2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
33 #define pr_fmt(fmt) "pit: " fmt
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
46 #define mod_64(x, y) ((x) % (y))
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
54 static void pit_set_gate(struct kvm_pit
*pit
, int channel
, u32 val
)
56 struct kvm_kpit_channel_state
*c
= &pit
->pit_state
.channels
[channel
];
62 /* XXX: just disable/enable counting */
68 /* Restart counting on rising edge. */
70 c
->count_load_time
= ktime_get();
77 static int pit_get_gate(struct kvm_pit
*pit
, int channel
)
79 return pit
->pit_state
.channels
[channel
].gate
;
82 static s64
__kpit_elapsed(struct kvm_pit
*pit
)
86 struct kvm_kpit_state
*ps
= &pit
->pit_state
;
92 * The Counter does not stop when it reaches zero. In
93 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
94 * the highest count, either FFFF hex for binary counting
95 * or 9999 for BCD counting, and continues counting.
96 * Modes 2 and 3 are periodic; the Counter reloads
97 * itself with the initial count and continues counting
100 remaining
= hrtimer_get_remaining(&ps
->timer
);
101 elapsed
= ps
->period
- ktime_to_ns(remaining
);
106 static s64
kpit_elapsed(struct kvm_pit
*pit
, struct kvm_kpit_channel_state
*c
,
110 return __kpit_elapsed(pit
);
112 return ktime_to_ns(ktime_sub(ktime_get(), c
->count_load_time
));
115 static int pit_get_count(struct kvm_pit
*pit
, int channel
)
117 struct kvm_kpit_channel_state
*c
= &pit
->pit_state
.channels
[channel
];
121 t
= kpit_elapsed(pit
, c
, channel
);
122 d
= mul_u64_u32_div(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
129 counter
= (c
->count
- d
) & 0xffff;
132 /* XXX: may be incorrect for odd counts */
133 counter
= c
->count
- (mod_64((2 * d
), c
->count
));
136 counter
= c
->count
- mod_64(d
, c
->count
);
142 static int pit_get_out(struct kvm_pit
*pit
, int channel
)
144 struct kvm_kpit_channel_state
*c
= &pit
->pit_state
.channels
[channel
];
148 t
= kpit_elapsed(pit
, c
, channel
);
149 d
= mul_u64_u32_div(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
154 out
= (d
>= c
->count
);
157 out
= (d
< c
->count
);
160 out
= ((mod_64(d
, c
->count
) == 0) && (d
!= 0));
163 out
= (mod_64(d
, c
->count
) < ((c
->count
+ 1) >> 1));
167 out
= (d
== c
->count
);
174 static void pit_latch_count(struct kvm_pit
*pit
, int channel
)
176 struct kvm_kpit_channel_state
*c
= &pit
->pit_state
.channels
[channel
];
178 if (!c
->count_latched
) {
179 c
->latched_count
= pit_get_count(pit
, channel
);
180 c
->count_latched
= c
->rw_mode
;
184 static void pit_latch_status(struct kvm_pit
*pit
, int channel
)
186 struct kvm_kpit_channel_state
*c
= &pit
->pit_state
.channels
[channel
];
188 if (!c
->status_latched
) {
189 /* TODO: Return NULL COUNT (bit 6). */
190 c
->status
= ((pit_get_out(pit
, channel
) << 7) |
194 c
->status_latched
= 1;
198 static inline struct kvm_pit
*pit_state_to_pit(struct kvm_kpit_state
*ps
)
200 return container_of(ps
, struct kvm_pit
, pit_state
);
203 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier
*kian
)
205 struct kvm_kpit_state
*ps
= container_of(kian
