2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include "kvm_cache_regs.h"
43 #include <asm/virtext.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
50 #include <asm/irq_remapping.h>
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 #define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
62 static const struct x86_cpu_id vmx_cpu_id
[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX
),
66 MODULE_DEVICE_TABLE(x86cpu
, vmx_cpu_id
);
68 static bool __read_mostly enable_vpid
= 1;
69 module_param_named(vpid
, enable_vpid
, bool, 0444);
71 static bool __read_mostly flexpriority_enabled
= 1;
72 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
74 static bool __read_mostly enable_ept
= 1;
75 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
77 static bool __read_mostly enable_unrestricted_guest
= 1;
78 module_param_named(unrestricted_guest
,
79 enable_unrestricted_guest
, bool, S_IRUGO
);
81 static bool __read_mostly enable_ept_ad_bits
= 1;
82 module_param_named(eptad
, enable_ept_ad_bits
, bool, S_IRUGO
);
84 static bool __read_mostly emulate_invalid_guest_state
= true;
85 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
87 static bool __read_mostly vmm_exclusive
= 1;
88 module_param(vmm_exclusive
, bool, S_IRUGO
);
90 static bool __read_mostly fasteoi
= 1;
91 module_param(fasteoi
, bool, S_IRUGO
);
93 static bool __read_mostly enable_apicv
= 1;
94 module_param(enable_apicv
, bool, S_IRUGO
);
96 static bool __read_mostly enable_shadow_vmcs
= 1;
97 module_param_named(enable_shadow_vmcs
, enable_shadow_vmcs
, bool, S_IRUGO
);
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
103 static bool __read_mostly nested
= 0;
104 module_param(nested
, bool, S_IRUGO
);
106 static u64 __read_mostly host_xss
;
108 static bool __read_mostly enable_pml
= 1;
109 module_param_named(pml
, enable_pml
, bool, S_IRUGO
);
111 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
113 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
114 static int __read_mostly cpu_preemption_timer_multi
;
115 static bool __read_mostly enable_preemption_timer
= 1;
117 module_param_named(preemption_timer
, enable_preemption_timer
, bool, S_IRUGO
);
120 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
121 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
122 #define KVM_VM_CR0_ALWAYS_ON \
123 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
124 #define KVM_CR4_GUEST_OWNED_BITS \
125 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
126 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
128 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
129 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
131 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
133 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
136 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
137 * ple_gap: upper bound on the amount of time between two successive
138 * executions of PAUSE in a loop. Also indicate if ple enabled.
139 * According to test, this time is usually smaller than 128 cycles.
140 * ple_window: upper bound on the amount of time a guest is allowed to execute
141 * in a PAUSE loop. Tests indicate that most spinlocks are held for
142 * less than 2^12 cycles
143 * Time is measured based on a counter that runs at the same rate as the TSC,
144 * refer SDM volume 3b section 21.6.13 & 22.1.3.
146 #define KVM_VMX_DEFAULT_PLE_GAP 128
147 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
148 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
149 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
150 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
151 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
153 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
154 module_param(ple_gap
, int, S_IRUGO
);
156 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
157 module_param(ple_window
, int, S_IRUGO
);
159 /* Default doubles per-vcpu window every exit. */
160 static int ple_window_grow
= KVM_VMX_DEFAULT_PLE_WINDOW_GROW
;
161 module_param(ple_window_grow
, int, S_IRUGO
);
163 /* Default resets per-vcpu window every exit to ple_window. */
164 static int ple_window_shrink
= KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK
;
165 module_param(ple_window_shrink
, int, S_IRUGO
);
167 /* Default is to compute the maximum so we can never overflow. */
168 static int ple_window_actual_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
169 static int ple_window_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
170 module_param(ple_window_max
, int, S_IRUGO
);
172 extern const ulong vmx_return
;
174 #define NR_AUTOLOAD_MSRS 8
175 #define VMCS02_POOL_SIZE 1
184 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
185 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
186 * loaded on this CPU (so we can clear them if the CPU goes down).
192 struct list_head loaded_vmcss_on_cpu_link
;
195 struct shared_msr_entry
{
202 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
203 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
204 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
205 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
206 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
207 * More than one of these structures may exist, if L1 runs multiple L2 guests.
208 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
209 * underlying hardware which will be used to run L2.
210 * This structure is packed to ensure that its layout is identical across
211 * machines (necessary for live migration).
212 * If there are changes in this struct, VMCS12_REVISION must be changed.
214 typedef u64 natural_width
;
215 struct __packed vmcs12
{
216 /* According to the Intel spec, a VMCS region must start with the
217 * following two fields. Then follow implementation-specific data.
222 u32 launch_state
; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
223 u32 padding
[7]; /* room for future expansion */
228 u64 vm_exit_msr_store_addr
;
229 u64 vm_exit_msr_load_addr
;
230 u64 vm_entry_msr_load_addr
;
232 u64 virtual_apic_page_addr
;
233 u64 apic_access_addr
;
234 u64 posted_intr_desc_addr
;
236 u64 eoi_exit_bitmap0
;
237 u64 eoi_exit_bitmap1
;
238 u64 eoi_exit_bitmap2
;
239 u64 eoi_exit_bitmap3
;
241 u64 guest_physical_address
;
242 u64 vmcs_link_pointer
;
243 u64 guest_ia32_debugctl
;
246 u64 guest_ia32_perf_global_ctrl
;
254 u64 host_ia32_perf_global_ctrl
;
255 u64 padding64
[8]; /* room for future expansion */
257 * To allow migration of L1 (complete with its L2 guests) between
258 * machines of different natural widths (32 or 64 bit), we cannot have
259 * unsigned long fields with no explict size. We use u64 (aliased
260 * natural_width) instead. Luckily, x86 is little-endian.
262 natural_width cr0_guest_host_mask
;
263 natural_width cr4_guest_host_mask
;
264 natural_width cr0_read_shadow
;
265 natural_width cr4_read_shadow
;
266 natural_width cr3_target_value0
;
267 natural_width cr3_target_value1
;
268 natural_width cr3_target_value2
;
269 natural_width cr3_target_value3
;
270 natural_width exit_qualification
;
271 natural_width guest_linear_address
;
272 natural_width guest_cr0
;
273 natural_width guest_cr3
;
274 natural_width guest_cr4
;
275 natural_width guest_es_base
;
276 natural_width guest_cs_base
;
277 natural_width guest_ss_base
;
278 natural_width guest_ds_base
;
279 natural_width guest_fs_base
;
280 natural_width guest_gs_base
;
281 natural_width guest_ldtr_base
;
282 natural_width guest_tr_base
;
283 natural_width guest_gdtr_base
;
284 natural_width guest_idtr_base
;
285 natural_width guest_dr7
;
286 natural_width guest_rsp
;
287 natural_width guest_rip
;
288 natural_width guest_rflags
;
289 natural_width guest_pending_dbg_exceptions
;
290 natural_width guest_sysenter_esp
;
291 natural_width guest_sysenter_eip
;
292 natural_width host_cr0
;
293 natural_width host_cr3
;
294 natural_width host_cr4
;
295 natural_width host_fs_base
;
296 natural_width host_gs_base
;
297 natural_width host_tr_base
;
298 natural_width host_gdtr_base
;
299 natural_width host_idtr_base
;
300 natural_width host_ia32_sysenter_esp
;
301 natural_width host_ia32_sysenter_eip
;
302 natural_width host_rsp
;
303 natural_width host_rip
;
304 natural_width paddingl
[8]; /* room for future expansion */
305 u32 pin_based_vm_exec_control
;
306 u32 cpu_based_vm_exec_control
;
307 u32 exception_bitmap
;
308 u32 page_fault_error_code_mask
;
309 u32 page_fault_error_code_match
;
310 u32 cr3_target_count
;
311 u32 vm_exit_controls
;
312 u32 vm_exit_msr_store_count
;
313 u32 vm_exit_msr_load_count
;
314 u32 vm_entry_controls
;
315 u32 vm_entry_msr_load_count
;
316 u32 vm_entry_intr_info_field
;
317 u32 vm_entry_exception_error_code
;
318 u32 vm_entry_instruction_len
;
320 u32 secondary_vm_exec_control
;
321 u32 vm_instruction_error
;
323 u32 vm_exit_intr_info
;
324 u32 vm_exit_intr_error_code
;
325 u32 idt_vectoring_info_field
;
326 u32 idt_vectoring_error_code
;
327 u32 vm_exit_instruction_len
;
328 u32 vmx_instruction_info
;
335 u32 guest_ldtr_limit
;
337 u32 guest_gdtr_limit
;
338 u32 guest_idtr_limit
;
339 u32 guest_es_ar_bytes
;
340 u32 guest_cs_ar_bytes
;
341 u32 guest_ss_ar_bytes
;
342 u32 guest_ds_ar_bytes
;
343 u32 guest_fs_ar_bytes
;
344 u32 guest_gs_ar_bytes
;
345 u32 guest_ldtr_ar_bytes
;
346 u32 guest_tr_ar_bytes
;
347 u32 guest_interruptibility_info
;
348 u32 guest_activity_state
;
349 u32 guest_sysenter_cs
;
350 u32 host_ia32_sysenter_cs
;
351 u32 vmx_preemption_timer_value
;
352 u32 padding32
[7]; /* room for future expansion */
353 u16 virtual_processor_id
;
355 u16 guest_es_selector
;
356 u16 guest_cs_selector
;
357 u16 guest_ss_selector
;
358 u16 guest_ds_selector
;
359 u16 guest_fs_selector
;
360 u16 guest_gs_selector
;
361 u16 guest_ldtr_selector
;
362 u16 guest_tr_selector
;
363 u16 guest_intr_status
;
364 u16 host_es_selector
;
365 u16 host_cs_selector
;
366 u16 host_ss_selector
;
367 u16 host_ds_selector
;
368 u16 host_fs_selector
;
369 u16 host_gs_selector
;
370 u16 host_tr_selector
;
374 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
375 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
376 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
378 #define VMCS12_REVISION 0x11e57ed0
381 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
382 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
383 * current implementation, 4K are reserved to avoid future complications.
385 #define VMCS12_SIZE 0x1000
387 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
389 struct list_head list
;
391 struct loaded_vmcs vmcs02
;
395 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
396 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
399 /* Has the level1 guest done vmxon? */
403 /* The guest-physical address of the current VMCS L1 keeps for L2 */
405 /* The host-usable pointer to the above */
406 struct page
*current_vmcs12_page
;
407 struct vmcs12
*current_vmcs12
;
409 * Cache of the guest's VMCS, existing outside of guest memory.
410 * Loaded from guest memory during VMPTRLD. Flushed to guest
411 * memory during VMXOFF, VMCLEAR, VMPTRLD.
413 struct vmcs12
*cached_vmcs12
;
414 struct vmcs
*current_shadow_vmcs
;
416 * Indicates if the shadow vmcs must be updated with the
417 * data hold by vmcs12
419 bool sync_shadow_vmcs
;
421 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
422 struct list_head vmcs02_pool
;
424 u64 vmcs01_tsc_offset
;
425 /* L2 must run next, and mustn't decide to exit to L1. */
426 bool nested_run_pending
;
428 * Guest pages referred to in vmcs02 with host-physical pointers, so
429 * we must keep them pinned while L2 runs.
431 struct page
*apic_access_page
;
432 struct page
*virtual_apic_page
;
433 struct page
*pi_desc_page
;
434 struct pi_desc
*pi_desc
;
438 struct hrtimer preemption_timer
;
439 bool preemption_timer_expired
;
441 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
447 u32 nested_vmx_procbased_ctls_low
;
448 u32 nested_vmx_procbased_ctls_high
;
449 u32 nested_vmx_true_procbased_ctls_low
;
450 u32 nested_vmx_secondary_ctls_low
;
451 u32 nested_vmx_secondary_ctls_high
;
452 u32 nested_vmx_pinbased_ctls_low
;
453 u32 nested_vmx_pinbased_ctls_high
;
454 u32 nested_vmx_exit_ctls_low
;
455 u32 nested_vmx_exit_ctls_high
;
456 u32 nested_vmx_true_exit_ctls_low
;
457 u32 nested_vmx_entry_ctls_low
;
458 u32 nested_vmx_entry_ctls_high
;
459 u32 nested_vmx_true_entry_ctls_low
;
460 u32 nested_vmx_misc_low
;
461 u32 nested_vmx_misc_high
;
462 u32 nested_vmx_ept_caps
;
463 u32 nested_vmx_vpid_caps
;
466 #define POSTED_INTR_ON 0
467 #define POSTED_INTR_SN 1
469 /* Posted-Interrupt Descriptor */
471 u32 pir
[8]; /* Posted interrupt requested */
474 /* bit 256 - Outstanding Notification */
476 /* bit 257 - Suppress Notification */
478 /* bit 271:258 - Reserved */
480 /* bit 279:272 - Notification Vector */
482 /* bit 287:280 - Reserved */
484 /* bit 319:288 - Notification Destination */
492 static bool pi_test_and_set_on(struct pi_desc
*pi_desc
)
494 return test_and_set_bit(POSTED_INTR_ON
,
495 (unsigned long *)&pi_desc
->control
);
498 static bool pi_test_and_clear_on(struct pi_desc
*pi_desc
)
500 return test_and_clear_bit(POSTED_INTR_ON
,
501 (unsigned long *)&pi_desc
->control
);
504 static int pi_test_and_set_pir(int vector
, struct pi_desc
*pi_desc
)
506 return test_and_set_bit(vector
, (unsigned long *)pi_desc
->pir
);
509 static inline void pi_clear_sn(struct pi_desc
*pi_desc
)
511 return clear_bit(POSTED_INTR_SN
,
512 (unsigned long *)&pi_desc
->control
);
515 static inline void pi_set_sn(struct pi_desc
*pi_desc
)
517 return set_bit(POSTED_INTR_SN
,
518 (unsigned long *)&pi_desc
->control
);
521 static inline int pi_test_on(struct pi_desc
*pi_desc
)
523 return test_bit(POSTED_INTR_ON
,
524 (unsigned long *)&pi_desc
->control
);
527 static inline int pi_test_sn(struct pi_desc
*pi_desc
)
529 return test_bit(POSTED_INTR_SN
,
530 (unsigned long *)&pi_desc
->control
);
534 struct kvm_vcpu vcpu
;
535 unsigned long host_rsp
;
537 bool nmi_known_unmasked
;
539 u32 idt_vectoring_info
;
541 struct shared_msr_entry
*guest_msrs
;
544 unsigned long host_idt_base
;
546 u64 msr_host_kernel_gs_base
;
547 u64 msr_guest_kernel_gs_base
;
549 u32 vm_entry_controls_shadow
;
550 u32 vm_exit_controls_shadow
;
552 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
553 * non-nested (L1) guest, it always points to vmcs01. For a nested
554 * guest (L2), it points to a different VMCS.
556 struct loaded_vmcs vmcs01
;
557 struct loaded_vmcs
*loaded_vmcs
;
558 bool __launched
; /* temporary, used in vmx_vcpu_run */
559 struct msr_autoload
{
561 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
562 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
566 u16 fs_sel
, gs_sel
, ldt_sel
;
570 int gs_ldt_reload_needed
;
571 int fs_reload_needed
;
572 u64 msr_host_bndcfgs
;
573 unsigned long vmcs_host_cr4
; /* May not match real cr4 */
578 struct kvm_segment segs
[8];
581 u32 bitmask
; /* 4 bits per segment (1 bit per field) */
582 struct kvm_save_segment
{
590 bool emulation_required
;
592 /* Support for vnmi-less CPUs */
593 int soft_vnmi_blocked
;
595 s64 vnmi_blocked_time
;
598 /* Posted interrupt descriptor */
599 struct pi_desc pi_desc
;
601 /* Support for a guest hypervisor (nested VMX) */
602 struct nested_vmx nested
;
604 /* Dynamic PLE window. */
606 bool ple_window_dirty
;
608 /* Support for PML */
609 #define PML_ENTITY_NUM 512
612 /* apic deadline value in host tsc */
615 u64 current_tsc_ratio
;
617 bool guest_pkru_valid
;
622 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
623 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
624 * in msr_ia32_feature_control_valid_bits.
626 u64 msr_ia32_feature_control
;
627 u64 msr_ia32_feature_control_valid_bits
;
630 enum segment_cache_field
{
639 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
641 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
644 static struct pi_desc
*vcpu_to_pi_desc(struct kvm_vcpu
*vcpu
)
646 return &(to_vmx(vcpu
)->pi_desc
);
649 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
650 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
651 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
652 [number##_HIGH] = VMCS12_OFFSET(name)+4
655 static unsigned long shadow_read_only_fields
[] = {
657 * We do NOT shadow fields that are modified when L0
658 * traps and emulates any vmx instruction (e.g. VMPTRLD,
659 * VMXON...) executed by L1.
660 * For example, VM_INSTRUCTION_ERROR is read
661 * by L1 if a vmx instruction fails (part of the error path).
662 * Note the code assumes this logic. If for some reason
663 * we start shadowing these fields then we need to
664 * force a shadow sync when L0 emulates vmx instructions
665 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
666 * by nested_vmx_failValid)
670 VM_EXIT_INSTRUCTION_LEN
,
671 IDT_VECTORING_INFO_FIELD
,
672 IDT_VECTORING_ERROR_CODE
,
673 VM_EXIT_INTR_ERROR_CODE
,
675 GUEST_LINEAR_ADDRESS
,
676 GUEST_PHYSICAL_ADDRESS
678 static int max_shadow_read_only_fields
=
679 ARRAY_SIZE(shadow_read_only_fields
);
681 static unsigned long shadow_read_write_fields
[] = {
688 GUEST_INTERRUPTIBILITY_INFO
,
701 CPU_BASED_VM_EXEC_CONTROL
,
702 VM_ENTRY_EXCEPTION_ERROR_CODE
,
703 VM_ENTRY_INTR_INFO_FIELD
,
704 VM_ENTRY_INSTRUCTION_LEN
,
705 VM_ENTRY_EXCEPTION_ERROR_CODE
,
711 static int max_shadow_read_write_fields
=
712 ARRAY_SIZE(shadow_read_write_fields
);
714 static const unsigned short vmcs_field_to_offset_table
[] = {
715 FIELD(VIRTUAL_PROCESSOR_ID
, virtual_processor_id
),
716 FIELD(POSTED_INTR_NV
, posted_intr_nv
),
717 FIELD(GUEST_ES_SELECTOR
, guest_es_selector
),
718 FIELD(GUEST_CS_SELECTOR
, guest_cs_selector
),
719 FIELD(GUEST_SS_SELECTOR
, guest_ss_selector
),
720 FIELD(GUEST_DS_SELECTOR
, guest_ds_selector
),
721 FIELD(GUEST_FS_SELECTOR
, guest_fs_selector
),
722 FIELD(GUEST_GS_SELECTOR
, guest_gs_selector
),
723 FIELD(GUEST_LDTR_SELECTOR
, guest_ldtr_selector
),
724 FIELD(GUEST_TR_SELECTOR
, guest_tr_selector
),
725 FIELD(GUEST_INTR_STATUS
, guest_intr_status
),
726 FIELD(HOST_ES_SELECTOR
, host_es_selector
),
727 FIELD(HOST_CS_SELECTOR
, host_cs_selector
),
728 FIELD(HOST_SS_SELECTOR
, host_ss_selector
),
729 FIELD(HOST_DS_SELECTOR
, host_ds_selector
),
730 FIELD(HOST_FS_SELECTOR
, host_fs_selector
),
731 FIELD(HOST_GS_SELECTOR
, host_gs_selector
),
732 FIELD(HOST_TR_SELECTOR
, host_tr_selector
),
733 FIELD64(IO_BITMAP_A
, io_bitmap_a
),
734 FIELD64(IO_BITMAP_B
, io_bitmap_b
),
735 FIELD64(MSR_BITMAP
, msr_bitmap
),
736 FIELD64(VM_EXIT_MSR_STORE_ADDR
, vm_exit_msr_store_addr
),
737 FIELD64(VM_EXIT_MSR_LOAD_ADDR
, vm_exit_msr_load_addr
),
738 FIELD64(VM_ENTRY_MSR_LOAD_ADDR
, vm_entry_msr_load_addr
),
739 FIELD64(TSC_OFFSET
, tsc_offset
),
740 FIELD64(VIRTUAL_APIC_PAGE_ADDR
, virtual_apic_page_addr
),
741 FIELD64(APIC_ACCESS_ADDR
, apic_access_addr
),
742 FIELD64(POSTED_INTR_DESC_ADDR
, posted_intr_desc_addr
),
743 FIELD64(EPT_POINTER
, ept_pointer
),
744 FIELD64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap0
),
745 FIELD64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap1
),
746 FIELD64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap2
),
747 FIELD64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap3
),
748 FIELD64(XSS_EXIT_BITMAP
, xss_exit_bitmap
),
749 FIELD64(GUEST_PHYSICAL_ADDRESS
, guest_physical_address
),
750 FIELD64(VMCS_LINK_POINTER
, vmcs_link_pointer
),
751 FIELD64(GUEST_IA32_DEBUGCTL
, guest_ia32_debugctl
),
752 FIELD64(GUEST_IA32_PAT
, guest_ia32_pat
),
753 FIELD64(GUEST_IA32_EFER
, guest_ia32_efer
),
754 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL
, guest_ia32_perf_global_ctrl
),
755 FIELD64(GUEST_PDPTR0
, guest_pdptr0
),
756 FIELD64(GUEST_PDPTR1
, guest_pdptr1
),
757 FIELD64(GUEST_PDPTR2
, guest_pdptr2
),
758 FIELD64(GUEST_PDPTR3
, guest_pdptr3
),
759 FIELD64(GUEST_BNDCFGS
, guest_bndcfgs
),
760 FIELD64(HOST_IA32_PAT
, host_ia32_pat
),
761 FIELD64(HOST_IA32_EFER
, host_ia32_efer
),
762 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL
, host_ia32_perf_global_ctrl
),
763 FIELD(PIN_BASED_VM_EXEC_CONTROL
, pin_based_vm_exec_control
),
764 FIELD(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
),
765 FIELD(EXCEPTION_BITMAP
, exception_bitmap
),
766 FIELD(PAGE_FAULT_ERROR_CODE_MASK
, page_fault_error_code_mask
),
767 FIELD(PAGE_FAULT_ERROR_CODE_MATCH
, page_fault_error_code_match
),
768 FIELD(CR3_TARGET_COUNT
, cr3_target_count
),
769 FIELD(VM_EXIT_CONTROLS
, vm_exit_controls
),
770 FIELD(VM_EXIT_MSR_STORE_COUNT
, vm_exit_msr_store_count
),
771 FIELD(VM_EXIT_MSR_LOAD_COUNT
, vm_exit_msr_load_count
),
772 FIELD(VM_ENTRY_CONTROLS
, vm_entry_controls
),
773 FIELD(VM_ENTRY_MSR_LOAD_COUNT
, vm_entry_msr_load_count
),
774 FIELD(VM_ENTRY_INTR_INFO_FIELD
, vm_entry_intr_info_field
),
775 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE
, vm_entry_exception_error_code
),
776 FIELD(VM_ENTRY_INSTRUCTION_LEN
, vm_entry_instruction_len
),
777 FIELD(TPR_THRESHOLD
, tpr_threshold
),
778 FIELD(SECONDARY_VM_EXEC_CONTROL
, secondary_vm_exec_control
),
779 FIELD(VM_INSTRUCTION_ERROR
, vm_instruction_error
),
780 FIELD(VM_EXIT_REASON
, vm_exit_reason
),
781 FIELD(VM_EXIT_INTR_INFO
, vm_exit_intr_info
),
782 FIELD(VM_EXIT_INTR_ERROR_CODE
, vm_exit_intr_error_code
),
783 FIELD(IDT_VECTORING_INFO_FIELD
, idt_vectoring_info_field
),
784 FIELD(IDT_VECTORING_ERROR_CODE
, idt_vectoring_error_code
),
785 FIELD(VM_EXIT_INSTRUCTION_LEN
, vm_exit_instruction_len
),
786 FIELD(VMX_INSTRUCTION_INFO
, vmx_instruction_info
),
787 FIELD(GUEST_ES_LIMIT
, guest_es_limit
),
788 FIELD(GUEST_CS_LIMIT
, guest_cs_limit
),
789 FIELD(GUEST_SS_LIMIT
, guest_ss_limit
),
790 FIELD(GUEST_DS_LIMIT
, guest_ds_limit
),
791 FIELD(GUEST_FS_LIMIT
, guest_fs_limit
),
792 FIELD(GUEST_GS_LIMIT
, guest_gs_limit
),
793 FIELD(GUEST_LDTR_LIMIT
, guest_ldtr_limit
),
794 FIELD(GUEST_TR_LIMIT
, guest_tr_limit
),
795 FIELD(GUEST_GDTR_LIMIT
, guest_gdtr_limit
),
796 FIELD(GUEST_IDTR_LIMIT
, guest_idtr_limit
),
797 FIELD(GUEST_ES_AR_BYTES
, guest_es_ar_bytes
),
798 FIELD(GUEST_CS_AR_BYTES
, guest_cs_ar_bytes
),
799 FIELD(GUEST_SS_AR_BYTES
, guest_ss_ar_bytes
),
800 FIELD(GUEST_DS_AR_BYTES
, guest_ds_ar_bytes
),
801 FIELD(GUEST_FS_AR_BYTES
, guest_fs_ar_bytes
),
802 FIELD(GUEST_GS_AR_BYTES
, guest_gs_ar_bytes
),
803 FIELD(GUEST_LDTR_AR_BYTES
, guest_ldtr_ar_bytes
),
804 FIELD(GUEST_TR_AR_BYTES
, guest_tr_ar_bytes
),
805 FIELD(GUEST_INTERRUPTIBILITY_INFO
, guest_interruptibility_info
),
806 FIELD(GUEST_ACTIVITY_STATE
, guest_activity_state
),
807 FIELD(GUEST_SYSENTER_CS
, guest_sysenter_cs
),
808 FIELD(HOST_IA32_SYSENTER_CS
, host_ia32_sysenter_cs
),
809 FIELD(VMX_PREEMPTION_TIMER_VALUE
, vmx_preemption_timer_value
),
810 FIELD(CR0_GUEST_HOST_MASK
, cr0_guest_host_mask
),
811 FIELD(CR4_GUEST_HOST_MASK
, cr4_guest_host_mask
),
812 FIELD(CR0_READ_SHADOW
, cr0_read_shadow
),
813 FIELD(CR4_READ_SHADOW
, cr4_read_shadow
),
814 FIELD(CR3_TARGET_VALUE0
, cr3_target_value0
),
815 FIELD(CR3_TARGET_VALUE1
, cr3_target_value1
),
816 FIELD(CR3_TARGET_VALUE2
, cr3_target_value2
),
817 FIELD(CR3_TARGET_VALUE3
, cr3_target_value3
),
818 FIELD(EXIT_QUALIFICATION
, exit_qualification
),
819 FIELD(GUEST_LINEAR_ADDRESS
, guest_linear_address
),
820 FIELD(GUEST_CR0
, guest_cr0
),
821 FIELD(GUEST_CR3
, guest_cr3
),
822 FIELD(GUEST_CR4
, guest_cr4
),
823 FIELD(GUEST_ES_BASE
, guest_es_base
),
824 FIELD(GUEST_CS_BASE
, guest_cs_base
),
825 FIELD(GUEST_SS_BASE
, guest_ss_base
),
826 FIELD(GUEST_DS_BASE
, guest_ds_base
),
827 FIELD(GUEST_FS_BASE
, guest_fs_base
),
828 FIELD(GUEST_GS_BASE
, guest_gs_base
),
829 FIELD(GUEST_LDTR_BASE
, guest_ldtr_base
),
830 FIELD(GUEST_TR_BASE
, guest_tr_base
),
831 FIELD(GUEST_GDTR_BASE
, guest_gdtr_base
),
832 FIELD(GUEST_IDTR_BASE
, guest_idtr_base
),
833 FIELD(GUEST_DR7
, guest_dr7
),
834 FIELD(GUEST_RSP
, guest_rsp
),
835 FIELD(GUEST_RIP
, guest_rip
),
836 FIELD(GUEST_RFLAGS
, guest_rflags
),
837 FIELD(GUEST_PENDING_DBG_EXCEPTIONS
, guest_pending_dbg_exceptions
),
838 FIELD(GUEST_SYSENTER_ESP
, guest_sysenter_esp
),
839 FIELD(GUEST_SYSENTER_EIP
, guest_sysenter_eip
),
840 FIELD(HOST_CR0
, host_cr0
),
841 FIELD(HOST_CR3
, host_cr3
),
842 FIELD(HOST_CR4
, host_cr4
),
843 FIELD(HOST_FS_BASE
, host_fs_base
),
844 FIELD(HOST_GS_BASE
, host_gs_base
),
845 FIELD(HOST_TR_BASE
, host_tr_base
),
846 FIELD(HOST_GDTR_BASE
, host_gdtr_base
),
847 FIELD(HOST_IDTR_BASE
, host_idtr_base
),
848 FIELD(HOST_IA32_SYSENTER_ESP
, host_ia32_sysenter_esp
),
849 FIELD(HOST_IA32_SYSENTER_EIP
, host_ia32_sysenter_eip
),
850 FIELD(HOST_RSP
, host_rsp
),
851 FIELD(HOST_RIP
, host_rip
),
854 static inline short vmcs_field_to_offset(unsigned long field
)
856 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table
) > SHRT_MAX
);
858 if (field
>= ARRAY_SIZE(vmcs_field_to_offset_table
) ||
859 vmcs_field_to_offset_table
[field
] == 0)
862 return vmcs_field_to_offset_table
[field
];
865 static inline struct vmcs12
*get_vmcs12(struct kvm_vcpu
*vcpu
)
867 return to_vmx(vcpu
)->nested
.cached_vmcs12
;
870 static struct page
*nested_get_page(struct kvm_vcpu
*vcpu
, gpa_t addr
)
872 struct page
*page
= kvm_vcpu_gfn_to_page(vcpu
, addr
>> PAGE_SHIFT
);
873 if (is_error_page(page
))
879 static void nested_release_page(struct page
*page
)
881 kvm_release_page_dirty(page
);
884 static void nested_release_page_clean(struct page
*page
)
886 kvm_release_page_clean(page
);
889 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
);
890 static u64
construct_eptp(unsigned long root_hpa
);
891 static void kvm_cpu_vmxon(u64 addr
);
892 static void kvm_cpu_vmxoff(void);
893 static bool vmx_xsaves_supported(void);
894 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
);
895 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
896 struct kvm_segment
*var
, int seg
);
897 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
898 struct kvm_segment
*var
, int seg
);
899 static bool guest_state_valid(struct kvm_vcpu
*vcpu
);
900 static u32
vmx_segment_access_rights(struct kvm_segment
*var
);
901 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
);
902 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
);
903 static int alloc_identity_pagetable(struct kvm
*kvm
);
905 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
906 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
908 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
909 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
911 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
912 static DEFINE_PER_CPU(struct desc_ptr
, host_gdt
);
915 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
916 * can find which vCPU should be waken up.
918 static DEFINE_PER_CPU(struct list_head
, blocked_vcpu_on_cpu
);
919 static DEFINE_PER_CPU(spinlock_t
, blocked_vcpu_on_cpu_lock
);
921 static unsigned long *vmx_io_bitmap_a
;
922 static unsigned long *vmx_io_bitmap_b
;
923 static unsigned long *vmx_msr_bitmap_legacy
;
924 static unsigned long *vmx_msr_bitmap_longmode
;
925 static unsigned long *vmx_msr_bitmap_legacy_x2apic
;
926 static unsigned long *vmx_msr_bitmap_longmode_x2apic
;
927 static unsigned long *vmx_msr_bitmap_nested
;
928 static unsigned long *vmx_vmread_bitmap
;
929 static unsigned long *vmx_vmwrite_bitmap
;
931 static bool cpu_has_load_ia32_efer
;
932 static bool cpu_has_load_perf_global_ctrl
;
934 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
935 static DEFINE_SPINLOCK(vmx_vpid_lock
);
937 static struct vmcs_config
{
941 u32 pin_based_exec_ctrl
;
942 u32 cpu_based_exec_ctrl
;
943 u32 cpu_based_2nd_exec_ctrl
;
948 static struct vmx_capability
{
953 #define VMX_SEGMENT_FIELD(seg) \
954 [VCPU_SREG_##seg] = { \
955 .selector = GUEST_##seg##_SELECTOR, \
956 .base = GUEST_##seg##_BASE, \
957 .limit = GUEST_##seg##_LIMIT, \
958 .ar_bytes = GUEST_##seg##_AR_BYTES, \
961 static const struct kvm_vmx_segment_field
{
966 } kvm_vmx_segment_fields
[] = {
967 VMX_SEGMENT_FIELD(CS
),
968 VMX_SEGMENT_FIELD(DS
),
969 VMX_SEGMENT_FIELD(ES
),
970 VMX_SEGMENT_FIELD(FS
),
971 VMX_SEGMENT_FIELD(GS
),
972 VMX_SEGMENT_FIELD(SS
),
973 VMX_SEGMENT_FIELD(TR
),
974 VMX_SEGMENT_FIELD(LDTR
),
977 static u64 host_efer
;
979 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
982 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
983 * away by decrementing the array size.
