1181 * the tracer wont't block again waiting for this thread.
1183 if (unlikely(leader
->ptrace
))
1184 __wake_up_parent(leader
, leader
->parent
);
1185 write_unlock_irq(&tasklist_lock
);
1186 cgroup_threadgroup_change_end(tsk
);
1188 release_task(leader
);
1191 sig
->group_exit_task
= NULL
;
1192 sig
->notify_count
= 0;
1195 /* we have changed execution domain */
1196 tsk
->exit_signal
= SIGCHLD
;
1198 #ifdef CONFIG_POSIX_TIMERS
1200 flush_itimer_signals();
1203 if (atomic_read(&oldsighand
->count
) != 1) {
1204 struct sighand_struct
*newsighand
;
1206 * This ->sighand is shared with the CLONE_SIGHAND
1207 * but not CLONE_THREAD task, switch to the new one.
1209 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1213 atomic_set(&newsighand
->count
, 1);
1214 memcpy(newsighand
->action
, oldsighand
->action
,
1215 sizeof(newsighand
->action
));
1217 write_lock_irq(&tasklist_lock
);
1218 spin_lock(&oldsighand
->siglock
);
1219 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1220 spin_unlock(&oldsighand
->siglock
);
1221 write_unlock_irq(&tasklist_lock
);
1223 __cleanup_sighand(oldsighand
);
1226 BUG_ON(!thread_group_leader(tsk
));
1230 /* protects against exit_notify() and __exit_signal() */
1231 read_lock(&tasklist_lock
);
1232 sig
->group_exit_task
= NULL
;
1233 sig
->notify_count
= 0;
1234 read_unlock(&tasklist_lock
);
1238 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1240 /* buf must be at least sizeof(tsk->comm) in size */
1242 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1246 EXPORT_SYMBOL_GPL(get_task_comm
);
1249 * These functions flushes out all traces of the currently running executable
1250 * so that a new one can be started
1253 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1256 trace_task_rename(tsk
, buf
);
1257 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1259 perf_event_comm(tsk
, exec
);
1263 * Calling this is the point of no return. None of the failures will be
1264 * seen by userspace since either the process is already taking a fatal
1265 * signal (via de_thread() or coredump), or will have SEGV raised
1266 * (after exec_mmap()) by search_binary_handlers (see below).
1268 int flush_old_exec(struct linux_binprm
* bprm
)
1273 * Make sure we have a private signal table and that
1274 * we are unassociated from the previous thread group.
1276 retval
= de_thread(current
);
1281 * Must be called _before_ exec_mmap() as bprm->mm is
1282 * not visibile until then. This also enables the update
1285 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1288 * Release all of the old mmap stuff
1290 acct_arg_size(bprm
, 0);
1291 retval
= exec_mmap(bprm
->mm
);
1296 * After clearing bprm->mm (to mark that current is using the
1297 * prepared mm now), we have nothing left of the original
1298 * process. If anything from here on returns an error, the check
1299 * in search_binary_handler() will SEGV current.
1304 current
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1305 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1307 current
->personality
&= ~bprm
->per_clear
;
1310 * We have to apply CLOEXEC before we change whether the process is
1311 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1312 * trying to access the should-be-closed file descriptors of a process
1313 * undergoing exec(2).
1315 do_close_on_exec(current
->files
);
1321 EXPORT_SYMBOL(flush_old_exec
);
1323 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1325 struct inode
*inode
= file_inode(file
);
1326 if (inode_permission(inode
, MAY_READ
) < 0) {
1327 struct user_namespace
*old
, *user_ns
;
1328 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1330 /* Ensure mm->user_ns contains the executable */
1331 user_ns
= old
= bprm
->mm
->user_ns
;
1332 while ((user_ns
!= &init_user_ns
) &&
1333 !privileged_wrt_inode_uidgid(user_ns
, inode
))
1334 user_ns
= user_ns
->parent
;
1336 if (old
!= user_ns
) {
1337 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1342 EXPORT_SYMBOL(would_dump
);
1344 void setup_new_exec(struct linux_binprm
* bprm
)
1347 * Once here, prepare_binrpm() will not be called any more, so
1348 * the final state of setuid/setgid/fscaps can be merged into the
1351 bprm
->secureexec
|= bprm
->cap_elevated
;
1353 if (bprm
->secureexec
) {
1354 /* Make sure parent cannot signal privileged process. */
1355 current
->pdeath_signal
= 0;
1358 * For secureexec, reset the stack limit to sane default to
1359 * avoid bad behavior from the prior rlimits. This has to
1360 * happen before arch_pick_mmap_layout(), which examines
1361 * RLIMIT_STACK, but after the point of no return to avoid
1362 * needing to clean up the change on failure.