, struct kvm_kpit_state
,
207 struct kvm_pit
*pit
= pit_state_to_pit(ps
);
209 atomic_set(&ps
->irq_ack
, 1);
210 /* irq_ack should be set before pending is read. Order accesses with
211 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
214 if (atomic_dec_if_positive(&ps
->pending
) > 0)
215 queue_kthread_work(&pit
->worker
, &pit
->expired
);
218 void __kvm_migrate_pit_timer(struct kvm_vcpu
*vcpu
)
220 struct kvm_pit
*pit
= vcpu
->kvm
->arch
.vpit
;
221 struct hrtimer
*timer
;
223 if (!kvm_vcpu_is_bsp(vcpu
) || !pit
)
226 timer
= &pit
->pit_state
.timer
;
227 mutex_lock(&pit
->pit_state
.lock
);
228 if (hrtimer_cancel(timer
))
229 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS
);
230 mutex_unlock(&pit
->pit_state
.lock
);
233 static void destroy_pit_timer(struct kvm_pit
*pit
)
235 hrtimer_cancel(&pit
->pit_state
.timer
);
236 flush_kthread_work(&pit
->expired
);
239 static void pit_do_work(struct kthread_work
*work
)
241 struct kvm_pit
*pit
= container_of(work
, struct kvm_pit
, expired
);
242 struct kvm
*kvm
= pit
->kvm
;
243 struct kvm_vcpu
*vcpu
;
245 struct kvm_kpit_state
*ps
= &pit
->pit_state
;
247 if (atomic_read(&ps
->reinject
) && !atomic_xchg(&ps
->irq_ack
, 0))
250 kvm_set_irq(kvm
, pit
->irq_source_id
, 0, 1, false);
251 kvm_set_irq(kvm
, pit
->irq_source_id
, 0, 0, false);
254 * Provides NMI watchdog support via Virtual Wire mode.
255 * The route is: PIT -> LVT0 in NMI mode.
257 * Note: Our Virtual Wire implementation does not follow
258 * the MP specification. We propagate a PIT interrupt to all
259 * VCPUs and only when LVT0 is in NMI mode. The interrupt can
260 * also be simultaneously delivered through PIC and IOAPIC.
262 if (atomic_read(&kvm
->arch
.vapics_in_nmi_mode
) > 0)
263 kvm_for_each_vcpu(i
, vcpu
, kvm
)
264 kvm_apic_nmi_wd_deliver(vcpu
);
267 static enum hrtimer_restart
pit_timer_fn(struct hrtimer
*data
)
269 struct kvm_kpit_state
*ps
= container_of(data
, struct kvm_kpit_state
, timer
);
270 struct kvm_pit
*pt
= pit_state_to_pit(ps
);
272 if (atomic_read(&ps
->reinject
))
273 atomic_inc(&ps
->pending
);
275 queue_kthread_work(&pt
->worker
, &pt
->expired
);
277 if (ps
->is_periodic
) {
278 hrtimer_add_expires_ns(&ps
->timer
, ps
->period
);
279 return HRTIMER_RESTART
;
281 return HRTIMER_NORESTART
;
284 static inline void kvm_pit_reset_reinject(struct kvm_pit
*pit
)
286 atomic_set(&pit
->pit_state
.pending
, 0);
287 atomic_set(&pit
->pit_state
.irq_ack
, 1);
290 void kvm_pit_set_reinject(struct kvm_pit
*pit
, bool reinject
)
292 struct kvm_kpit_state
*ps
= &pit
->pit_state
;
293 struct kvm
*kvm
= pit
->kvm
;
295 if (atomic_read(&ps
->reinject
) == reinject
)
299 /* The initial state is preserved while ps->reinject == 0. */
300 kvm_pit_reset_reinject(pit
);
301 kvm_register_irq_ack_notifier(kvm
, &ps
->irq_ack_notifier
);
302 kvm_register_irq_mask_notifier(kvm
, 0, &pit
->mask_notifier
);
304 kvm_unregister_irq_ack_notifier(kvm
, &ps
->irq_ack_notifier
);
305 kvm_unregister_irq_mask_notifier(kvm
, 0, &pit
->mask_notifier
);
308 atomic_set(&ps
->reinject
, reinject
);
311 static void create_pit_timer(struct kvm_pit
