2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
14 * From i386 code copyright (C) 1995 Linus Torvalds
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/tty.h>
30 #include <linux/vt_kern.h> /* For unblank_screen() */
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 #include <linux/hugetlb.h>
35 #include <linux/syscalls.h>
36 #include <linux/uaccess.h>
37 #include <linux/kdebug.h>
39 #include <asm/pgalloc.h>
40 #include <asm/sections.h>
41 #include <asm/traps.h>
42 #include <asm/syscalls.h>
44 #include <arch/interrupts.h>
46 static noinline
void force_sig_info_fault(const char *type
, int si_signo
,
47 int si_code
, unsigned long address
,
49 struct task_struct
*tsk
,
54 if (unlikely(tsk
->pid
< 2)) {
55 panic("Signal %d (code %d) at %#lx sent to %s!",
56 si_signo
, si_code
& 0xffff, address
,
57 is_idle_task(tsk
) ? "the idle task" : "init");
60 info
.si_signo
= si_signo
;
62 info
.si_code
= si_code
;
63 info
.si_addr
= (void __user
*)address
;
64 info
.si_trapno
= fault_num
;
65 trace_unhandled_signal(type
, regs
, address
, si_signo
);
66 force_sig_info(si_signo
, &info
, tsk
);
71 * Synthesize the fault a PL0 process would get by doing a word-load of
72 * an unaligned address or a high kernel address.
74 SYSCALL_DEFINE1(cmpxchg_badaddr
, unsigned long, address
)
76 struct pt_regs
*regs
= current_pt_regs();
78 if (address
>= PAGE_OFFSET
)
79 force_sig_info_fault("atomic segfault", SIGSEGV
, SEGV_MAPERR
,
80 address
, INT_DTLB_MISS
, current
, regs
);
82 force_sig_info_fault("atomic alignment fault", SIGBUS
,
84 INT_UNALIGN_DATA
, current
, regs
);
87 * Adjust pc to point at the actual instruction, which is unusual
88 * for syscalls normally, but is appropriate when we are claiming
89 * that a syscall swint1 caused a page fault or bus error.
94 * Mark this as a caller-save interrupt, like a normal page fault,
95 * so that when we go through the signal handler path we will
96 * properly restore r0, r1, and r2 for the signal handler arguments.
98 regs
->flags
|= PT_FLAGS_CALLER_SAVES
;
104 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
106 unsigned index
= pgd_index(address
);
112 pgd_k
= init_mm
.pgd
+ index
;
114 if (!pgd_present(*pgd_k
))
117 pud
= pud_offset(pgd
, address
);
118 pud_k
= pud_offset(pgd_k
, address
);
119 if (!pud_present(*pud_k
))
122 pmd
= pmd_offset(pud
, address
);
123 pmd_k
= pmd_offset(pud_k
, address
);
124 if (!pmd_present(*pmd_k
))
126 if (!pmd_present(*pmd
))
127 set_pmd(pmd
, *pmd_k
);
129 BUG_ON(pmd_ptfn(*pmd
) != pmd_ptfn(*pmd_k
));
134 * Handle a fault on the vmalloc area.
136 static inline int vmalloc_fault(pgd_t
*pgd
, unsigned long address
)
141 /* Make sure we are in vmalloc area */
142 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
146 * Synchronize this task's top level page-table
147 * with the 'reference' page table.
149 pmd_k
= vmalloc_sync_one(pgd
, address
);
152 pte_k
= pte_offset_kernel(pmd_k
, address
);
153 if (!pte_present(*pte_k
))
158 /* Wait until this PTE has completed migration. */
159 static void wait_for_migration(pte_t
*pte
)
161 if (pte_migrating(*pte
)) {
163 * Wait until the migrater fixes up this pte.
164 * We scale the loop count by the clock rate so we'll wait for
165 * a few seconds here.