1364 if (current
->signal
->rlim
[RLIMIT_STACK
].rlim_cur
> _STK_LIM
)
1365 current
->signal
->rlim
[RLIMIT_STACK
].rlim_cur
= _STK_LIM
;
1368 arch_pick_mmap_layout(current
->mm
);
1370 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1372 /* Figure out dumpability. */
1373 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
||
1375 set_dumpable(current
->mm
, suid_dumpable
);
1377 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1379 arch_setup_new_exec();
1381 __set_task_comm(current
, kbasename(bprm
->filename
), true);
1383 /* Set the new mm task size. We have to do that late because it may
1384 * depend on TIF_32BIT which is only updated in flush_thread() on
1385 * some architectures like powerpc
1387 current
->mm
->task_size
= TASK_SIZE
;
1389 /* An exec changes our domain. We are no longer part of the thread
1391 current
->self_exec_id
++;
1392 flush_signal_handlers(current
, 0);
1394 EXPORT_SYMBOL(setup_new_exec
);
1397 * Prepare credentials and lock ->cred_guard_mutex.
1398 * install_exec_creds() commits the new creds and drops the lock.
1399 * Or, if exec fails before, free_bprm() should release ->cred and
1402 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1404 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1405 return -ERESTARTNOINTR
;
1407 bprm
->cred
= prepare_exec_creds();
1408 if (likely(bprm
->cred
))
1411 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1415 static void free_bprm(struct linux_binprm
*bprm
)
1417 free_arg_pages(bprm
);
1419 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1420 abort_creds(bprm
->cred
);
1423 allow_write_access(bprm
->file
);
1426 /* If a binfmt changed the interp, free it. */
1427 if (bprm
->interp
!= bprm
->filename
)
1428 kfree(bprm
->interp
);
1432 int bprm_change_interp(char *interp
, struct linux_binprm
*bprm
)
1434 /* If a binfmt changed the interp, free it first. */
1435 if (bprm
->interp
!= bprm
->filename
)
1436 kfree(bprm
->interp
);
1437 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1442 EXPORT_SYMBOL(bprm_change_interp
);
1445 * install the new credentials for this executable
1447 void install_exec_creds(struct linux_binprm
*bprm
)
1449 security_bprm_committing_creds(bprm
);
1451 commit_creds(bprm
->cred
);
1455 * Disable monitoring for regular users
1456 * when executing setuid binaries. Must
1457 * wait until new credentials are committed
1458 * by commit_creds() above
1460 if (get_dumpable(current
->mm
) != SUID_DUMP_USER
)
1461 perf_event_exit_task(current
);
1463 * cred_guard_mutex must be held at least to this point to prevent
1464 * ptrace_attach() from altering our determination of the task's
1465 * credentials; any time after this it may be unlocked.
1467 security_bprm_committed_creds(bprm
);
1468 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1470 EXPORT_SYMBOL(install_exec_creds
);
1473 * determine how safe it is to execute the proposed program
1474 * - the caller must hold ->cred_guard_mutex to protect against
1475 * PTRACE_ATTACH or seccomp thread-sync
1477 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1479 struct task_struct
*p
= current
, *t
;
1483 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1486 * This isn't strictly necessary, but it makes it harder for LSMs to
1489 if (task_no_new_privs(current
))
1490 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1494 spin_lock(&p
->fs
->lock
);
1496 while_each_thread(p
, t
) {
1502 if (p
->fs
->users
> n_fs
)
1503 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1506 spin_unlock(&p
->fs
->lock
);
1509 static void bprm_fill_uid(struct linux_binprm
*bprm
)
1511 struct inode
*inode
;
1517 * Since this can be called multiple times (via prepare_binprm),
1518 * we must clear any previous work done when setting set[ug]id
1519 * bits from any earlier bprm->file uses (for example when run
1520 * first for a setuid script then again for its interpreter).