*pit
, u32 val
, int is_period
)
313 struct kvm_kpit_state
*ps
= &pit
->pit_state
;
314 struct kvm
*kvm
= pit
->kvm
;
317 if (!ioapic_in_kernel(kvm
) ||
318 ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
)
321 interval
= mul_u64_u32_div(val
, NSEC_PER_SEC
, KVM_PIT_FREQ
);
323 pr_debug("create pit timer, interval is %llu nsec\n", interval
);
325 /* TODO The new value only affected after the retriggered */
326 hrtimer_cancel(&ps
->timer
);
327 flush_kthread_work(&pit
->expired
);
328 ps
->period
= interval
;
329 ps
->is_periodic
= is_period
;
331 kvm_pit_reset_reinject(pit
);
334 * Do not allow the guest to program periodic timers with small
335 * interval, since the hrtimers are not throttled by the host
338 if (ps
->is_periodic
) {
339 s64 min_period
= min_timer_period_us
* 1000LL;
341 if (ps
->period
< min_period
) {
343 "kvm: requested %lld ns "
344 "i8254 timer period limited to %lld ns\n",
345 ps
->period
, min_period
);
346 ps
->period
= min_period
;
350 hrtimer_start(&ps
->timer
, ktime_add_ns(ktime_get(), interval
),
354 static void pit_load_count(struct kvm_pit
*pit
, int channel
, u32 val
)
356 struct kvm_kpit_state
*ps
= &pit
->pit_state
;
358 pr_debug("load_count val is %d, channel is %d\n", val
, channel
);
361 * The largest possible initial count is 0; this is equivalent
362 * to 216 for binary counting and 104 for BCD counting.
367 ps
->channels
[channel
].count
= val
;
370 ps
->channels
[channel
].count_load_time
= ktime_get();
374 /* Two types of timer
375 * mode 1 is one shot, mode 2 is period, otherwise del timer */
376 switch (ps
->channels
[0].mode
) {
379 /* FIXME: enhance mode 4 precision */
381 create_pit_timer(pit
, val
, 0);
385 create_pit_timer(pit
, val
, 1);
388 destroy_pit_timer(pit
);
392 void kvm_pit_load_count(struct kvm_pit
*pit
, int channel
, u32 val
,
393 int hpet_legacy_start
)
397 WARN_ON_ONCE(!mutex_is_locked(&pit
->pit_state
.lock
));
399 if (hpet_legacy_start
) {
400 /* save existing mode for later reenablement */
401 WARN_ON(channel
!= 0);
402 saved_mode
= pit
->pit_state
.channels
[0].mode
;
403 pit
->pit_state
.channels
[0].mode
= 0xff; /* disable timer */
404 pit_load_count(pit
, channel
, val
);
405 pit
->pit_state
.channels
[0].mode
= saved_mode
;
407 pit_load_count(pit
, channel
, val
);
411 static inline struct kvm_pit
*dev_to_pit(struct kvm_io_device
*dev
)
413 return container_of(dev
, struct kvm_pit
, dev
);
416 static inline struct kvm_pit
*speaker_to_pit(struct kvm_io_device
*dev
)
418 return container_of(dev
, struct kvm_pit
, speaker_dev
);
421 static inline int pit_in_range(gpa_t addr
)
423 return ((addr
>= KVM_PIT_BASE_ADDRESS
) &&
424 (addr
< KVM_PIT_BASE_ADDRESS
+ KVM_PIT_MEM_LENGTH
));
427 static int pit_ioport_write(struct kvm_vcpu
*vcpu
,
428 struct kvm_io_device
*this,
429 gpa_t addr
, int len
, const void *data
)
431 struct kvm_pit
*pit
= dev_to_pit(this);
432 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
434 struct kvm_kpit_channel_state
*s
;
435 u32 val
= *(u32
*) data
;
436 if (!pit_in_range(addr
))
440 addr
&= KVM_PIT_CHANNEL_MASK
;
442 mutex_lock(&pit_state
->lock
