ALSA: hda - Add the top speaker pin config for HP Spectre x360
[linux/fpc-iii.git] / arch / x86 / include / asm / segment.h
blob1549caa098f0828e6c533f714f22a7f97532427e
1 #ifndef _ASM_X86_SEGMENT_H
2 #define _ASM_X86_SEGMENT_H
4 #include <linux/const.h>
5 #include <asm/alternative.h>
7 /*
8 * Constructor for a conventional segment GDT (or LDT) entry.
9 * This is a macro so it can be used in initializers.
11 #define GDT_ENTRY(flags, base, limit) \
12 ((((base) & _AC(0xff000000,ULL)) << (56-24)) | \
13 (((flags) & _AC(0x0000f0ff,ULL)) << 40) | \
14 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) | \
15 (((base) & _AC(0x00ffffff,ULL)) << 16) | \
16 (((limit) & _AC(0x0000ffff,ULL))))
18 /* Simple and small GDT entries for booting only: */
20 #define GDT_ENTRY_BOOT_CS 2
21 #define GDT_ENTRY_BOOT_DS 3
22 #define GDT_ENTRY_BOOT_TSS 4
23 #define __BOOT_CS (GDT_ENTRY_BOOT_CS*8)
24 #define __BOOT_DS (GDT_ENTRY_BOOT_DS*8)
25 #define __BOOT_TSS (GDT_ENTRY_BOOT_TSS*8)
28 * Bottom two bits of selector give the ring
29 * privilege level
31 #define SEGMENT_RPL_MASK 0x3
33 /* User mode is privilege level 3: */
34 #define USER_RPL 0x3
36 /* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
37 #define SEGMENT_TI_MASK 0x4
38 /* LDT segment has TI set ... */
39 #define SEGMENT_LDT 0x4
40 /* ... GDT has it cleared */
41 #define SEGMENT_GDT 0x0
43 #define GDT_ENTRY_INVALID_SEG 0
45 #ifdef CONFIG_X86_32
47 * The layout of the per-CPU GDT under Linux:
49 * 0 - null <=== cacheline #1
50 * 1 - reserved
51 * 2 - reserved
52 * 3 - reserved
54 * 4 - unused <=== cacheline #2
55 * 5 - unused
57 * ------- start of TLS (Thread-Local Storage) segments:
59 * 6 - TLS segment #1 [ glibc's TLS segment ]
60 * 7 - TLS segment #2 [ Wine's %fs Win32 segment ]
61 * 8 - TLS segment #3 <=== cacheline #3
62 * 9 - reserved
63 * 10 - reserved
64 * 11 - reserved
66 * ------- start of kernel segments:
68 * 12 - kernel code segment <=== cacheline #4
69 * 13 - kernel data segment
70 * 14 - default user CS
71 * 15 - default user DS
72 * 16 - TSS <=== cacheline #5
73 * 17 - LDT
74 * 18 - PNPBIOS support (16->32 gate)
75 * 19 - PNPBIOS support
76 * 20 - PNPBIOS support <=== cacheline #6
77 * 21 - PNPBIOS support
78 * 22 - PNPBIOS support
79 * 23 - APM BIOS support
80 * 24 - APM BIOS support <=== cacheline #7
81 * 25 - APM BIOS support
83 * 26 - ESPFIX small SS
84 * 27 - per-cpu [ offset to per-cpu data area ]
85 * 28 - stack_canary-20 [ for stack protector ] <=== cacheline #8
86 * 29 - unused
87 * 30 - unused
88 * 31 - TSS for double fault handler
90 #define GDT_ENTRY_TLS_MIN 6
91 #define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
93 #define GDT_ENTRY_KERNEL_CS 12
94 #define GDT_ENTRY_KERNEL_DS 13
95 #define GDT_ENTRY_DEFAULT_USER_CS 14
96 #define GDT_ENTRY_DEFAULT_USER_DS 15
97 #define GDT_ENTRY_TSS 16
98 #define GDT_ENTRY_LDT 17
99 #define GDT_ENTRY_PNPBIOS_CS32 18
100 #define GDT_ENTRY_PNPBIOS_CS16 19
101 #define GDT_ENTRY_PNPBIOS_DS 20
102 #define GDT_ENTRY_PNPBIOS_TS1 21
103 #define GDT_ENTRY_PNPBIOS_TS2 22
104 #define GDT_ENTRY_APMBIOS_BASE 23
106 #define GDT_ENTRY_ESPFIX_SS 26
107 #define GDT_ENTRY_PERCPU 27
108 #define GDT_ENTRY_STACK_CANARY 28
110 #define GDT_ENTRY_DOUBLEFAULT_TSS 31
113 * Number of entries in the GDT table:
115 #define GDT_ENTRIES 32
118 * Segment selector values corresponding to the above entries:
121 #define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)
122 #define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8)