985 static const u32 vmx_msr_index
[] = {
987 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
989 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
992 static inline bool is_exception_n(u32 intr_info
, u8 vector
)
994 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
995 INTR_INFO_VALID_MASK
)) ==
996 (INTR_TYPE_HARD_EXCEPTION
| vector
| INTR_INFO_VALID_MASK
);
999 static inline bool is_debug(u32 intr_info
)
1001 return is_exception_n(intr_info
, DB_VECTOR
);
1004 static inline bool is_breakpoint(u32 intr_info
)
1006 return is_exception_n(intr_info
, BP_VECTOR
);
1009 static inline bool is_page_fault(u32 intr_info
)
1011 return is_exception_n(intr_info
, PF_VECTOR
);
1014 static inline bool is_no_device(u32 intr_info
)
1016 return is_exception_n(intr_info
, NM_VECTOR
);
1019 static inline bool is_invalid_opcode(u32 intr_info
)
1021 return is_exception_n(intr_info
, UD_VECTOR
);
1024 static inline bool is_external_interrupt(u32 intr_info
)
1026 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1027 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
1030 static inline bool is_machine_check(u32 intr_info
)
1032 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
1033 INTR_INFO_VALID_MASK
)) ==
1034 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
1037 static inline bool cpu_has_vmx_msr_bitmap(void)
1039 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
1042 static inline bool cpu_has_vmx_tpr_shadow(void)
1044 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
1047 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu
*vcpu
)
1049 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu
);
1052 static inline bool cpu_has_secondary_exec_ctrls(void)
1054 return vmcs_config
.cpu_based_exec_ctrl
&
1055 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1058 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1060 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1061 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
1064 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1066 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1067 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
1070 static inline bool cpu_has_vmx_apic_register_virt(void)
1072 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1073 SECONDARY_EXEC_APIC_REGISTER_VIRT
;
1076 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1078 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1079 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
;
1083 * Comment's format: document - errata name - stepping - processor name.
1085 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1087 static u32 vmx_preemption_cpu_tfms
[] = {
1088 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1090 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1091 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1092 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1094 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1096 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1097 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1099 * 320767.pdf - AAP86 - B1 -
1100 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1103 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1105 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1107 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1109 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1110 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1111 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1115 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1117 u32 eax
= cpuid_eax(0x00000001), i
;
1119 /* Clear the reserved bits */
1120 eax
&= ~(0x3U
<< 14 | 0xfU
<< 28);
1121 for (i
= 0; i
< ARRAY_SIZE(vmx_preemption_cpu_tfms
); i
++)
1122 if (eax
== vmx_preemption_cpu_tfms
[i
])
1128 static inline bool cpu_has_vmx_preemption_timer(void)
1130 return vmcs_config
.pin_based_exec_ctrl
&
1131 PIN_BASED_VMX_PREEMPTION_TIMER
;
1134 static inline bool cpu_has_vmx_posted_intr(void)
1136 return IS_ENABLED(CONFIG_X86_LOCAL_APIC
) &&
1137 vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
;
1140 static inline bool cpu_has_vmx_apicv(void)
1142 return cpu_has_vmx_apic_register_virt() &&
1143 cpu_has_vmx_virtual_intr_delivery() &&
1144 cpu_has_vmx_posted_intr();
1147 static inline bool cpu_has_vmx_flexpriority(void)
1149 return cpu_has_vmx_tpr_shadow() &&
1150 cpu_has_vmx_virtualize_apic_accesses();
1153 static inline bool cpu_has_vmx_ept_execute_only(void)
1155 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
1158 static inline bool cpu_has_vmx_ept_2m_page(void)
1160 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
1163 static inline bool cpu_has_vmx_ept_1g_page(void)
1165 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
1168 static inline bool cpu_has_vmx_ept_4levels(void)
1170 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
1173 static inline bool cpu_has_vmx_ept_ad_bits(void)
1175 return vmx_capability
.ept
& VMX_EPT_AD_BIT
;
1178 static inline bool cpu_has_vmx_invept_context(void)
1180 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
1183 static inline bool cpu_has_vmx_invept_global(void)
1185 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
1188 static inline bool cpu_has_vmx_invvpid_single(void)
1190 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
1193 static inline bool cpu_has_vmx_invvpid_global(void)
1195 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
1198 static inline bool cpu_has_vmx_ept(void)
1200 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1201 SECONDARY_EXEC_ENABLE_EPT
;
1204 static inline bool cpu_has_vmx_unrestricted_guest(void)
1206 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1207 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
1210 static inline bool cpu_has_vmx_ple(void)
1212 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1213 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
1216 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu
*vcpu
)
1218 return flexpriority_enabled
&& lapic_in_kernel(vcpu
);
1221 static inline bool cpu_has_vmx_vpid(void)
1223 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1224 SECONDARY_EXEC_ENABLE_VPID
;
1227 static inline bool cpu_has_vmx_rdtscp(void)
1229 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1230 SECONDARY_EXEC_RDTSCP
;
1233 static inline bool cpu_has_vmx_invpcid(void)
1235 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1236 SECONDARY_EXEC_ENABLE_INVPCID
;
1239 static inline bool cpu_has_virtual_nmis(void)
1241 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
1244 static inline bool cpu_has_vmx_wbinvd_exit(void)
1246 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1247 SECONDARY_EXEC_WBINVD_EXITING
;
1250 static inline bool cpu_has_vmx_shadow_vmcs(void)
1253 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
1254 /* check if the cpu supports writing r/o exit information fields */
1255 if (!(vmx_msr
& MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
))
1258 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1259 SECONDARY_EXEC_SHADOW_VMCS
;
1262 static inline bool cpu_has_vmx_pml(void)
1264 return vmcs_config
.cpu_based_2nd_exec_ctrl
& SECONDARY_EXEC_ENABLE_PML
;
1267 static inline bool cpu_has_vmx_tsc_scaling(void)
1269 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1270 SECONDARY_EXEC_TSC_SCALING
;
1273 static inline bool report_flexpriority(void)
1275 return flexpriority_enabled
;
1278 static inline bool nested_cpu_has(struct vmcs12
*vmcs12
, u32 bit
)
1280 return vmcs12
->cpu_based_vm_exec_control
& bit
;
1283 static inline bool nested_cpu_has2(struct vmcs12
*vmcs12
, u32 bit
)
1285 return (vmcs12
->cpu_based_vm_exec_control
&
1286 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
1287 (vmcs12
->secondary_vm_exec_control
& bit
);
1290 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12
*vmcs12
)
1292 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_VIRTUAL_NMIS
;
1295 static inline bool nested_cpu_has_preemption_timer(struct vmcs12
*vmcs12
)
1297 return vmcs12
->pin_based_vm_exec_control
&
1298 PIN_BASED_VMX_PREEMPTION_TIMER
;
1301 static inline int nested_cpu_has_ept(struct vmcs12
*vmcs12
)
1303 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_EPT
);
1306 static inline bool nested_cpu_has_xsaves(struct vmcs12
*vmcs12
)
1308 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
) &&
1309 vmx_xsaves_supported();
1312 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12
*vmcs12
)
1314 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
);
1317 static inline bool nested_cpu_has_vpid(struct vmcs12
*vmcs12
)
1319 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_VPID
);
1322 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12
*vmcs12
)
1324 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_APIC_REGISTER_VIRT
);
1327 static inline bool nested_cpu_has_vid(struct vmcs12
*vmcs12
)
1329 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
1332 static inline bool nested_cpu_has_posted_intr(struct vmcs12
*vmcs12
)
1334 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_POSTED_INTR
;
1337 static inline bool is_exception(u32 intr_info
)
1339 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1340 == (INTR_TYPE_HARD_EXCEPTION
| INTR_INFO_VALID_MASK
);
1343 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
1345 unsigned long exit_qualification
);
1346 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
1347 struct vmcs12
*vmcs12
,
1348 u32 reason
, unsigned long qualification
);
1350 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
1354 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
1355 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
1360 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
1366 } operand
= { vpid
, 0, gva
};
1368 asm volatile (__ex(ASM_VMX_INVVPID
)
1369 /* CF==1 or ZF==1 --> rc = -1 */
1370 "; ja 1f ; ud2 ; 1:"
1371 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
1374 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
1378 } operand
= {eptp
, gpa
};
1380 asm volatile (__ex(ASM_VMX_INVEPT
)
1381 /* CF==1 or ZF==1 --> rc = -1 */
1382 "; ja 1f ; ud2 ; 1:\n"
1383 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
1386 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
1390 i
= __find_msr_index(vmx
, msr
);
1392 return &vmx
->guest_msrs
[i
];
1396 static void vmcs_clear(struct vmcs
*vmcs
)
1398 u64 phys_addr
= __pa(vmcs
);
1401 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
1402 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1405 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
1409 static inline void loaded_vmcs_init(struct loaded_vmcs
*loaded_vmcs
)
1411 vmcs_clear(loaded_vmcs
->vmcs
);
1412 loaded_vmcs
->cpu
= -1;
1413 loaded_vmcs
->launched
= 0;
1416 static void vmcs_load(struct vmcs
*vmcs
)
1418 u64 phys_addr
= __pa(vmcs
);
1421 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
1422 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1425 printk(KERN_ERR
"kvm: vmptrld %p/%llx failed\n",
1429 #ifdef CONFIG_KEXEC_CORE
1431 * This bitmap is used to indicate whether the vmclear
1432 * operation is enabled on all cpus. All disabled by
1435 static cpumask_t crash_vmclear_enabled_bitmap
= CPU_MASK_NONE
;
1437 static inline void crash_enable_local_vmclear(int cpu
)
1439 cpumask_set_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1442 static inline void crash_disable_local_vmclear(int cpu
)
1444 cpumask_clear_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1447 static inline int crash_local_vmclear_enabled(int cpu
)
1449 return cpumask_test_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1452 static void crash_vmclear_local_loaded_vmcss(void)
1454 int cpu
= raw_smp_processor_id();
1455 struct loaded_vmcs
*v
;
1457 if (!crash_local_vmclear_enabled(cpu
))
1460 list_for_each_entry(v
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
1461 loaded_vmcss_on_cpu_link
)
1462 vmcs_clear(v
->vmcs
);
1465 static inline void crash_enable_local_vmclear(int cpu
) { }
1466 static inline void crash_disable_local_vmclear(int cpu
) { }
1467 #endif /* CONFIG_KEXEC_CORE */
1469 static void __loaded_vmcs_clear(void *arg
)
1471 struct loaded_vmcs
*loaded_vmcs
= arg
;
1472 int cpu
= raw_smp_processor_id();
1474 if (loaded_vmcs
->cpu
!= cpu
)
1475 return; /* vcpu migration can race with cpu offline */
1476 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
1477 per_cpu(current_vmcs
, cpu
) = NULL
;
1478 crash_disable_local_vmclear(cpu
);
1479 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
1482 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1483 * is before setting loaded_vmcs->vcpu to -1 which is done in
1484 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1485 * then adds the vmcs into percpu list before it is deleted.
1489 loaded_vmcs_init(loaded_vmcs
);
1490 crash_enable_local_vmclear(cpu
);
1493 static void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
1495 int cpu
= loaded_vmcs
->cpu
;
1498 smp_call_function_single(cpu
,
1499 __loaded_vmcs_clear
, loaded_vmcs
, 1);
1502 static inline void vpid_sync_vcpu_single(int vpid
)
1507 if (cpu_has_vmx_invvpid_single())
1508 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vpid
, 0);
1511 static inline void vpid_sync_vcpu_global(void)
1513 if (cpu_has_vmx_invvpid_global())
1514 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
1517 static inline void vpid_sync_context(int vpid
)
1519 if (cpu_has_vmx_invvpid_single())
1520 vpid_sync_vcpu_single(vpid
);
1522 vpid_sync_vcpu_global();
1525 static inline void ept_sync_global(void)
1527 if (cpu_has_vmx_invept_global())
1528 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
1531 static inline void ept_sync_context(u64 eptp
)
1534 if (cpu_has_vmx_invept_context())
1535 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
1541 static __always_inline
void vmcs_check16(unsigned long field
)
1543 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2000,
1544 "16-bit accessor invalid for 64-bit field");
1545 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1546 "16-bit accessor invalid for 64-bit high field");
1547 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1548 "16-bit accessor invalid for 32-bit high field");
1549 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1550 "16-bit accessor invalid for natural width field");
1553 static __always_inline
void vmcs_check32(unsigned long field
)
1555 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1556 "32-bit accessor invalid for 16-bit field");
1557 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1558 "32-bit accessor invalid for natural width field");
1561 static __always_inline
void vmcs_check64(unsigned long field
)
1563 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1564 "64-bit accessor invalid for 16-bit field");
1565 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1566 "64-bit accessor invalid for 64-bit high field");
1567 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1568 "64-bit accessor invalid for 32-bit field");
1569 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1570 "64-bit accessor invalid for natural width field");
1573 static __always_inline
void vmcs_checkl(unsigned long field
)
1575 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1576 "Natural width accessor invalid for 16-bit field");
1577 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2000,
1578 "Natural width accessor invalid for 64-bit field");
1579 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1580 "Natural width accessor invalid for 64-bit high field");
1581 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1582 "Natural width accessor invalid for 32-bit field");
1585 static __always_inline
unsigned long __vmcs_readl(unsigned long field
)
1587 unsigned long value
;
1589 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX
, "%0")
1590 : "=a"(value
) : "d"(field
) : "cc");
1594 static __always_inline u16
vmcs_read16(unsigned long field
)
1596 vmcs_check16(field
);
1597 return __vmcs_readl(field
);
1600 static __always_inline u32
vmcs_read32(unsigned long field
)
1602 vmcs_check32(field
);
1603 return __vmcs_readl(field
);
1606 static __always_inline u64
vmcs_read64(unsigned long field
)
1608 vmcs_check64(field
);
1609 #ifdef CONFIG_X86_64
1610 return __vmcs_readl(field
);
1612 return __vmcs_readl(field
) | ((u64
)__vmcs_readl(field
+1) << 32);
1616 static __always_inline
unsigned long vmcs_readl(unsigned long field
)
1619 return __vmcs_readl(field
);
1622 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
1624 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
1625 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
1629 static __always_inline
void __vmcs_writel(unsigned long field
, unsigned long value
)
1633 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
1634 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
1635 if (unlikely(error
))
1636 vmwrite_error(field
, value
);
1639 static __always_inline
void vmcs_write16(unsigned long field
, u16 value
)
1641 vmcs_check16(field
);
1642 __vmcs_writel(field
, value
);
1645 static __always_inline
void vmcs_write32(unsigned long field
, u32 value
)
1647 vmcs_check32(field
);
1648 __vmcs_writel(field
, value
);
1651 static __always_inline
void vmcs_write64(unsigned long field
, u64 value
)
1653 vmcs_check64(field
);
1654 __vmcs_writel(field
, value
);
1655 #ifndef CONFIG_X86_64
1657 __vmcs_writel(field
+1, value
>> 32);
1661 static __always_inline
void vmcs_writel(unsigned long field
, unsigned long value
)
1664 __vmcs_writel(field
, value
);
1667 static __always_inline
void vmcs_clear_bits(unsigned long field
, u32 mask
)
1669 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x2000,
1670 "vmcs_clear_bits does not support 64-bit fields");
1671 __vmcs_writel(field
, __vmcs_readl(field
) & ~mask
);
1674 static __always_inline
void vmcs_set_bits(unsigned long field
, u32 mask
)
1676 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x2000,
1677 "vmcs_set_bits does not support 64-bit fields");
1678 __vmcs_writel(field
, __vmcs_readl(field
) | mask
);
1681 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx
*vmx
)
1683 vmx
->vm_entry_controls_shadow
= vmcs_read32(VM_ENTRY_CONTROLS
);
1686 static inline void vm_entry_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1688 vmcs_write32(VM_ENTRY_CONTROLS
, val
);
1689 vmx
->vm_entry_controls_shadow
= val
;
1692 static inline void vm_entry_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1694 if (vmx
->vm_entry_controls_shadow
!= val
)
1695 vm_entry_controls_init(vmx
, val
);
1698 static inline u32
vm_entry_controls_get(struct vcpu_vmx
*vmx
)
1700 return vmx
->vm_entry_controls_shadow
;
1704 static inline void vm_entry_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1706 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) | val
);
1709 static inline void vm_entry_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1711 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) & ~val
);
1714 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx
*vmx
)
1716 vmx
->vm_exit_controls_shadow
= vmcs_read32(VM_EXIT_CONTROLS
);
1719 static inline void vm_exit_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1721 vmcs_write32(VM_EXIT_CONTROLS
, val
);
1722 vmx
->vm_exit_controls_shadow
= val
;
1725 static inline void vm_exit_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1727 if (vmx
->vm_exit_controls_shadow
!= val
)
1728 vm_exit_controls_init(vmx
, val
);
1731 static inline u32
vm_exit_controls_get(struct vcpu_vmx
*vmx
)
1733 return vmx
->vm_exit_controls_shadow
;
1737 static inline void vm_exit_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1739 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) | val
);
1742 static inline void vm_exit_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1744 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) & ~val
);
1747 static void vmx_segment_cache_clear(struct vcpu_vmx
*vmx
)
1749 vmx
->segment_cache
.bitmask
= 0;
1752 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
1756 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
1758 if (!(vmx
->vcpu
.arch
.regs_avail
& (1 << VCPU_EXREG_SEGMENTS
))) {
1759 vmx
->vcpu
.arch
.regs_avail
|= (1 << VCPU_EXREG_SEGMENTS
);
1760 vmx
->segment_cache
.bitmask
= 0;
1762 ret
= vmx
->segment_cache
.bitmask
& mask
;
1763 vmx
->segment_cache
.bitmask
|= mask
;
1767 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
1769 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
1771 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
1772 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
1776 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
1778 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
1780 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
1781 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
1785 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
1787 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
1789 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
1790 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
1794 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
1796 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
1798 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
1799 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
1803 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
1807 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
1808 (1u << NM_VECTOR
) | (1u << DB_VECTOR
) | (1u << AC_VECTOR
);
1809 if ((vcpu
->guest_debug
&
1810 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
1811 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
1812 eb
|= 1u << BP_VECTOR
;
1813 if (to_vmx(vcpu
)->rmode
.vm86_active
)
1816 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
1817 if (vcpu
->fpu_active
)
1818 eb
&= ~(1u << NM_VECTOR
);
1820 /* When we are running a nested L2 guest and L1 specified for it a
1821 * certain exception bitmap, we must trap the same exceptions and pass
1822 * them to L1. When running L2, we will only handle the exceptions
1823 * specified above if L1 did not want them.
1825 if (is_guest_mode(vcpu
))
1826 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
1828 vmcs_write32(EXCEPTION_BITMAP
, eb
);
1831 static void clear_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1832 unsigned long entry
, unsigned long exit
)
1834 vm_entry_controls_clearbit(vmx
, entry
);
1835 vm_exit_controls_clearbit(vmx
, exit
);
1838 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
1841 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1845 if (cpu_has_load_ia32_efer
) {
1846 clear_atomic_switch_msr_special(vmx
,
1847 VM_ENTRY_LOAD_IA32_EFER
,
1848 VM_EXIT_LOAD_IA32_EFER
);
1852 case MSR_CORE_PERF_GLOBAL_CTRL
:
1853 if (cpu_has_load_perf_global_ctrl
) {
1854 clear_atomic_switch_msr_special(vmx
,
1855 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1856 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
1862 for (i
= 0; i
< m
->nr
; ++i
)
1863 if (m
->guest
[i
].index
== msr
)
1869 m
->guest
[i
] = m
->guest
[m
->nr
];
1870 m
->host
[i
] = m
->host
[m
->nr
];
1871 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1872 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1875 static void add_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1876 unsigned long entry
, unsigned long exit
,
1877 unsigned long guest_val_vmcs
, unsigned long host_val_vmcs
,
1878 u64 guest_val
, u64 host_val
)
1880 vmcs_write64(guest_val_vmcs
, guest_val
);
1881 vmcs_write64(host_val_vmcs
, host_val
);
1882 vm_entry_controls_setbit(vmx
, entry
);
1883 vm_exit_controls_setbit(vmx
, exit
);
1886 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
1887 u64 guest_val
, u64 host_val
)
1890 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1894 if (cpu_has_load_ia32_efer
) {
1895 add_atomic_switch_msr_special(vmx
,
1896 VM_ENTRY_LOAD_IA32_EFER
,
1897 VM_EXIT_LOAD_IA32_EFER
,
1900 guest_val
, host_val
);
1904 case MSR_CORE_PERF_GLOBAL_CTRL
:
1905 if (cpu_has_load_perf_global_ctrl
) {
1906 add_atomic_switch_msr_special(vmx
,
1907 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1908 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
1909 GUEST_IA32_PERF_GLOBAL_CTRL
,
1910 HOST_IA32_PERF_GLOBAL_CTRL
,
1911 guest_val
, host_val
);
1915 case MSR_IA32_PEBS_ENABLE
:
1916 /* PEBS needs a quiescent period after being disabled (to write
1917 * a record). Disabling PEBS through VMX MSR swapping doesn't
1918 * provide that period, so a CPU could write host's record into
1921 wrmsrl(MSR_IA32_PEBS_ENABLE
, 0);
1924 for (i
= 0; i
< m
->nr
; ++i
)
1925 if (m
->guest
[i
].index
== msr
)
1928 if (i
== NR_AUTOLOAD_MSRS
) {
1929 printk_once(KERN_WARNING
"Not enough msr switch entries. "
1930 "Can't add msr %x\n", msr
);
1932 } else if (i
== m
->nr
) {
1934 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1935 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1938 m
->guest
[i
].index
= msr
;
1939 m
->guest
[i
].value
= guest_val
;
1940 m
->host
[i
].index
= msr
;
1941 m
->host
[i
].value
= host_val
;
1944 static void reload_tss(void)
1947 * VT restores TR but not its size. Useless.
1949 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
1950 struct desc_struct
*descs
;
1952 descs
= (void *)gdt
->address
;
1953 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
1957 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
1959 u64 guest_efer
= vmx
->vcpu
.arch
.efer
;
1960 u64 ignore_bits
= 0;
1964 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1965 * host CPUID is more efficient than testing guest CPUID
1966 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1968 if (boot_cpu_has(X86_FEATURE_SMEP
))
1969 guest_efer
|= EFER_NX
;
1970 else if (!(guest_efer
& EFER_NX
))
1971 ignore_bits
|= EFER_NX
;
1975 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1977 ignore_bits
|= EFER_SCE
;
1978 #ifdef CONFIG_X86_64
1979 ignore_bits
|= EFER_LMA
| EFER_LME
;
1980 /* SCE is meaningful only in long mode on Intel */
1981 if (guest_efer
& EFER_LMA
)
1982 ignore_bits
&= ~(u64
)EFER_SCE
;
1985 clear_atomic_switch_msr(vmx
, MSR_EFER
);
1988 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1989 * On CPUs that support "load IA32_EFER", always switch EFER
1990 * atomically, since it's faster than switching it manually.
1992 if (cpu_has_load_ia32_efer
||
1993 (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
))) {
1994 if (!(guest_efer
& EFER_LMA
))
1995 guest_efer
&= ~EFER_LME
;
1996 if (guest_efer
!= host_efer
)
1997 add_atomic_switch_msr(vmx
, MSR_EFER
,
1998 guest_efer
, host_efer
);
2001 guest_efer
&= ~ignore_bits
;
2002 guest_efer
|= host_efer
& ignore_bits
;
2004 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
2005 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
2011 static unsigned long segment_base(u16 selector
)
2013 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
2014 struct desc_struct
*d
;
2015 unsigned long table_base
;
2018 if (!(selector
& ~3))
2021 table_base
= gdt
->address
;
2023 if (selector
& 4) { /* from ldt */
2024 u16 ldt_selector
= kvm_read_ldt();
2026 if (!(ldt_selector
& ~3))
2029 table_base
= segment_base(ldt_selector
);
2031 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
2032 v
= get_desc_base(d
);
2033 #ifdef CONFIG_X86_64
2034 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
2035 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
2040 static inline unsigned long kvm_read_tr_base(void)
2043 asm("str %0" : "=g"(tr
));
2044 return segment_base(tr
);
2047 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
2049 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2052 if (vmx
->host_state
.loaded
)
2055 vmx
->host_state
.loaded
= 1;
2057 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2058 * allow segment selectors with cpl > 0 or ti == 1.
2060 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
2061 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
2062 savesegment(fs
, vmx
->host_state
.fs_sel
);
2063 if (!(vmx
->host_state
.fs_sel
& 7)) {
2064 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
2065 vmx
->host_state
.fs_reload_needed
= 0;
2067 vmcs_write16(HOST_FS_SELECTOR
, 0);
2068 vmx
->host_state
.fs_reload_needed
= 1;
2070 savesegment(gs
, vmx
->host_state
.gs_sel
);
2071 if (!(vmx
->host_state
.gs_sel
& 7))
2072 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
2074 vmcs_write16(HOST_GS_SELECTOR
, 0);
2075 vmx
->host_state
.gs_ldt_reload_needed
= 1;
2078 #ifdef CONFIG_X86_64
2079 savesegment(ds
, vmx
->host_state
.ds_sel
);
2080 savesegment(es
, vmx
->host_state
.es_sel
);
2083 #ifdef CONFIG_X86_64
2084 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
2085 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
2087 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
2088 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
2091 #ifdef CONFIG_X86_64
2092 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
2093 if (is_long_mode(&vmx
->vcpu
))
2094 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
2096 if (boot_cpu_has(X86_FEATURE_MPX
))
2097 rdmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
2098 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
2099 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
2100 vmx
->guest_msrs
[i
].data
,
2101 vmx
->guest_msrs
[i
].mask
);
2104 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
2106 if (!vmx
->host_state
.loaded
)
2109 ++vmx
->vcpu
.stat
.host_state_reload
;
2110 vmx
->host_state
.loaded
= 0;
2111 #ifdef CONFIG_X86_64
2112 if (is_long_mode(&vmx
->vcpu
))
2113 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
2115 if (vmx
->host_state
.gs_ldt_reload_needed
) {
2116 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
2117 #ifdef CONFIG_X86_64
2118 load_gs_index(vmx
->host_state
.gs_sel
);
2120 loadsegment(gs
, vmx
->host_state
.gs_sel
);
2123 if (vmx
->host_state
.fs_reload_needed
)
2124 loadsegment(fs
, vmx
->host_state
.fs_sel
);
2125 #ifdef CONFIG_X86_64
2126 if (unlikely(vmx
->host_state
.ds_sel
| vmx
->host_state
.es_sel
)) {
2127 loadsegment(ds
, vmx
->host_state
.ds_sel
);
2128 loadsegment(es
, vmx
->host_state
.es_sel
);
2132 #ifdef CONFIG_X86_64
2133 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
2135 if (vmx
->host_state
.msr_host_bndcfgs
)
2136 wrmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
2138 * If the FPU is not active (through the host task or
2139 * the guest vcpu), then restore the cr0.TS bit.
2141 if (!fpregs_active() && !vmx
->vcpu
.guest_fpu_loaded
)
2143 load_gdt(this_cpu_ptr(&host_gdt
));
2146 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
2149 __vmx_load_host_state(vmx
);
2153 static void vmx_vcpu_pi_load(struct kvm_vcpu
*vcpu
, int cpu
)
2155 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
2156 struct pi_desc old
, new;
2159 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
2160 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
2161 !kvm_vcpu_apicv_active(vcpu
))
2165 old
.control
= new.control
= pi_desc
->control
;
2168 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2169 * are two possible cases:
2170 * 1. After running 'pre_block', context switch
2171 * happened. For this case, 'sn' was set in
2172 * vmx_vcpu_put(), so we need to clear it here.
2173 * 2. After running 'pre_block', we were blocked,
2174 * and woken up by some other guy. For this case,
2175 * we don't need to do anything, 'pi_post_block'
2176 * will do everything for us. However, we cannot
2177 * check whether it is case #1 or case #2 here
2178 * (maybe, not needed), so we also clear sn here,
2179 * I think it is not a big deal.
2181 if (pi_desc
->nv
!= POSTED_INTR_WAKEUP_VECTOR
) {
2182 if (vcpu
->cpu
!= cpu
) {
2183 dest
= cpu_physical_id(cpu
);
2185 if (x2apic_enabled())
2188 new.ndst
= (dest
<< 8) & 0xFF00;
2191 /* set 'NV' to 'notification vector' */
2192 new.nv
= POSTED_INTR_VECTOR
;
2195 /* Allow posting non-urgent interrupts */
2197 } while (cmpxchg(&pi_desc
->control
, old
.control
,
2198 new.control
) != old
.control
);
2202 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2203 * vcpu mutex is already taken.
2205 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2207 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2208 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
2209 bool already_loaded
= vmx
->loaded_vmcs
->cpu
== cpu
;
2212 kvm_cpu_vmxon(phys_addr
);
2213 else if (!already_loaded
)
2214 loaded_vmcs_clear(vmx
->loaded_vmcs
);
2216 if (!already_loaded
) {
2217 local_irq_disable();
2218 crash_disable_local_vmclear(cpu
);
2221 * Read loaded_vmcs->cpu should be before fetching
2222 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2223 * See the comments in __loaded_vmcs_clear().
2227 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
2228 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
2229 crash_enable_local_vmclear(cpu
);
2233 if (per_cpu(current_vmcs
, cpu
) != vmx
->loaded_vmcs
->vmcs
) {
2234 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
2235 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
2238 if (!already_loaded
) {
2239 struct desc_ptr
*gdt
= this_cpu_ptr(&host_gdt
);
2240 unsigned long sysenter_esp
;
2242 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
2245 * Linux uses per-cpu TSS and GDT, so set these when switching
2248 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
2249 vmcs_writel(HOST_GDTR_BASE
, gdt
->address
); /* 22.2.4 */
2251 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
2252 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
2254 vmx
->loaded_vmcs
->cpu
= cpu
;
2257 /* Setup TSC multiplier */
2258 if (kvm_has_tsc_control
&&
2259 vmx
->current_tsc_ratio
!= vcpu
->arch
.tsc_scaling_ratio
) {
2260 vmx
->current_tsc_ratio
= vcpu
->arch
.tsc_scaling_ratio
;
2261 vmcs_write64(TSC_MULTIPLIER
, vmx
->current_tsc_ratio
);
2264 vmx_vcpu_pi_load(vcpu
, cpu
);
2265 vmx
->host_pkru
= read_pkru();
2268 static void vmx_vcpu_pi_put(struct kvm_vcpu
*vcpu
)
2270 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
2272 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
2273 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
2274 !kvm_vcpu_apicv_active(vcpu
))
2277 /* Set SN when the vCPU is preempted */
2278 if (vcpu
->preempted
)
2282 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
2284 vmx_vcpu_pi_put(vcpu
);
2286 __vmx_load_host_state(to_vmx(vcpu
));
2287 if (!vmm_exclusive
) {
2288 __loaded_vmcs_clear(to_vmx(vcpu
)->loaded_vmcs
);
2294 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
2298 if (vcpu
->fpu_active
)
2300 vcpu
->fpu_active
= 1;
2301 cr0
= vmcs_readl(GUEST_CR0
);
2302 cr0
&= ~(X86_CR0_TS
| X86_CR0_MP
);
2303 cr0
|= kvm_read_cr0_bits(vcpu
, X86_CR0_TS
| X86_CR0_MP
);
2304 vmcs_writel(GUEST_CR0
, cr0
);
2305 update_exception_bitmap(vcpu
);
2306 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
2307 if (is_guest_mode(vcpu
))
2308 vcpu
->arch
.cr0_guest_owned_bits
&=
2309 ~get_vmcs12(vcpu
)->cr0_guest_host_mask
;
2310 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
2313 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
2316 * Return the cr0 value that a nested guest would read. This is a combination
2317 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2318 * its hypervisor (cr0_read_shadow).