168 int bound
= get_clock_rate();
169 while (pte_migrating(*pte
)) {
171 if (++retries
> bound
)
172 panic("Hit migrating PTE (%#llx) and page PFN %#lx still migrating",
173 pte
->val
, pte_pfn(*pte
));
179 * It's not generally safe to use "current" to get the page table pointer,
180 * since we might be running an oprofile interrupt in the middle of a
183 static pgd_t
*get_current_pgd(void)
185 HV_Context ctx
= hv_inquire_context();
186 unsigned long pgd_pfn
= ctx
.page_table
>> PAGE_SHIFT
;
187 struct page
*pgd_page
= pfn_to_page(pgd_pfn
);
188 BUG_ON(PageHighMem(pgd_page
));
189 return (pgd_t
*) __va(ctx
.page_table
);
193 * We can receive a page fault from a migrating PTE at any time.
194 * Handle it by just waiting until the fault resolves.
196 * It's also possible to get a migrating kernel PTE that resolves
197 * itself during the downcall from hypervisor to Linux. We just check
198 * here to see if the PTE seems valid, and if so we retry it.
200 * NOTE! We MUST NOT take any locks for this case. We may be in an
201 * interrupt or a critical region, and must do as little as possible.
202 * Similarly, we can't use atomic ops here, since we may be handling a
203 * fault caused by an atomic op access.
205 * If we find a migrating PTE while we're in an NMI context, and we're
206 * at a PC that has a registered exception handler, we don't wait,
207 * since this thread may (e.g.) have been interrupted while migrating
208 * its own stack, which would then cause us to self-deadlock.
210 static int handle_migrating_pte(pgd_t
*pgd
, int fault_num
,
211 unsigned long address
, unsigned long pc
,
212 int is_kernel_mode
, int write
)
219 if (pgd_addr_invalid(address
))
222 pgd
+= pgd_index(address
);
223 pud
= pud_offset(pgd
, address
);
224 if (!pud
|| !pud_present(*pud
))
226 pmd
= pmd_offset(pud
, address
);
227 if (!pmd
|| !pmd_present(*pmd
))
229 pte
= pmd_huge_page(*pmd
) ? ((pte_t
*)pmd
) :
230 pte_offset_kernel(pmd
, address
);
232 if (pte_migrating(pteval
)) {
233 if (in_nmi() && search_exception_tables(pc
))
235 wait_for_migration(pte
);
239 if (!is_kernel_mode
|| !pte_present(pteval
))
241 if (fault_num
== INT_ITLB_MISS
) {
242 if (pte_exec(pteval
))
245 if (pte_write(pteval
))
248 if (pte_read(pteval
))
256 * This routine is responsible for faulting in user pages.
257 * It passes the work off to one of the appropriate routines.
258 * It returns true if the fault was successfully handled.
260 static int handle_page_fault(struct pt_regs
*regs
,
263 unsigned long address
,
266 struct task_struct
*tsk
;
267 struct mm_struct
*mm
;
268 struct vm_area_struct
*vma
;
269 unsigned long stack_offset
;
276 /* on TILE, protection faults are always writes */
280 flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
282 is_kernel_mode
= !user_mode(regs
);
284 tsk
= validate_current();
287 * Check to see if we might be overwriting the stack, and bail
288 * out if so. The page fault code is a relatively likely
289 * place to get trapped in an infinite regress, and once we
290 * overwrite the whole stack, it becomes very hard to recover.
292 stack_offset
= stack_pointer
& (THREAD_SIZE
-1);
293 if (stack_offset
< THREAD_SIZE
/ 8) {
294 pr_alert("Potential stack overrun: sp %#lx\n", stack_pointer
);
296 pr_alert("Killing current process %d/%s\n",
297 tsk
->pid
, tsk
->comm
);
298 do_group_exit(SIGKILL
);
302 * Early on, we need to check for migrating PTE entries;
303 * see homecache.c. If we find a migrating PTE, we wait until
304 * the backing page claims to be done migrating, then we proceed.