);
445 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
446 (unsigned int)addr
, len
, val
);
451 /* Read-Back Command. */
452 for (channel
= 0; channel
< 3; channel
++) {
453 s
= &pit_state
->channels
[channel
];
454 if (val
& (2 << channel
)) {
456 pit_latch_count(pit
, channel
);
458 pit_latch_status(pit
, channel
);
462 /* Select Counter <channel>. */
463 s
= &pit_state
->channels
[channel
];
464 access
= (val
>> 4) & KVM_PIT_CHANNEL_MASK
;
466 pit_latch_count(pit
, channel
);
469 s
->read_state
= access
;
470 s
->write_state
= access
;
471 s
->mode
= (val
>> 1) & 7;
479 s
= &pit_state
->channels
[addr
];
480 switch (s
->write_state
) {
483 pit_load_count(pit
, addr
, val
);
486 pit_load_count(pit
, addr
, val
<< 8);
489 s
->write_latch
= val
;
490 s
->write_state
= RW_STATE_WORD1
;
493 pit_load_count(pit
, addr
, s
->write_latch
| (val
<< 8));
494 s
->write_state
= RW_STATE_WORD0
;
499 mutex_unlock(&pit_state
->lock
);
503 static int pit_ioport_read(struct kvm_vcpu
*vcpu
,
504 struct kvm_io_device
*this,
505 gpa_t addr
, int len
, void *data
)
507 struct kvm_pit
*pit
= dev_to_pit(this);
508 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
510 struct kvm_kpit_channel_state
*s
;
511 if (!pit_in_range(addr
))
514 addr
&= KVM_PIT_CHANNEL_MASK
;
518 s
= &pit_state
->channels
[addr
];
520 mutex_lock(&pit_state
->lock
);
522 if (s
->status_latched
) {
523 s
->status_latched
= 0;
525 } else if (s
->count_latched
) {
526 switch (s
->count_latched
) {
529 ret
= s
->latched_count
& 0xff;
530 s
->count_latched
= 0;
533 ret
= s
->latched_count
>> 8;
534 s
->count_latched
= 0;
537 ret
= s
->latched_count
& 0xff;
538 s
->count_latched
= RW_STATE_MSB
;
542 switch (s
->read_state
) {
545 count
= pit_get_count(pit
, addr
);
549 count
= pit_get_count(pit
, addr
);
550 ret
= (count
>> 8) & 0xff;
553 count
= pit_get_count(pit
, addr
);
555 s
->read_state
= RW_STATE_WORD1
;
558 count
= pit_get_count(pit
, addr
);
559 ret
= (count
>> 8) & 0xff;
560 s
->read_state
= RW_STATE_WORD0
;
565 if (len
> sizeof(ret
))
567 memcpy(data
, (char *)&ret
, len
);
569 mutex_unlock(&pit_state
->lock
);
573 static int speaker_ioport_write(struct kvm_vcpu
*vcpu
,
574 struct kvm_io_device
*this,
575 gpa_t addr
, int len
, const void *data
)
577 struct kvm_pit
*pit
= speaker_to_pit(this);
578 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
579 u32 val
= *(u32
*) data
;
580 if (addr
!= KVM_SPEAKER_BASE_ADDRESS
)
583 mutex_lock(&pit_state
->lock
);
584 pit_state
->speaker_data_on
= (val
>> 1) & 1;
585 pit_set_gate(pit
, 2, val
& 1);
586 mutex_unlock(&pit_state
->lock
);
590 static int speaker_ioport_read(struct kvm_vcpu
*vcpu
,
591 struct kvm_io_device
*this,
592 gpa_t addr
, int len
, void *data
)
594 struct kvm_pit
*pit
= speaker_to_pit(this);
595 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
596 unsigned int refresh_clock
;
598 if (addr
!= KVM_SPEAKER_BASE_ADDRESS
)
601 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
602 refresh_clock
= ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
604 mutex_lock(&pit_state
->lock
);
605 ret
= ((pit_state
->speaker_data_on