2320 static inline unsigned long nested_read_cr0(struct vmcs12
*fields
)
2322 return (fields
->guest_cr0
& ~fields
->cr0_guest_host_mask
) |
2323 (fields
->cr0_read_shadow
& fields
->cr0_guest_host_mask
);
2325 static inline unsigned long nested_read_cr4(struct vmcs12
*fields
)
2327 return (fields
->guest_cr4
& ~fields
->cr4_guest_host_mask
) |
2328 (fields
->cr4_read_shadow
& fields
->cr4_guest_host_mask
);
2331 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
2333 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2334 * set this *before* calling this function.
2336 vmx_decache_cr0_guest_bits(vcpu
);
2337 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
| X86_CR0_MP
);
2338 update_exception_bitmap(vcpu
);
2339 vcpu
->arch
.cr0_guest_owned_bits
= 0;
2340 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
2341 if (is_guest_mode(vcpu
)) {
2343 * L1's specified read shadow might not contain the TS bit,
2344 * so now that we turned on shadowing of this bit, we need to
2345 * set this bit of the shadow. Like in nested_vmx_run we need
2346 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2347 * up-to-date here because we just decached cr0.TS (and we'll
2348 * only update vmcs12->guest_cr0 on nested exit).
2350 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2351 vmcs12
->guest_cr0
= (vmcs12
->guest_cr0
& ~X86_CR0_TS
) |
2352 (vcpu
->arch
.cr0
& X86_CR0_TS
);
2353 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
2355 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
2358 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
2360 unsigned long rflags
, save_rflags
;
2362 if (!test_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
2363 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
2364 rflags
= vmcs_readl(GUEST_RFLAGS
);
2365 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
2366 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
2367 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
2368 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
2370 to_vmx(vcpu
)->rflags
= rflags
;
2372 return to_vmx(vcpu
)->rflags
;
2375 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
2377 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
2378 to_vmx(vcpu
)->rflags
= rflags
;
2379 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
2380 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
2381 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
2383 vmcs_writel(GUEST_RFLAGS
, rflags
);
2386 static u32
vmx_get_pkru(struct kvm_vcpu
*vcpu
)
2388 return to_vmx(vcpu
)->guest_pkru
;
2391 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
2393 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2396 if (interruptibility
& GUEST_INTR_STATE_STI
)
2397 ret
|= KVM_X86_SHADOW_INT_STI
;
2398 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
2399 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
2404 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
2406 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2407 u32 interruptibility
= interruptibility_old
;
2409 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
2411 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
2412 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
2413 else if (mask
& KVM_X86_SHADOW_INT_STI
)
2414 interruptibility
|= GUEST_INTR_STATE_STI
;
2416 if ((interruptibility
!= interruptibility_old
))
2417 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
2420 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
2424 rip
= kvm_rip_read(vcpu
);
2425 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
2426 kvm_rip_write(vcpu
, rip
);
2428 /* skipping an emulated instruction also counts */
2429 vmx_set_interrupt_shadow(vcpu
, 0);
2433 * KVM wants to inject page-faults which it got to the guest. This function
2434 * checks whether in a nested guest, we need to inject them to L1 or L2.
2436 static int nested_vmx_check_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
2438 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2440 if (!(vmcs12
->exception_bitmap
& (1u << nr
)))
2443 nested_vmx_vmexit(vcpu
, to_vmx(vcpu
)->exit_reason
,
2444 vmcs_read32(VM_EXIT_INTR_INFO
),
2445 vmcs_readl(EXIT_QUALIFICATION
));
2449 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
2450 bool has_error_code
, u32 error_code
,
2453 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2454 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
2456 if (!reinject
&& is_guest_mode(vcpu
) &&
2457 nested_vmx_check_exception(vcpu
, nr
))
2460 if (has_error_code
) {
2461 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
2462 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
2465 if (vmx
->rmode
.vm86_active
) {
2467 if (kvm_exception_is_soft(nr
))
2468 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
2469 if (kvm_inject_realmode_interrupt(vcpu
, nr
, inc_eip
) != EMULATE_DONE
)
2470 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2474 if (kvm_exception_is_soft(nr
)) {
2475 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2476 vmx
->vcpu
.arch
.event_exit_inst_len
);
2477 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
2479 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
2481 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
2484 static bool vmx_rdtscp_supported(void)
2486 return cpu_has_vmx_rdtscp();
2489 static bool vmx_invpcid_supported(void)
2491 return cpu_has_vmx_invpcid() && enable_ept
;
2495 * Swap MSR entry in host/guest MSR entry array.
2497 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
2499 struct shared_msr_entry tmp
;
2501 tmp
= vmx
->guest_msrs
[to
];
2502 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
2503 vmx
->guest_msrs
[from
] = tmp
;
2506 static void vmx_set_msr_bitmap(struct kvm_vcpu
*vcpu
)
2508 unsigned long *msr_bitmap
;
2510 if (is_guest_mode(vcpu
))
2511 msr_bitmap
= vmx_msr_bitmap_nested
;
2512 else if (cpu_has_secondary_exec_ctrls() &&
2513 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL
) &
2514 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
)) {
2515 if (is_long_mode(vcpu
))
2516 msr_bitmap
= vmx_msr_bitmap_longmode_x2apic
;
2518 msr_bitmap
= vmx_msr_bitmap_legacy_x2apic
;
2520 if (is_long_mode(vcpu
))
2521 msr_bitmap
= vmx_msr_bitmap_longmode
;
2523 msr_bitmap
= vmx_msr_bitmap_legacy
;
2526 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
2530 * Set up the vmcs to automatically save and restore system
2531 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2532 * mode, as fiddling with msrs is very expensive.
2534 static void setup_msrs(struct vcpu_vmx
*vmx
)
2536 int save_nmsrs
, index
;
2539 #ifdef CONFIG_X86_64
2540 if (is_long_mode(&vmx
->vcpu
)) {
2541 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
2543 move_msr_up(vmx
, index
, save_nmsrs
++);
2544 index
= __find_msr_index(vmx
, MSR_LSTAR
);
2546 move_msr_up(vmx
, index
, save_nmsrs
++);
2547 index
= __find_msr_index(vmx
, MSR_CSTAR
);
2549 move_msr_up(vmx
, index
, save_nmsrs
++);
2550 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
2551 if (index
>= 0 && guest_cpuid_has_rdtscp(&vmx
->vcpu
))
2552 move_msr_up(vmx
, index
, save_nmsrs
++);
2554 * MSR_STAR is only needed on long mode guests, and only
2555 * if efer.sce is enabled.
2557 index
= __find_msr_index(vmx
, MSR_STAR
);
2558 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
2559 move_msr_up(vmx
, index
, save_nmsrs
++);
2562 index
= __find_msr_index(vmx
, MSR_EFER
);
2563 if (index
>= 0 && update_transition_efer(vmx
, index
))
2564 move_msr_up(vmx
, index
, save_nmsrs
++);
2566 vmx
->save_nmsrs
= save_nmsrs
;
2568 if (cpu_has_vmx_msr_bitmap())
2569 vmx_set_msr_bitmap(&vmx
->vcpu
);
2573 * reads and returns guest's timestamp counter "register"
2574 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2575 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2577 static u64
guest_read_tsc(struct kvm_vcpu
*vcpu
)
2579 u64 host_tsc
, tsc_offset
;
2582 tsc_offset
= vmcs_read64(TSC_OFFSET
);
2583 return kvm_scale_tsc(vcpu
, host_tsc
) + tsc_offset
;
2587 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2588 * counter, even if a nested guest (L2) is currently running.
2590 static u64
vmx_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
2594 tsc_offset
= is_guest_mode(vcpu
) ?
2595 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
:
2596 vmcs_read64(TSC_OFFSET
);
2597 return host_tsc
+ tsc_offset
;
2600 static u64
vmx_read_tsc_offset(struct kvm_vcpu
*vcpu
)
2602 return vmcs_read64(TSC_OFFSET
);
2606 * writes 'offset' into guest's timestamp counter offset register
2608 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
2610 if (is_guest_mode(vcpu
)) {
2612 * We're here if L1 chose not to trap WRMSR to TSC. According
2613 * to the spec, this should set L1's TSC; The offset that L1
2614 * set for L2 remains unchanged, and still needs to be added
2615 * to the newly set TSC to get L2's TSC.
2617 struct vmcs12
*vmcs12
;
2618 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
= offset
;
2619 /* recalculate vmcs02.TSC_OFFSET: */
2620 vmcs12
= get_vmcs12(vcpu
);
2621 vmcs_write64(TSC_OFFSET
, offset
+
2622 (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETING
) ?
2623 vmcs12
->tsc_offset
: 0));
2625 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
2626 vmcs_read64(TSC_OFFSET
), offset
);
2627 vmcs_write64(TSC_OFFSET
, offset
);
2631 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
, s64 adjustment
)
2633 u64 offset
= vmcs_read64(TSC_OFFSET
);
2635 vmcs_write64(TSC_OFFSET
, offset
+ adjustment
);
2636 if (is_guest_mode(vcpu
)) {
2637 /* Even when running L2, the adjustment needs to apply to L1 */
2638 to_vmx(vcpu
)->nested
.vmcs01_tsc_offset
+= adjustment
;
2640 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
, offset
,
2641 offset
+ adjustment
);
2644 static bool guest_cpuid_has_vmx(struct kvm_vcpu
*vcpu
)
2646 struct kvm_cpuid_entry2
*best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
2647 return best
&& (best
->ecx
& (1 << (X86_FEATURE_VMX
& 31)));
2651 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2652 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2653 * all guests if the "nested" module option is off, and can also be disabled
2654 * for a single guest by disabling its VMX cpuid bit.
2656 static inline bool nested_vmx_allowed(struct kvm_vcpu
*vcpu
)
2658 return nested
&& guest_cpuid_has_vmx(vcpu
);
2662 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2663 * returned for the various VMX controls MSRs when nested VMX is enabled.
2664 * The same values should also be used to verify that vmcs12 control fields are
2665 * valid during nested entry from L1 to L2.
2666 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2667 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2668 * bit in the high half is on if the corresponding bit in the control field
2669 * may be on. See also vmx_control_verify().
2671 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx
*vmx
)
2674 * Note that as a general rule, the high half of the MSRs (bits in
2675 * the control fields which may be 1) should be initialized by the
2676 * intersection of the underlying hardware's MSR (i.e., features which
2677 * can be supported) and the list of features we want to expose -
2678 * because they are known to be properly supported in our code.
2679 * Also, usually, the low half of the MSRs (bits which must be 1) can
2680 * be set to 0, meaning that L1 may turn off any of these bits. The
2681 * reason is that if one of these bits is necessary, it will appear
2682 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2683 * fields of vmcs01 and vmcs02, will turn these bits off - and
2684 * nested_vmx_exit_handled() will not pass related exits to L1.
2685 * These rules have exceptions below.
2688 /* pin-based controls */
2689 rdmsr(MSR_IA32_VMX_PINBASED_CTLS
,
2690 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
2691 vmx
->nested
.nested_vmx_pinbased_ctls_high
);
2692 vmx
->nested
.nested_vmx_pinbased_ctls_low
|=
2693 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2694 vmx
->nested
.nested_vmx_pinbased_ctls_high
&=
2695 PIN_BASED_EXT_INTR_MASK
|
2696 PIN_BASED_NMI_EXITING
|
2697 PIN_BASED_VIRTUAL_NMIS
;
2698 vmx
->nested
.nested_vmx_pinbased_ctls_high
|=
2699 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2700 PIN_BASED_VMX_PREEMPTION_TIMER
;
2701 if (kvm_vcpu_apicv_active(&vmx
->vcpu
))
2702 vmx
->nested
.nested_vmx_pinbased_ctls_high
|=
2703 PIN_BASED_POSTED_INTR
;
2706 rdmsr(MSR_IA32_VMX_EXIT_CTLS
,
2707 vmx
->nested
.nested_vmx_exit_ctls_low
,
2708 vmx
->nested
.nested_vmx_exit_ctls_high
);
2709 vmx
->nested
.nested_vmx_exit_ctls_low
=
2710 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
2712 vmx
->nested
.nested_vmx_exit_ctls_high
&=
2713 #ifdef CONFIG_X86_64
2714 VM_EXIT_HOST_ADDR_SPACE_SIZE
|
2716 VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_SAVE_IA32_PAT
;
2717 vmx
->nested
.nested_vmx_exit_ctls_high
|=
2718 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
|
2719 VM_EXIT_LOAD_IA32_EFER
| VM_EXIT_SAVE_IA32_EFER
|
2720 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
| VM_EXIT_ACK_INTR_ON_EXIT
;
2722 if (kvm_mpx_supported())
2723 vmx
->nested
.nested_vmx_exit_ctls_high
|= VM_EXIT_CLEAR_BNDCFGS
;
2725 /* We support free control of debug control saving. */
2726 vmx
->nested
.nested_vmx_true_exit_ctls_low
=
2727 vmx
->nested
.nested_vmx_exit_ctls_low
&
2728 ~VM_EXIT_SAVE_DEBUG_CONTROLS
;
2730 /* entry controls */
2731 rdmsr(MSR_IA32_VMX_ENTRY_CTLS
,
2732 vmx
->nested
.nested_vmx_entry_ctls_low
,
2733 vmx
->nested
.nested_vmx_entry_ctls_high
);
2734 vmx
->nested
.nested_vmx_entry_ctls_low
=
2735 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
2736 vmx
->nested
.nested_vmx_entry_ctls_high
&=
2737 #ifdef CONFIG_X86_64
2738 VM_ENTRY_IA32E_MODE
|
2740 VM_ENTRY_LOAD_IA32_PAT
;
2741 vmx
->nested
.nested_vmx_entry_ctls_high
|=
2742 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
| VM_ENTRY_LOAD_IA32_EFER
);
2743 if (kvm_mpx_supported())
2744 vmx
->nested
.nested_vmx_entry_ctls_high
|= VM_ENTRY_LOAD_BNDCFGS
;
2746 /* We support free control of debug control loading. */
2747 vmx
->nested
.nested_vmx_true_entry_ctls_low
=
2748 vmx
->nested
.nested_vmx_entry_ctls_low
&
2749 ~VM_ENTRY_LOAD_DEBUG_CONTROLS
;
2751 /* cpu-based controls */
2752 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
,
2753 vmx
->nested
.nested_vmx_procbased_ctls_low
,
2754 vmx
->nested
.nested_vmx_procbased_ctls_high
);
2755 vmx
->nested
.nested_vmx_procbased_ctls_low
=
2756 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2757 vmx
->nested
.nested_vmx_procbased_ctls_high
&=
2758 CPU_BASED_VIRTUAL_INTR_PENDING
|
2759 CPU_BASED_VIRTUAL_NMI_PENDING
| CPU_BASED_USE_TSC_OFFSETING
|
2760 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
2761 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
2762 CPU_BASED_CR3_STORE_EXITING
|
2763 #ifdef CONFIG_X86_64
2764 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
2766 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
2767 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_TRAP_FLAG
|
2768 CPU_BASED_MONITOR_EXITING
| CPU_BASED_RDPMC_EXITING
|
2769 CPU_BASED_RDTSC_EXITING
| CPU_BASED_PAUSE_EXITING
|
2770 CPU_BASED_TPR_SHADOW
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2772 * We can allow some features even when not supported by the
2773 * hardware. For example, L1 can specify an MSR bitmap - and we
2774 * can use it to avoid exits to L1 - even when L0 runs L2
2775 * without MSR bitmaps.
2777 vmx
->nested
.nested_vmx_procbased_ctls_high
|=
2778 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2779 CPU_BASED_USE_MSR_BITMAPS
;
2781 /* We support free control of CR3 access interception. */
2782 vmx
->nested
.nested_vmx_true_procbased_ctls_low
=
2783 vmx
->nested
.nested_vmx_procbased_ctls_low
&
2784 ~(CPU_BASED_CR3_LOAD_EXITING
| CPU_BASED_CR3_STORE_EXITING
);
2786 /* secondary cpu-based controls */
2787 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
2788 vmx
->nested
.nested_vmx_secondary_ctls_low
,
2789 vmx
->nested
.nested_vmx_secondary_ctls_high
);
2790 vmx
->nested
.nested_vmx_secondary_ctls_low
= 0;
2791 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
2792 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2793 SECONDARY_EXEC_RDTSCP
|
2794 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2795 SECONDARY_EXEC_ENABLE_VPID
|
2796 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2797 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
2798 SECONDARY_EXEC_WBINVD_EXITING
|
2799 SECONDARY_EXEC_XSAVES
;
2802 /* nested EPT: emulate EPT also to L1 */
2803 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2804 SECONDARY_EXEC_ENABLE_EPT
;
2805 vmx
->nested
.nested_vmx_ept_caps
= VMX_EPT_PAGE_WALK_4_BIT
|
2806 VMX_EPTP_WB_BIT
| VMX_EPT_2MB_PAGE_BIT
|
2808 if (cpu_has_vmx_ept_execute_only())
2809 vmx
->nested
.nested_vmx_ept_caps
|=
2810 VMX_EPT_EXECUTE_ONLY_BIT
;
2811 vmx
->nested
.nested_vmx_ept_caps
&= vmx_capability
.ept
;
2812 vmx
->nested
.nested_vmx_ept_caps
|= VMX_EPT_EXTENT_GLOBAL_BIT
|
2813 VMX_EPT_EXTENT_CONTEXT_BIT
;
2815 vmx
->nested
.nested_vmx_ept_caps
= 0;
2818 * Old versions of KVM use the single-context version without
2819 * checking for support, so declare that it is supported even
2820 * though it is treated as global context. The alternative is
2821 * not failing the single-context invvpid, and it is worse.
2824 vmx
->nested
.nested_vmx_vpid_caps
= VMX_VPID_INVVPID_BIT
|
2825 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
|
2826 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
2828 vmx
->nested
.nested_vmx_vpid_caps
= 0;
2830 if (enable_unrestricted_guest
)
2831 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2832 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2834 /* miscellaneous data */
2835 rdmsr(MSR_IA32_VMX_MISC
,
2836 vmx
->nested
.nested_vmx_misc_low
,
2837 vmx
->nested
.nested_vmx_misc_high
);
2838 vmx
->nested
.nested_vmx_misc_low
&= VMX_MISC_SAVE_EFER_LMA
;
2839 vmx
->nested
.nested_vmx_misc_low
|=
2840 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
|
2841 VMX_MISC_ACTIVITY_HLT
;
2842 vmx
->nested
.nested_vmx_misc_high
= 0;
2845 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
2848 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2850 return ((control
& high
) | low
) == control
;
2853 static inline u64
vmx_control_msr(u32 low
, u32 high
)
2855 return low
| ((u64
)high
<< 32);
2858 /* Returns 0 on success, non-0 otherwise. */
2859 static int vmx_get_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2861 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2863 switch (msr_index
) {
2864 case MSR_IA32_VMX_BASIC
:
2866 * This MSR reports some information about VMX support. We
2867 * should return information about the VMX we emulate for the
2868 * guest, and the VMCS structure we give it - not about the
2869 * VMX support of the underlying hardware.
2871 *pdata
= VMCS12_REVISION
| VMX_BASIC_TRUE_CTLS
|
2872 ((u64
)VMCS12_SIZE
<< VMX_BASIC_VMCS_SIZE_SHIFT
) |
2873 (VMX_BASIC_MEM_TYPE_WB
<< VMX_BASIC_MEM_TYPE_SHIFT
);
2875 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
2876 case MSR_IA32_VMX_PINBASED_CTLS
:
2877 *pdata
= vmx_control_msr(
2878 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
2879 vmx
->nested
.nested_vmx_pinbased_ctls_high
);
2881 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
2882 *pdata
= vmx_control_msr(
2883 vmx
->nested
.nested_vmx_true_procbased_ctls_low
,
2884 vmx
->nested
.nested_vmx_procbased_ctls_high
);
2886 case MSR_IA32_VMX_PROCBASED_CTLS
:
2887 *pdata
= vmx_control_msr(
2888 vmx
->nested
.nested_vmx_procbased_ctls_low
,
2889 vmx
->nested
.nested_vmx_procbased_ctls_high
);
2891 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
2892 *pdata
= vmx_control_msr(
2893 vmx
->nested
.nested_vmx_true_exit_ctls_low
,
2894 vmx
->nested
.nested_vmx_exit_ctls_high
);
2896 case MSR_IA32_VMX_EXIT_CTLS
:
2897 *pdata
= vmx_control_msr(
2898 vmx
->nested
.nested_vmx_exit_ctls_low
,
2899 vmx
->nested
.nested_vmx_exit_ctls_high
);
2901 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
2902 *pdata
= vmx_control_msr(
2903 vmx
->nested
.nested_vmx_true_entry_ctls_low
,
2904 vmx
->nested
.nested_vmx_entry_ctls_high
);
2906 case MSR_IA32_VMX_ENTRY_CTLS
:
2907 *pdata
= vmx_control_msr(
2908 vmx
->nested
.nested_vmx_entry_ctls_low
,
2909 vmx
->nested
.nested_vmx_entry_ctls_high
);
2911 case MSR_IA32_VMX_MISC
:
2912 *pdata
= vmx_control_msr(
2913 vmx
->nested
.nested_vmx_misc_low
,
2914 vmx
->nested
.nested_vmx_misc_high
);
2917 * These MSRs specify bits which the guest must keep fixed (on or off)
2918 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2919 * We picked the standard core2 setting.
2921 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2922 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2923 case MSR_IA32_VMX_CR0_FIXED0
:
2924 *pdata
= VMXON_CR0_ALWAYSON
;
2926 case MSR_IA32_VMX_CR0_FIXED1
:
2929 case MSR_IA32_VMX_CR4_FIXED0
:
2930 *pdata
= VMXON_CR4_ALWAYSON
;
2932 case MSR_IA32_VMX_CR4_FIXED1
:
2935 case MSR_IA32_VMX_VMCS_ENUM
:
2936 *pdata
= 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2938 case MSR_IA32_VMX_PROCBASED_CTLS2
:
2939 *pdata
= vmx_control_msr(
2940 vmx
->nested
.nested_vmx_secondary_ctls_low
,
2941 vmx
->nested
.nested_vmx_secondary_ctls_high
);
2943 case MSR_IA32_VMX_EPT_VPID_CAP
:
2944 *pdata
= vmx
->nested
.nested_vmx_ept_caps
|
2945 ((u64
)vmx
->nested
.nested_vmx_vpid_caps
<< 32);
2954 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu
*vcpu
,
2957 uint64_t valid_bits
= to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
;
2959 return !(val
& ~valid_bits
);
2963 * Reads an msr value (of 'msr_index') into 'pdata'.
2964 * Returns 0 on success, non-0 otherwise.
2965 * Assumes vcpu_load() was already called.
2967 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2969 struct shared_msr_entry
*msr
;
2971 switch (msr_info
->index
) {
2972 #ifdef CONFIG_X86_64
2974 msr_info
->data
= vmcs_readl(GUEST_FS_BASE
);
2977 msr_info
->data
= vmcs_readl(GUEST_GS_BASE
);
2979 case MSR_KERNEL_GS_BASE
:
2980 vmx_load_host_state(to_vmx(vcpu
));
2981 msr_info
->data
= to_vmx(vcpu
)->msr_guest_kernel_gs_base
;
2985 return kvm_get_msr_common(vcpu
, msr_info
);
2987 msr_info
->data
= guest_read_tsc(vcpu
);
2989 case MSR_IA32_SYSENTER_CS
:
2990 msr_info
->data
= vmcs_read32(GUEST_SYSENTER_CS
);
2992 case MSR_IA32_SYSENTER_EIP
:
2993 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_EIP
);
2995 case MSR_IA32_SYSENTER_ESP
:
2996 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_ESP
);
2998 case MSR_IA32_BNDCFGS
:
2999 if (!kvm_mpx_supported())
3001 msr_info
->data
= vmcs_read64(GUEST_BNDCFGS
);
3003 case MSR_IA32_MCG_EXT_CTL
:
3004 if (!msr_info
->host_initiated
&&
3005 !(to_vmx(vcpu
)->msr_ia32_feature_control
&
3006 FEATURE_CONTROL_LMCE
))
3008 msr_info
->data
= vcpu
->arch
.mcg_ext_ctl
;
3010 case MSR_IA32_FEATURE_CONTROL
:
3011 msr_info
->data
= to_vmx(vcpu
)->msr_ia32_feature_control
;
3013 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
3014 if (!nested_vmx_allowed(vcpu
))
3016 return vmx_get_vmx_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
3018 if (!vmx_xsaves_supported())
3020 msr_info
->data
= vcpu
->arch
.ia32_xss
;
3023 if (!guest_cpuid_has_rdtscp(vcpu
) && !msr_info
->host_initiated
)
3025 /* Otherwise falls through */
3027 msr
= find_msr_entry(to_vmx(vcpu
), msr_info
->index
);
3029 msr_info
->data
= msr
->data
;
3032 return kvm_get_msr_common(vcpu
, msr_info
);
3038 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
);
3041 * Writes msr value into into the appropriate "register".
3042 * Returns 0 on success, non-0 otherwise.
3043 * Assumes vcpu_load() was already called.
3045 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
3047 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3048 struct shared_msr_entry
*msr
;
3050 u32 msr_index
= msr_info
->index
;
3051 u64 data
= msr_info
->data
;
3053 switch (msr_index
) {
3055 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3057 #ifdef CONFIG_X86_64
3059 vmx_segment_cache_clear(vmx
);
3060 vmcs_writel(GUEST_FS_BASE
, data
);
3063 vmx_segment_cache_clear(vmx
);
3064 vmcs_writel(GUEST_GS_BASE
, data
);
3066 case MSR_KERNEL_GS_BASE
:
3067 vmx_load_host_state(vmx
);
3068 vmx
->msr_guest_kernel_gs_base
= data
;
3071 case MSR_IA32_SYSENTER_CS
:
3072 vmcs_write32(GUEST_SYSENTER_CS
, data
);
3074 case MSR_IA32_SYSENTER_EIP
:
3075 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
3077 case MSR_IA32_SYSENTER_ESP
:
3078 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
3080 case MSR_IA32_BNDCFGS
:
3081 if (!kvm_mpx_supported())
3083 vmcs_write64(GUEST_BNDCFGS
, data
);
3086 kvm_write_tsc(vcpu
, msr_info
);
3088 case MSR_IA32_CR_PAT
:
3089 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
3090 if (!kvm_mtrr_valid(vcpu
, MSR_IA32_CR_PAT
, data
))
3092 vmcs_write64(GUEST_IA32_PAT
, data
);
3093 vcpu
->arch
.pat
= data
;
3096 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3098 case MSR_IA32_TSC_ADJUST
:
3099 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3101 case MSR_IA32_MCG_EXT_CTL
:
3102 if ((!msr_info
->host_initiated
&&
3103 !(to_vmx(vcpu
)->msr_ia32_feature_control
&
3104 FEATURE_CONTROL_LMCE
)) ||
3105 (data
& ~MCG_EXT_CTL_LMCE_EN
))
3107 vcpu
->arch
.mcg_ext_ctl
= data
;
3109 case MSR_IA32_FEATURE_CONTROL
:
3110 if (!vmx_feature_control_msr_valid(vcpu
, data
) ||
3111 (to_vmx(vcpu
)->msr_ia32_feature_control
&
3112 FEATURE_CONTROL_LOCKED
&& !msr_info
->host_initiated
))
3114 vmx
->msr_ia32_feature_control
= data
;
3115 if (msr_info
->host_initiated
&& data
== 0)
3116 vmx_leave_nested(vcpu
);
3118 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
3119 return 1; /* they are read-only */
3121 if (!vmx_xsaves_supported())
3124 * The only supported bit as of Skylake is bit 8, but
3125 * it is not supported on KVM.
3129 vcpu
->arch
.ia32_xss
= data
;
3130 if (vcpu
->arch
.ia32_xss
!= host_xss
)
3131 add_atomic_switch_msr(vmx
, MSR_IA32_XSS
,
3132 vcpu
->arch
.ia32_xss
, host_xss
);
3134 clear_atomic_switch_msr(vmx
, MSR_IA32_XSS
);
3137 if (!guest_cpuid_has_rdtscp(vcpu
) && !msr_info
->host_initiated
)
3139 /* Check reserved bit, higher 32 bits should be zero */
3140 if ((data
>> 32) != 0)
3142 /* Otherwise falls through */
3144 msr
= find_msr_entry(vmx
, msr_index
);
3146 u64 old_msr_data
= msr
->data
;
3148 if (msr
- vmx
->guest_msrs
< vmx
->save_nmsrs
) {
3150 ret
= kvm_set_shared_msr(msr
->index
, msr
->data
,
3154 msr
->data
= old_msr_data
;
3158 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3164 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
3166 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
3169 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
3172 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
3174 case VCPU_EXREG_PDPTR
:
3176 ept_save_pdptrs(vcpu
);
3183 static __init
int cpu_has_kvm_support(void)
3185 return cpu_has_vmx();
3188 static __init
int vmx_disabled_by_bios(void)
3192 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
3193 if (msr
& FEATURE_CONTROL_LOCKED
) {
3194 /* launched w/ TXT and VMX disabled */
3195 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
3198 /* launched w/o TXT and VMX only enabled w/ TXT */
3199 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
3200 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
3201 && !tboot_enabled()) {
3202 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
3203 "activate TXT before enabling KVM\n");
3206 /* launched w/o TXT and VMX disabled */
3207 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
3208 && !tboot_enabled())
3215 static void kvm_cpu_vmxon(u64 addr
)
3217 intel_pt_handle_vmx(1);
3219 asm volatile (ASM_VMX_VMXON_RAX
3220 : : "a"(&addr
), "m"(addr
)
3224 static int hardware_enable(void)
3226 int cpu
= raw_smp_processor_id();
3227 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
3230 if (cr4_read_shadow() & X86_CR4_VMXE
)
3233 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
3234 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu
, cpu
));
3235 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
3238 * Now we can enable the vmclear operation in kdump
3239 * since the loaded_vmcss_on_cpu list on this cpu
3240 * has been initialized.
3242 * Though the cpu is not in VMX operation now, there
3243 * is no problem to enable the vmclear operation
3244 * for the loaded_vmcss_on_cpu list is empty!