305 * For kernel PTEs, we rewrite the PTE and return and retry.
306 * Otherwise, we treat the fault like a normal "no PTE" fault,
307 * rather than trying to patch up the existing PTE.
309 pgd
= get_current_pgd();
310 if (handle_migrating_pte(pgd
, fault_num
, address
, regs
->pc
,
311 is_kernel_mode
, write
))
314 si_code
= SEGV_MAPERR
;
317 * We fault-in kernel-space virtual memory on-demand. The
318 * 'reference' page table is init_mm.pgd.
320 * NOTE! We MUST NOT take any locks for this case. We may
321 * be in an interrupt or a critical region, and should
322 * only copy the information from the master page table,
325 * This verifies that the fault happens in kernel space
326 * and that the fault was not a protection fault.
328 if (unlikely(address
>= TASK_SIZE
&&
329 !is_arch_mappable_range(address
, 0))) {
330 if (is_kernel_mode
&& is_page_fault
&&
331 vmalloc_fault(pgd
, address
) >= 0)
334 * Don't take the mm semaphore here. If we fixup a prefetch
335 * fault we could otherwise deadlock.
337 mm
= NULL
; /* happy compiler */
339 goto bad_area_nosemaphore
;
343 * If we're trying to touch user-space addresses, we must
344 * be either at PL0, or else with interrupts enabled in the
345 * kernel, so either way we can re-enable interrupts here
346 * unless we are doing atomic access to user space with
347 * interrupts disabled.
349 if (!(regs
->flags
& PT_FLAGS_DISABLE_IRQ
))
355 * If we're in an interrupt, have no user context or are running in an
356 * region with pagefaults disabled then we must not take the fault.
358 if (pagefault_disabled() || !mm
) {
359 vma
= NULL
; /* happy compiler */
360 goto bad_area_nosemaphore
;
364 flags
|= FAULT_FLAG_USER
;
367 * When running in the kernel we expect faults to occur only to
368 * addresses in user space. All other faults represent errors in the
369 * kernel and should generate an OOPS. Unfortunately, in the case of an
370 * erroneous fault occurring in a code path which already holds mmap_sem
371 * we will deadlock attempting to validate the fault against the
372 * address space. Luckily the kernel only validly references user
373 * space from well defined areas of code, which are listed in the
376 * As the vast majority of faults will be valid we will only perform
377 * the source reference check when there is a possibility of a deadlock.
378 * Attempt to lock the address space, if we cannot we then validate the
379 * source. If this is invalid we can skip the address space check,
380 * thus avoiding the deadlock.
382 if (!down_read_trylock(&mm
->mmap_sem
)) {
383 if (is_kernel_mode
&&
384 !search_exception_tables(regs
->pc
)) {
385 vma
= NULL
; /* happy compiler */
386 goto bad_area_nosemaphore
;
390 down_read(&mm
->mmap_sem
);
393 vma
= find_vma(mm
, address
);
396 if (vma
->vm_start
<= address
)
398 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
400 if (regs
->sp
< PAGE_OFFSET
) {
402 * accessing the stack below sp is always a bug.