1522 bprm
->cred
->euid
= current_euid();
1523 bprm
->cred
->egid
= current_egid();
1525 if (!mnt_may_suid(bprm
->file
->f_path
.mnt
))
1528 if (task_no_new_privs(current
))
1531 inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1532 mode
= READ_ONCE(inode
->i_mode
);
1533 if (!(mode
& (S_ISUID
|S_ISGID
)))
1536 /* Be careful if suid/sgid is set */
1539 /* reload atomically mode/uid/gid now that lock held */
1540 mode
= inode
->i_mode
;
1543 inode_unlock(inode
);
1545 /* We ignore suid/sgid if there are no mappings for them in the ns */
1546 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1547 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1550 if (mode
& S_ISUID
) {
1551 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1552 bprm
->cred
->euid
= uid
;
1555 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1556 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1557 bprm
->cred
->egid
= gid
;
1562 * Fill the binprm structure from the inode.
1563 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1565 * This may be called multiple times for binary chains (scripts for example).
1567 int prepare_binprm(struct linux_binprm
*bprm
)
1571 bprm_fill_uid(bprm
);
1573 /* fill in binprm security blob */
1574 retval
= security_bprm_set_creds(bprm
);
1577 bprm
->called_set_creds
= 1;
1579 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1580 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1583 EXPORT_SYMBOL(prepare_binprm
);
1586 * Arguments are '\0' separated strings found at the location bprm->p
1587 * points to; chop off the first by relocating brpm->p to right after
1588 * the first '\0' encountered.
1590 int remove_arg_zero(struct linux_binprm
*bprm
)
1593 unsigned long offset
;
1601 offset
= bprm
->p
& ~PAGE_MASK
;
1602 page
= get_arg_page(bprm
, bprm
->p
, 0);
1607 kaddr
= kmap_atomic(page
);
1609 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1610 offset
++, bprm
->p
++)
1613 kunmap_atomic(kaddr
);
1615 } while (offset
== PAGE_SIZE
);
1624 EXPORT_SYMBOL(remove_arg_zero
);
1626 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1628 * cycle the list of binary formats handler, until one recognizes the image
1630 int search_binary_handler(struct linux_binprm
*bprm
)
1632 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1633 struct linux_binfmt
*fmt
;
1636 /* This allows 4 levels of binfmt rewrites before failing hard. */
1637 if (bprm
->recursion_depth
> 5)
1640 retval
= security_bprm_check(bprm
);
1646 read_lock(&binfmt_lock
);
1647 list_for_each_entry(fmt
, &formats
, lh
) {
1648 if (!try_module_get(fmt
->module
))
1650 read_unlock(&binfmt_lock
);
1651 bprm
->recursion_depth
++;
1652 retval
= fmt
->load_binary(bprm
);
1653 read_lock(&binfmt_lock
);
1655 bprm
->recursion_depth
--;
1656 if (retval
< 0 && !bprm
->mm
) {
1657 /* we got to flush_old_exec() and failed after it */
1658 read_unlock(&binfmt_lock
);
1659 force_sigsegv(SIGSEGV
, current
);
1662 if (retval
!= -ENOEXEC
|| !bprm
->file
) {
1663 read_unlock(&binfmt_lock
);
1667 read_unlock(&binfmt_lock
);
1670 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1671 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1673 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1681 EXPORT_SYMBOL(search_binary_handler
);
1683 static int exec_binprm(struct linux_binprm
*bprm
)
1685 pid_t old_pid
, old_vpid
;
1688 /* Need to fetch pid before load_binary changes it */
1689 old_pid
= current
->pid
;
1691 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1694 ret
= search_binary_handler(bprm
);
1697 trace_sched_process_exec(current
, old_pid
, bprm
);
1698 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1699 proc_exec_connector(current
);
1706 * sys_execve() executes a new program.
1708 static int do_execveat_common(int fd
, struct filename
*filename
,
1709 struct user_arg_ptr argv
,
1710 struct user_arg_ptr envp
,
1713 char *pathbuf
= NULL
;
1714 struct linux_binprm
*bprm
;
1716 struct files_struct
*displaced
;
1719 if (IS_ERR(filename
))
1720 return PTR_ERR(filename
);
1723 * We move the actual failure in case of RLIMIT_NPROC excess from
1724 * set*uid() to execve() because too many poorly written programs
1725 * don't check setuid() return code. Here we additionally recheck
1726 * whether NPROC limit is still exceeded.
1728 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1729 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1734 /* We're below the limit (still or again), so we don't want to make
1735 * further execve() calls fail. */
1736 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1738 retval
= unshare_files(&displaced
);
1743 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1747 retval
= prepare_bprm_creds(bprm
);
1751 check_unsafe_exec(bprm
);
1752 current
->in_execve
= 1;
1754 file
= do_open_execat(fd
, filename
, flags
);
1755 retval
= PTR_ERR(file
);
1762 if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1763 bprm
->filename
= filename
->name
;
1765 if (filename
->name
[0] == '\0')
1766 pathbuf
= kasprintf(GFP_KERNEL
, "/dev/fd/%d", fd
);
1768 pathbuf
= kasprintf(GFP_KERNEL
, "/dev/fd/%d/%s",
1769 fd
, filename
->name
);
1775 * Record that a name derived from an O_CLOEXEC fd will be
1776 * inaccessible after exec. Relies on having exclusive access to
1777 * current->files (due to unshare_files above).
