1 #ifndef __KVM_X86_MMU_H
2 #define __KVM_X86_MMU_H
4 #include <linux/kvm_host.h>
5 #include "kvm_cache_regs.h"
8 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
9 #define PT32_PT_BITS 10
10 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
12 #define PT_WRITABLE_SHIFT 1
13 #define PT_USER_SHIFT 2
15 #define PT_PRESENT_MASK (1ULL << 0)
16 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
17 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
18 #define PT_PWT_MASK (1ULL << 3)
19 #define PT_PCD_MASK (1ULL << 4)
20 #define PT_ACCESSED_SHIFT 5
21 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
22 #define PT_DIRTY_SHIFT 6
23 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
24 #define PT_PAGE_SIZE_SHIFT 7
25 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
26 #define PT_PAT_MASK (1ULL << 7)
27 #define PT_GLOBAL_MASK (1ULL << 8)
28 #define PT64_NX_SHIFT 63
29 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
31 #define PT_PAT_SHIFT 7
32 #define PT_DIR_PAT_SHIFT 12
33 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
35 #define PT32_DIR_PSE36_SIZE 4
36 #define PT32_DIR_PSE36_SHIFT 13
37 #define PT32_DIR_PSE36_MASK \
38 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
40 #define PT64_ROOT_LEVEL 4
41 #define PT32_ROOT_LEVEL 2
42 #define PT32E_ROOT_LEVEL 3
44 #define PT_PDPE_LEVEL 3
45 #define PT_DIRECTORY_LEVEL 2
46 #define PT_PAGE_TABLE_LEVEL 1
47 #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
49 static inline u64
rsvd_bits(int s
, int e
)
51 return ((1ULL << (e
- s
+ 1)) - 1) << s
;
54 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask
);
57 reset_shadow_zero_bits_mask(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
);
60 * Return values of handle_mmio_page_fault:
61 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
63 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
64 * fault path update the mmio spte.
65 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
66 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
69 RET_MMIO_PF_EMULATE
= 1,
70 RET_MMIO_PF_INVALID
= 2,
71 RET_MMIO_PF_RETRY
= 0,
75 int handle_mmio_page_fault(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
);
76 void kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
);
77 void kvm_init_shadow_ept_mmu(struct kvm_vcpu
*vcpu
, bool execonly
);
79 static inline unsigned int kvm_mmu_available_pages(struct kvm
*kvm
)
81 if (kvm
->arch
.n_max_mmu_pages
> kvm
->arch
.n_used_mmu_pages
)
82 return kvm
->arch
.n_max_mmu_pages
-
83 kvm
->arch
.n_used_mmu_pages
;
88 static inline int kvm_mmu_reload(struct kvm_vcpu
*vcpu
)
90 if (likely(vcpu
->arch
.mmu
.root_hpa
!= INVALID_PAGE
))
93 return kvm_mmu_load(vcpu
);
97 * Currently, we have two sorts of write-protection, a) the first one
98 * write-protects guest page to sync the guest modification, b) another one is
99 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
100 * between these two sorts are:
101 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
102 * 2) the first case requires flushing tlb immediately avoiding corrupting
103 * shadow page table between all vcpus so it should be in the protection of
104 * mmu-lock. And the another case does not need to flush tlb until returning
105 * the dirty bitmap to userspace since it only write-protects the page
106 * logged in the bitmap, that means the page in the dirty bitmap is not
107 * missed, so it can flush tlb out of mmu-lock.
109 * So, there is the problem: the first case can meet the corrupted tlb caused
110 * by another case which write-protects pages but without flush tlb
111 * immediately. In order to making the first case be aware this problem we let
112 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
113 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
115 * Anyway, whenever a spte is updated (only permission and status bits are
116 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
117 * readonly, if that happens, we need to flush tlb. Fortunately,
118 * mmu_spte_update() has already handled it perfectly.
120 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
121 * - if we want to see if it has writable tlb entry or if the spte can be
122 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
124 * - if we fix page fault on the spte or do write-protection by dirty logging,
125 * check PT_WRITABLE_MASK.
127 * TODO: introduce APIs to split these two cases.
129 static inline int is_writable_pte(unsigned long pte
)
131 return pte
& PT_WRITABLE_MASK
;
134 static inline bool is_write_protection(struct kvm_vcpu
*vcpu
)
136 return kvm_read_cr0_bits(vcpu
, X86_CR0_WP
);
140 * Check if a given access (described through the I/D, W/R and U/S bits of a
141 * page fault error code pfec) causes a permission fault with the given PTE
142 * access rights (in ACC_* format).
144 * Return zero if the access does not fault; return the page fault error code
145 * if the access faults.
147 static inline u8
permission_fault(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
148 unsigned pte_access
, unsigned pte_pkey
,
151 int cpl
= kvm_x86_ops
->get_cpl(vcpu
);
152 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
155 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
157 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
158 * (these are implicit supervisor accesses) regardless of the value
161 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
162 * the result in X86_EFLAGS_AC. We then insert it in place of
163 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
164 * but it will be one in index if SMAP checks are being overridden.
165 * It is important to keep this branchless.
167 unsigned long smap
= (cpl
- 3) & (rflags
& X86_EFLAGS_AC
);
168 int index
= (pfec
>> 1) +
169 (smap
>> (X86_EFLAGS_AC_BIT
- PFERR_RSVD_BIT
+ 1));
170 bool fault
= (mmu
->permissions
[index
] >> pte_access
) & 1;
171 u32 errcode
= PFERR_PRESENT_MASK
;
173 WARN_ON(pfec
& (PFERR_PK_MASK
| PFERR_RSVD_MASK
));
174 if (unlikely(mmu
->pkru_mask
)) {
175 u32 pkru_bits
, offset
;
178 * PKRU defines 32 bits, there are 16 domains and 2
179 * attribute bits per domain in pkru. pte_pkey is the
180 * index of the protection domain, so pte_pkey * 2 is
181 * is the index of the first bit for the domain.
183 pkru_bits
= (kvm_read_pkru(vcpu
) >> (pte_pkey
* 2)) & 3;
185 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
186 offset
= (pfec
& ~1) +
187 ((pte_access
& PT_USER_MASK
) << (PFERR_RSVD_BIT
- PT_USER_SHIFT
));
189 pkru_bits
&= mmu
->pkru_mask
>> offset
;
190 errcode
|= -pkru_bits
& PFERR_PK_MASK
;
191 fault
|= (pkru_bits
!= 0);
194 return -(u32
)fault
& errcode
;
197 void kvm_mmu_invalidate_zap_all_pages(struct kvm
*kvm
);
198 void kvm_zap_gfn_range(struct kvm
*kvm
, gfn_t gfn_start
, gfn_t gfn_end
);
200 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot
*slot
, gfn_t gfn
);
201 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot
*slot
, gfn_t gfn
);
202 bool kvm_mmu_slot_gfn_write_protect(struct kvm
*kvm
,
203 struct kvm_memory_slot
*slot
, u64 gfn
);