404 if (address
< regs
->sp
)
407 if (expand_stack(vma
, address
))
411 * Ok, we have a good vm_area for this memory access, so
415 si_code
= SEGV_ACCERR
;
416 if (fault_num
== INT_ITLB_MISS
) {
417 if (!(vma
->vm_flags
& VM_EXEC
))
420 #ifdef TEST_VERIFY_AREA
421 if (!is_page_fault
&& regs
->cs
== KERNEL_CS
)
422 pr_err("WP fault at " REGFMT
"\n", regs
->eip
);
424 if (!(vma
->vm_flags
& VM_WRITE
))
426 flags
|= FAULT_FLAG_WRITE
;
428 if (!is_page_fault
|| !(vma
->vm_flags
& VM_READ
))
433 * If for any reason at all we couldn't handle the fault,
434 * make sure we exit gracefully rather than endlessly redo
437 fault
= handle_mm_fault(vma
, address
, flags
);
439 if ((fault
& VM_FAULT_RETRY
) && fatal_signal_pending(current
))
442 if (unlikely(fault
& VM_FAULT_ERROR
)) {
443 if (fault
& VM_FAULT_OOM
)
445 else if (fault
& VM_FAULT_SIGSEGV
)
447 else if (fault
& VM_FAULT_SIGBUS
)
451 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
452 if (fault
& VM_FAULT_MAJOR
)
456 if (fault
& VM_FAULT_RETRY
) {
457 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
458 flags
|= FAULT_FLAG_TRIED
;
461 * No need to up_read(&mm->mmap_sem) as we would
462 * have already released it in __lock_page_or_retry
469 #if CHIP_HAS_TILE_DMA()
470 /* If this was a DMA TLB fault, restart the DMA engine. */
472 case INT_DMATLB_MISS
:
473 case INT_DMATLB_MISS_DWNCL
:
474 case INT_DMATLB_ACCESS
:
475 case INT_DMATLB_ACCESS_DWNCL
:
476 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__REQUEST_MASK
);
481 up_read(&mm
->mmap_sem
);
485 * Something tried to access memory that isn't in our memory map..
486 * Fix it, but check if it's kernel or user first..
489 up_read(&mm
->mmap_sem
);
491 bad_area_nosemaphore
:
492 /* User mode accesses just cause a SIGSEGV */
493 if (!is_kernel_mode
) {
495 * It's possible to have interrupts off here.
499 force_sig_info_fault("segfault", SIGSEGV
, si_code
, address
,
500 fault_num
, tsk
, regs
);
505 /* Are we prepared to handle this kernel fault? */
506 if (fixup_exception(regs
))
510 * Oops. The kernel tried to access some bad page. We'll have to
511 * terminate things with extreme prejudice.
516 /* FIXME: no lookup_address() yet */
517 #ifdef SUPPORT_LOOKUP_ADDRESS
518 if (fault_num
== INT_ITLB_MISS
) {
519 pte_t
*pte
= lookup_address(address
);
521 if (pte
&& pte_present(*pte
) && !pte_exec_kernel(*pte
))
522 pr_crit("kernel tried to execute non-executable page - exploit attempt? (uid: %d)\n",
526 if (address
< PAGE_SIZE
)
527 pr_alert("Unable to handle kernel NULL pointer dereference\n");
529 pr_alert("Unable to handle kernel paging request\n");
530 pr_alert(" at virtual address " REGFMT
", pc " REGFMT
"\n",
535 if (unlikely(tsk
->pid
< 2)) {
536 panic("Kernel page fault running %s!",
537 is_idle_task(tsk
) ? "the idle task" : "init");
541 * More FIXME: we should probably copy the i386 here and
542 * implement a generic die() routine. Not today.
549 do_group_exit(SIGKILL
);
552 * We ran out of memory, or some other thing happened to us that made
553 * us unable to handle the page fault gracefully.
556 up_read(&mm
->mmap_sem
);
559 pagefault_out_of_memory();
563 up_read(&mm
->mmap_sem
);
565 /* Kernel mode? Handle exceptions or die */
569 force_sig_info_fault("bus error", SIGBUS
, BUS_ADRERR
, address
,
570 fault_num
, tsk
, regs
);
576 /* We must release ICS before panicking or we won't get anywhere. */
577 #define ics_panic(fmt, ...) \
579 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
580 panic(fmt, ##__VA_ARGS__); \
584 * When we take an ITLB or DTLB fault or access violation in the
585 * supervisor while the critical section bit is set, the hypervisor is
586 * reluctant to write new values into the EX_CONTEXT_K_x registers,
587 * since that might indicate we have not yet squirreled the SPR
588 * contents away and can thus safely take a recursive interrupt.