3246 crash_enable_local_vmclear(cpu
);
3248 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
3250 test_bits
= FEATURE_CONTROL_LOCKED
;
3251 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
3252 if (tboot_enabled())
3253 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
3255 if ((old
& test_bits
) != test_bits
) {
3256 /* enable and lock */
3257 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
3259 cr4_set_bits(X86_CR4_VMXE
);
3261 if (vmm_exclusive
) {
3262 kvm_cpu_vmxon(phys_addr
);
3266 native_store_gdt(this_cpu_ptr(&host_gdt
));
3271 static void vmclear_local_loaded_vmcss(void)
3273 int cpu
= raw_smp_processor_id();
3274 struct loaded_vmcs
*v
, *n
;
3276 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
3277 loaded_vmcss_on_cpu_link
)
3278 __loaded_vmcs_clear(v
);
3282 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3285 static void kvm_cpu_vmxoff(void)
3287 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
3289 intel_pt_handle_vmx(0);
3292 static void hardware_disable(void)
3294 if (vmm_exclusive
) {
3295 vmclear_local_loaded_vmcss();
3298 cr4_clear_bits(X86_CR4_VMXE
);
3301 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
3302 u32 msr
, u32
*result
)
3304 u32 vmx_msr_low
, vmx_msr_high
;
3305 u32 ctl
= ctl_min
| ctl_opt
;
3307 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
3309 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
3310 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
3312 /* Ensure minimum (required) set of control bits are supported. */
3320 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
3322 u32 vmx_msr_low
, vmx_msr_high
;
3324 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
3325 return vmx_msr_high
& ctl
;
3328 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
3330 u32 vmx_msr_low
, vmx_msr_high
;
3331 u32 min
, opt
, min2
, opt2
;
3332 u32 _pin_based_exec_control
= 0;
3333 u32 _cpu_based_exec_control
= 0;
3334 u32 _cpu_based_2nd_exec_control
= 0;
3335 u32 _vmexit_control
= 0;
3336 u32 _vmentry_control
= 0;
3338 min
= CPU_BASED_HLT_EXITING
|
3339 #ifdef CONFIG_X86_64
3340 CPU_BASED_CR8_LOAD_EXITING
|
3341 CPU_BASED_CR8_STORE_EXITING
|
3343 CPU_BASED_CR3_LOAD_EXITING
|
3344 CPU_BASED_CR3_STORE_EXITING
|
3345 CPU_BASED_USE_IO_BITMAPS
|
3346 CPU_BASED_MOV_DR_EXITING
|
3347 CPU_BASED_USE_TSC_OFFSETING
|
3348 CPU_BASED_MWAIT_EXITING
|
3349 CPU_BASED_MONITOR_EXITING
|
3350 CPU_BASED_INVLPG_EXITING
|
3351 CPU_BASED_RDPMC_EXITING
;
3353 opt
= CPU_BASED_TPR_SHADOW
|
3354 CPU_BASED_USE_MSR_BITMAPS
|
3355 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
3356 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
3357 &_cpu_based_exec_control
) < 0)
3359 #ifdef CONFIG_X86_64
3360 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
3361 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
3362 ~CPU_BASED_CR8_STORE_EXITING
;
3364 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
3366 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
3367 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
3368 SECONDARY_EXEC_WBINVD_EXITING
|
3369 SECONDARY_EXEC_ENABLE_VPID
|
3370 SECONDARY_EXEC_ENABLE_EPT
|
3371 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
3372 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
3373 SECONDARY_EXEC_RDTSCP
|
3374 SECONDARY_EXEC_ENABLE_INVPCID
|
3375 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
3376 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
3377 SECONDARY_EXEC_SHADOW_VMCS
|
3378 SECONDARY_EXEC_XSAVES
|
3379 SECONDARY_EXEC_ENABLE_PML
|
3380 SECONDARY_EXEC_TSC_SCALING
;
3381 if (adjust_vmx_controls(min2
, opt2
,
3382 MSR_IA32_VMX_PROCBASED_CTLS2
,
3383 &_cpu_based_2nd_exec_control
) < 0)
3386 #ifndef CONFIG_X86_64
3387 if (!(_cpu_based_2nd_exec_control
&
3388 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
3389 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
3392 if (!(_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
3393 _cpu_based_2nd_exec_control
&= ~(
3394 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
3395 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
3396 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
3398 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
3399 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3401 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
3402 CPU_BASED_CR3_STORE_EXITING
|
3403 CPU_BASED_INVLPG_EXITING
);
3404 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
3405 vmx_capability
.ept
, vmx_capability
.vpid
);
3408 min
= VM_EXIT_SAVE_DEBUG_CONTROLS
| VM_EXIT_ACK_INTR_ON_EXIT
;
3409 #ifdef CONFIG_X86_64
3410 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
3412 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
|
3413 VM_EXIT_CLEAR_BNDCFGS
;
3414 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
3415 &_vmexit_control
) < 0)
3418 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
3419 opt
= PIN_BASED_VIRTUAL_NMIS
| PIN_BASED_POSTED_INTR
|
3420 PIN_BASED_VMX_PREEMPTION_TIMER
;
3421 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
3422 &_pin_based_exec_control
) < 0)
3425 if (cpu_has_broken_vmx_preemption_timer())
3426 _pin_based_exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
3427 if (!(_cpu_based_2nd_exec_control
&
3428 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
))
3429 _pin_based_exec_control
&= ~PIN_BASED_POSTED_INTR
;
3431 min
= VM_ENTRY_LOAD_DEBUG_CONTROLS
;
3432 opt
= VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_BNDCFGS
;
3433 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
3434 &_vmentry_control
) < 0)
3437 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
3439 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3440 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
3443 #ifdef CONFIG_X86_64
3444 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3445 if (vmx_msr_high
& (1u<<16))
3449 /* Require Write-Back (WB) memory type for VMCS accesses. */
3450 if (((vmx_msr_high
>> 18) & 15) != 6)
3453 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
3454 vmcs_conf
->order
= get_order(vmcs_config
.size
);
3455 vmcs_conf
->revision_id
= vmx_msr_low
;
3457 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
3458 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
3459 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
3460 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
3461 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
3463 cpu_has_load_ia32_efer
=
3464 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3465 VM_ENTRY_LOAD_IA32_EFER
)
3466 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3467 VM_EXIT_LOAD_IA32_EFER
);
3469 cpu_has_load_perf_global_ctrl
=
3470 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3471 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
3472 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3473 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
3476 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3477 * but due to errata below it can't be used. Workaround is to use
3478 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3480 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3485 * BC86,AAY89,BD102 (model 44)
3489 if (cpu_has_load_perf_global_ctrl
&& boot_cpu_data
.x86
== 0x6) {
3490 switch (boot_cpu_data
.x86_model
) {
3496 cpu_has_load_perf_global_ctrl
= false;
3497 printk_once(KERN_WARNING
"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3498 "does not work properly. Using workaround\n");
3505 if (boot_cpu_has(X86_FEATURE_XSAVES
))
3506 rdmsrl(MSR_IA32_XSS
, host_xss
);
3511 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
3513 int node
= cpu_to_node(cpu
);
3517 pages
= __alloc_pages_node(node
, GFP_KERNEL
, vmcs_config
.order
);
3520 vmcs
= page_address(pages
);
3521 memset(vmcs
, 0, vmcs_config
.size
);
3522 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
3526 static struct vmcs
*alloc_vmcs(void)
3528 return alloc_vmcs_cpu(raw_smp_processor_id());
3531 static void free_vmcs(struct vmcs
*vmcs
)
3533 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
3537 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3539 static void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
3541 if (!loaded_vmcs
->vmcs
)
3543 loaded_vmcs_clear(loaded_vmcs
);
3544 free_vmcs(loaded_vmcs
->vmcs
);
3545 loaded_vmcs
->vmcs
= NULL
;
3548 static void free_kvm_area(void)
3552 for_each_possible_cpu(cpu
) {
3553 free_vmcs(per_cpu(vmxarea
, cpu
));
3554 per_cpu(vmxarea
, cpu
) = NULL
;
3558 static void init_vmcs_shadow_fields(void)
3562 /* No checks for read only fields yet */
3564 for (i
= j
= 0; i
< max_shadow_read_write_fields
; i
++) {
3565 switch (shadow_read_write_fields
[i
]) {
3567 if (!kvm_mpx_supported())
3575 shadow_read_write_fields
[j
] =
3576 shadow_read_write_fields
[i
];
3579 max_shadow_read_write_fields
= j
;
3581 /* shadowed fields guest access without vmexit */
3582 for (i
= 0; i
< max_shadow_read_write_fields
; i
++) {
3583 clear_bit(shadow_read_write_fields
[i
],
3584 vmx_vmwrite_bitmap
);
3585 clear_bit(shadow_read_write_fields
[i
],
3588 for (i
= 0; i
< max_shadow_read_only_fields
; i
++)
3589 clear_bit(shadow_read_only_fields
[i
],
3593 static __init
int alloc_kvm_area(void)
3597 for_each_possible_cpu(cpu
) {
3600 vmcs
= alloc_vmcs_cpu(cpu
);
3606 per_cpu(vmxarea
, cpu
) = vmcs
;
3611 static bool emulation_required(struct kvm_vcpu
*vcpu
)
3613 return emulate_invalid_guest_state
&& !guest_state_valid(vcpu
);
3616 static void fix_pmode_seg(struct kvm_vcpu
*vcpu
, int seg
,
3617 struct kvm_segment
*save
)
3619 if (!emulate_invalid_guest_state
) {
3621 * CS and SS RPL should be equal during guest entry according
3622 * to VMX spec, but in reality it is not always so. Since vcpu
3623 * is in the middle of the transition from real mode to
3624 * protected mode it is safe to assume that RPL 0 is a good
3627 if (seg
== VCPU_SREG_CS
|| seg
== VCPU_SREG_SS
)
3628 save
->selector
&= ~SEGMENT_RPL_MASK
;
3629 save
->dpl
= save
->selector
& SEGMENT_RPL_MASK
;
3632 vmx_set_segment(vcpu
, save
, seg
);
3635 static void enter_pmode(struct kvm_vcpu
*vcpu
)
3637 unsigned long flags
;
3638 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3641 * Update real mode segment cache. It may be not up-to-date if sement
3642 * register was written while vcpu was in a guest mode.
3644 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3645 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3646 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3647 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3648 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3649 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3651 vmx
->rmode
.vm86_active
= 0;
3653 vmx_segment_cache_clear(vmx
);
3655 vmx_set_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3657 flags
= vmcs_readl(GUEST_RFLAGS
);
3658 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
3659 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
3660 vmcs_writel(GUEST_RFLAGS
, flags
);
3662 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
3663 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
3665 update_exception_bitmap(vcpu
);
3667 fix_pmode_seg(vcpu
, VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3668 fix_pmode_seg(vcpu
, VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3669 fix_pmode_seg(vcpu
, VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3670 fix_pmode_seg(vcpu
, VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3671 fix_pmode_seg(vcpu
, VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3672 fix_pmode_seg(vcpu
, VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3675 static void fix_rmode_seg(int seg
, struct kvm_segment
*save
)
3677 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3678 struct kvm_segment var
= *save
;
3681 if (seg
== VCPU_SREG_CS
)
3684 if (!emulate_invalid_guest_state
) {
3685 var
.selector
= var
.base
>> 4;
3686 var
.base
= var
.base
& 0xffff0;
3696 if (save
->base
& 0xf)
3697 printk_once(KERN_WARNING
"kvm: segment base is not "
3698 "paragraph aligned when entering "
3699 "protected mode (seg=%d)", seg
);
3702 vmcs_write16(sf
->selector
, var
.selector
);
3703 vmcs_write32(sf
->base
, var
.base
);
3704 vmcs_write32(sf
->limit
, var
.limit
);
3705 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(&var
));
3708 static void enter_rmode(struct kvm_vcpu
*vcpu
)
3710 unsigned long flags
;
3711 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3713 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3714 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3715 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3716 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3717 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3718 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3719 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3721 vmx
->rmode
.vm86_active
= 1;
3724 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3725 * vcpu. Warn the user that an update is overdue.
3727 if (!vcpu
->kvm
->arch
.tss_addr
)
3728 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
3729 "called before entering vcpu\n");
3731 vmx_segment_cache_clear(vmx
);
3733 vmcs_writel(GUEST_TR_BASE
, vcpu
->kvm
->arch
.tss_addr
);
3734 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
3735 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
3737 flags
= vmcs_readl(GUEST_RFLAGS
);
3738 vmx
->rmode
.save_rflags
= flags
;
3740 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
3742 vmcs_writel(GUEST_RFLAGS
, flags
);
3743 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
3744 update_exception_bitmap(vcpu
);
3746 fix_rmode_seg(VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3747 fix_rmode_seg(VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3748 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3749 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3750 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3751 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3753 kvm_mmu_reset_context(vcpu
);
3756 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
3758 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3759 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
3765 * Force kernel_gs_base reloading before EFER changes, as control
3766 * of this msr depends on is_long_mode().
3768 vmx_load_host_state(to_vmx(vcpu
));
3769 vcpu
->arch
.efer
= efer
;
3770 if (efer
& EFER_LMA
) {
3771 vm_entry_controls_setbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3774 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3776 msr
->data
= efer
& ~EFER_LME
;
3781 #ifdef CONFIG_X86_64
3783 static void enter_lmode(struct kvm_vcpu
*vcpu
)
3787 vmx_segment_cache_clear(to_vmx(vcpu
));
3789 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
3790 if ((guest_tr_ar
& VMX_AR_TYPE_MASK
) != VMX_AR_TYPE_BUSY_64_TSS
) {
3791 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3793 vmcs_write32(GUEST_TR_AR_BYTES
,
3794 (guest_tr_ar
& ~VMX_AR_TYPE_MASK
)
3795 | VMX_AR_TYPE_BUSY_64_TSS
);
3797 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
3800 static void exit_lmode(struct kvm_vcpu
*vcpu
)
3802 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
3803 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
3808 static inline void __vmx_flush_tlb(struct kvm_vcpu
*vcpu
, int vpid
)
3810 vpid_sync_context(vpid
);
3812 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3814 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
3818 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
3820 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->vpid
);
3823 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
3825 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
3827 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
3828 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
3831 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
3833 if (enable_ept
&& is_paging(vcpu
))
3834 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3835 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
3838 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
3840 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
3842 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
3843 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
3846 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
3848 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3850 if (!test_bit(VCPU_EXREG_PDPTR
,
3851 (unsigned long *)&vcpu
->arch
.regs_dirty
))
3854 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3855 vmcs_write64(GUEST_PDPTR0
, mmu
->pdptrs
[0]);
3856 vmcs_write64(GUEST_PDPTR1
, mmu
->pdptrs
[1]);
3857 vmcs_write64(GUEST_PDPTR2
, mmu
->pdptrs
[2]);
3858 vmcs_write64(GUEST_PDPTR3
, mmu
->pdptrs
[3]);
3862 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
3864 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3866 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
3867 mmu
->pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
3868 mmu
->pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
3869 mmu
->pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
3870 mmu
->pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
3873 __set_bit(VCPU_EXREG_PDPTR
,
3874 (unsigned long *)&vcpu
->arch
.regs_avail
);
3875 __set_bit(VCPU_EXREG_PDPTR
,
3876 (unsigned long *)&vcpu
->arch
.regs_dirty
);
3879 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
3881 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
3883 struct kvm_vcpu
*vcpu
)
3885 if (!test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
3886 vmx_decache_cr3(vcpu
);
3887 if (!(cr0
& X86_CR0_PG
)) {
3888 /* From paging/starting to nonpaging */
3889 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3890 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
3891 (CPU_BASED_CR3_LOAD_EXITING
|
3892 CPU_BASED_CR3_STORE_EXITING
));
3893 vcpu
->arch
.cr0
= cr0
;
3894 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3895 } else if (!is_paging(vcpu
)) {
3896 /* From nonpaging to paging */
3897 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
3898 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
3899 ~(CPU_BASED_CR3_LOAD_EXITING
|
3900 CPU_BASED_CR3_STORE_EXITING
));
3901 vcpu
->arch
.cr0
= cr0
;
3902 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3905 if (!(cr0
& X86_CR0_WP
))
3906 *hw_cr0
&= ~X86_CR0_WP
;
3909 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
3911 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3912 unsigned long hw_cr0
;
3914 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
);
3915 if (enable_unrestricted_guest
)
3916 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
3918 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON
;
3920 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
3923 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
3927 #ifdef CONFIG_X86_64
3928 if (vcpu
->arch
.efer
& EFER_LME
) {
3929 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
3931 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
3937 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
3939 if (!vcpu
->fpu_active
)
3940 hw_cr0
|= X86_CR0_TS
| X86_CR0_MP
;
3942 vmcs_writel(CR0_READ_SHADOW
, cr0
);
3943 vmcs_writel(GUEST_CR0
, hw_cr0
);
3944 vcpu
->arch
.cr0
= cr0
;
3946 /* depends on vcpu->arch.cr0 to be set to a new value */
3947 vmx
->emulation_required
= emulation_required(vcpu
);
3950 static u64
construct_eptp(unsigned long root_hpa
)
3954 /* TODO write the value reading from MSR */
3955 eptp
= VMX_EPT_DEFAULT_MT
|
3956 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
3957 if (enable_ept_ad_bits
)
3958 eptp
|= VMX_EPT_AD_ENABLE_BIT
;
3959 eptp
|= (root_hpa
& PAGE_MASK
);
3964 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
3966 unsigned long guest_cr3
;
3971 eptp
= construct_eptp(cr3
);
3972 vmcs_write64(EPT_POINTER
, eptp
);
3973 if (is_paging(vcpu
) || is_guest_mode(vcpu
))
3974 guest_cr3
= kvm_read_cr3(vcpu
);
3976 guest_cr3
= vcpu
->kvm
->arch
.ept_identity_map_addr
;
3977 ept_load_pdptrs(vcpu
);
3980 vmx_flush_tlb(vcpu
);
3981 vmcs_writel(GUEST_CR3
, guest_cr3
);
3984 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
3987 * Pass through host's Machine Check Enable value to hw_cr4, which
3988 * is in force while we are in guest mode. Do not let guests control
3989 * this bit, even if host CR4.MCE == 0.
3991 unsigned long hw_cr4
=
3992 (cr4_read_shadow() & X86_CR4_MCE
) |
3993 (cr4
& ~X86_CR4_MCE
) |
3994 (to_vmx(vcpu
)->rmode
.vm86_active
?
3995 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
3997 if (cr4
& X86_CR4_VMXE
) {
3999 * To use VMXON (and later other VMX instructions), a guest
4000 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4001 * So basically the check on whether to allow nested VMX
4004 if (!nested_vmx_allowed(vcpu
))
4007 if (to_vmx(vcpu
)->nested
.vmxon
&&
4008 ((cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
))
4011 vcpu
->arch
.cr4
= cr4
;
4013 if (!is_paging(vcpu
)) {
4014 hw_cr4
&= ~X86_CR4_PAE
;
4015 hw_cr4
|= X86_CR4_PSE
;
4016 } else if (!(cr4
& X86_CR4_PAE
)) {
4017 hw_cr4
&= ~X86_CR4_PAE
;
4021 if (!enable_unrestricted_guest
&& !is_paging(vcpu
))
4023 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4024 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4025 * to be manually disabled when guest switches to non-paging
4028 * If !enable_unrestricted_guest, the CPU is always running
4029 * with CR0.PG=1 and CR4 needs to be modified.
4030 * If enable_unrestricted_guest, the CPU automatically
4031 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4033 hw_cr4
&= ~(X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
);
4035 vmcs_writel(CR4_READ_SHADOW
, cr4
);
4036 vmcs_writel(GUEST_CR4
, hw_cr4
);
4040 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
4041 struct kvm_segment
*var
, int seg
)
4043 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4046 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
4047 *var
= vmx
->rmode
.segs
[seg
];
4048 if (seg
== VCPU_SREG_TR
4049 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
4051 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
4052 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
4055 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
4056 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
4057 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
4058 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
4059 var
->unusable
= (ar
>> 16) & 1;
4060 var
->type
= ar
& 15;
4061 var
->s
= (ar
>> 4) & 1;
4062 var
->dpl
= (ar
>> 5) & 3;
4064 * Some userspaces do not preserve unusable property. Since usable
4065 * segment has to be present according to VMX spec we can use present
4066 * property to amend userspace bug by making unusable segment always
4067 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4068 * segment as unusable.
4070 var
->present
= !var
->unusable
;
4071 var
->avl
= (ar
>> 12) & 1;
4072 var
->l
= (ar
>> 13) & 1;
4073 var
->db
= (ar
>> 14) & 1;
4074 var
->g
= (ar
>> 15) & 1;
4077 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4079 struct kvm_segment s
;
4081 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
4082 vmx_get_segment(vcpu
, &s
, seg
);
4085 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
4088 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
4090 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4092 if (unlikely(vmx
->rmode
.vm86_active
))
4095 int ar
= vmx_read_guest_seg_ar(vmx
, VCPU_SREG_SS
);
4096 return VMX_AR_DPL(ar
);
4100 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
4104 if (var
->unusable
|| !var
->present
)
4107 ar
= var
->type
& 15;
4108 ar
|= (var
->s
& 1) << 4;
4109 ar
|= (var
->dpl
& 3) << 5;
4110 ar
|= (var
->present
& 1) << 7;
4111 ar
|= (var
->avl
& 1) << 12;
4112 ar
|= (var
->l
& 1) << 13;
4113 ar
|= (var
->db
& 1) << 14;
4114 ar
|= (var
->g
& 1) << 15;
4120 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
4121 struct kvm_segment
*var
, int seg
)
4123 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4124 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4126 vmx_segment_cache_clear(vmx
);
4128 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
4129 vmx
->rmode
.segs
[seg
] = *var
;
4130 if (seg
== VCPU_SREG_TR
)
4131 vmcs_write16(sf
->selector
, var
->selector
);
4133 fix_rmode_seg(seg
, &vmx
->rmode
.segs
[seg
]);
4137 vmcs_writel(sf
->base
, var
->base
);
4138 vmcs_write32(sf
->limit
, var
->limit
);
4139 vmcs_write16(sf
->selector
, var
->selector
);
4142 * Fix the "Accessed" bit in AR field of segment registers for older
4144 * IA32 arch specifies that at the time of processor reset the
4145 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4146 * is setting it to 0 in the userland code. This causes invalid guest
4147 * state vmexit when "unrestricted guest" mode is turned on.
4148 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4149 * tree. Newer qemu binaries with that qemu fix would not need this
4152 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
4153 var
->type
|= 0x1; /* Accessed */
4155 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(var
));
4158 vmx
->emulation_required
= emulation_required(vcpu
);
4161 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
4163 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
4165 *db
= (ar
>> 14) & 1;
4166 *l
= (ar
>> 13) & 1;
4169 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4171 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
4172 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
4175 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4177 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
4178 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
4181 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4183 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
4184 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
4187 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4189 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
4190 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
4193 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
4195 struct kvm_segment var
;
4198 vmx_get_segment(vcpu
, &var
, seg
);
4200 if (seg
== VCPU_SREG_CS
)
4202 ar
= vmx_segment_access_rights(&var
);
4204 if (var
.base
!= (var
.selector
<< 4))
4206 if (var
.limit
!= 0xffff)
4214 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
4216 struct kvm_segment cs
;
4217 unsigned int cs_rpl
;
4219 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
4220 cs_rpl
= cs
.selector
& SEGMENT_RPL_MASK
;
4224 if (~cs
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_ACCESSES_MASK
))
4228 if (cs
.type
& VMX_AR_TYPE_WRITEABLE_MASK
) {
4229 if (cs
.dpl
> cs_rpl
)
4232 if (cs
.dpl
!= cs_rpl
)
4238 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4242 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
4244 struct kvm_segment ss
;
4245 unsigned int ss_rpl
;
4247 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
4248 ss_rpl
= ss
.selector
& SEGMENT_RPL_MASK
;
4252 if (ss
.type
!= 3 && ss
.type
!= 7)
4256 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
4264 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
4266 struct kvm_segment var
;
4269 vmx_get_segment(vcpu
, &var
, seg
);
4270 rpl
= var
.selector
& SEGMENT_RPL_MASK
;
4278 if (~var
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_WRITEABLE_MASK
)) {
4279 if (var
.dpl
< rpl
) /* DPL < RPL */
4283 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4289 static bool tr_valid(struct kvm_vcpu
*vcpu
)
4291 struct kvm_segment tr
;
4293 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
4297 if (tr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
4299 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
4307 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
4309 struct kvm_segment ldtr
;
4311 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
4315 if (ldtr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
4325 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
4327 struct kvm_segment cs
, ss
;
4329 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
4330 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
4332 return ((cs
.selector
& SEGMENT_RPL_MASK
) ==
4333 (ss
.selector
& SEGMENT_RPL_MASK
));
4337 * Check if guest state is valid. Returns true if valid, false if
4339 * We assume that registers are always usable
4341 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
4343 if (enable_unrestricted_guest
)
4346 /* real mode guest state checks */
4347 if (!is_protmode(vcpu
) || (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
4348 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
4350 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
4352 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
4354 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
4356 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
4358 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
4361 /* protected mode guest state checks */
4362 if (!cs_ss_rpl_check(vcpu
))
4364 if (!code_segment_valid(vcpu
))
4366 if (!stack_segment_valid(vcpu
))
4368 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
4370 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
4372 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
4374 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
4376 if (!tr_valid(vcpu
))
4378 if (!ldtr_valid(vcpu
))
4382 * - Add checks on RIP
4383 * - Add checks on RFLAGS
4389 static int init_rmode_tss(struct kvm
*kvm
)
4395 idx
= srcu_read_lock(&kvm
->srcu
);
4396 fn
= kvm
->arch
.tss_addr
>> PAGE_SHIFT
;
4397 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
4400 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
4401 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
4402 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
4405 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
4408 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
4412 r
= kvm_write_guest_page(kvm
, fn
, &data
,
4413 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
4416 srcu_read_unlock(&kvm
->srcu
, idx
);
4420 static int init_rmode_identity_map(struct kvm
*kvm
)
4423 kvm_pfn_t identity_map_pfn
;
4429 /* Protect kvm->arch.ept_identity_pagetable_done. */
4430 mutex_lock(&kvm
->slots_lock
);
4432 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
4435 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
4437 r
= alloc_identity_pagetable(kvm
);
4441 idx
= srcu_read_lock(&kvm
->srcu
);
4442 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
4445 /* Set up identity-mapping pagetable for EPT in real mode */
4446 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
4447 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
4448 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
4449 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
4450 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
4454 kvm
->arch
.ept_identity_pagetable_done
= true;
4457 srcu_read_unlock(&kvm
->srcu
, idx
);
4460 mutex_unlock(&kvm
->slots_lock
);
4464 static void seg_setup(int seg
)
4466 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4469 vmcs_write16(sf
->selector
, 0);
4470 vmcs_writel(sf
->base
, 0);
4471 vmcs_write32(sf
->limit
, 0xffff);
4473 if (seg
== VCPU_SREG_CS
)
4474 ar
|= 0x08; /* code segment */
4476 vmcs_write32(sf
->ar_bytes
, ar
);
4479 static int alloc_apic_access_page(struct kvm
*kvm
)
4484 mutex_lock(&kvm
->slots_lock
);
4485 if (kvm
->arch
.apic_access_page_done
)
4487 r
= __x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
4488 APIC_DEFAULT_PHYS_BASE
, PAGE_SIZE
);
4492 page
= gfn_to_page(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
4493 if (is_error_page(page
)) {
4499 * Do not pin the page in memory, so that memory hot-unplug
4500 * is able to migrate it.
4503 kvm
->arch
.apic_access_page_done
= true;
4505 mutex_unlock(&kvm
->slots_lock
);
4509 static int alloc_identity_pagetable(struct kvm
*kvm
)
4511 /* Called with kvm->slots_lock held. */
4515 BUG_ON(kvm
->arch
.ept_identity_pagetable_done
);
4517 r
= __x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
,
4518 kvm
->arch
.ept_identity_map_addr
, PAGE_SIZE
);
4523 static int allocate_vpid(void)
4529 spin_lock(&vmx_vpid_lock
);
4530 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
4531 if (vpid
< VMX_NR_VPIDS
)
4532 __set_bit(vpid
, vmx_vpid_bitmap
);
4535 spin_unlock(&vmx_vpid_lock
);
4539 static void free_vpid(int vpid
)
4541 if (!enable_vpid
|| vpid
== 0)
4543 spin_lock(&vmx_vpid_lock
);
4544 __clear_bit(vpid
, vmx_vpid_bitmap
);
4545 spin_unlock(&vmx_vpid_lock
);
4548 #define MSR_TYPE_R 1
4549 #define MSR_TYPE_W 2
4550 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
,
4553 int f
= sizeof(unsigned long);
4555 if (!cpu_has_vmx_msr_bitmap())
4559 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4560 * have the write-low and read-high bitmap offsets the wrong way round.
4561 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4563 if (msr
<= 0x1fff) {
4564 if (type
& MSR_TYPE_R
)
4566 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
);
4568 if (type
& MSR_TYPE_W
)
4570 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
);
4572 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4574 if (type
& MSR_TYPE_R
)
4576 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
);
4578 if (type
& MSR_TYPE_W
)
4580 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4585 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap
,
4588 int f
= sizeof(unsigned long);
4590 if (!cpu_has_vmx_msr_bitmap())
4594 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4595 * have the write-low and read-high bitmap offsets the wrong way round.
4596 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4598 if (msr
<= 0x1fff) {
4599 if (type
& MSR_TYPE_R
)
4601 __set_bit(msr
, msr_bitmap
+ 0x000 / f
);
4603 if (type
& MSR_TYPE_W
)
4605 __set_bit(msr
, msr_bitmap
+ 0x800 / f
);
4607 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4609 if (type
& MSR_TYPE_R
)
4611 __set_bit(msr
, msr_bitmap
+ 0x400 / f
);
4613 if (type
& MSR_TYPE_W
)
4615 __set_bit(msr
, msr_bitmap
+ 0xc00 / f
);
4621 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4622 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4624 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1
,
4625 unsigned long *msr_bitmap_nested
,
4628 int f
= sizeof(unsigned long);
4630 if (!cpu_has_vmx_msr_bitmap()) {
4636 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4637 * have the write-low and read-high bitmap offsets the wrong way round.
4638 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4640 if (msr
<= 0x1fff) {
4641 if (type
& MSR_TYPE_R
&&
4642 !test_bit(msr
, msr_bitmap_l1
+ 0x000 / f
))
4644 __clear_bit(msr
, msr_bitmap_nested
+ 0x000 / f
);
4646 if (type
& MSR_TYPE_W
&&
4647 !test_bit(msr
, msr_bitmap_l1
+ 0x800 / f
))
4649 __clear_bit(msr
, msr_bitmap_nested
+ 0x800 / f
);
4651 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
4653 if (type
& MSR_TYPE_R
&&
4654 !test_bit(msr
, msr_bitmap_l1
+ 0x400 / f
))
4656 __clear_bit(msr
, msr_bitmap_nested
+ 0x400 / f
);
4658 if (type
& MSR_TYPE_W
&&
4659 !test_bit(msr
, msr_bitmap_l1
+ 0xc00 / f
))
4661 __clear_bit(msr
, msr_bitmap_nested
+ 0xc00 / f
);
4666 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
4669 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
,
4670 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4671 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
,
4672 msr
, MSR_TYPE_R
| MSR_TYPE_W
);
4675 static void vmx_enable_intercept_msr_read_x2apic(u32 msr
)
4677 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4679 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4683 static void vmx_disable_intercept_msr_read_x2apic(u32 msr
)
4685 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4687 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4691 static void vmx_disable_intercept_msr_write_x2apic(u32 msr
)
4693 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic
,
4695 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic
,
4699 static bool vmx_get_enable_apicv(void)
4701 return enable_apicv
;
4704 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu
*vcpu
)
4706 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4711 if (vmx
->nested
.pi_desc
&&
4712 vmx
->nested
.pi_pending
) {
4713 vmx
->nested
.pi_pending
= false;
4714 if (!pi_test_and_clear_on(vmx
->nested
.pi_desc
))
4717 max_irr
= find_last_bit(
4718 (unsigned long *)vmx
->nested
.pi_desc
->pir
, 256);
4723 vapic_page
= kmap(vmx
->nested
.virtual_apic_page
);
4728 __kvm_apic_update_irr(vmx
->nested
.pi_desc
->pir
, vapic_page
);
4729 kunmap(vmx
->nested
.virtual_apic_page
);
4731 status
= vmcs_read16(GUEST_INTR_STATUS
);
4732 if ((u8
)max_irr
> ((u8
)status
& 0xff)) {
4734 status
|= (u8
)max_irr
;
4735 vmcs_write16(GUEST_INTR_STATUS
, status
);
4741 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu
*vcpu
)
4744 if (vcpu
->mode
== IN_GUEST_MODE
) {
4745 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4748 * Currently, we don't support urgent interrupt,
4749 * all interrupts are recognized as non-urgent
4750 * interrupt, so we cannot post interrupts when
4753 * If the vcpu is in guest mode, it means it is
4754 * running instead of being scheduled out and
4755 * waiting in the run queue, and that's the only
4756 * case when 'SN' is set currently, warning if
4759 WARN_ON_ONCE(pi_test_sn(&vmx
->pi_desc
));
4761 apic
->send_IPI_mask(get_cpu_mask(vcpu
->cpu
),
4762 POSTED_INTR_VECTOR
);
4769 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu
*vcpu
,
4772 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4774 if (is_guest_mode(vcpu
) &&
4775 vector
== vmx
->nested
.posted_intr_nv
) {
4776 /* the PIR and ON have been set by L1. */
4777 kvm_vcpu_trigger_posted_interrupt(vcpu
);
4779 * If a posted intr is not recognized by hardware,
4780 * we will accomplish it in the next vmentry.
4782 vmx
->nested
.pi_pending
= true;
4783 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4789 * Send interrupt to vcpu via posted interrupt way.
4790 * 1. If target vcpu is running(non-root mode), send posted interrupt
4791 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4792 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4793 * interrupt from PIR in next vmentry.