123 #define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
124 #define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
125 #define __ESPFIX_SS (GDT_ENTRY_ESPFIX_SS*8)
127 /* segment for calling fn: */
128 #define PNP_CS32 (GDT_ENTRY_PNPBIOS_CS32*8)
129 /* code segment for BIOS: */
130 #define PNP_CS16 (GDT_ENTRY_PNPBIOS_CS16*8)
132 /* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
133 #define SEGMENT_IS_PNP_CODE(x) (((x) & 0xf4) == PNP_CS32)
135 /* data segment for BIOS: */
136 #define PNP_DS (GDT_ENTRY_PNPBIOS_DS*8)
137 /* transfer data segment: */
138 #define PNP_TS1 (GDT_ENTRY_PNPBIOS_TS1*8)
139 /* another data segment: */
140 #define PNP_TS2 (GDT_ENTRY_PNPBIOS_TS2*8)
142 #ifdef CONFIG_SMP
143 # define __KERNEL_PERCPU (GDT_ENTRY_PERCPU*8)
144 #else
145 # define __KERNEL_PERCPU 0
146 #endif
148 #ifdef CONFIG_CC_STACKPROTECTOR
149 # define __KERNEL_STACK_CANARY (GDT_ENTRY_STACK_CANARY*8)
150 #else
151 # define __KERNEL_STACK_CANARY 0
152 #endif
154 #else /* 64-bit: */
156 #include <asm/cache.h>
158 #define GDT_ENTRY_KERNEL32_CS 1
159 #define GDT_ENTRY_KERNEL_CS 2
160 #define GDT_ENTRY_KERNEL_DS 3
163 * We cannot use the same code segment descriptor for user and kernel mode,
164 * not even in long flat mode, because of different DPL.
166 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
167 * selectors:
169 * if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
170 * if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
172 * ss = STAR.SYSRET_CS+8 (in either case)
174 * thus USER_DS should be between 32-bit and 64-bit code selectors:
176 #define GDT_ENTRY_DEFAULT_USER32_CS 4
177 #define GDT_ENTRY_DEFAULT_USER_DS 5
178 #define GDT_ENTRY_DEFAULT_USER_CS 6
180 /* Needs two entries */
181 #define GDT_ENTRY_TSS 8
182 /* Needs two entries */
183 #define GDT_ENTRY_LDT 10
185 #define GDT_ENTRY_TLS_MIN 12
186 #define GDT_ENTRY_TLS_MAX 14
188 /* Abused to load per CPU data from limit */
189 #define GDT_ENTRY_PER_CPU 15
192 * Number of entries in the GDT table:
194 #define GDT_ENTRIES 16
197 * Segment selector values corresponding to the above entries:
199 * Note, selectors also need to have a correct RPL,
200 * expressed with the +3 value for user-space selectors:
202 #define __KERNEL32_CS (GDT_ENTRY_KERNEL32_CS*8)
203 #define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)
204 #define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8)
205 #define __USER32_CS (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
206 #define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
207 #define __USER32_DS __USER_DS
208 #define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
209 #define __PER_CPU_SEG (GDT_ENTRY_PER_CPU*8 + 3)
211 #endif
213 #ifndef CONFIG_PARAVIRT
214 # define get_kernel_rpl() 0
215 #endif
217 #define IDT_ENTRIES 256
218 #define NUM_EXCEPTION_VECTORS 32
220 /* Bitmask of exception vectors which push an error code on the stack: */
221 #define EXCEPTION_ERRCODE_MASK 0x00027d00
223 #define GDT_SIZE (GDT_ENTRIES*8)
224 #define GDT_ENTRY_TLS_ENTRIES 3
225 #define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES* 8)
227 #ifdef __KERNEL__
230 * early_idt_handler_array is an array of entry points referenced in the
231 * early IDT. For simplicity, it's a real array with one entry point
232 * every nine bytes. That leaves room for an optional 'push $0' if the
233 * vector has no error code (two bytes), a 'push $vector_number' (two
234 * bytes), and a jump to the common entry code (up to five bytes).