589 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
591 * Note that this routine is called before homecache_tlb_defer_enter(),
592 * which means that we can properly unlock any atomics that might
593 * be used there (good), but also means we must be very sensitive
594 * to not touch any data structures that might be located in memory
595 * that could migrate, as we could be entering the kernel on a dataplane
596 * cpu that has been deferring kernel TLB updates. This means, for
597 * example, that we can't migrate init_mm or its pgd.
599 struct intvec_state
do_page_fault_ics(struct pt_regs
*regs
, int fault_num
,
600 unsigned long address
,
603 unsigned long pc
= info
& ~1;
604 int write
= info
& 1;
605 pgd_t
*pgd
= get_current_pgd();
607 /* Retval is 1 at first since we will handle the fault fully. */
608 struct intvec_state state
= {
609 do_page_fault
, fault_num
, address
, write
, 1
612 /* Validate that we are plausibly in the right routine. */
613 if ((pc
& 0x7) != 0 || pc
< PAGE_OFFSET
||
614 (fault_num
!= INT_DTLB_MISS
&&
615 fault_num
!= INT_DTLB_ACCESS
)) {
616 unsigned long old_pc
= regs
->pc
;
618 ics_panic("Bad ICS page fault args: old PC %#lx, fault %d/%d at %#lx",
619 old_pc
, fault_num
, write
, address
);
622 /* We might be faulting on a vmalloc page, so check that first. */
623 if (fault_num
!= INT_DTLB_ACCESS
&& vmalloc_fault(pgd
, address
) >= 0)
627 * If we faulted with ICS set in sys_cmpxchg, we are providing
628 * a user syscall service that should generate a signal on
629 * fault. We didn't set up a kernel stack on initial entry to
630 * sys_cmpxchg, but instead had one set up by the fault, which
631 * (because sys_cmpxchg never releases ICS) came to us via the
632 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
633 * still referencing the original user code. We release the
634 * atomic lock and rewrite pt_regs so that it appears that we
635 * came from user-space directly, and after we finish the
636 * fault we'll go back to user space and re-issue the swint.
637 * This way the backtrace information is correct if we need to
638 * emit a stack dump at any point while handling this.
640 * Must match register use in sys_cmpxchg().
642 if (pc
>= (unsigned long) sys_cmpxchg
&&
643 pc
< (unsigned long) __sys_cmpxchg_end
) {
645 /* Don't unlock before we could have locked. */
646 if (pc
>= (unsigned long)__sys_cmpxchg_grab_lock
) {
647 int *lock_ptr
= (int *)(regs
->regs
[ATOMIC_LOCK_REG
]);
648 __atomic_fault_unlock(lock_ptr
);
651 regs
->sp
= regs
->regs
[27];
655 * We can also fault in the atomic assembly, in which
656 * case we use the exception table to do the first-level fixup.
657 * We may re-fixup again in the real fault handler if it
658 * turns out the faulting address is just bad, and not,
659 * for example, migrating.
661 else if (pc
>= (unsigned long) __start_atomic_asm_code
&&
662 pc
< (unsigned long) __end_atomic_asm_code
) {
663 const struct exception_table_entry
*fixup
;
665 /* Unlock the atomic lock. */
666 int *lock_ptr
= (int *)(regs
->regs
[ATOMIC_LOCK_REG
]);
667 __atomic_fault_unlock(lock_ptr
);
669 fixup
= search_exception_tables(pc
);
671 ics_panic("ICS atomic fault not in table: PC %#lx, fault %d",
673 regs
->pc
= fixup
->fixup
;
674 regs
->ex1
= PL_ICS_EX1(KERNEL_PL
, 0);
678 * Now that we have released the atomic lock (if necessary),
679 * it's safe to spin if the PTE that caused the fault was migrating.