4795 static void vmx_deliver_posted_interrupt(struct kvm_vcpu
*vcpu
, int vector
)
4797 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4800 r
= vmx_deliver_nested_posted_interrupt(vcpu
, vector
);
4804 if (pi_test_and_set_pir(vector
, &vmx
->pi_desc
))
4807 r
= pi_test_and_set_on(&vmx
->pi_desc
);
4808 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4809 if (r
|| !kvm_vcpu_trigger_posted_interrupt(vcpu
))
4810 kvm_vcpu_kick(vcpu
);
4813 static void vmx_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
4815 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4817 if (!pi_test_and_clear_on(&vmx
->pi_desc
))
4820 kvm_apic_update_irr(vcpu
, vmx
->pi_desc
.pir
);
4824 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4825 * will not change in the lifetime of the guest.
4826 * Note that host-state that does change is set elsewhere. E.g., host-state
4827 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4829 static void vmx_set_constant_host_state(struct vcpu_vmx
*vmx
)
4836 vmcs_writel(HOST_CR0
, read_cr0() & ~X86_CR0_TS
); /* 22.2.3 */
4837 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4839 /* Save the most likely value for this task's CR4 in the VMCS. */
4840 cr4
= cr4_read_shadow();
4841 vmcs_writel(HOST_CR4
, cr4
); /* 22.2.3, 22.2.5 */
4842 vmx
->host_state
.vmcs_host_cr4
= cr4
;
4844 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
4845 #ifdef CONFIG_X86_64
4847 * Load null selectors, so we can avoid reloading them in
4848 * __vmx_load_host_state(), in case userspace uses the null selectors
4849 * too (the expected case).
4851 vmcs_write16(HOST_DS_SELECTOR
, 0);
4852 vmcs_write16(HOST_ES_SELECTOR
, 0);
4854 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4855 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4857 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4858 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
4860 native_store_idt(&dt
);
4861 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
4862 vmx
->host_idt_base
= dt
.address
;
4864 vmcs_writel(HOST_RIP
, vmx_return
); /* 22.2.5 */
4866 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
4867 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
4868 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
4869 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
4871 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
4872 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
4873 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
4877 static void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
4879 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
4881 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
4882 if (is_guest_mode(&vmx
->vcpu
))
4883 vmx
->vcpu
.arch
.cr4_guest_owned_bits
&=
4884 ~get_vmcs12(&vmx
->vcpu
)->cr4_guest_host_mask
;
4885 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
4888 static u32
vmx_pin_based_exec_ctrl(struct vcpu_vmx
*vmx
)
4890 u32 pin_based_exec_ctrl
= vmcs_config
.pin_based_exec_ctrl
;
4892 if (!kvm_vcpu_apicv_active(&vmx
->vcpu
))
4893 pin_based_exec_ctrl
&= ~PIN_BASED_POSTED_INTR
;
4894 /* Enable the preemption timer dynamically */
4895 pin_based_exec_ctrl
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
4896 return pin_based_exec_ctrl
;
4899 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu
*vcpu
)
4901 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4903 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
4904 if (cpu_has_secondary_exec_ctrls()) {
4905 if (kvm_vcpu_apicv_active(vcpu
))
4906 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
4907 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4908 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4910 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
4911 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4912 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4915 if (cpu_has_vmx_msr_bitmap())
4916 vmx_set_msr_bitmap(vcpu
);
4919 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
4921 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
4923 if (vmx
->vcpu
.arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)
4924 exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
4926 if (!cpu_need_tpr_shadow(&vmx
->vcpu
)) {
4927 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
4928 #ifdef CONFIG_X86_64
4929 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
4930 CPU_BASED_CR8_LOAD_EXITING
;
4934 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
4935 CPU_BASED_CR3_LOAD_EXITING
|
4936 CPU_BASED_INVLPG_EXITING
;
4937 return exec_control
;
4940 static u32
vmx_secondary_exec_control(struct vcpu_vmx
*vmx
)
4942 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
4943 if (!cpu_need_virtualize_apic_accesses(&vmx
->vcpu
))
4944 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
4946 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
4948 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
4949 enable_unrestricted_guest
= 0;
4950 /* Enable INVPCID for non-ept guests may cause performance regression. */
4951 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
4953 if (!enable_unrestricted_guest
)
4954 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
4956 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
4957 if (!kvm_vcpu_apicv_active(&vmx
->vcpu
))
4958 exec_control
&= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4959 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4960 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
4961 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4963 We can NOT enable shadow_vmcs here because we don't have yet
4966 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
4969 exec_control
&= ~SECONDARY_EXEC_ENABLE_PML
;
4971 return exec_control
;
4974 static void ept_set_mmio_spte_mask(void)
4977 * EPT Misconfigurations can be generated if the value of bits 2:0
4978 * of an EPT paging-structure entry is 110b (write/execute).
4979 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4982 kvm_mmu_set_mmio_spte_mask((0x3ull
<< 62) | 0x6ull
);
4985 #define VMX_XSS_EXIT_BITMAP 0
4987 * Sets up the vmcs for emulated real mode.
4989 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
4991 #ifdef CONFIG_X86_64
4997 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
4998 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
5000 if (enable_shadow_vmcs
) {
5001 vmcs_write64(VMREAD_BITMAP
, __pa(vmx_vmread_bitmap
));
5002 vmcs_write64(VMWRITE_BITMAP
, __pa(vmx_vmwrite_bitmap
));
5004 if (cpu_has_vmx_msr_bitmap())
5005 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
5007 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
5010 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
5011 vmx
->hv_deadline_tsc
= -1;
5013 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, vmx_exec_control(vmx
));
5015 if (cpu_has_secondary_exec_ctrls()) {
5016 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
5017 vmx_secondary_exec_control(vmx
));
5020 if (kvm_vcpu_apicv_active(&vmx
->vcpu
)) {
5021 vmcs_write64(EOI_EXIT_BITMAP0
, 0);
5022 vmcs_write64(EOI_EXIT_BITMAP1
, 0);
5023 vmcs_write64(EOI_EXIT_BITMAP2
, 0);
5024 vmcs_write64(EOI_EXIT_BITMAP3
, 0);
5026 vmcs_write16(GUEST_INTR_STATUS
, 0);
5028 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
5029 vmcs_write64(POSTED_INTR_DESC_ADDR
, __pa((&vmx
->pi_desc
)));
5033 vmcs_write32(PLE_GAP
, ple_gap
);
5034 vmx
->ple_window
= ple_window
;
5035 vmx
->ple_window_dirty
= true;
5038 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
5039 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
5040 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
5042 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
5043 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
5044 vmx_set_constant_host_state(vmx
);
5045 #ifdef CONFIG_X86_64
5046 rdmsrl(MSR_FS_BASE
, a
);
5047 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
5048 rdmsrl(MSR_GS_BASE
, a
);
5049 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
5051 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
5052 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
5055 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
5056 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
5057 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
5058 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
5059 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
5061 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
5062 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
5064 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
) {
5065 u32 index
= vmx_msr_index
[i
];
5066 u32 data_low
, data_high
;
5069 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
5071 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
5073 vmx
->guest_msrs
[j
].index
= i
;
5074 vmx
->guest_msrs
[j
].data
= 0;
5075 vmx
->guest_msrs
[j
].mask
= -1ull;
5080 vm_exit_controls_init(vmx
, vmcs_config
.vmexit_ctrl
);
5082 /* 22.2.1, 20.8.1 */
5083 vm_entry_controls_init(vmx
, vmcs_config
.vmentry_ctrl
);
5085 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
5086 set_cr4_guest_host_mask(vmx
);
5088 if (vmx_xsaves_supported())
5089 vmcs_write64(XSS_EXIT_BITMAP
, VMX_XSS_EXIT_BITMAP
);
5092 ASSERT(vmx
->pml_pg
);
5093 vmcs_write64(PML_ADDRESS
, page_to_phys(vmx
->pml_pg
));
5094 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
5100 static void vmx_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
5102 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5103 struct msr_data apic_base_msr
;
5106 vmx
->rmode
.vm86_active
= 0;
5108 vmx
->soft_vnmi_blocked
= 0;
5110 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
5111 kvm_set_cr8(vcpu
, 0);
5114 apic_base_msr
.data
= APIC_DEFAULT_PHYS_BASE
|
5115 MSR_IA32_APICBASE_ENABLE
;
5116 if (kvm_vcpu_is_reset_bsp(vcpu
))
5117 apic_base_msr
.data
|= MSR_IA32_APICBASE_BSP
;
5118 apic_base_msr
.host_initiated
= true;
5119 kvm_set_apic_base(vcpu
, &apic_base_msr
);
5122 vmx_segment_cache_clear(vmx
);
5124 seg_setup(VCPU_SREG_CS
);
5125 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
5126 vmcs_writel(GUEST_CS_BASE
, 0xffff0000ul
);
5128 seg_setup(VCPU_SREG_DS
);
5129 seg_setup(VCPU_SREG_ES
);
5130 seg_setup(VCPU_SREG_FS
);
5131 seg_setup(VCPU_SREG_GS
);
5132 seg_setup(VCPU_SREG_SS
);
5134 vmcs_write16(GUEST_TR_SELECTOR
, 0);
5135 vmcs_writel(GUEST_TR_BASE
, 0);
5136 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
5137 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
5139 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
5140 vmcs_writel(GUEST_LDTR_BASE
, 0);
5141 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
5142 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
5145 vmcs_write32(GUEST_SYSENTER_CS
, 0);
5146 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
5147 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
5148 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
5151 vmcs_writel(GUEST_RFLAGS
, 0x02);
5152 kvm_rip_write(vcpu
, 0xfff0);
5154 vmcs_writel(GUEST_GDTR_BASE
, 0);
5155 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
5157 vmcs_writel(GUEST_IDTR_BASE
, 0);
5158 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
5160 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
5161 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
5162 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
5166 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
5168 if (cpu_has_vmx_tpr_shadow() && !init_event
) {
5169 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
5170 if (cpu_need_tpr_shadow(vcpu
))
5171 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
5172 __pa(vcpu
->arch
.apic
->regs
));
5173 vmcs_write32(TPR_THRESHOLD
, 0);
5176 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
5178 if (kvm_vcpu_apicv_active(vcpu
))
5179 memset(&vmx
->pi_desc
, 0, sizeof(struct pi_desc
));
5182 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
5184 cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
5185 vmx
->vcpu
.arch
.cr0
= cr0
;
5186 vmx_set_cr0(vcpu
, cr0
); /* enter rmode */
5187 vmx_set_cr4(vcpu
, 0);
5188 vmx_set_efer(vcpu
, 0);
5189 vmx_fpu_activate(vcpu
);
5190 update_exception_bitmap(vcpu
);
5192 vpid_sync_context(vmx
->vpid
);
5196 * In nested virtualization, check if L1 asked to exit on external interrupts.
5197 * For most existing hypervisors, this will always return true.
5199 static bool nested_exit_on_intr(struct kvm_vcpu
*vcpu
)
5201 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
5202 PIN_BASED_EXT_INTR_MASK
;
5206 * In nested virtualization, check if L1 has set
5207 * VM_EXIT_ACK_INTR_ON_EXIT
5209 static bool nested_exit_intr_ack_set(struct kvm_vcpu
*vcpu
)
5211 return get_vmcs12(vcpu
)->vm_exit_controls
&
5212 VM_EXIT_ACK_INTR_ON_EXIT
;
5215 static bool nested_exit_on_nmi(struct kvm_vcpu
*vcpu
)
5217 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
5218 PIN_BASED_NMI_EXITING
;
5221 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
5223 u32 cpu_based_vm_exec_control
;
5225 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5226 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
5227 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5230 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
5232 u32 cpu_based_vm_exec_control
;
5234 if (!cpu_has_virtual_nmis() ||
5235 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
5236 enable_irq_window(vcpu
);
5240 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5241 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
5242 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5245 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
5247 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5249 int irq
= vcpu
->arch
.interrupt
.nr
;
5251 trace_kvm_inj_virq(irq
);
5253 ++vcpu
->stat
.irq_injections
;
5254 if (vmx
->rmode
.vm86_active
) {
5256 if (vcpu
->arch
.interrupt
.soft
)
5257 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
5258 if (kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
) != EMULATE_DONE
)
5259 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5262 intr
= irq
| INTR_INFO_VALID_MASK
;
5263 if (vcpu
->arch
.interrupt
.soft
) {
5264 intr
|= INTR_TYPE_SOFT_INTR
;
5265 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
5266 vmx
->vcpu
.arch
.event_exit_inst_len
);
5268 intr
|= INTR_TYPE_EXT_INTR
;
5269 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
5272 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
5274 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5276 if (is_guest_mode(vcpu
))
5279 if (!cpu_has_virtual_nmis()) {
5281 * Tracking the NMI-blocked state in software is built upon
5282 * finding the next open IRQ window. This, in turn, depends on
5283 * well-behaving guests: They have to keep IRQs disabled at
5284 * least as long as the NMI handler runs. Otherwise we may
5285 * cause NMI nesting, maybe breaking the guest. But as this is
5286 * highly unlikely, we can live with the residual risk.
5288 vmx
->soft_vnmi_blocked
= 1;
5289 vmx
->vnmi_blocked_time
= 0;
5292 ++vcpu
->stat
.nmi_injections
;
5293 vmx
->nmi_known_unmasked
= false;
5294 if (vmx
->rmode
.vm86_active
) {
5295 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0) != EMULATE_DONE
)
5296 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5299 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
5300 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
5303 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
5305 if (!cpu_has_virtual_nmis())
5306 return to_vmx(vcpu
)->soft_vnmi_blocked
;
5307 if (to_vmx(vcpu
)->nmi_known_unmasked
)
5309 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
5312 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
5314 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5316 if (!cpu_has_virtual_nmis()) {
5317 if (vmx
->soft_vnmi_blocked
!= masked
) {
5318 vmx
->soft_vnmi_blocked
= masked
;
5319 vmx
->vnmi_blocked_time
= 0;
5322 vmx
->nmi_known_unmasked
= !masked
;
5324 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
5325 GUEST_INTR_STATE_NMI
);
5327 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
5328 GUEST_INTR_STATE_NMI
);
5332 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
5334 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
5337 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
5340 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
5341 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
5342 | GUEST_INTR_STATE_NMI
));
5345 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
5347 return (!to_vmx(vcpu
)->nested
.nested_run_pending
&&
5348 vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
5349 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
5350 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
5353 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
5357 ret
= x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, addr
,
5361 kvm
->arch
.tss_addr
= addr
;
5362 return init_rmode_tss(kvm
);
5365 static bool rmode_exception(struct kvm_vcpu
*vcpu
, int vec
)
5370 * Update instruction length as we may reinject the exception
5371 * from user space while in guest debugging mode.
5373 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
5374 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
5375 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
5379 if (vcpu
->guest_debug
&
5380 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
5397 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
5398 int vec
, u32 err_code
)
5401 * Instruction with address size override prefix opcode 0x67
5402 * Cause the #SS fault with 0 error code in VM86 mode.
5404 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0) {
5405 if (emulate_instruction(vcpu
, 0) == EMULATE_DONE
) {
5406 if (vcpu
->arch
.halt_request
) {
5407 vcpu
->arch
.halt_request
= 0;
5408 return kvm_vcpu_halt(vcpu
);
5416 * Forward all other exceptions that are valid in real mode.
5417 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5418 * the required debugging infrastructure rework.
5420 kvm_queue_exception(vcpu
, vec
);
5425 * Trigger machine check on the host. We assume all the MSRs are already set up
5426 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5427 * We pass a fake environment to the machine check handler because we want
5428 * the guest to be always treated like user space, no matter what context
5429 * it used internally.
5431 static void kvm_machine_check(void)
5433 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5434 struct pt_regs regs
= {
5435 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
5436 .flags
= X86_EFLAGS_IF
,
5439 do_machine_check(®s
, 0);
5443 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
5445 /* already handled by vcpu_run */
5449 static int handle_exception(struct kvm_vcpu
*vcpu
)
5451 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5452 struct kvm_run
*kvm_run
= vcpu
->run
;
5453 u32 intr_info
, ex_no
, error_code
;
5454 unsigned long cr2
, rip
, dr6
;
5456 enum emulation_result er
;
5458 vect_info
= vmx
->idt_vectoring_info
;
5459 intr_info
= vmx
->exit_intr_info
;
5461 if (is_machine_check(intr_info
))
5462 return handle_machine_check(vcpu
);
5464 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
5465 return 1; /* already handled by vmx_vcpu_run() */
5467 if (is_no_device(intr_info
)) {
5468 vmx_fpu_activate(vcpu
);
5472 if (is_invalid_opcode(intr_info
)) {
5473 if (is_guest_mode(vcpu
)) {
5474 kvm_queue_exception(vcpu
, UD_VECTOR
);
5477 er
= emulate_instruction(vcpu
, EMULTYPE_TRAP_UD
);
5478 if (er
!= EMULATE_DONE
)
5479 kvm_queue_exception(vcpu
, UD_VECTOR
);
5484 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
5485 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
5488 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5489 * MMIO, it is better to report an internal error.
5490 * See the comments in vmx_handle_exit.
5492 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
5493 !(is_page_fault(intr_info
) && !(error_code
& PFERR_RSVD_MASK
))) {
5494 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5495 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
5496 vcpu
->run
->internal
.ndata
= 3;
5497 vcpu
->run
->internal
.data
[0] = vect_info
;
5498 vcpu
->run
->internal
.data
[1] = intr_info
;
5499 vcpu
->run
->internal
.data
[2] = error_code
;
5503 if (is_page_fault(intr_info
)) {
5504 /* EPT won't cause page fault directly */
5506 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
5507 trace_kvm_page_fault(cr2
, error_code
);
5509 if (kvm_event_needs_reinjection(vcpu
))
5510 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
5511 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
, NULL
, 0);
5514 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
5516 if (vmx
->rmode
.vm86_active
&& rmode_exception(vcpu
, ex_no
))
5517 return handle_rmode_exception(vcpu
, ex_no
, error_code
);
5521 kvm_queue_exception_e(vcpu
, AC_VECTOR
, error_code
);
5524 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
5525 if (!(vcpu
->guest_debug
&
5526 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
5527 vcpu
->arch
.dr6
&= ~15;
5528 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5529 if (!(dr6
& ~DR6_RESERVED
)) /* icebp */
5530 skip_emulated_instruction(vcpu
);
5532 kvm_queue_exception(vcpu
, DB_VECTOR
);
5535 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
5536 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
5540 * Update instruction length as we may reinject #BP from
5541 * user space while in guest debugging mode. Reading it for
5542 * #DB as well causes no harm, it is not used in that case.
5544 vmx
->vcpu
.arch
.event_exit_inst_len
=
5545 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
5546 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5547 rip
= kvm_rip_read(vcpu
);
5548 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
5549 kvm_run
->debug
.arch
.exception
= ex_no
;
5552 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
5553 kvm_run
->ex
.exception
= ex_no
;
5554 kvm_run
->ex
.error_code
= error_code
;
5560 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
5562 ++vcpu
->stat
.irq_exits
;
5566 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
5568 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5572 static int handle_io(struct kvm_vcpu
*vcpu
)
5574 unsigned long exit_qualification
;
5575 int size
, in
, string
;
5578 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5579 string
= (exit_qualification
& 16) != 0;
5580 in
= (exit_qualification
& 8) != 0;
5582 ++vcpu
->stat
.io_exits
;
5585 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5587 port
= exit_qualification
>> 16;
5588 size
= (exit_qualification
& 7) + 1;
5589 skip_emulated_instruction(vcpu
);
5591 return kvm_fast_pio_out(vcpu
, size
, port
);
5595 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
5598 * Patch in the VMCALL instruction:
5600 hypercall
[0] = 0x0f;
5601 hypercall
[1] = 0x01;
5602 hypercall
[2] = 0xc1;
5605 static bool nested_cr0_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
5607 unsigned long always_on
= VMXON_CR0_ALWAYSON
;
5608 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5610 if (to_vmx(vcpu
)->nested
.nested_vmx_secondary_ctls_high
&
5611 SECONDARY_EXEC_UNRESTRICTED_GUEST
&&
5612 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_UNRESTRICTED_GUEST
))
5613 always_on
&= ~(X86_CR0_PE
| X86_CR0_PG
);
5614 return (val
& always_on
) == always_on
;
5617 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5618 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
5620 if (is_guest_mode(vcpu
)) {
5621 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5622 unsigned long orig_val
= val
;
5625 * We get here when L2 changed cr0 in a way that did not change
5626 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5627 * but did change L0 shadowed bits. So we first calculate the
5628 * effective cr0 value that L1 would like to write into the
5629 * hardware. It consists of the L2-owned bits from the new
5630 * value combined with the L1-owned bits from L1's guest_cr0.
5632 val
= (val
& ~vmcs12
->cr0_guest_host_mask
) |
5633 (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
);
5635 if (!nested_cr0_valid(vcpu
, val
))
5638 if (kvm_set_cr0(vcpu
, val
))
5640 vmcs_writel(CR0_READ_SHADOW
, orig_val
);
5643 if (to_vmx(vcpu
)->nested
.vmxon
&&
5644 ((val
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
))
5646 return kvm_set_cr0(vcpu
, val
);
5650 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
5652 if (is_guest_mode(vcpu
)) {
5653 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5654 unsigned long orig_val
= val
;
5656 /* analogously to handle_set_cr0 */
5657 val
= (val
& ~vmcs12
->cr4_guest_host_mask
) |
5658 (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
);
5659 if (kvm_set_cr4(vcpu
, val
))
5661 vmcs_writel(CR4_READ_SHADOW
, orig_val
);
5664 return kvm_set_cr4(vcpu
, val
);
5667 /* called to set cr0 as appropriate for clts instruction exit. */
5668 static void handle_clts(struct kvm_vcpu
*vcpu
)
5670 if (is_guest_mode(vcpu
)) {
5672 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5673 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5674 * just pretend it's off (also in arch.cr0 for fpu_activate).
5676 vmcs_writel(CR0_READ_SHADOW
,
5677 vmcs_readl(CR0_READ_SHADOW
) & ~X86_CR0_TS
);
5678 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
5680 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
5683 static int handle_cr(struct kvm_vcpu
*vcpu
)
5685 unsigned long exit_qualification
, val
;
5690 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5691 cr
= exit_qualification
& 15;
5692 reg
= (exit_qualification
>> 8) & 15;
5693 switch ((exit_qualification
>> 4) & 3) {
5694 case 0: /* mov to cr */
5695 val
= kvm_register_readl(vcpu
, reg
);
5696 trace_kvm_cr_write(cr
, val
);
5699 err
= handle_set_cr0(vcpu
, val
);
5700 kvm_complete_insn_gp(vcpu
, err
);
5703 err
= kvm_set_cr3(vcpu
, val
);
5704 kvm_complete_insn_gp(vcpu
, err
);
5707 err
= handle_set_cr4(vcpu
, val
);
5708 kvm_complete_insn_gp(vcpu
, err
);
5711 u8 cr8_prev
= kvm_get_cr8(vcpu
);
5713 err
= kvm_set_cr8(vcpu
, cr8
);
5714 kvm_complete_insn_gp(vcpu
, err
);
5715 if (lapic_in_kernel(vcpu
))
5717 if (cr8_prev
<= cr8
)
5719 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
5726 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
5727 skip_emulated_instruction(vcpu
);
5728 vmx_fpu_activate(vcpu
);
5730 case 1: /*mov from cr*/
5733 val
= kvm_read_cr3(vcpu
);
5734 kvm_register_write(vcpu
, reg
, val
);
5735 trace_kvm_cr_read(cr
, val
);
5736 skip_emulated_instruction(vcpu
);
5739 val
= kvm_get_cr8(vcpu
);
5740 kvm_register_write(vcpu
, reg
, val
);
5741 trace_kvm_cr_read(cr
, val
);
5742 skip_emulated_instruction(vcpu
);
5747 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
5748 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
5749 kvm_lmsw(vcpu
, val
);
5751 skip_emulated_instruction(vcpu
);
5756 vcpu
->run
->exit_reason
= 0;
5757 vcpu_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
5758 (int)(exit_qualification
>> 4) & 3, cr
);
5762 static int handle_dr(struct kvm_vcpu
*vcpu
)
5764 unsigned long exit_qualification
;
5767 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5768 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
5770 /* First, if DR does not exist, trigger UD */
5771 if (!kvm_require_dr(vcpu
, dr
))
5774 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5775 if (!kvm_require_cpl(vcpu
, 0))
5777 dr7
= vmcs_readl(GUEST_DR7
);
5780 * As the vm-exit takes precedence over the debug trap, we
5781 * need to emulate the latter, either for the host or the
5782 * guest debugging itself.
5784 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5785 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
5786 vcpu
->run
->debug
.arch
.dr7
= dr7
;
5787 vcpu
->run
->debug
.arch
.pc
= kvm_get_linear_rip(vcpu
);
5788 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
5789 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
5792 vcpu
->arch
.dr6
&= ~15;
5793 vcpu
->arch
.dr6
|= DR6_BD
| DR6_RTM
;
5794 kvm_queue_exception(vcpu
, DB_VECTOR
);
5799 if (vcpu
->guest_debug
== 0) {
5800 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
5801 CPU_BASED_MOV_DR_EXITING
);
5804 * No more DR vmexits; force a reload of the debug registers
5805 * and reenter on this instruction. The next vmexit will
5806 * retrieve the full state of the debug registers.
5808 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
5812 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
5813 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
5816 if (kvm_get_dr(vcpu
, dr
, &val
))
5818 kvm_register_write(vcpu
, reg
, val
);
5820 if (kvm_set_dr(vcpu
, dr
, kvm_register_readl(vcpu
, reg
)))
5823 skip_emulated_instruction(vcpu
);
5827 static u64
vmx_get_dr6(struct kvm_vcpu
*vcpu
)
5829 return vcpu
->arch
.dr6
;
5832 static void vmx_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long val
)
5836 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
5838 get_debugreg(vcpu
->arch
.db
[0], 0);
5839 get_debugreg(vcpu
->arch
.db
[1], 1);
5840 get_debugreg(vcpu
->arch
.db
[2], 2);
5841 get_debugreg(vcpu
->arch
.db
[3], 3);
5842 get_debugreg(vcpu
->arch
.dr6
, 6);
5843 vcpu
->arch
.dr7
= vmcs_readl(GUEST_DR7
);
5845 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
5846 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
, CPU_BASED_MOV_DR_EXITING
);
5849 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
5851 vmcs_writel(GUEST_DR7
, val
);
5854 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
5856 kvm_emulate_cpuid(vcpu
);
5860 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
5862 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5863 struct msr_data msr_info
;
5865 msr_info
.index
= ecx
;
5866 msr_info
.host_initiated
= false;
5867 if (vmx_get_msr(vcpu
, &msr_info
)) {
5868 trace_kvm_msr_read_ex(ecx
);
5869 kvm_inject_gp(vcpu
, 0);
5873 trace_kvm_msr_read(ecx
, msr_info
.data
);
5875 /* FIXME: handling of bits 32:63 of rax, rdx */
5876 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = msr_info
.data
& -1u;
5877 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (msr_info
.data
>> 32) & -1u;
5878 skip_emulated_instruction(vcpu
);
5882 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
5884 struct msr_data msr
;
5885 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
5886 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
5887 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
5891 msr
.host_initiated
= false;
5892 if (kvm_set_msr(vcpu
, &msr
) != 0) {
5893 trace_kvm_msr_write_ex(ecx
, data
);
5894 kvm_inject_gp(vcpu
, 0);
5898 trace_kvm_msr_write(ecx
, data
);
5899 skip_emulated_instruction(vcpu
);
5903 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
5905 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5909 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
5911 u32 cpu_based_vm_exec_control
;
5913 /* clear pending irq */
5914 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
5915 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
5916 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
5918 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5920 ++vcpu
->stat
.irq_window_exits
;
5924 static int handle_halt(struct kvm_vcpu
*vcpu
)
5926 return kvm_emulate_halt(vcpu
);
5929 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
5931 return kvm_emulate_hypercall(vcpu
);
5934 static int handle_invd(struct kvm_vcpu
*vcpu
)
5936 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
5939 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
5941 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5943 kvm_mmu_invlpg(vcpu
, exit_qualification
);
5944 skip_emulated_instruction(vcpu
);
5948 static int handle_rdpmc(struct kvm_vcpu
*vcpu
)
5952 err
= kvm_rdpmc(vcpu
);
5953 kvm_complete_insn_gp(vcpu
, err
);
5958 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
5960 kvm_emulate_wbinvd(vcpu
);
5964 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
5966 u64 new_bv
= kvm_read_edx_eax(vcpu
);
5967 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5969 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
5970 skip_emulated_instruction(vcpu
);
5974 static int handle_xsaves(struct kvm_vcpu
*vcpu
)
5976 skip_emulated_instruction(vcpu
);
5977 WARN(1, "this should never happen\n");
5981 static int handle_xrstors(struct kvm_vcpu
*vcpu
)
5983 skip_emulated_instruction(vcpu
);
5984 WARN(1, "this should never happen\n");
5988 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
5990 if (likely(fasteoi
)) {
5991 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
5992 int access_type
, offset
;
5994 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
5995 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
5997 * Sane guest uses MOV to write EOI, with written value
5998 * not cared. So make a short-circuit here by avoiding
5999 * heavy instruction emulation.
6001 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
6002 (offset
== APIC_EOI
)) {
6003 kvm_lapic_set_eoi(vcpu
);
6004 skip_emulated_instruction(vcpu
);
6008 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
6011 static int handle_apic_eoi_induced(struct kvm_vcpu
*vcpu
)
6013 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6014 int vector
= exit_qualification
& 0xff;
6016 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6017 kvm_apic_set_eoi_accelerated(vcpu
, vector
);
6021 static int handle_apic_write(struct kvm_vcpu
*vcpu
)
6023 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6024 u32 offset
= exit_qualification
& 0xfff;
6026 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6027 kvm_apic_write_nodecode(vcpu
, offset
);
6031 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
6033 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6034 unsigned long exit_qualification
;
6035 bool has_error_code
= false;
6038 int reason
, type
, idt_v
, idt_index
;
6040 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
6041 idt_index
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
);
6042 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
6044 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6046 reason
= (u32
)exit_qualification
>> 30;
6047 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
6049 case INTR_TYPE_NMI_INTR
:
6050 vcpu
->arch
.nmi_injected
= false;
6051 vmx_set_nmi_mask(vcpu
, true);
6053 case INTR_TYPE_EXT_INTR
:
6054 case INTR_TYPE_SOFT_INTR
:
6055 kvm_clear_interrupt_queue(vcpu
);
6057 case INTR_TYPE_HARD_EXCEPTION
:
6058 if (vmx
->idt_vectoring_info
&
6059 VECTORING_INFO_DELIVER_CODE_MASK
) {
6060 has_error_code
= true;
6062 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
6065 case INTR_TYPE_SOFT_EXCEPTION
:
6066 kvm_clear_exception_queue(vcpu
);
6072 tss_selector
= exit_qualification
;
6074 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
6075 type
!= INTR_TYPE_EXT_INTR
&&
6076 type
!= INTR_TYPE_NMI_INTR
))
6077 skip_emulated_instruction(vcpu
);
6079 if (kvm_task_switch(vcpu
, tss_selector
,
6080 type
== INTR_TYPE_SOFT_INTR
? idt_index
: -1, reason
,
6081 has_error_code
, error_code
) == EMULATE_FAIL
) {
6082 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6083 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
6084 vcpu
->run
->internal
.ndata
= 0;
6089 * TODO: What about debug traps on tss switch?
6090 * Are we supposed to inject them and update dr6?
6096 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
6098 unsigned long exit_qualification
;
6103 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6105 gla_validity
= (exit_qualification
>> 7) & 0x3;
6106 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
6107 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
6108 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6109 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
6110 vmcs_readl(GUEST_LINEAR_ADDRESS
));
6111 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
6112 (long unsigned int)exit_qualification
);
6113 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
6114 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
6119 * EPT violation happened while executing iret from NMI,
6120 * "blocked by NMI" bit has to be set before next VM entry.