1779 if (close_on_exec(fd
, rcu_dereference_raw(current
->files
->fdt
)))
1780 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1781 bprm
->filename
= pathbuf
;
1783 bprm
->interp
= bprm
->filename
;
1785 retval
= bprm_mm_init(bprm
);
1789 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1790 if ((retval
= bprm
->argc
) < 0)
1793 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1794 if ((retval
= bprm
->envc
) < 0)
1797 retval
= prepare_binprm(bprm
);
1801 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1805 bprm
->exec
= bprm
->p
;
1806 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1810 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1814 would_dump(bprm
, bprm
->file
);
1816 retval
= exec_binprm(bprm
);
1820 /* execve succeeded */
1821 current
->fs
->in_exec
= 0;
1822 current
->in_execve
= 0;
1823 acct_update_integrals(current
);
1824 task_numa_free(current
);
1829 put_files_struct(displaced
);
1834 acct_arg_size(bprm
, 0);
1839 current
->fs
->in_exec
= 0;
1840 current
->in_execve
= 0;
1848 reset_files_struct(displaced
);
1854 int do_execve(struct filename
*filename
,
1855 const char __user
*const __user
*__argv
,
1856 const char __user
*const __user
*__envp
)
1858 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1859 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1860 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1863 int do_execveat(int fd
, struct filename
*filename
,
1864 const char __user
*const __user
*__argv
,
1865 const char __user
*const __user
*__envp
,
1868 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1869 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1871 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1874 #ifdef CONFIG_COMPAT
1875 static int compat_do_execve(struct filename
*filename
,
1876 const compat_uptr_t __user
*__argv
,
1877 const compat_uptr_t __user
*__envp
)
1879 struct user_arg_ptr argv
= {
1881 .ptr
.compat
= __argv
,
1883 struct user_arg_ptr envp
= {
1885 .ptr
.compat
= __envp
,
1887 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1890 static int compat_do_execveat(int fd
, struct filename
*filename
,
1891 const compat_uptr_t __user
*__argv
,
1892 const compat_uptr_t __user
*__envp
,
1895 struct user_arg_ptr argv
= {
1897 .ptr
.compat
= __argv
,
1899 struct user_arg_ptr envp
= {
1901 .ptr
.compat
= __envp
,
1903 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1907 void set_binfmt(struct linux_binfmt
*new)
1909 struct mm_struct
*mm
= current
->mm
;
1912 module_put(mm
->binfmt
->module
);
1916 __module_get(new->module
);
1918 EXPORT_SYMBOL(set_binfmt
);
1921 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1923 void set_dumpable(struct mm_struct
*mm
, int value
)
1925 unsigned long old
, new;
1927 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
1931 old
= ACCESS_ONCE(mm
->flags
);
1932 new = (old
& ~MMF_DUMPABLE_MASK
) | value
;
1933 } while (cmpxchg(&mm
->flags
, old
, new) != old
);
1936 SYSCALL_DEFINE3(execve
,
1937 const char __user
*, filename
,
1938 const char __user
*const __user
*, argv
,
1939 const char __user
*const __user
*, envp
)
1941 return do_execve(getname(filename
), argv
, envp
);
1944 SYSCALL_DEFINE5(execveat
,
1945 int, fd
, const char __user
*, filename
,
1946 const char __user
*const __user
*, argv
,
1947 const char __user
*const __user
*, envp
,
1950 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1952 return do_execveat(fd
,
1953 getname_flags(filename
, lookup_flags
, NULL
),
1957 #ifdef CONFIG_COMPAT
1958 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
1959 const compat_uptr_t __user
*, argv
,
1960 const compat_uptr_t __user
*, envp
)
1962 return compat_do_execve(getname(filename
), argv
, envp
);
1965 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
1966 const char __user
*, filename
,
1967 const compat_uptr_t __user
*, argv
,
1968 const compat_uptr_t __user
*, envp
,
1971 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1973 return compat_do_execveat(fd
,
1974 getname_flags(filename
, lookup_flags
, NULL
),