681 if (fault_num
== INT_DTLB_ACCESS
)
683 if (handle_migrating_pte(pgd
, fault_num
, address
, pc
, 1, write
))
686 /* Return zero so that we continue on with normal fault handling. */
691 #endif /* !__tilegx__ */
694 * This routine handles page faults. It determines the address, and the
695 * problem, and then passes it handle_page_fault() for normal DTLB and
696 * ITLB issues, and for DMA or SN processor faults when we are in user
697 * space. For the latter, if we're in kernel mode, we just save the
698 * interrupt away appropriately and return immediately. We can't do
699 * page faults for user code while in kernel mode.
701 static inline void __do_page_fault(struct pt_regs
*regs
, int fault_num
,
702 unsigned long address
, unsigned long write
)
706 #ifdef CONFIG_KPROBES
708 * This is to notify the fault handler of the kprobes. The
709 * exception code is redundant as it is also carried in REGS,
710 * but we pass it anyhow.
712 if (notify_die(DIE_PAGE_FAULT
, "page fault", regs
, -1,
713 regs
->faultnum
, SIGSEGV
) == NOTIFY_STOP
)
719 * We don't need early do_page_fault_ics() support, since unlike
720 * Pro we don't need to worry about unlocking the atomic locks.
721 * There is only one current case in GX where we touch any memory
722 * under ICS other than our own kernel stack, and we handle that
723 * here. (If we crash due to trying to touch our own stack,
724 * we're in too much trouble for C code to help out anyway.)
727 unsigned long pc
= write
& ~1;
728 if (pc
>= (unsigned long) __start_unalign_asm_code
&&
729 pc
< (unsigned long) __end_unalign_asm_code
) {
730 struct thread_info
*ti
= current_thread_info();
732 * Our EX_CONTEXT is still what it was from the
733 * initial unalign exception, but now we've faulted
734 * on the JIT page. We would like to complete the
735 * page fault however is appropriate, and then retry
736 * the instruction that caused the unalign exception.
737 * Our state has been "corrupted" by setting the low
738 * bit in "sp", and stashing r0..r3 in the
739 * thread_info area, so we revert all of that, then
740 * continue as if this were a normal page fault.
743 regs
->regs
[0] = ti
->unalign_jit_tmp
[0];
744 regs
->regs
[1] = ti
->unalign_jit_tmp
[1];
745 regs
->regs
[2] = ti
->unalign_jit_tmp
[2];
746 regs
->regs
[3] = ti
->unalign_jit_tmp
[3];
749 pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
750 current
->comm
, current
->pid
, pc
, address
);
752 do_group_exit(SIGKILL
);
756 /* This case should have been handled by do_page_fault_ics(). */
760 #if CHIP_HAS_TILE_DMA()
762 * If it's a DMA fault, suspend the transfer while we're
763 * handling the miss; we'll restart after it's handled. If we
764 * don't suspend, it's possible that this process could swap
765 * out and back in, and restart the engine since the DMA is
768 if (fault_num
== INT_DMATLB_MISS
||
769 fault_num
== INT_DMATLB_ACCESS
||
770 fault_num
== INT_DMATLB_MISS_DWNCL
||
771 fault_num
== INT_DMATLB_ACCESS_DWNCL
) {
772 __insn_mtspr(SPR_DMA_CTR
, SPR_DMA_CTR__SUSPEND_MASK
);
773 while (__insn_mfspr(SPR_DMA_USER_STATUS
) &
774 SPR_DMA_STATUS__BUSY_MASK
)
779 /* Validate fault num and decide if this is a first-time page fault. */
783 #if CHIP_HAS_TILE_DMA()
784 case INT_DMATLB_MISS
:
785 case INT_DMATLB_MISS_DWNCL
:
790 case INT_DTLB_ACCESS
:
791 #if CHIP_HAS_TILE_DMA()
792 case INT_DMATLB_ACCESS
:
793 case INT_DMATLB_ACCESS_DWNCL
:
799 panic("Bad fault number %d in do_page_fault", fault_num
);
802 #if CHIP_HAS_TILE_DMA()
803 if (!user_mode(regs
)) {
804 struct async_tlb
*async
;
806 #if CHIP_HAS_TILE_DMA()
807 case INT_DMATLB_MISS
:
808 case INT_DMATLB_ACCESS
:
809 case INT_DMATLB_MISS_DWNCL
:
810 case INT_DMATLB_ACCESS_DWNCL
:
811 async
= ¤t
->thread
.dma_async_tlb
;
820 * No vmalloc check required, so we can allow
821 * interrupts immediately at this point.