6121 * There are errata that may cause this bit to not be set:
6124 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
6125 cpu_has_virtual_nmis() &&
6126 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
6127 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
, GUEST_INTR_STATE_NMI
);
6129 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
6130 trace_kvm_page_fault(gpa
, exit_qualification
);
6132 /* it is a read fault? */
6133 error_code
= (exit_qualification
<< 2) & PFERR_USER_MASK
;
6134 /* it is a write fault? */
6135 error_code
|= exit_qualification
& PFERR_WRITE_MASK
;
6136 /* It is a fetch fault? */
6137 error_code
|= (exit_qualification
<< 2) & PFERR_FETCH_MASK
;
6138 /* ept page table is present? */
6139 error_code
|= (exit_qualification
& 0x38) != 0;
6141 vcpu
->arch
.exit_qualification
= exit_qualification
;
6143 return kvm_mmu_page_fault(vcpu
, gpa
, error_code
, NULL
, 0);
6146 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
6151 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
6152 if (!kvm_io_bus_write(vcpu
, KVM_FAST_MMIO_BUS
, gpa
, 0, NULL
)) {
6153 skip_emulated_instruction(vcpu
);
6154 trace_kvm_fast_mmio(gpa
);
6158 ret
= handle_mmio_page_fault(vcpu
, gpa
, true);
6159 if (likely(ret
== RET_MMIO_PF_EMULATE
))
6160 return x86_emulate_instruction(vcpu
, gpa
, 0, NULL
, 0) ==
6163 if (unlikely(ret
== RET_MMIO_PF_INVALID
))
6164 return kvm_mmu_page_fault(vcpu
, gpa
, 0, NULL
, 0);
6166 if (unlikely(ret
== RET_MMIO_PF_RETRY
))
6169 /* It is the real ept misconfig */
6172 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
6173 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
6178 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
6180 u32 cpu_based_vm_exec_control
;
6182 /* clear pending NMI */
6183 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
6184 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
6185 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
6186 ++vcpu
->stat
.nmi_window_exits
;
6187 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6192 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
6194 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6195 enum emulation_result err
= EMULATE_DONE
;
6198 bool intr_window_requested
;
6199 unsigned count
= 130;
6201 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
6202 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
6204 while (vmx
->emulation_required
&& count
-- != 0) {
6205 if (intr_window_requested
&& vmx_interrupt_allowed(vcpu
))
6206 return handle_interrupt_window(&vmx
->vcpu
);
6208 if (test_bit(KVM_REQ_EVENT
, &vcpu
->requests
))
6211 err
= emulate_instruction(vcpu
, EMULTYPE_NO_REEXECUTE
);
6213 if (err
== EMULATE_USER_EXIT
) {
6214 ++vcpu
->stat
.mmio_exits
;
6219 if (err
!= EMULATE_DONE
) {
6220 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6221 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
6222 vcpu
->run
->internal
.ndata
= 0;
6226 if (vcpu
->arch
.halt_request
) {
6227 vcpu
->arch
.halt_request
= 0;
6228 ret
= kvm_vcpu_halt(vcpu
);
6232 if (signal_pending(current
))
6242 static int __grow_ple_window(int val
)
6244 if (ple_window_grow
< 1)
6247 val
= min(val
, ple_window_actual_max
);
6249 if (ple_window_grow
< ple_window
)
6250 val
*= ple_window_grow
;
6252 val
+= ple_window_grow
;
6257 static int __shrink_ple_window(int val
, int modifier
, int minimum
)
6262 if (modifier
< ple_window
)
6267 return max(val
, minimum
);
6270 static void grow_ple_window(struct kvm_vcpu
*vcpu
)
6272 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6273 int old
= vmx
->ple_window
;
6275 vmx
->ple_window
= __grow_ple_window(old
);
6277 if (vmx
->ple_window
!= old
)
6278 vmx
->ple_window_dirty
= true;
6280 trace_kvm_ple_window_grow(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
6283 static void shrink_ple_window(struct kvm_vcpu
*vcpu
)
6285 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6286 int old
= vmx
->ple_window
;
6288 vmx
->ple_window
= __shrink_ple_window(old
,
6289 ple_window_shrink
, ple_window
);
6291 if (vmx
->ple_window
!= old
)
6292 vmx
->ple_window_dirty
= true;
6294 trace_kvm_ple_window_shrink(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
6298 * ple_window_actual_max is computed to be one grow_ple_window() below
6299 * ple_window_max. (See __grow_ple_window for the reason.)
6300 * This prevents overflows, because ple_window_max is int.
6301 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6303 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6305 static void update_ple_window_actual_max(void)
6307 ple_window_actual_max
=
6308 __shrink_ple_window(max(ple_window_max
, ple_window
),
6309 ple_window_grow
, INT_MIN
);
6313 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6315 static void wakeup_handler(void)
6317 struct kvm_vcpu
*vcpu
;
6318 int cpu
= smp_processor_id();
6320 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
6321 list_for_each_entry(vcpu
, &per_cpu(blocked_vcpu_on_cpu
, cpu
),
6322 blocked_vcpu_list
) {
6323 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
6325 if (pi_test_on(pi_desc
) == 1)
6326 kvm_vcpu_kick(vcpu
);
6328 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
6331 static __init
int hardware_setup(void)
6333 int r
= -ENOMEM
, i
, msr
;
6335 rdmsrl_safe(MSR_EFER
, &host_efer
);
6337 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
)
6338 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
6340 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6341 if (!vmx_io_bitmap_a
)
6344 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6345 if (!vmx_io_bitmap_b
)
6348 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6349 if (!vmx_msr_bitmap_legacy
)
6352 vmx_msr_bitmap_legacy_x2apic
=
6353 (unsigned long *)__get_free_page(GFP_KERNEL
);
6354 if (!vmx_msr_bitmap_legacy_x2apic
)
6357 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6358 if (!vmx_msr_bitmap_longmode
)
6361 vmx_msr_bitmap_longmode_x2apic
=
6362 (unsigned long *)__get_free_page(GFP_KERNEL
);
6363 if (!vmx_msr_bitmap_longmode_x2apic
)
6367 vmx_msr_bitmap_nested
=
6368 (unsigned long *)__get_free_page(GFP_KERNEL
);
6369 if (!vmx_msr_bitmap_nested
)
6373 vmx_vmread_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6374 if (!vmx_vmread_bitmap
)
6377 vmx_vmwrite_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
6378 if (!vmx_vmwrite_bitmap
)
6381 memset(vmx_vmread_bitmap
, 0xff, PAGE_SIZE
);
6382 memset(vmx_vmwrite_bitmap
, 0xff, PAGE_SIZE
);
6385 * Allow direct access to the PC debug port (it is often used for I/O
6386 * delays, but the vmexits simply slow things down).
6388 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
6389 clear_bit(0x80, vmx_io_bitmap_a
);
6391 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
6393 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
6394 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
6396 memset(vmx_msr_bitmap_nested
, 0xff, PAGE_SIZE
);
6398 if (setup_vmcs_config(&vmcs_config
) < 0) {
6403 if (boot_cpu_has(X86_FEATURE_NX
))
6404 kvm_enable_efer_bits(EFER_NX
);
6406 if (!cpu_has_vmx_vpid())
6408 if (!cpu_has_vmx_shadow_vmcs())
6409 enable_shadow_vmcs
= 0;
6410 if (enable_shadow_vmcs
)
6411 init_vmcs_shadow_fields();
6413 if (!cpu_has_vmx_ept() ||
6414 !cpu_has_vmx_ept_4levels()) {
6416 enable_unrestricted_guest
= 0;
6417 enable_ept_ad_bits
= 0;
6420 if (!cpu_has_vmx_ept_ad_bits())
6421 enable_ept_ad_bits
= 0;
6423 if (!cpu_has_vmx_unrestricted_guest())
6424 enable_unrestricted_guest
= 0;
6426 if (!cpu_has_vmx_flexpriority())
6427 flexpriority_enabled
= 0;
6430 * set_apic_access_page_addr() is used to reload apic access
6431 * page upon invalidation. No need to do anything if not
6432 * using the APIC_ACCESS_ADDR VMCS field.
6434 if (!flexpriority_enabled
)
6435 kvm_x86_ops
->set_apic_access_page_addr
= NULL
;
6437 if (!cpu_has_vmx_tpr_shadow())
6438 kvm_x86_ops
->update_cr8_intercept
= NULL
;
6440 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
6441 kvm_disable_largepages();
6443 if (!cpu_has_vmx_ple())
6446 if (!cpu_has_vmx_apicv())
6449 if (cpu_has_vmx_tsc_scaling()) {
6450 kvm_has_tsc_control
= true;
6451 kvm_max_tsc_scaling_ratio
= KVM_VMX_TSC_MULTIPLIER_MAX
;
6452 kvm_tsc_scaling_ratio_frac_bits
= 48;
6455 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
6456 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
6457 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
6458 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
6459 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
6460 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
6461 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS
, true);
6463 memcpy(vmx_msr_bitmap_legacy_x2apic
,
6464 vmx_msr_bitmap_legacy
, PAGE_SIZE
);
6465 memcpy(vmx_msr_bitmap_longmode_x2apic
,
6466 vmx_msr_bitmap_longmode
, PAGE_SIZE
);
6468 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
6470 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
6471 vmx_disable_intercept_msr_read_x2apic(msr
);
6474 vmx_enable_intercept_msr_read_x2apic(0x839);
6476 vmx_disable_intercept_msr_write_x2apic(0x808);
6478 vmx_disable_intercept_msr_write_x2apic(0x80b);
6480 vmx_disable_intercept_msr_write_x2apic(0x83f);
6483 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK
,
6484 (enable_ept_ad_bits
) ? VMX_EPT_ACCESS_BIT
: 0ull,
6485 (enable_ept_ad_bits
) ? VMX_EPT_DIRTY_BIT
: 0ull,
6486 0ull, VMX_EPT_EXECUTABLE_MASK
,
6487 cpu_has_vmx_ept_execute_only() ?
6488 0ull : VMX_EPT_READABLE_MASK
);
6489 ept_set_mmio_spte_mask();
6494 update_ple_window_actual_max();
6497 * Only enable PML when hardware supports PML feature, and both EPT
6498 * and EPT A/D bit features are enabled -- PML depends on them to work.
6500 if (!enable_ept
|| !enable_ept_ad_bits
|| !cpu_has_vmx_pml())
6504 kvm_x86_ops
->slot_enable_log_dirty
= NULL
;
6505 kvm_x86_ops
->slot_disable_log_dirty
= NULL
;
6506 kvm_x86_ops
->flush_log_dirty
= NULL
;
6507 kvm_x86_ops
->enable_log_dirty_pt_masked
= NULL
;
6510 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer
) {
6513 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
6514 cpu_preemption_timer_multi
=
6515 vmx_msr
& VMX_MISC_PREEMPTION_TIMER_RATE_MASK
;
6517 kvm_x86_ops
->set_hv_timer
= NULL
;
6518 kvm_x86_ops
->cancel_hv_timer
= NULL
;
6521 kvm_set_posted_intr_wakeup_handler(wakeup_handler
);
6523 kvm_mce_cap_supported
|= MCG_LMCE_P
;
6525 return alloc_kvm_area();
6528 free_page((unsigned long)vmx_vmwrite_bitmap
);
6530 free_page((unsigned long)vmx_vmread_bitmap
);
6533 free_page((unsigned long)vmx_msr_bitmap_nested
);
6535 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
6537 free_page((unsigned long)vmx_msr_bitmap_longmode
);
6539 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
6541 free_page((unsigned long)vmx_msr_bitmap_legacy
);
6543 free_page((unsigned long)vmx_io_bitmap_b
);
6545 free_page((unsigned long)vmx_io_bitmap_a
);
6550 static __exit
void hardware_unsetup(void)
6552 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic
);
6553 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic
);
6554 free_page((unsigned long)vmx_msr_bitmap_legacy
);
6555 free_page((unsigned long)vmx_msr_bitmap_longmode
);
6556 free_page((unsigned long)vmx_io_bitmap_b
);
6557 free_page((unsigned long)vmx_io_bitmap_a
);
6558 free_page((unsigned long)vmx_vmwrite_bitmap
);
6559 free_page((unsigned long)vmx_vmread_bitmap
);
6561 free_page((unsigned long)vmx_msr_bitmap_nested
);
6567 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6568 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6570 static int handle_pause(struct kvm_vcpu
*vcpu
)
6573 grow_ple_window(vcpu
);
6575 skip_emulated_instruction(vcpu
);
6576 kvm_vcpu_on_spin(vcpu
);
6581 static int handle_nop(struct kvm_vcpu
*vcpu
)
6583 skip_emulated_instruction(vcpu
);
6587 static int handle_mwait(struct kvm_vcpu
*vcpu
)
6589 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
6590 return handle_nop(vcpu
);
6593 static int handle_monitor_trap(struct kvm_vcpu
*vcpu
)
6598 static int handle_monitor(struct kvm_vcpu
*vcpu
)
6600 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
6601 return handle_nop(vcpu
);
6605 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6606 * We could reuse a single VMCS for all the L2 guests, but we also want the
6607 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6608 * allows keeping them loaded on the processor, and in the future will allow
6609 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6610 * every entry if they never change.
6611 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6612 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6614 * The following functions allocate and free a vmcs02 in this pool.
6617 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6618 static struct loaded_vmcs
*nested_get_current_vmcs02(struct vcpu_vmx
*vmx
)
6620 struct vmcs02_list
*item
;
6621 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
6622 if (item
->vmptr
== vmx
->nested
.current_vmptr
) {
6623 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
6624 return &item
->vmcs02
;
6627 if (vmx
->nested
.vmcs02_num
>= max(VMCS02_POOL_SIZE
, 1)) {
6628 /* Recycle the least recently used VMCS. */
6629 item
= list_last_entry(&vmx
->nested
.vmcs02_pool
,
6630 struct vmcs02_list
, list
);
6631 item
->vmptr
= vmx
->nested
.current_vmptr
;
6632 list_move(&item
->list
, &vmx
->nested
.vmcs02_pool
);
6633 return &item
->vmcs02
;
6636 /* Create a new VMCS */
6637 item
= kmalloc(sizeof(struct vmcs02_list
), GFP_KERNEL
);
6640 item
->vmcs02
.vmcs
= alloc_vmcs();
6641 if (!item
->vmcs02
.vmcs
) {
6645 loaded_vmcs_init(&item
->vmcs02
);
6646 item
->vmptr
= vmx
->nested
.current_vmptr
;
6647 list_add(&(item
->list
), &(vmx
->nested
.vmcs02_pool
));
6648 vmx
->nested
.vmcs02_num
++;
6649 return &item
->vmcs02
;
6652 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6653 static void nested_free_vmcs02(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
6655 struct vmcs02_list
*item
;
6656 list_for_each_entry(item
, &vmx
->nested
.vmcs02_pool
, list
)
6657 if (item
->vmptr
== vmptr
) {
6658 free_loaded_vmcs(&item
->vmcs02
);
6659 list_del(&item
->list
);
6661 vmx
->nested
.vmcs02_num
--;
6667 * Free all VMCSs saved for this vcpu, except the one pointed by
6668 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6669 * must be &vmx->vmcs01.
6671 static void nested_free_all_saved_vmcss(struct vcpu_vmx
*vmx
)
6673 struct vmcs02_list
*item
, *n
;
6675 WARN_ON(vmx
->loaded_vmcs
!= &vmx
->vmcs01
);
6676 list_for_each_entry_safe(item
, n
, &vmx
->nested
.vmcs02_pool
, list
) {
6678 * Something will leak if the above WARN triggers. Better than
6681 if (vmx
->loaded_vmcs
== &item
->vmcs02
)
6684 free_loaded_vmcs(&item
->vmcs02
);
6685 list_del(&item
->list
);
6687 vmx
->nested
.vmcs02_num
--;
6692 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6693 * set the success or error code of an emulated VMX instruction, as specified
6694 * by Vol 2B, VMX Instruction Reference, "Conventions".
6696 static void nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
6698 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
6699 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
6700 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
6703 static void nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
6705 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
6706 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
6707 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
6711 static void nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
6712 u32 vm_instruction_error
)
6714 if (to_vmx(vcpu
)->nested
.current_vmptr
== -1ull) {
6716 * failValid writes the error number to the current VMCS, which
6717 * can't be done there isn't a current VMCS.
6719 nested_vmx_failInvalid(vcpu
);
6722 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
6723 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
6724 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
6726 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
6728 * We don't need to force a shadow sync because
6729 * VM_INSTRUCTION_ERROR is not shadowed
6733 static void nested_vmx_abort(struct kvm_vcpu
*vcpu
, u32 indicator
)
6735 /* TODO: not to reset guest simply here. */
6736 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
6737 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator
);
6740 static enum hrtimer_restart
vmx_preemption_timer_fn(struct hrtimer
*timer
)
6742 struct vcpu_vmx
*vmx
=
6743 container_of(timer
, struct vcpu_vmx
, nested
.preemption_timer
);
6745 vmx
->nested
.preemption_timer_expired
= true;
6746 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
6747 kvm_vcpu_kick(&vmx
->vcpu
);
6749 return HRTIMER_NORESTART
;
6753 * Decode the memory-address operand of a vmx instruction, as recorded on an
6754 * exit caused by such an instruction (run by a guest hypervisor).
6755 * On success, returns 0. When the operand is invalid, returns 1 and throws
6758 static int get_vmx_mem_address(struct kvm_vcpu
*vcpu
,
6759 unsigned long exit_qualification
,
6760 u32 vmx_instruction_info
, bool wr
, gva_t
*ret
)
6764 struct kvm_segment s
;
6767 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6768 * Execution", on an exit, vmx_instruction_info holds most of the
6769 * addressing components of the operand. Only the displacement part
6770 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6771 * For how an actual address is calculated from all these components,
6772 * refer to Vol. 1, "Operand Addressing".
6774 int scaling
= vmx_instruction_info
& 3;
6775 int addr_size
= (vmx_instruction_info
>> 7) & 7;
6776 bool is_reg
= vmx_instruction_info
& (1u << 10);
6777 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
6778 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
6779 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
6780 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
6781 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
6784 kvm_queue_exception(vcpu
, UD_VECTOR
);
6788 /* Addr = segment_base + offset */
6789 /* offset = base + [index * scale] + displacement */
6790 off
= exit_qualification
; /* holds the displacement */
6792 off
+= kvm_register_read(vcpu
, base_reg
);
6794 off
+= kvm_register_read(vcpu
, index_reg
)<<scaling
;
6795 vmx_get_segment(vcpu
, &s
, seg_reg
);
6796 *ret
= s
.base
+ off
;
6798 if (addr_size
== 1) /* 32 bit */
6801 /* Checks for #GP/#SS exceptions. */
6803 if (is_long_mode(vcpu
)) {
6804 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6805 * non-canonical form. This is the only check on the memory
6806 * destination for long mode!
6808 exn
= is_noncanonical_address(*ret
);
6809 } else if (is_protmode(vcpu
)) {
6810 /* Protected mode: apply checks for segment validity in the
6812 * - segment type check (#GP(0) may be thrown)
6813 * - usability check (#GP(0)/#SS(0))
6814 * - limit check (#GP(0)/#SS(0))
6817 /* #GP(0) if the destination operand is located in a
6818 * read-only data segment or any code segment.
6820 exn
= ((s
.type
& 0xa) == 0 || (s
.type
& 8));
6822 /* #GP(0) if the source operand is located in an
6823 * execute-only code segment
6825 exn
= ((s
.type
& 0xa) == 8);
6827 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
6830 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6832 exn
= (s
.unusable
!= 0);
6833 /* Protected mode: #GP(0)/#SS(0) if the memory
6834 * operand is outside the segment limit.
6836 exn
= exn
|| (off
+ sizeof(u64
) > s
.limit
);
6839 kvm_queue_exception_e(vcpu
,
6840 seg_reg
== VCPU_SREG_SS
?
6841 SS_VECTOR
: GP_VECTOR
,
6850 * This function performs the various checks including
6851 * - if it's 4KB aligned
6852 * - No bits beyond the physical address width are set
6853 * - Returns 0 on success or else 1
6854 * (Intel SDM Section 30.3)
6856 static int nested_vmx_check_vmptr(struct kvm_vcpu
*vcpu
, int exit_reason
,
6861 struct x86_exception e
;
6863 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6864 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
6866 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
6867 vmcs_read32(VMX_INSTRUCTION_INFO
), false, &gva
))
6870 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vmptr
,
6871 sizeof(vmptr
), &e
)) {
6872 kvm_inject_page_fault(vcpu
, &e
);
6876 switch (exit_reason
) {
6877 case EXIT_REASON_VMON
:
6880 * The first 4 bytes of VMXON region contain the supported
6881 * VMCS revision identifier
6883 * Note - IA32_VMX_BASIC[48] will never be 1
6884 * for the nested case;
6885 * which replaces physical address width with 32
6888 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6889 nested_vmx_failInvalid(vcpu
);
6890 skip_emulated_instruction(vcpu
);
6894 page
= nested_get_page(vcpu
, vmptr
);
6896 *(u32
*)kmap(page
) != VMCS12_REVISION
) {
6897 nested_vmx_failInvalid(vcpu
);
6899 skip_emulated_instruction(vcpu
);
6903 vmx
->nested
.vmxon_ptr
= vmptr
;
6905 case EXIT_REASON_VMCLEAR
:
6906 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6907 nested_vmx_failValid(vcpu
,
6908 VMXERR_VMCLEAR_INVALID_ADDRESS
);
6909 skip_emulated_instruction(vcpu
);
6913 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
6914 nested_vmx_failValid(vcpu
,
6915 VMXERR_VMCLEAR_VMXON_POINTER
);
6916 skip_emulated_instruction(vcpu
);
6920 case EXIT_REASON_VMPTRLD
:
6921 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> maxphyaddr
)) {
6922 nested_vmx_failValid(vcpu
,
6923 VMXERR_VMPTRLD_INVALID_ADDRESS
);
6924 skip_emulated_instruction(vcpu
);
6928 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
6929 nested_vmx_failValid(vcpu
,
6930 VMXERR_VMCLEAR_VMXON_POINTER
);
6931 skip_emulated_instruction(vcpu
);
6936 return 1; /* shouldn't happen */
6945 * Emulate the VMXON instruction.
6946 * Currently, we just remember that VMX is active, and do not save or even
6947 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6948 * do not currently need to store anything in that guest-allocated memory
6949 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6950 * argument is different from the VMXON pointer (which the spec says they do).
6952 static int handle_vmon(struct kvm_vcpu
*vcpu
)
6954 struct kvm_segment cs
;
6955 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6956 struct vmcs
*shadow_vmcs
;
6957 const u64 VMXON_NEEDED_FEATURES
= FEATURE_CONTROL_LOCKED
6958 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
6960 /* The Intel VMX Instruction Reference lists a bunch of bits that
6961 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6962 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6963 * Otherwise, we should fail with #UD. We test these now:
6965 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_VMXE
) ||
6966 !kvm_read_cr0_bits(vcpu
, X86_CR0_PE
) ||
6967 (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
6968 kvm_queue_exception(vcpu
, UD_VECTOR
);
6972 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6973 if (is_long_mode(vcpu
) && !cs
.l
) {
6974 kvm_queue_exception(vcpu
, UD_VECTOR
);
6978 if (vmx_get_cpl(vcpu
)) {
6979 kvm_inject_gp(vcpu
, 0);
6983 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMON
, NULL
))
6986 if (vmx
->nested
.vmxon
) {
6987 nested_vmx_failValid(vcpu
, VMXERR_VMXON_IN_VMX_ROOT_OPERATION
);
6988 skip_emulated_instruction(vcpu
);
6992 if ((vmx
->msr_ia32_feature_control
& VMXON_NEEDED_FEATURES
)
6993 != VMXON_NEEDED_FEATURES
) {
6994 kvm_inject_gp(vcpu
, 0);
6998 vmx
->nested
.cached_vmcs12
= kmalloc(VMCS12_SIZE
, GFP_KERNEL
);
6999 if (!vmx
->nested
.cached_vmcs12
)
7002 if (enable_shadow_vmcs
) {
7003 shadow_vmcs
= alloc_vmcs();
7005 kfree(vmx
->nested
.cached_vmcs12
);
7008 /* mark vmcs as shadow */
7009 shadow_vmcs
->revision_id
|= (1u << 31);
7010 /* init shadow vmcs */
7011 vmcs_clear(shadow_vmcs
);
7012 vmx
->nested
.current_shadow_vmcs
= shadow_vmcs
;
7015 INIT_LIST_HEAD(&(vmx
->nested
.vmcs02_pool
));
7016 vmx
->nested
.vmcs02_num
= 0;
7018 hrtimer_init(&vmx
->nested
.preemption_timer
, CLOCK_MONOTONIC
,
7020 vmx
->nested
.preemption_timer
.function
= vmx_preemption_timer_fn
;
7022 vmx
->nested
.vmxon
= true;
7024 skip_emulated_instruction(vcpu
);
7025 nested_vmx_succeed(vcpu
);
7030 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7031 * for running VMX instructions (except VMXON, whose prerequisites are
7032 * slightly different). It also specifies what exception to inject otherwise.
7034 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
7036 struct kvm_segment cs
;
7037 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7039 if (!vmx
->nested
.vmxon
) {
7040 kvm_queue_exception(vcpu
, UD_VECTOR
);
7044 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7045 if ((vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) ||
7046 (is_long_mode(vcpu
) && !cs
.l
)) {
7047 kvm_queue_exception(vcpu
, UD_VECTOR
);
7051 if (vmx_get_cpl(vcpu
)) {
7052 kvm_inject_gp(vcpu
, 0);
7059 static inline void nested_release_vmcs12(struct vcpu_vmx
*vmx
)
7061 if (vmx
->nested
.current_vmptr
== -1ull)
7064 /* current_vmptr and current_vmcs12 are always set/reset together */
7065 if (WARN_ON(vmx
->nested
.current_vmcs12
== NULL
))
7068 if (enable_shadow_vmcs
) {
7069 /* copy to memory all shadowed fields in case
7070 they were modified */
7071 copy_shadow_to_vmcs12(vmx
);
7072 vmx
->nested
.sync_shadow_vmcs
= false;
7073 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
7074 SECONDARY_EXEC_SHADOW_VMCS
);
7075 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
7077 vmx
->nested
.posted_intr_nv
= -1;
7079 /* Flush VMCS12 to guest memory */
7080 memcpy(vmx
->nested
.current_vmcs12
, vmx
->nested
.cached_vmcs12
,
7083 kunmap(vmx
->nested
.current_vmcs12_page
);
7084 nested_release_page(vmx
->nested
.current_vmcs12_page
);
7085 vmx
->nested
.current_vmptr
= -1ull;
7086 vmx
->nested
.current_vmcs12
= NULL
;
7090 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7091 * just stops using VMX.
7093 static void free_nested(struct vcpu_vmx
*vmx
)
7095 if (!vmx
->nested
.vmxon
)
7098 vmx
->nested
.vmxon
= false;
7099 free_vpid(vmx
->nested
.vpid02
);
7100 nested_release_vmcs12(vmx
);
7101 if (enable_shadow_vmcs
)
7102 free_vmcs(vmx
->nested
.current_shadow_vmcs
);
7103 kfree(vmx
->nested
.cached_vmcs12
);
7104 /* Unpin physical memory we referred to in current vmcs02 */
7105 if (vmx
->nested
.apic_access_page
) {
7106 nested_release_page(vmx
->nested
.apic_access_page
);
7107 vmx
->nested
.apic_access_page
= NULL
;
7109 if (vmx
->nested
.virtual_apic_page
) {
7110 nested_release_page(vmx
->nested
.virtual_apic_page
);
7111 vmx
->nested
.virtual_apic_page
= NULL
;
7113 if (vmx
->nested
.pi_desc_page
) {
7114 kunmap(vmx
->nested
.pi_desc_page
);
7115 nested_release_page(vmx
->nested
.pi_desc_page
);
7116 vmx
->nested
.pi_desc_page
= NULL
;
7117 vmx
->nested
.pi_desc
= NULL
;
7120 nested_free_all_saved_vmcss(vmx
);
7123 /* Emulate the VMXOFF instruction */
7124 static int handle_vmoff(struct kvm_vcpu
*vcpu
)
7126 if (!nested_vmx_check_permission(vcpu
))
7128 free_nested(to_vmx(vcpu
));
7129 skip_emulated_instruction(vcpu
);
7130 nested_vmx_succeed(vcpu
);
7134 /* Emulate the VMCLEAR instruction */
7135 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
7137 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7139 struct vmcs12
*vmcs12
;
7142 if (!nested_vmx_check_permission(vcpu
))
7145 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMCLEAR
, &vmptr
))
7148 if (vmptr
== vmx
->nested
.current_vmptr
)
7149 nested_release_vmcs12(vmx
);
7151 page
= nested_get_page(vcpu
, vmptr
);
7154 * For accurate processor emulation, VMCLEAR beyond available
7155 * physical memory should do nothing at all. However, it is
7156 * possible that a nested vmx bug, not a guest hypervisor bug,
7157 * resulted in this case, so let's shut down before doing any
7160 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
7163 vmcs12
= kmap(page
);
7164 vmcs12
->launch_state
= 0;
7166 nested_release_page(page
);
7168 nested_free_vmcs02(vmx
, vmptr
);
7170 skip_emulated_instruction(vcpu
);
7171 nested_vmx_succeed(vcpu
);
7175 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
);
7177 /* Emulate the VMLAUNCH instruction */
7178 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
7180 return nested_vmx_run(vcpu
, true);
7183 /* Emulate the VMRESUME instruction */
7184 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
7187 return nested_vmx_run(vcpu
, false);
7190 enum vmcs_field_type
{
7191 VMCS_FIELD_TYPE_U16
= 0,
7192 VMCS_FIELD_TYPE_U64
= 1,
7193 VMCS_FIELD_TYPE_U32
= 2,
7194 VMCS_FIELD_TYPE_NATURAL_WIDTH
= 3
7197 static inline int vmcs_field_type(unsigned long field
)
7199 if (0x1 & field
) /* the *_HIGH fields are all 32 bit */
7200 return VMCS_FIELD_TYPE_U32
;
7201 return (field
>> 13) & 0x3 ;
7204 static inline int vmcs_field_readonly(unsigned long field
)
7206 return (((field
>> 10) & 0x3) == 1);
7210 * Read a vmcs12 field. Since these can have varying lengths and we return
7211 * one type, we chose the biggest type (u64) and zero-extend the return value
7212 * to that size. Note that the caller, handle_vmread, might need to use only
7213 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7214 * 64-bit fields are to be returned).
7216 static inline int vmcs12_read_any(struct kvm_vcpu
*vcpu
,
7217 unsigned long field
, u64
*ret
)
7219 short offset
= vmcs_field_to_offset(field
);
7225 p
= ((char *)(get_vmcs12(vcpu
))) + offset
;
7227 switch (vmcs_field_type(field
)) {
7228 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7229 *ret
= *((natural_width
*)p
);
7231 case VMCS_FIELD_TYPE_U16
:
7234 case VMCS_FIELD_TYPE_U32
:
7237 case VMCS_FIELD_TYPE_U64
:
7247 static inline int vmcs12_write_any(struct kvm_vcpu
*vcpu
,
7248 unsigned long field
, u64 field_value
){
7249 short offset
= vmcs_field_to_offset(field
);
7250 char *p
= ((char *) get_vmcs12(vcpu
)) + offset
;
7254 switch (vmcs_field_type(field
)) {
7255 case VMCS_FIELD_TYPE_U16
:
7256 *(u16
*)p
= field_value
;
7258 case VMCS_FIELD_TYPE_U32
:
7259 *(u32
*)p
= field_value
;
7261 case VMCS_FIELD_TYPE_U64
:
7262 *(u64
*)p
= field_value
;
7264 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7265 *(natural_width
*)p
= field_value
;
7274 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
)
7277 unsigned long field
;
7279 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
7280 const unsigned long *fields
= shadow_read_write_fields
;
7281 const int num_fields
= max_shadow_read_write_fields
;
7285 vmcs_load(shadow_vmcs
);
7287 for (i
= 0; i
< num_fields
; i
++) {
7289 switch (vmcs_field_type(field
)) {
7290 case VMCS_FIELD_TYPE_U16
:
7291 field_value
= vmcs_read16(field
);
7293 case VMCS_FIELD_TYPE_U32
:
7294 field_value
= vmcs_read32(field
);
7296 case VMCS_FIELD_TYPE_U64
:
7297 field_value
= vmcs_read64(field
);
7299 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7300 field_value
= vmcs_readl(field
);
7306 vmcs12_write_any(&vmx
->vcpu
, field
, field_value
);
7309 vmcs_clear(shadow_vmcs
);
7310 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
7315 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
)
7317 const unsigned long *fields
[] = {
7318 shadow_read_write_fields
,
7319 shadow_read_only_fields
7321 const int max_fields
[] = {
7322 max_shadow_read_write_fields
,
7323 max_shadow_read_only_fields
7326 unsigned long field
;
7327 u64 field_value
= 0;
7328 struct vmcs
*shadow_vmcs
= vmx
->nested
.current_shadow_vmcs
;
7330 vmcs_load(shadow_vmcs
);
7332 for (q
= 0; q
< ARRAY_SIZE(fields
); q
++) {
7333 for (i
= 0; i
< max_fields
[q
]; i
++) {
7334 field
= fields
[q
][i
];
7335 vmcs12_read_any(&vmx
->vcpu
, field
, &field_value
);
7337 switch (vmcs_field_type(field
)) {
7338 case VMCS_FIELD_TYPE_U16
:
7339 vmcs_write16(field
, (u16
)field_value
);
7341 case VMCS_FIELD_TYPE_U32
:
7342 vmcs_write32(field
, (u32
)field_value
);
7344 case VMCS_FIELD_TYPE_U64
:
7345 vmcs_write64(field
, (u64
)field_value
);
7347 case VMCS_FIELD_TYPE_NATURAL_WIDTH
:
7348 vmcs_writel(field
, (long)field_value
);
7357 vmcs_clear(shadow_vmcs
);
7358 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
7362 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7363 * used before) all generate the same failure when it is missing.