<< 1) | pit_get_gate(pit
, 2) |
606 (pit_get_out(pit
, 2) << 5) | (refresh_clock
<< 4));
607 if (len
> sizeof(ret
))
609 memcpy(data
, (char *)&ret
, len
);
610 mutex_unlock(&pit_state
->lock
);
614 static void kvm_pit_reset(struct kvm_pit
*pit
)
617 struct kvm_kpit_channel_state
*c
;
619 pit
->pit_state
.flags
= 0;
620 for (i
= 0; i
< 3; i
++) {
621 c
= &pit
->pit_state
.channels
[i
];
624 pit_load_count(pit
, i
, 0);
627 kvm_pit_reset_reinject(pit
);
630 static void pit_mask_notifer(struct kvm_irq_mask_notifier
*kimn
, bool mask
)
632 struct kvm_pit
*pit
= container_of(kimn
, struct kvm_pit
, mask_notifier
);
635 kvm_pit_reset_reinject(pit
);
638 static const struct kvm_io_device_ops pit_dev_ops
= {
639 .read
= pit_ioport_read
,
640 .write
= pit_ioport_write
,
643 static const struct kvm_io_device_ops speaker_dev_ops
= {
644 .read
= speaker_ioport_read
,
645 .write
= speaker_ioport_write
,
648 struct kvm_pit
*kvm_create_pit(struct kvm
*kvm
, u32 flags
)
651 struct kvm_kpit_state
*pit_state
;
656 pit
= kzalloc(sizeof(struct kvm_pit
), GFP_KERNEL
);
660 pit
->irq_source_id
= kvm_request_irq_source_id(kvm
);
661 if (pit
->irq_source_id
< 0)
664 mutex_init(&pit
->pit_state
.lock
);
666 pid
= get_pid(task_tgid(current
));
667 pid_nr
= pid_vnr(pid
);
670 init_kthread_worker(&pit
->worker
);
671 pit
->worker_task
= kthread_run(kthread_worker_fn
, &pit
->worker
,
672 "kvm-pit/%d", pid_nr
);
673 if (IS_ERR(pit
->worker_task
))
676 init_kthread_work(&pit
->expired
, pit_do_work
);
680 pit_state
= &pit
->pit_state
;
681 hrtimer_init(&pit_state
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
682 pit_state
->timer
.function
= pit_timer_fn
;
684 pit_state
->irq_ack_notifier
.gsi
= 0;
685 pit_state
->irq_ack_notifier
.irq_acked
= kvm_pit_ack_irq
;
686 pit
->mask_notifier
.func
= pit_mask_notifer
;
690 kvm_pit_set_reinject(pit
, true);
692 mutex_lock(&kvm
->slots_lock
);
693 kvm_iodevice_init(&pit
->dev
, &pit_dev_ops
);
694 ret
= kvm_io_bus_register_dev(kvm
, KVM_PIO_BUS
, KVM_PIT_BASE_ADDRESS
,
695 KVM_PIT_MEM_LENGTH
, &pit
->dev
);
697 goto fail_register_pit
;
699 if (flags
& KVM_PIT_SPEAKER_DUMMY
) {
700 kvm_iodevice_init(&pit
->speaker_dev
, &speaker_dev_ops
);
701 ret
= kvm_io_bus_register_dev(kvm
, KVM_PIO_BUS
,
702 KVM_SPEAKER_BASE_ADDRESS
, 4,
705 goto fail_register_speaker
;
707 mutex_unlock(&kvm
->slots_lock
);
711 fail_register_speaker
:
712 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
, &pit
->dev
);
714 mutex_unlock(&kvm
->slots_lock
);
715 kvm_pit_set_reinject(pit
, false);
716 kthread_stop(pit
->worker_task
);
718 kvm_free_irq_source_id(kvm
, pit
->irq_source_id
);
724 void kvm_free_pit(struct kvm
*kvm
)
726 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
729 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
, &pit
->dev
);
730 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
, &pit
->speaker_dev
);
731 kvm_pit_set_reinject(pit
, false);
732 hrtimer_cancel(&pit
->pit_state
.timer
);
733 flush_kthread_work(&pit
->expired
);
734 kthread_stop(pit
->worker_task
);
735 kvm_free_irq_source_id(kvm
, pit
->irq_source_id
);