236 #define EARLY_IDT_HANDLER_SIZE 9
238 #ifndef __ASSEMBLY__
240 extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
241 #ifdef CONFIG_TRACING
242 # define trace_early_idt_handler_array early_idt_handler_array
243 #endif
246 * Load a segment. Fall back on loading the zero segment if something goes
247 * wrong. This variant assumes that loading zero fully clears the segment.
248 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
249 * failure to fully clear the cached descriptor is only observable for
250 * FS and GS.
252 #define __loadsegment_simple(seg, value) \
253 do { \
254 unsigned short __val = (value); \
256 asm volatile(" \n" \
257 "1: movl %k0,%%" #seg " \n" \
259 ".section .fixup,\"ax\" \n" \
260 "2: xorl %k0,%k0 \n" \
261 " jmp 1b \n" \
262 ".previous \n" \
264 _ASM_EXTABLE(1b, 2b) \
266 : "+r" (__val) : : "memory"); \
267 } while (0)
269 #define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
270 #define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
271 #define __loadsegment_es(value) __loadsegment_simple(es, (value))
273 #ifdef CONFIG_X86_32
276 * On 32-bit systems, the hidden parts of FS and GS are unobservable if
277 * the selector is NULL, so there's no funny business here.
279 #define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
280 #define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
282 #else
284 static inline void __loadsegment_fs(unsigned short value)
286 asm volatile(" \n"
287 "1: movw %0, %%fs \n"
288 "2: \n"
290 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
292 : : "rm" (value) : "memory");
295 /* __loadsegment_gs is intentionally undefined. Use load_gs_index instead. */
297 #endif
299 #define loadsegment(seg, value) __loadsegment_ ## seg (value)
302 * Save a segment register away:
304 #define savesegment(seg, value) \
305 asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
308 * x86-32 user GS accessors:
310 #ifdef CONFIG_X86_32
311 # ifdef CONFIG_X86_32_LAZY_GS
312 # define get_user_gs(regs) (u16)({ unsigned long v; savesegment(gs, v); v; })
313 # define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
314 # define task_user_gs(tsk) ((tsk)->thread.gs)
315 # define lazy_save_gs(v) savesegment(gs, (v))
316 # define lazy_load_gs(v) loadsegment(gs, (v))
317 # else /* X86_32_LAZY_GS */
318 # define get_user_gs(regs) (u16)((regs)->gs)
319 # define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
320 # define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
321 # define lazy_save_gs(v) do { } while (0)
322 # define lazy_load_gs(v) do { } while (0)
323 # endif /* X86_32_LAZY_GS */
324 #endif /* X86_32 */
326 #endif /* !__ASSEMBLY__ */
327 #endif /* __KERNEL__ */
329 #endif /* _ASM_X86_SEGMENT_H */