7365 static int nested_vmx_check_vmcs12(struct kvm_vcpu
*vcpu
)
7367 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7368 if (vmx
->nested
.current_vmptr
== -1ull) {
7369 nested_vmx_failInvalid(vcpu
);
7370 skip_emulated_instruction(vcpu
);
7376 static int handle_vmread(struct kvm_vcpu
*vcpu
)
7378 unsigned long field
;
7380 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7381 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7384 if (!nested_vmx_check_permission(vcpu
) ||
7385 !nested_vmx_check_vmcs12(vcpu
))
7388 /* Decode instruction info and find the field to read */
7389 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
7390 /* Read the field, zero-extended to a u64 field_value */
7391 if (vmcs12_read_any(vcpu
, field
, &field_value
) < 0) {
7392 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
7393 skip_emulated_instruction(vcpu
);
7397 * Now copy part of this value to register or memory, as requested.
7398 * Note that the number of bits actually copied is 32 or 64 depending
7399 * on the guest's mode (32 or 64 bit), not on the given field's length.
7401 if (vmx_instruction_info
& (1u << 10)) {
7402 kvm_register_writel(vcpu
, (((vmx_instruction_info
) >> 3) & 0xf),
7405 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7406 vmx_instruction_info
, true, &gva
))
7408 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7409 kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, gva
,
7410 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), NULL
);
7413 nested_vmx_succeed(vcpu
);
7414 skip_emulated_instruction(vcpu
);
7419 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
7421 unsigned long field
;
7423 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7424 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7425 /* The value to write might be 32 or 64 bits, depending on L1's long
7426 * mode, and eventually we need to write that into a field of several
7427 * possible lengths. The code below first zero-extends the value to 64
7428 * bit (field_value), and then copies only the appropriate number of
7429 * bits into the vmcs12 field.
7431 u64 field_value
= 0;
7432 struct x86_exception e
;
7434 if (!nested_vmx_check_permission(vcpu
) ||
7435 !nested_vmx_check_vmcs12(vcpu
))
7438 if (vmx_instruction_info
& (1u << 10))
7439 field_value
= kvm_register_readl(vcpu
,
7440 (((vmx_instruction_info
) >> 3) & 0xf));
7442 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7443 vmx_instruction_info
, false, &gva
))
7445 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
,
7446 &field_value
, (is_64_bit_mode(vcpu
) ? 8 : 4), &e
)) {
7447 kvm_inject_page_fault(vcpu
, &e
);
7453 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
7454 if (vmcs_field_readonly(field
)) {
7455 nested_vmx_failValid(vcpu
,
7456 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
7457 skip_emulated_instruction(vcpu
);
7461 if (vmcs12_write_any(vcpu
, field
, field_value
) < 0) {
7462 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
7463 skip_emulated_instruction(vcpu
);
7467 nested_vmx_succeed(vcpu
);
7468 skip_emulated_instruction(vcpu
);
7472 /* Emulate the VMPTRLD instruction */
7473 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
7475 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7478 if (!nested_vmx_check_permission(vcpu
))
7481 if (nested_vmx_check_vmptr(vcpu
, EXIT_REASON_VMPTRLD
, &vmptr
))
7484 if (vmx
->nested
.current_vmptr
!= vmptr
) {
7485 struct vmcs12
*new_vmcs12
;
7487 page
= nested_get_page(vcpu
, vmptr
);
7489 nested_vmx_failInvalid(vcpu
);
7490 skip_emulated_instruction(vcpu
);
7493 new_vmcs12
= kmap(page
);
7494 if (new_vmcs12
->revision_id
!= VMCS12_REVISION
) {
7496 nested_release_page_clean(page
);
7497 nested_vmx_failValid(vcpu
,
7498 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
7499 skip_emulated_instruction(vcpu
);
7503 nested_release_vmcs12(vmx
);
7504 vmx
->nested
.current_vmptr
= vmptr
;
7505 vmx
->nested
.current_vmcs12
= new_vmcs12
;
7506 vmx
->nested
.current_vmcs12_page
= page
;
7508 * Load VMCS12 from guest memory since it is not already
7511 memcpy(vmx
->nested
.cached_vmcs12
,
7512 vmx
->nested
.current_vmcs12
, VMCS12_SIZE
);
7514 if (enable_shadow_vmcs
) {
7515 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
7516 SECONDARY_EXEC_SHADOW_VMCS
);
7517 vmcs_write64(VMCS_LINK_POINTER
,
7518 __pa(vmx
->nested
.current_shadow_vmcs
));
7519 vmx
->nested
.sync_shadow_vmcs
= true;
7523 nested_vmx_succeed(vcpu
);
7524 skip_emulated_instruction(vcpu
);
7528 /* Emulate the VMPTRST instruction */
7529 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
7531 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7532 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7534 struct x86_exception e
;
7536 if (!nested_vmx_check_permission(vcpu
))
7539 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7540 vmx_instruction_info
, true, &vmcs_gva
))
7542 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7543 if (kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, vmcs_gva
,
7544 (void *)&to_vmx(vcpu
)->nested
.current_vmptr
,
7546 kvm_inject_page_fault(vcpu
, &e
);
7549 nested_vmx_succeed(vcpu
);
7550 skip_emulated_instruction(vcpu
);
7554 /* Emulate the INVEPT instruction */
7555 static int handle_invept(struct kvm_vcpu
*vcpu
)
7557 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7558 u32 vmx_instruction_info
, types
;
7561 struct x86_exception e
;
7566 if (!(vmx
->nested
.nested_vmx_secondary_ctls_high
&
7567 SECONDARY_EXEC_ENABLE_EPT
) ||
7568 !(vmx
->nested
.nested_vmx_ept_caps
& VMX_EPT_INVEPT_BIT
)) {
7569 kvm_queue_exception(vcpu
, UD_VECTOR
);
7573 if (!nested_vmx_check_permission(vcpu
))
7576 if (!kvm_read_cr0_bits(vcpu
, X86_CR0_PE
)) {
7577 kvm_queue_exception(vcpu
, UD_VECTOR
);
7581 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7582 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
7584 types
= (vmx
->nested
.nested_vmx_ept_caps
>> VMX_EPT_EXTENT_SHIFT
) & 6;
7586 if (!(types
& (1UL << type
))) {
7587 nested_vmx_failValid(vcpu
,
7588 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7589 skip_emulated_instruction(vcpu
);
7593 /* According to the Intel VMX instruction reference, the memory
7594 * operand is read even if it isn't needed (e.g., for type==global)
7596 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
7597 vmx_instruction_info
, false, &gva
))
7599 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &operand
,
7600 sizeof(operand
), &e
)) {
7601 kvm_inject_page_fault(vcpu
, &e
);
7606 case VMX_EPT_EXTENT_GLOBAL
:
7608 * TODO: track mappings and invalidate
7609 * single context requests appropriately
7611 case VMX_EPT_EXTENT_CONTEXT
:
7612 kvm_mmu_sync_roots(vcpu
);
7613 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
7614 nested_vmx_succeed(vcpu
);
7621 skip_emulated_instruction(vcpu
);
7625 static int handle_invvpid(struct kvm_vcpu
*vcpu
)
7627 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7628 u32 vmx_instruction_info
;
7629 unsigned long type
, types
;
7631 struct x86_exception e
;
7634 if (!(vmx
->nested
.nested_vmx_secondary_ctls_high
&
7635 SECONDARY_EXEC_ENABLE_VPID
) ||
7636 !(vmx
->nested
.nested_vmx_vpid_caps
& VMX_VPID_INVVPID_BIT
)) {
7637 kvm_queue_exception(vcpu
, UD_VECTOR
);
7641 if (!nested_vmx_check_permission(vcpu
))
7644 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7645 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
7647 types
= (vmx
->nested
.nested_vmx_vpid_caps
>> 8) & 0x7;
7649 if (!(types
& (1UL << type
))) {
7650 nested_vmx_failValid(vcpu
,
7651 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7652 skip_emulated_instruction(vcpu
);
7656 /* according to the intel vmx instruction reference, the memory
7657 * operand is read even if it isn't needed (e.g., for type==global)
7659 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
7660 vmx_instruction_info
, false, &gva
))
7662 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &vpid
,
7664 kvm_inject_page_fault(vcpu
, &e
);
7669 case VMX_VPID_EXTENT_SINGLE_CONTEXT
:
7671 * Old versions of KVM use the single-context version so we
7672 * have to support it; just treat it the same as all-context.
7674 case VMX_VPID_EXTENT_ALL_CONTEXT
:
7675 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->nested
.vpid02
);
7676 nested_vmx_succeed(vcpu
);
7679 /* Trap individual address invalidation invvpid calls */
7684 skip_emulated_instruction(vcpu
);
7688 static int handle_pml_full(struct kvm_vcpu
*vcpu
)
7690 unsigned long exit_qualification
;
7692 trace_kvm_pml_full(vcpu
->vcpu_id
);
7694 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7697 * PML buffer FULL happened while executing iret from NMI,
7698 * "blocked by NMI" bit has to be set before next VM entry.
7700 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
7701 cpu_has_virtual_nmis() &&
7702 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
7703 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
7704 GUEST_INTR_STATE_NMI
);
7707 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7708 * here.., and there's no userspace involvement needed for PML.
7713 static int handle_preemption_timer(struct kvm_vcpu
*vcpu
)
7715 kvm_lapic_expired_hv_timer(vcpu
);
7720 * The exit handlers return 1 if the exit was handled fully and guest execution
7721 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7722 * to be done to userspace and return 0.
7724 static int (*const kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
7725 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
7726 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
7727 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
7728 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
7729 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
7730 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
7731 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
7732 [EXIT_REASON_CPUID
] = handle_cpuid
,
7733 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
7734 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
7735 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
7736 [EXIT_REASON_HLT
] = handle_halt
,
7737 [EXIT_REASON_INVD
] = handle_invd
,
7738 [EXIT_REASON_INVLPG
] = handle_invlpg
,
7739 [EXIT_REASON_RDPMC
] = handle_rdpmc
,
7740 [EXIT_REASON_VMCALL
] = handle_vmcall
,
7741 [EXIT_REASON_VMCLEAR
] = handle_vmclear
,
7742 [EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
,
7743 [EXIT_REASON_VMPTRLD
] = handle_vmptrld
,
7744 [EXIT_REASON_VMPTRST
] = handle_vmptrst
,
7745 [EXIT_REASON_VMREAD
] = handle_vmread
,
7746 [EXIT_REASON_VMRESUME
] = handle_vmresume
,
7747 [EXIT_REASON_VMWRITE
] = handle_vmwrite
,
7748 [EXIT_REASON_VMOFF
] = handle_vmoff
,
7749 [EXIT_REASON_VMON
] = handle_vmon
,
7750 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
7751 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
7752 [EXIT_REASON_APIC_WRITE
] = handle_apic_write
,
7753 [EXIT_REASON_EOI_INDUCED
] = handle_apic_eoi_induced
,
7754 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
7755 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
7756 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
7757 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
7758 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
7759 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
7760 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
7761 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_mwait
,
7762 [EXIT_REASON_MONITOR_TRAP_FLAG
] = handle_monitor_trap
,
7763 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_monitor
,
7764 [EXIT_REASON_INVEPT
] = handle_invept
,
7765 [EXIT_REASON_INVVPID
] = handle_invvpid
,
7766 [EXIT_REASON_XSAVES
] = handle_xsaves
,
7767 [EXIT_REASON_XRSTORS
] = handle_xrstors
,
7768 [EXIT_REASON_PML_FULL
] = handle_pml_full
,
7769 [EXIT_REASON_PREEMPTION_TIMER
] = handle_preemption_timer
,
7772 static const int kvm_vmx_max_exit_handlers
=
7773 ARRAY_SIZE(kvm_vmx_exit_handlers
);
7775 static bool nested_vmx_exit_handled_io(struct kvm_vcpu
*vcpu
,
7776 struct vmcs12
*vmcs12
)
7778 unsigned long exit_qualification
;
7779 gpa_t bitmap
, last_bitmap
;
7784 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
7785 return nested_cpu_has(vmcs12
, CPU_BASED_UNCOND_IO_EXITING
);
7787 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7789 port
= exit_qualification
>> 16;
7790 size
= (exit_qualification
& 7) + 1;
7792 last_bitmap
= (gpa_t
)-1;
7797 bitmap
= vmcs12
->io_bitmap_a
;
7798 else if (port
< 0x10000)
7799 bitmap
= vmcs12
->io_bitmap_b
;
7802 bitmap
+= (port
& 0x7fff) / 8;
7804 if (last_bitmap
!= bitmap
)
7805 if (kvm_vcpu_read_guest(vcpu
, bitmap
, &b
, 1))
7807 if (b
& (1 << (port
& 7)))
7812 last_bitmap
= bitmap
;
7819 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7820 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7821 * disinterest in the current event (read or write a specific MSR) by using an
7822 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7824 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
7825 struct vmcs12
*vmcs12
, u32 exit_reason
)
7827 u32 msr_index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
7830 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
7834 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7835 * for the four combinations of read/write and low/high MSR numbers.
7836 * First we need to figure out which of the four to use:
7838 bitmap
= vmcs12
->msr_bitmap
;
7839 if (exit_reason
== EXIT_REASON_MSR_WRITE
)
7841 if (msr_index
>= 0xc0000000) {
7842 msr_index
-= 0xc0000000;
7846 /* Then read the msr_index'th bit from this bitmap: */
7847 if (msr_index
< 1024*8) {
7849 if (kvm_vcpu_read_guest(vcpu
, bitmap
+ msr_index
/8, &b
, 1))
7851 return 1 & (b
>> (msr_index
& 7));
7853 return true; /* let L1 handle the wrong parameter */
7857 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7858 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7859 * intercept (via guest_host_mask etc.) the current event.
7861 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
7862 struct vmcs12
*vmcs12
)
7864 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7865 int cr
= exit_qualification
& 15;
7866 int reg
= (exit_qualification
>> 8) & 15;
7867 unsigned long val
= kvm_register_readl(vcpu
, reg
);
7869 switch ((exit_qualification
>> 4) & 3) {
7870 case 0: /* mov to cr */
7873 if (vmcs12
->cr0_guest_host_mask
&
7874 (val
^ vmcs12
->cr0_read_shadow
))
7878 if ((vmcs12
->cr3_target_count
>= 1 &&
7879 vmcs12
->cr3_target_value0
== val
) ||
7880 (vmcs12
->cr3_target_count
>= 2 &&
7881 vmcs12
->cr3_target_value1
== val
) ||
7882 (vmcs12
->cr3_target_count
>= 3 &&
7883 vmcs12
->cr3_target_value2
== val
) ||
7884 (vmcs12
->cr3_target_count
>= 4 &&
7885 vmcs12
->cr3_target_value3
== val
))
7887 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
7891 if (vmcs12
->cr4_guest_host_mask
&
7892 (vmcs12
->cr4_read_shadow
^ val
))
7896 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
7902 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
7903 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
7906 case 1: /* mov from cr */
7909 if (vmcs12
->cpu_based_vm_exec_control
&
7910 CPU_BASED_CR3_STORE_EXITING
)
7914 if (vmcs12
->cpu_based_vm_exec_control
&
7915 CPU_BASED_CR8_STORE_EXITING
)
7922 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7923 * cr0. Other attempted changes are ignored, with no exit.
7925 if (vmcs12
->cr0_guest_host_mask
& 0xe &
7926 (val
^ vmcs12
->cr0_read_shadow
))
7928 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
7929 !(vmcs12
->cr0_read_shadow
& 0x1) &&
7938 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7939 * should handle it ourselves in L0 (and then continue L2). Only call this
7940 * when in is_guest_mode (L2).
7942 static bool nested_vmx_exit_handled(struct kvm_vcpu
*vcpu
)
7944 u32 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
7945 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7946 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7947 u32 exit_reason
= vmx
->exit_reason
;
7949 trace_kvm_nested_vmexit(kvm_rip_read(vcpu
), exit_reason
,
7950 vmcs_readl(EXIT_QUALIFICATION
),
7951 vmx
->idt_vectoring_info
,
7953 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
7956 if (vmx
->nested
.nested_run_pending
)
7959 if (unlikely(vmx
->fail
)) {
7960 pr_info_ratelimited("%s failed vm entry %x\n", __func__
,
7961 vmcs_read32(VM_INSTRUCTION_ERROR
));
7965 switch (exit_reason
) {
7966 case EXIT_REASON_EXCEPTION_NMI
:
7967 if (!is_exception(intr_info
))
7969 else if (is_page_fault(intr_info
))
7971 else if (is_no_device(intr_info
) &&
7972 !(vmcs12
->guest_cr0
& X86_CR0_TS
))
7974 else if (is_debug(intr_info
) &&
7976 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
7978 else if (is_breakpoint(intr_info
) &&
7979 vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
7981 return vmcs12
->exception_bitmap
&
7982 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
7983 case EXIT_REASON_EXTERNAL_INTERRUPT
:
7985 case EXIT_REASON_TRIPLE_FAULT
:
7987 case EXIT_REASON_PENDING_INTERRUPT
:
7988 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_INTR_PENDING
);
7989 case EXIT_REASON_NMI_WINDOW
:
7990 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_NMI_PENDING
);
7991 case EXIT_REASON_TASK_SWITCH
:
7993 case EXIT_REASON_CPUID
:
7994 if (kvm_register_read(vcpu
, VCPU_REGS_RAX
) == 0xa)
7997 case EXIT_REASON_HLT
:
7998 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
7999 case EXIT_REASON_INVD
:
8001 case EXIT_REASON_INVLPG
:
8002 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
8003 case EXIT_REASON_RDPMC
:
8004 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
8005 case EXIT_REASON_RDTSC
: case EXIT_REASON_RDTSCP
:
8006 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
8007 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
8008 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
8009 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMREAD
:
8010 case EXIT_REASON_VMRESUME
: case EXIT_REASON_VMWRITE
:
8011 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
8012 case EXIT_REASON_INVEPT
: case EXIT_REASON_INVVPID
:
8014 * VMX instructions trap unconditionally. This allows L1 to
8015 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8018 case EXIT_REASON_CR_ACCESS
:
8019 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
8020 case EXIT_REASON_DR_ACCESS
:
8021 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
8022 case EXIT_REASON_IO_INSTRUCTION
:
8023 return nested_vmx_exit_handled_io(vcpu
, vmcs12
);
8024 case EXIT_REASON_MSR_READ
:
8025 case EXIT_REASON_MSR_WRITE
:
8026 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
8027 case EXIT_REASON_INVALID_STATE
:
8029 case EXIT_REASON_MWAIT_INSTRUCTION
:
8030 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
8031 case EXIT_REASON_MONITOR_TRAP_FLAG
:
8032 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_TRAP_FLAG
);
8033 case EXIT_REASON_MONITOR_INSTRUCTION
:
8034 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
8035 case EXIT_REASON_PAUSE_INSTRUCTION
:
8036 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
8037 nested_cpu_has2(vmcs12
,
8038 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
8039 case EXIT_REASON_MCE_DURING_VMENTRY
:
8041 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
8042 return nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
);
8043 case EXIT_REASON_APIC_ACCESS
:
8044 return nested_cpu_has2(vmcs12
,
8045 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
8046 case EXIT_REASON_APIC_WRITE
:
8047 case EXIT_REASON_EOI_INDUCED
:
8048 /* apic_write and eoi_induced should exit unconditionally. */
8050 case EXIT_REASON_EPT_VIOLATION
:
8052 * L0 always deals with the EPT violation. If nested EPT is
8053 * used, and the nested mmu code discovers that the address is
8054 * missing in the guest EPT table (EPT12), the EPT violation
8055 * will be injected with nested_ept_inject_page_fault()
8058 case EXIT_REASON_EPT_MISCONFIG
:
8060 * L2 never uses directly L1's EPT, but rather L0's own EPT
8061 * table (shadow on EPT) or a merged EPT table that L0 built
8062 * (EPT on EPT). So any problems with the structure of the
8063 * table is L0's fault.
8066 case EXIT_REASON_WBINVD
:
8067 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
8068 case EXIT_REASON_XSETBV
:
8070 case EXIT_REASON_XSAVES
: case EXIT_REASON_XRSTORS
:
8072 * This should never happen, since it is not possible to
8073 * set XSS to a non-zero value---neither in L1 nor in L2.
8074 * If if it were, XSS would have to be checked against
8075 * the XSS exit bitmap in vmcs12.
8077 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
);
8078 case EXIT_REASON_PREEMPTION_TIMER
:
8085 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
8087 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
8088 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
8091 static void vmx_destroy_pml_buffer(struct vcpu_vmx
*vmx
)
8094 __free_page(vmx
->pml_pg
);
8099 static void vmx_flush_pml_buffer(struct kvm_vcpu
*vcpu
)
8101 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8105 pml_idx
= vmcs_read16(GUEST_PML_INDEX
);
8107 /* Do nothing if PML buffer is empty */
8108 if (pml_idx
== (PML_ENTITY_NUM
- 1))
8111 /* PML index always points to next available PML buffer entity */
8112 if (pml_idx
>= PML_ENTITY_NUM
)
8117 pml_buf
= page_address(vmx
->pml_pg
);
8118 for (; pml_idx
< PML_ENTITY_NUM
; pml_idx
++) {
8121 gpa
= pml_buf
[pml_idx
];
8122 WARN_ON(gpa
& (PAGE_SIZE
- 1));
8123 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
8126 /* reset PML index */
8127 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
8131 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8132 * Called before reporting dirty_bitmap to userspace.
8134 static void kvm_flush_pml_buffers(struct kvm
*kvm
)
8137 struct kvm_vcpu
*vcpu
;
8139 * We only need to kick vcpu out of guest mode here, as PML buffer
8140 * is flushed at beginning of all VMEXITs, and it's obvious that only
8141 * vcpus running in guest are possible to have unflushed GPAs in PML
8144 kvm_for_each_vcpu(i
, vcpu
, kvm
)
8145 kvm_vcpu_kick(vcpu
);
8148 static void vmx_dump_sel(char *name
, uint32_t sel
)
8150 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8151 name
, vmcs_read32(sel
),
8152 vmcs_read32(sel
+ GUEST_ES_AR_BYTES
- GUEST_ES_SELECTOR
),
8153 vmcs_read32(sel
+ GUEST_ES_LIMIT
- GUEST_ES_SELECTOR
),
8154 vmcs_readl(sel
+ GUEST_ES_BASE
- GUEST_ES_SELECTOR
));
8157 static void vmx_dump_dtsel(char *name
, uint32_t limit
)
8159 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8160 name
, vmcs_read32(limit
),
8161 vmcs_readl(limit
+ GUEST_GDTR_BASE
- GUEST_GDTR_LIMIT
));
8164 static void dump_vmcs(void)
8166 u32 vmentry_ctl
= vmcs_read32(VM_ENTRY_CONTROLS
);
8167 u32 vmexit_ctl
= vmcs_read32(VM_EXIT_CONTROLS
);
8168 u32 cpu_based_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
8169 u32 pin_based_exec_ctrl
= vmcs_read32(PIN_BASED_VM_EXEC_CONTROL
);
8170 u32 secondary_exec_control
= 0;
8171 unsigned long cr4
= vmcs_readl(GUEST_CR4
);
8172 u64 efer
= vmcs_read64(GUEST_IA32_EFER
);
8175 if (cpu_has_secondary_exec_ctrls())
8176 secondary_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8178 pr_err("*** Guest State ***\n");
8179 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8180 vmcs_readl(GUEST_CR0
), vmcs_readl(CR0_READ_SHADOW
),
8181 vmcs_readl(CR0_GUEST_HOST_MASK
));
8182 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8183 cr4
, vmcs_readl(CR4_READ_SHADOW
), vmcs_readl(CR4_GUEST_HOST_MASK
));
8184 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3
));
8185 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) &&
8186 (cr4
& X86_CR4_PAE
) && !(efer
& EFER_LMA
))
8188 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8189 vmcs_read64(GUEST_PDPTR0
), vmcs_read64(GUEST_PDPTR1
));
8190 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8191 vmcs_read64(GUEST_PDPTR2
), vmcs_read64(GUEST_PDPTR3
));
8193 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8194 vmcs_readl(GUEST_RSP
), vmcs_readl(GUEST_RIP
));
8195 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8196 vmcs_readl(GUEST_RFLAGS
), vmcs_readl(GUEST_DR7
));
8197 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8198 vmcs_readl(GUEST_SYSENTER_ESP
),
8199 vmcs_read32(GUEST_SYSENTER_CS
), vmcs_readl(GUEST_SYSENTER_EIP
));
8200 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR
);
8201 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR
);
8202 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR
);
8203 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR
);
8204 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR
);
8205 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR
);
8206 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT
);
8207 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR
);
8208 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT
);
8209 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR
);
8210 if ((vmexit_ctl
& (VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_SAVE_IA32_EFER
)) ||
8211 (vmentry_ctl
& (VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_IA32_EFER
)))
8212 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8213 efer
, vmcs_read64(GUEST_IA32_PAT
));
8214 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8215 vmcs_read64(GUEST_IA32_DEBUGCTL
),
8216 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
));
8217 if (vmentry_ctl
& VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
8218 pr_err("PerfGlobCtl = 0x%016llx\n",
8219 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL
));
8220 if (vmentry_ctl
& VM_ENTRY_LOAD_BNDCFGS
)
8221 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS
));
8222 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8223 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
),
8224 vmcs_read32(GUEST_ACTIVITY_STATE
));
8225 if (secondary_exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
)
8226 pr_err("InterruptStatus = %04x\n",
8227 vmcs_read16(GUEST_INTR_STATUS
));
8229 pr_err("*** Host State ***\n");
8230 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8231 vmcs_readl(HOST_RIP
), vmcs_readl(HOST_RSP
));
8232 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8233 vmcs_read16(HOST_CS_SELECTOR
), vmcs_read16(HOST_SS_SELECTOR
),
8234 vmcs_read16(HOST_DS_SELECTOR
), vmcs_read16(HOST_ES_SELECTOR
),
8235 vmcs_read16(HOST_FS_SELECTOR
), vmcs_read16(HOST_GS_SELECTOR
),
8236 vmcs_read16(HOST_TR_SELECTOR
));
8237 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8238 vmcs_readl(HOST_FS_BASE
), vmcs_readl(HOST_GS_BASE
),
8239 vmcs_readl(HOST_TR_BASE
));
8240 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8241 vmcs_readl(HOST_GDTR_BASE
), vmcs_readl(HOST_IDTR_BASE
));
8242 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8243 vmcs_readl(HOST_CR0
), vmcs_readl(HOST_CR3
),
8244 vmcs_readl(HOST_CR4
));
8245 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8246 vmcs_readl(HOST_IA32_SYSENTER_ESP
),
8247 vmcs_read32(HOST_IA32_SYSENTER_CS
),
8248 vmcs_readl(HOST_IA32_SYSENTER_EIP
));
8249 if (vmexit_ctl
& (VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_LOAD_IA32_EFER
))
8250 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8251 vmcs_read64(HOST_IA32_EFER
),
8252 vmcs_read64(HOST_IA32_PAT
));
8253 if (vmexit_ctl
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
8254 pr_err("PerfGlobCtl = 0x%016llx\n",
8255 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL
));
8257 pr_err("*** Control State ***\n");
8258 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8259 pin_based_exec_ctrl
, cpu_based_exec_ctrl
, secondary_exec_control
);
8260 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl
, vmexit_ctl
);
8261 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8262 vmcs_read32(EXCEPTION_BITMAP
),
8263 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK
),
8264 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH
));
8265 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8266 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
8267 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE
),
8268 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN
));
8269 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8270 vmcs_read32(VM_EXIT_INTR_INFO
),
8271 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
8272 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
));
8273 pr_err(" reason=%08x qualification=%016lx\n",
8274 vmcs_read32(VM_EXIT_REASON
), vmcs_readl(EXIT_QUALIFICATION
));
8275 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8276 vmcs_read32(IDT_VECTORING_INFO_FIELD
),
8277 vmcs_read32(IDT_VECTORING_ERROR_CODE
));
8278 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET
));
8279 if (secondary_exec_control
& SECONDARY_EXEC_TSC_SCALING
)
8280 pr_err("TSC Multiplier = 0x%016llx\n",
8281 vmcs_read64(TSC_MULTIPLIER
));
8282 if (cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
)
8283 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD
));
8284 if (pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
)
8285 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV
));
8286 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
))
8287 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER
));
8288 n
= vmcs_read32(CR3_TARGET_COUNT
);
8289 for (i
= 0; i
+ 1 < n
; i
+= 4)
8290 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8291 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2),
8292 i
+ 1, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2 + 2));
8294 pr_err("CR3 target%u=%016lx\n",
8295 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2));
8296 if (secondary_exec_control
& SECONDARY_EXEC_PAUSE_LOOP_EXITING
)
8297 pr_err("PLE Gap=%08x Window=%08x\n",
8298 vmcs_read32(PLE_GAP
), vmcs_read32(PLE_WINDOW
));
8299 if (secondary_exec_control
& SECONDARY_EXEC_ENABLE_VPID
)
8300 pr_err("Virtual processor ID = 0x%04x\n",
8301 vmcs_read16(VIRTUAL_PROCESSOR_ID
));
8305 * The guest has exited. See if we can fix it or if we need userspace
8308 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
8310 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8311 u32 exit_reason
= vmx
->exit_reason
;
8312 u32 vectoring_info
= vmx
->idt_vectoring_info
;
8314 trace_kvm_exit(exit_reason
, vcpu
, KVM_ISA_VMX
);
8317 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8318 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8319 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8320 * mode as if vcpus is in root mode, the PML buffer must has been
8324 vmx_flush_pml_buffer(vcpu
);
8326 /* If guest state is invalid, start emulating */
8327 if (vmx
->emulation_required
)
8328 return handle_invalid_guest_state(vcpu
);
8330 if (is_guest_mode(vcpu
) && nested_vmx_exit_handled(vcpu
)) {
8331 nested_vmx_vmexit(vcpu
, exit_reason
,
8332 vmcs_read32(VM_EXIT_INTR_INFO
),
8333 vmcs_readl(EXIT_QUALIFICATION
));
8337 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
8339 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
8340 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
8345 if (unlikely(vmx
->fail
)) {
8346 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
8347 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
8348 = vmcs_read32(VM_INSTRUCTION_ERROR
);
8354 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8355 * delivery event since it indicates guest is accessing MMIO.
8356 * The vm-exit can be triggered again after return to guest that
8357 * will cause infinite loop.
8359 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
8360 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
8361 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
8362 exit_reason
!= EXIT_REASON_PML_FULL
&&
8363 exit_reason
!= EXIT_REASON_TASK_SWITCH
)) {
8364 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
8365 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_DELIVERY_EV
;
8366 vcpu
->run
->internal
.ndata
= 2;
8367 vcpu
->run
->internal
.data
[0] = vectoring_info
;
8368 vcpu
->run
->internal
.data
[1] = exit_reason
;
8372 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
&&
8373 !(is_guest_mode(vcpu
) && nested_cpu_has_virtual_nmis(
8374 get_vmcs12(vcpu
))))) {
8375 if (vmx_interrupt_allowed(vcpu
)) {
8376 vmx
->soft_vnmi_blocked
= 0;
8377 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
8378 vcpu
->arch
.nmi_pending
) {
8380 * This CPU don't support us in finding the end of an
8381 * NMI-blocked window if the guest runs with IRQs
8382 * disabled. So we pull the trigger after 1 s of
8383 * futile waiting, but inform the user about this.