825 set_thread_flag(TIF_ASYNC_TLB
);
826 if (async
->fault_num
!= 0) {
827 panic("Second async fault %d; old fault was %d (%#lx/%ld)",
828 fault_num
, async
->fault_num
,
831 BUG_ON(fault_num
== 0);
832 async
->fault_num
= fault_num
;
833 async
->is_fault
= is_page_fault
;
834 async
->is_write
= write
;
835 async
->address
= address
;
841 handle_page_fault(regs
, fault_num
, is_page_fault
, address
, write
);
844 void do_page_fault(struct pt_regs
*regs
, int fault_num
,
845 unsigned long address
, unsigned long write
)
847 __do_page_fault(regs
, fault_num
, address
, write
);
850 #if CHIP_HAS_TILE_DMA()
852 * This routine effectively re-issues asynchronous page faults
853 * when we are returning to user space.
855 void do_async_page_fault(struct pt_regs
*regs
)
857 struct async_tlb
*async
= ¤t
->thread
.dma_async_tlb
;
860 * Clear thread flag early. If we re-interrupt while processing
861 * code here, we will reset it and recall this routine before
862 * returning to user space.
864 clear_thread_flag(TIF_ASYNC_TLB
);
866 if (async
->fault_num
) {
868 * Clear async->fault_num before calling the page-fault
869 * handler so that if we re-interrupt before returning
870 * from the function we have somewhere to put the
871 * information from the new interrupt.
873 int fault_num
= async
->fault_num
;
874 async
->fault_num
= 0;
875 handle_page_fault(regs
, fault_num
, async
->is_fault
,
876 async
->address
, async
->is_write
);
879 #endif /* CHIP_HAS_TILE_DMA() */
882 void vmalloc_sync_all(void)
885 /* Currently all L1 kernel pmd's are static and shared. */
886 BUILD_BUG_ON(pgd_index(VMALLOC_END
- PAGE_SIZE
) !=
887 pgd_index(VMALLOC_START
));
890 * Note that races in the updates of insync and start aren't
891 * problematic: insync can only get set bits added, and updates to
892 * start are only improving performance (without affecting correctness
895 static DECLARE_BITMAP(insync
, PTRS_PER_PGD
);
896 static unsigned long start
= PAGE_OFFSET
;
897 unsigned long address
;
899 BUILD_BUG_ON(PAGE_OFFSET
& ~PGDIR_MASK
);
900 for (address
= start
; address
>= PAGE_OFFSET
; address
+= PGDIR_SIZE
) {
901 if (!test_bit(pgd_index(address
), insync
)) {
903 struct list_head
*pos
;
905 spin_lock_irqsave(&pgd_lock
, flags
);
906 list_for_each(pos
, &pgd_list
)
907 if (!vmalloc_sync_one(list_to_pgd(pos
),
909 /* Must be at first entry in list. */
910 BUG_ON(pos
!= pgd_list
.next
);
913 spin_unlock_irqrestore(&pgd_lock
, flags
);
914 if (pos
!= pgd_list
.next
)
915 set_bit(pgd_index(address
), insync
);
917 if (address
== start
&& test_bit(pgd_index(address
), insync
))
918 start
= address
+ PGDIR_SIZE
;