8385 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
8386 "state on VCPU %d after 1 s timeout\n",
8387 __func__
, vcpu
->vcpu_id
);
8388 vmx
->soft_vnmi_blocked
= 0;
8392 if (exit_reason
< kvm_vmx_max_exit_handlers
8393 && kvm_vmx_exit_handlers
[exit_reason
])
8394 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
8396 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason
);
8397 kvm_queue_exception(vcpu
, UD_VECTOR
);
8402 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
8404 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8406 if (is_guest_mode(vcpu
) &&
8407 nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
8410 if (irr
== -1 || tpr
< irr
) {
8411 vmcs_write32(TPR_THRESHOLD
, 0);
8415 vmcs_write32(TPR_THRESHOLD
, irr
);
8418 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
8420 u32 sec_exec_control
;
8423 * There is not point to enable virtualize x2apic without enable
8426 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8427 !kvm_vcpu_apicv_active(vcpu
))
8430 if (!cpu_need_tpr_shadow(vcpu
))
8433 sec_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8436 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
8437 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
8439 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
8440 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
8442 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, sec_exec_control
);
8444 vmx_set_msr_bitmap(vcpu
);
8447 static void vmx_set_apic_access_page_addr(struct kvm_vcpu
*vcpu
, hpa_t hpa
)
8449 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8452 * Currently we do not handle the nested case where L2 has an
8453 * APIC access page of its own; that page is still pinned.
8454 * Hence, we skip the case where the VCPU is in guest mode _and_
8455 * L1 prepared an APIC access page for L2.
8457 * For the case where L1 and L2 share the same APIC access page
8458 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8459 * in the vmcs12), this function will only update either the vmcs01
8460 * or the vmcs02. If the former, the vmcs02 will be updated by
8461 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8462 * the next L2->L1 exit.
8464 if (!is_guest_mode(vcpu
) ||
8465 !nested_cpu_has2(get_vmcs12(&vmx
->vcpu
),
8466 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
8467 vmcs_write64(APIC_ACCESS_ADDR
, hpa
);
8470 static void vmx_hwapic_isr_update(struct kvm_vcpu
*vcpu
, int max_isr
)
8478 status
= vmcs_read16(GUEST_INTR_STATUS
);
8480 if (max_isr
!= old
) {
8482 status
|= max_isr
<< 8;
8483 vmcs_write16(GUEST_INTR_STATUS
, status
);
8487 static void vmx_set_rvi(int vector
)
8495 status
= vmcs_read16(GUEST_INTR_STATUS
);
8496 old
= (u8
)status
& 0xff;
8497 if ((u8
)vector
!= old
) {
8499 status
|= (u8
)vector
;
8500 vmcs_write16(GUEST_INTR_STATUS
, status
);
8504 static void vmx_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
8506 if (!is_guest_mode(vcpu
)) {
8507 vmx_set_rvi(max_irr
);
8515 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8518 if (nested_exit_on_intr(vcpu
))
8522 * Else, fall back to pre-APICv interrupt injection since L2
8523 * is run without virtual interrupt delivery.
8525 if (!kvm_event_needs_reinjection(vcpu
) &&
8526 vmx_interrupt_allowed(vcpu
)) {
8527 kvm_queue_interrupt(vcpu
, max_irr
, false);
8528 vmx_inject_irq(vcpu
);
8532 static void vmx_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
8534 if (!kvm_vcpu_apicv_active(vcpu
))
8537 vmcs_write64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap
[0]);
8538 vmcs_write64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap
[1]);
8539 vmcs_write64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap
[2]);
8540 vmcs_write64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap
[3]);
8543 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
8547 if (!(vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
8548 || vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
))
8551 vmx
->exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8552 exit_intr_info
= vmx
->exit_intr_info
;
8554 /* Handle machine checks before interrupts are enabled */
8555 if (is_machine_check(exit_intr_info
))
8556 kvm_machine_check();
8558 /* We need to handle NMIs before interrupts are enabled */
8559 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
8560 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
8561 kvm_before_handle_nmi(&vmx
->vcpu
);
8563 kvm_after_handle_nmi(&vmx
->vcpu
);
8567 static void vmx_handle_external_intr(struct kvm_vcpu
*vcpu
)
8569 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8570 register void *__sp
asm(_ASM_SP
);
8573 * If external interrupt exists, IF bit is set in rflags/eflags on the
8574 * interrupt stack frame, and interrupt will be enabled on a return
8575 * from interrupt handler.
8577 if ((exit_intr_info
& (INTR_INFO_VALID_MASK
| INTR_INFO_INTR_TYPE_MASK
))
8578 == (INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
)) {
8579 unsigned int vector
;
8580 unsigned long entry
;
8582 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8583 #ifdef CONFIG_X86_64
8587 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
8588 desc
= (gate_desc
*)vmx
->host_idt_base
+ vector
;
8589 entry
= gate_offset(*desc
);
8591 #ifdef CONFIG_X86_64
8592 "mov %%" _ASM_SP
", %[sp]\n\t"
8593 "and $0xfffffffffffffff0, %%" _ASM_SP
"\n\t"
8598 __ASM_SIZE(push
) " $%c[cs]\n\t"
8599 "call *%[entry]\n\t"
8601 #ifdef CONFIG_X86_64
8607 [ss
]"i"(__KERNEL_DS
),
8608 [cs
]"i"(__KERNEL_CS
)
8613 static bool vmx_has_high_real_mode_segbase(void)
8615 return enable_unrestricted_guest
|| emulate_invalid_guest_state
;
8618 static bool vmx_mpx_supported(void)
8620 return (vmcs_config
.vmexit_ctrl
& VM_EXIT_CLEAR_BNDCFGS
) &&
8621 (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_BNDCFGS
);
8624 static bool vmx_xsaves_supported(void)
8626 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
8627 SECONDARY_EXEC_XSAVES
;
8630 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
8635 bool idtv_info_valid
;
8637 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
8639 if (cpu_has_virtual_nmis()) {
8640 if (vmx
->nmi_known_unmasked
)
8643 * Can't use vmx->exit_intr_info since we're not sure what
8644 * the exit reason is.
8646 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8647 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
8648 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
8650 * SDM 3: 27.7.1.2 (September 2008)
8651 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8652 * a guest IRET fault.
8653 * SDM 3: 23.2.2 (September 2008)
8654 * Bit 12 is undefined in any of the following cases:
8655 * If the VM exit sets the valid bit in the IDT-vectoring
8656 * information field.
8657 * If the VM exit is due to a double fault.
8659 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
8660 vector
!= DF_VECTOR
&& !idtv_info_valid
)
8661 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
8662 GUEST_INTR_STATE_NMI
);
8664 vmx
->nmi_known_unmasked
=
8665 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
8666 & GUEST_INTR_STATE_NMI
);
8667 } else if (unlikely(vmx
->soft_vnmi_blocked
))
8668 vmx
->vnmi_blocked_time
+=
8669 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
8672 static void __vmx_complete_interrupts(struct kvm_vcpu
*vcpu
,
8673 u32 idt_vectoring_info
,
8674 int instr_len_field
,
8675 int error_code_field
)
8679 bool idtv_info_valid
;
8681 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
8683 vcpu
->arch
.nmi_injected
= false;
8684 kvm_clear_exception_queue(vcpu
);
8685 kvm_clear_interrupt_queue(vcpu
);
8687 if (!idtv_info_valid
)
8690 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8692 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
8693 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
8696 case INTR_TYPE_NMI_INTR
:
8697 vcpu
->arch
.nmi_injected
= true;
8699 * SDM 3: 27.7.1.2 (September 2008)
8700 * Clear bit "block by NMI" before VM entry if a NMI
8703 vmx_set_nmi_mask(vcpu
, false);
8705 case INTR_TYPE_SOFT_EXCEPTION
:
8706 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
8708 case INTR_TYPE_HARD_EXCEPTION
:
8709 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
8710 u32 err
= vmcs_read32(error_code_field
);
8711 kvm_requeue_exception_e(vcpu
, vector
, err
);
8713 kvm_requeue_exception(vcpu
, vector
);
8715 case INTR_TYPE_SOFT_INTR
:
8716 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
8718 case INTR_TYPE_EXT_INTR
:
8719 kvm_queue_interrupt(vcpu
, vector
, type
== INTR_TYPE_SOFT_INTR
);
8726 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
8728 __vmx_complete_interrupts(&vmx
->vcpu
, vmx
->idt_vectoring_info
,
8729 VM_EXIT_INSTRUCTION_LEN
,
8730 IDT_VECTORING_ERROR_CODE
);
8733 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
8735 __vmx_complete_interrupts(vcpu
,
8736 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
8737 VM_ENTRY_INSTRUCTION_LEN
,
8738 VM_ENTRY_EXCEPTION_ERROR_CODE
);
8740 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
8743 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
8746 struct perf_guest_switch_msr
*msrs
;
8748 msrs
= perf_guest_get_msrs(&nr_msrs
);
8753 for (i
= 0; i
< nr_msrs
; i
++)
8754 if (msrs
[i
].host
== msrs
[i
].guest
)
8755 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
8757 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
8761 void vmx_arm_hv_timer(struct kvm_vcpu
*vcpu
)
8763 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8767 if (vmx
->hv_deadline_tsc
== -1)
8771 if (vmx
->hv_deadline_tsc
> tscl
)
8772 /* sure to be 32 bit only because checked on set_hv_timer */
8773 delta_tsc
= (u32
)((vmx
->hv_deadline_tsc
- tscl
) >>
8774 cpu_preemption_timer_multi
);
8778 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE
, delta_tsc
);
8781 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
8783 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8784 unsigned long debugctlmsr
, cr4
;
8786 /* Record the guest's net vcpu time for enforced NMI injections. */
8787 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
8788 vmx
->entry_time
= ktime_get();
8790 /* Don't enter VMX if guest state is invalid, let the exit handler
8791 start emulation until we arrive back to a valid state */
8792 if (vmx
->emulation_required
)
8795 if (vmx
->ple_window_dirty
) {
8796 vmx
->ple_window_dirty
= false;
8797 vmcs_write32(PLE_WINDOW
, vmx
->ple_window
);
8800 if (vmx
->nested
.sync_shadow_vmcs
) {
8801 copy_vmcs12_to_shadow(vmx
);
8802 vmx
->nested
.sync_shadow_vmcs
= false;
8805 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
8806 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
8807 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
8808 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
8810 cr4
= cr4_read_shadow();
8811 if (unlikely(cr4
!= vmx
->host_state
.vmcs_host_cr4
)) {
8812 vmcs_writel(HOST_CR4
, cr4
);
8813 vmx
->host_state
.vmcs_host_cr4
= cr4
;
8816 /* When single-stepping over STI and MOV SS, we must clear the
8817 * corresponding interruptibility bits in the guest state. Otherwise
8818 * vmentry fails as it then expects bit 14 (BS) in pending debug
8819 * exceptions being set, but that's not correct for the guest debugging
8821 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8822 vmx_set_interrupt_shadow(vcpu
, 0);
8824 if (vmx
->guest_pkru_valid
)
8825 __write_pkru(vmx
->guest_pkru
);
8827 atomic_switch_perf_msrs(vmx
);
8828 debugctlmsr
= get_debugctlmsr();
8830 vmx_arm_hv_timer(vcpu
);
8832 vmx
->__launched
= vmx
->loaded_vmcs
->launched
;
8834 /* Store host registers */
8835 "push %%" _ASM_DX
"; push %%" _ASM_BP
";"
8836 "push %%" _ASM_CX
" \n\t" /* placeholder for guest rcx */
8837 "push %%" _ASM_CX
" \n\t"
8838 "cmp %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
8840 "mov %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
8841 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
8843 /* Reload cr2 if changed */
8844 "mov %c[cr2](%0), %%" _ASM_AX
" \n\t"
8845 "mov %%cr2, %%" _ASM_DX
" \n\t"
8846 "cmp %%" _ASM_AX
", %%" _ASM_DX
" \n\t"
8848 "mov %%" _ASM_AX
", %%cr2 \n\t"
8850 /* Check if vmlaunch of vmresume is needed */
8851 "cmpl $0, %c[launched](%0) \n\t"
8852 /* Load guest registers. Don't clobber flags. */
8853 "mov %c[rax](%0), %%" _ASM_AX
" \n\t"
8854 "mov %c[rbx](%0), %%" _ASM_BX
" \n\t"
8855 "mov %c[rdx](%0), %%" _ASM_DX
" \n\t"
8856 "mov %c[rsi](%0), %%" _ASM_SI
" \n\t"
8857 "mov %c[rdi](%0), %%" _ASM_DI
" \n\t"
8858 "mov %c[rbp](%0), %%" _ASM_BP
" \n\t"
8859 #ifdef CONFIG_X86_64
8860 "mov %c[r8](%0), %%r8 \n\t"
8861 "mov %c[r9](%0), %%r9 \n\t"
8862 "mov %c[r10](%0), %%r10 \n\t"
8863 "mov %c[r11](%0), %%r11 \n\t"
8864 "mov %c[r12](%0), %%r12 \n\t"
8865 "mov %c[r13](%0), %%r13 \n\t"
8866 "mov %c[r14](%0), %%r14 \n\t"
8867 "mov %c[r15](%0), %%r15 \n\t"
8869 "mov %c[rcx](%0), %%" _ASM_CX
" \n\t" /* kills %0 (ecx) */
8871 /* Enter guest mode */
8873 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
8875 "1: " __ex(ASM_VMX_VMRESUME
) "\n\t"
8877 /* Save guest registers, load host registers, keep flags */
8878 "mov %0, %c[wordsize](%%" _ASM_SP
") \n\t"
8880 "mov %%" _ASM_AX
", %c[rax](%0) \n\t"
8881 "mov %%" _ASM_BX
", %c[rbx](%0) \n\t"
8882 __ASM_SIZE(pop
) " %c[rcx](%0) \n\t"
8883 "mov %%" _ASM_DX
", %c[rdx](%0) \n\t"
8884 "mov %%" _ASM_SI
", %c[rsi](%0) \n\t"
8885 "mov %%" _ASM_DI
", %c[rdi](%0) \n\t"
8886 "mov %%" _ASM_BP
", %c[rbp](%0) \n\t"
8887 #ifdef CONFIG_X86_64
8888 "mov %%r8, %c[r8](%0) \n\t"
8889 "mov %%r9, %c[r9](%0) \n\t"
8890 "mov %%r10, %c[r10](%0) \n\t"
8891 "mov %%r11, %c[r11](%0) \n\t"
8892 "mov %%r12, %c[r12](%0) \n\t"
8893 "mov %%r13, %c[r13](%0) \n\t"
8894 "mov %%r14, %c[r14](%0) \n\t"
8895 "mov %%r15, %c[r15](%0) \n\t"
8897 "mov %%cr2, %%" _ASM_AX
" \n\t"
8898 "mov %%" _ASM_AX
", %c[cr2](%0) \n\t"
8900 "pop %%" _ASM_BP
"; pop %%" _ASM_DX
" \n\t"
8901 "setbe %c[fail](%0) \n\t"
8902 ".pushsection .rodata \n\t"
8903 ".global vmx_return \n\t"
8904 "vmx_return: " _ASM_PTR
" 2b \n\t"
8906 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
8907 [launched
]"i"(offsetof(struct vcpu_vmx
, __launched
)),
8908 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
8909 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
8910 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
8911 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
8912 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
8913 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
8914 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
8915 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
8916 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
8917 #ifdef CONFIG_X86_64
8918 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
8919 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
8920 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
8921 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
8922 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
8923 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
8924 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
8925 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
8927 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
8928 [wordsize
]"i"(sizeof(ulong
))
8930 #ifdef CONFIG_X86_64
8931 , "rax", "rbx", "rdi", "rsi"
8932 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8934 , "eax", "ebx", "edi", "esi"
8938 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8940 update_debugctlmsr(debugctlmsr
);
8942 #ifndef CONFIG_X86_64
8944 * The sysexit path does not restore ds/es, so we must set them to
8945 * a reasonable value ourselves.
8947 * We can't defer this to vmx_load_host_state() since that function
8948 * may be executed in interrupt context, which saves and restore segments
8949 * around it, nullifying its effect.
8951 loadsegment(ds
, __USER_DS
);
8952 loadsegment(es
, __USER_DS
);
8955 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
8956 | (1 << VCPU_EXREG_RFLAGS
)
8957 | (1 << VCPU_EXREG_PDPTR
)
8958 | (1 << VCPU_EXREG_SEGMENTS
)
8959 | (1 << VCPU_EXREG_CR3
));
8960 vcpu
->arch
.regs_dirty
= 0;
8962 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
8964 vmx
->loaded_vmcs
->launched
= 1;
8966 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
8969 * eager fpu is enabled if PKEY is supported and CR4 is switched
8970 * back on host, so it is safe to read guest PKRU from current
8973 if (boot_cpu_has(X86_FEATURE_OSPKE
)) {
8974 vmx
->guest_pkru
= __read_pkru();
8975 if (vmx
->guest_pkru
!= vmx
->host_pkru
) {
8976 vmx
->guest_pkru_valid
= true;
8977 __write_pkru(vmx
->host_pkru
);
8979 vmx
->guest_pkru_valid
= false;
8983 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8984 * we did not inject a still-pending event to L1 now because of
8985 * nested_run_pending, we need to re-enable this bit.
8987 if (vmx
->nested
.nested_run_pending
)
8988 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8990 vmx
->nested
.nested_run_pending
= 0;
8992 vmx_complete_atomic_exit(vmx
);
8993 vmx_recover_nmi_blocking(vmx
);
8994 vmx_complete_interrupts(vmx
);
8997 static void vmx_load_vmcs01(struct kvm_vcpu
*vcpu
)
8999 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9002 if (vmx
->loaded_vmcs
== &vmx
->vmcs01
)
9006 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
9008 vmx_vcpu_load(vcpu
, cpu
);
9014 * Ensure that the current vmcs of the logical processor is the
9015 * vmcs01 of the vcpu before calling free_nested().
9017 static void vmx_free_vcpu_nested(struct kvm_vcpu
*vcpu
)
9019 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9022 r
= vcpu_load(vcpu
);
9024 vmx_load_vmcs01(vcpu
);
9029 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
9031 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9034 vmx_destroy_pml_buffer(vmx
);
9035 free_vpid(vmx
->vpid
);
9036 leave_guest_mode(vcpu
);
9037 vmx_free_vcpu_nested(vcpu
);
9038 free_loaded_vmcs(vmx
->loaded_vmcs
);
9039 kfree(vmx
->guest_msrs
);
9040 kvm_vcpu_uninit(vcpu
);
9041 kmem_cache_free(kvm_vcpu_cache
, vmx
);
9044 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
9047 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
9051 return ERR_PTR(-ENOMEM
);
9053 vmx
->vpid
= allocate_vpid();
9055 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
9062 * If PML is turned on, failure on enabling PML just results in failure
9063 * of creating the vcpu, therefore we can simplify PML logic (by
9064 * avoiding dealing with cases, such as enabling PML partially on vcpus
9065 * for the guest, etc.
9068 vmx
->pml_pg
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
9073 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
9074 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index
) * sizeof(vmx
->guest_msrs
[0])
9077 if (!vmx
->guest_msrs
)
9080 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
9081 vmx
->loaded_vmcs
->vmcs
= alloc_vmcs();
9082 if (!vmx
->loaded_vmcs
->vmcs
)
9085 kvm_cpu_vmxon(__pa(per_cpu(vmxarea
, raw_smp_processor_id())));
9086 loaded_vmcs_init(vmx
->loaded_vmcs
);
9091 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
9092 vmx
->vcpu
.cpu
= cpu
;
9093 err
= vmx_vcpu_setup(vmx
);
9094 vmx_vcpu_put(&vmx
->vcpu
);
9098 if (cpu_need_virtualize_apic_accesses(&vmx
->vcpu
)) {
9099 err
= alloc_apic_access_page(kvm
);
9105 if (!kvm
->arch
.ept_identity_map_addr
)
9106 kvm
->arch
.ept_identity_map_addr
=
9107 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
9108 err
= init_rmode_identity_map(kvm
);
9114 nested_vmx_setup_ctls_msrs(vmx
);
9115 vmx
->nested
.vpid02
= allocate_vpid();
9118 vmx
->nested
.posted_intr_nv
= -1;
9119 vmx
->nested
.current_vmptr
= -1ull;
9120 vmx
->nested
.current_vmcs12
= NULL
;
9122 vmx
->msr_ia32_feature_control_valid_bits
= FEATURE_CONTROL_LOCKED
;
9127 free_vpid(vmx
->nested
.vpid02
);
9128 free_loaded_vmcs(vmx
->loaded_vmcs
);
9130 kfree(vmx
->guest_msrs
);
9132 vmx_destroy_pml_buffer(vmx
);
9134 kvm_vcpu_uninit(&vmx
->vcpu
);
9136 free_vpid(vmx
->vpid
);
9137 kmem_cache_free(kvm_vcpu_cache
, vmx
);
9138 return ERR_PTR(err
);
9141 static void __init
vmx_check_processor_compat(void *rtn
)
9143 struct vmcs_config vmcs_conf
;
9146 if (setup_vmcs_config(&vmcs_conf
) < 0)
9148 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
9149 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
9150 smp_processor_id());
9155 static int get_ept_level(void)
9157 return VMX_EPT_DEFAULT_GAW
+ 1;
9160 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
9165 /* For VT-d and EPT combination
9166 * 1. MMIO: always map as UC
9168 * a. VT-d without snooping control feature: can't guarantee the
9169 * result, try to trust guest.
9170 * b. VT-d with snooping control feature: snooping control feature of
9171 * VT-d engine can guarantee the cache correctness. Just set it
9172 * to WB to keep consistent with host. So the same as item 3.
9173 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9174 * consistent with host MTRR
9177 cache
= MTRR_TYPE_UNCACHABLE
;
9181 if (!kvm_arch_has_noncoherent_dma(vcpu
->kvm
)) {
9182 ipat
= VMX_EPT_IPAT_BIT
;
9183 cache
= MTRR_TYPE_WRBACK
;
9187 if (kvm_read_cr0(vcpu
) & X86_CR0_CD
) {
9188 ipat
= VMX_EPT_IPAT_BIT
;
9189 if (kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
9190 cache
= MTRR_TYPE_WRBACK
;
9192 cache
= MTRR_TYPE_UNCACHABLE
;
9196 cache
= kvm_mtrr_get_guest_memory_type(vcpu
, gfn
);
9199 return (cache
<< VMX_EPT_MT_EPTE_SHIFT
) | ipat
;
9202 static int vmx_get_lpage_level(void)
9204 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
9205 return PT_DIRECTORY_LEVEL
;
9207 /* For shadow and EPT supported 1GB page */
9208 return PT_PDPE_LEVEL
;
9211 static void vmcs_set_secondary_exec_control(u32 new_ctl
)
9214 * These bits in the secondary execution controls field
9215 * are dynamic, the others are mostly based on the hypervisor
9216 * architecture and the guest's CPUID. Do not touch the
9220 SECONDARY_EXEC_SHADOW_VMCS
|
9221 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
9222 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
9224 u32 cur_ctl
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
9226 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
9227 (new_ctl
& ~mask
) | (cur_ctl
& mask
));
9230 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
9232 struct kvm_cpuid_entry2
*best
;
9233 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9234 u32 secondary_exec_ctl
= vmx_secondary_exec_control(vmx
);
9236 if (vmx_rdtscp_supported()) {
9237 bool rdtscp_enabled
= guest_cpuid_has_rdtscp(vcpu
);
9238 if (!rdtscp_enabled
)
9239 secondary_exec_ctl
&= ~SECONDARY_EXEC_RDTSCP
;
9243 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
9244 SECONDARY_EXEC_RDTSCP
;
9246 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
9247 ~SECONDARY_EXEC_RDTSCP
;
9251 /* Exposing INVPCID only when PCID is exposed */
9252 best
= kvm_find_cpuid_entry(vcpu
, 0x7, 0);
9253 if (vmx_invpcid_supported() &&
9254 (!best
|| !(best
->ebx
& bit(X86_FEATURE_INVPCID
)) ||
9255 !guest_cpuid_has_pcid(vcpu
))) {
9256 secondary_exec_ctl
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
9259 best
->ebx
&= ~bit(X86_FEATURE_INVPCID
);
9262 if (cpu_has_secondary_exec_ctrls())
9263 vmcs_set_secondary_exec_control(secondary_exec_ctl
);
9265 if (nested_vmx_allowed(vcpu
))
9266 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
|=
9267 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
9269 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
&=
9270 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
9273 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
9275 if (func
== 1 && nested
)
9276 entry
->ecx
|= bit(X86_FEATURE_VMX
);
9279 static void nested_ept_inject_page_fault(struct kvm_vcpu
*vcpu
,
9280 struct x86_exception
*fault
)
9282 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
9285 if (fault
->error_code
& PFERR_RSVD_MASK
)
9286 exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
9288 exit_reason
= EXIT_REASON_EPT_VIOLATION
;
9289 nested_vmx_vmexit(vcpu
, exit_reason
, 0, vcpu
->arch
.exit_qualification
);
9290 vmcs12
->guest_physical_address
= fault
->address
;
9293 /* Callbacks for nested_ept_init_mmu_context: */
9295 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
)
9297 /* return the page table to be shadowed - in our case, EPT12 */
9298 return get_vmcs12(vcpu
)->ept_pointer
;
9301 static void nested_ept_init_mmu_context(struct kvm_vcpu
*vcpu
)
9303 WARN_ON(mmu_is_nested(vcpu
));
9304 kvm_init_shadow_ept_mmu(vcpu
,
9305 to_vmx(vcpu
)->nested
.nested_vmx_ept_caps
&
9306 VMX_EPT_EXECUTE_ONLY_BIT
);
9307 vcpu
->arch
.mmu
.set_cr3
= vmx_set_cr3
;
9308 vcpu
->arch
.mmu
.get_cr3
= nested_ept_get_cr3
;
9309 vcpu
->arch
.mmu
.inject_page_fault
= nested_ept_inject_page_fault
;
9311 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
9314 static void nested_ept_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
9316 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
9319 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12
*vmcs12
,
9322 bool inequality
, bit
;
9324 bit
= (vmcs12
->exception_bitmap
& (1u << PF_VECTOR
)) != 0;
9326 (error_code
& vmcs12
->page_fault_error_code_mask
) !=
9327 vmcs12
->page_fault_error_code_match
;
9328 return inequality
^ bit
;
9331 static void vmx_inject_page_fault_nested(struct kvm_vcpu
*vcpu
,
9332 struct x86_exception
*fault
)
9334 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
9336 WARN_ON(!is_guest_mode(vcpu
));
9338 if (nested_vmx_is_page_fault_vmexit(vmcs12
, fault
->error_code
))
9339 nested_vmx_vmexit(vcpu
, to_vmx(vcpu
)->exit_reason
,
9340 vmcs_read32(VM_EXIT_INTR_INFO
),
9341 vmcs_readl(EXIT_QUALIFICATION
));
9343 kvm_inject_page_fault(vcpu
, fault
);
9346 static bool nested_get_vmcs12_pages(struct kvm_vcpu
*vcpu
,
9347 struct vmcs12
*vmcs12
)
9349 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9350 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9352 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
9353 if (!PAGE_ALIGNED(vmcs12
->apic_access_addr
) ||
9354 vmcs12
->apic_access_addr
>> maxphyaddr
)
9358 * Translate L1 physical address to host physical
9359 * address for vmcs02. Keep the page pinned, so this
9360 * physical address remains valid. We keep a reference
9361 * to it so we can release it later.
9363 if (vmx
->nested
.apic_access_page
) /* shouldn't happen */
9364 nested_release_page(vmx
->nested
.apic_access_page
);
9365 vmx
->nested
.apic_access_page
=
9366 nested_get_page(vcpu
, vmcs12
->apic_access_addr
);
9369 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
9370 if (!PAGE_ALIGNED(vmcs12
->virtual_apic_page_addr
) ||
9371 vmcs12
->virtual_apic_page_addr
>> maxphyaddr
)
9374 if (vmx
->nested
.virtual_apic_page
) /* shouldn't happen */
9375 nested_release_page(vmx
->nested
.virtual_apic_page
);
9376 vmx
->nested
.virtual_apic_page
=
9377 nested_get_page(vcpu
, vmcs12
->virtual_apic_page_addr
);
9380 * Failing the vm entry is _not_ what the processor does
9381 * but it's basically the only possibility we have.
9382 * We could still enter the guest if CR8 load exits are
9383 * enabled, CR8 store exits are enabled, and virtualize APIC
9384 * access is disabled; in this case the processor would never
9385 * use the TPR shadow and we could simply clear the bit from
9386 * the execution control. But such a configuration is useless,
9387 * so let's keep the code simple.
9389 if (!vmx
->nested
.virtual_apic_page
)
9393 if (nested_cpu_has_posted_intr(vmcs12
)) {
9394 if (!IS_ALIGNED(vmcs12
->posted_intr_desc_addr
, 64) ||
9395 vmcs12
->posted_intr_desc_addr
>> maxphyaddr
)
9398 if (vmx
->nested
.pi_desc_page
) { /* shouldn't happen */
9399 kunmap(vmx
->nested
.pi_desc_page
);
9400 nested_release_page(vmx
->nested
.pi_desc_page
);
9402 vmx
->nested
.pi_desc_page
=
9403 nested_get_page(vcpu
, vmcs12
->posted_intr_desc_addr
);
9404 if (!vmx
->nested
.pi_desc_page
)
9407 vmx
->nested
.pi_desc
=
9408 (struct pi_desc
*)kmap(vmx
->nested
.pi_desc_page
);
9409 if (!vmx
->nested
.pi_desc
) {
9410 nested_release_page_clean(vmx
->nested
.pi_desc_page
);
9413 vmx
->nested
.pi_desc
=
9414 (struct pi_desc
*)((void *)vmx
->nested
.pi_desc
+
9415 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
9422 static void vmx_start_preemption_timer(struct kvm_vcpu
*vcpu
)
9424 u64 preemption_timeout
= get_vmcs12(vcpu
)->vmx_preemption_timer_value
;
9425 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9427 if (vcpu
->arch
.virtual_tsc_khz
== 0)
9430 /* Make sure short timeouts reliably trigger an immediate vmexit.
9431 * hrtimer_start does not guarantee this. */
9432 if (preemption_timeout
<= 1) {
9433 vmx_preemption_timer_fn(&vmx
->nested
.preemption_timer
);
9437 preemption_timeout
<<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
9438 preemption_timeout
*= 1000000;
9439 do_div(preemption_timeout
, vcpu
->arch
.virtual_tsc_khz
);
9440 hrtimer_start(&vmx
->nested
.preemption_timer
,
9441 ns_to_ktime(preemption_timeout
), HRTIMER_MODE_REL
);
9444 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu
*vcpu
,
9445 struct vmcs12
*vmcs12
)
9450 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
9453 if (vmcs12_read_any(vcpu
, MSR_BITMAP
, &addr
)) {
9457 maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9459 if (!PAGE_ALIGNED(vmcs12
->msr_bitmap
) ||
9460 ((addr
+ PAGE_SIZE
) >> maxphyaddr
))
9467 * Merge L0's and L1's MSR bitmap, return false to indicate that
9468 * we do not use the hardware.
9470 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu
*vcpu
,
9471 struct vmcs12
*vmcs12
)
9475 unsigned long *msr_bitmap
;
9477 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
))
9480 page
= nested_get_page(vcpu
, vmcs12
->msr_bitmap
);
9485 msr_bitmap
= (unsigned long *)kmap(page
);
9487 nested_release_page_clean(page
);
9492 if (nested_cpu_has_virt_x2apic_mode(vmcs12
)) {
9493 if (nested_cpu_has_apic_reg_virt(vmcs12
))
9494 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
9495 nested_vmx_disable_intercept_for_msr(
9497 vmx_msr_bitmap_nested
,
9499 /* TPR is allowed */
9500 nested_vmx_disable_intercept_for_msr(msr_bitmap
,
9501 vmx_msr_bitmap_nested
,
9502 APIC_BASE_MSR
+ (APIC_TASKPRI
>> 4),
9503 MSR_TYPE_R
| MSR_TYPE_W
);
9504 if (nested_cpu_has_vid(vmcs12
)) {
9505 /* EOI and self-IPI are allowed */
9506 nested_vmx_disable_intercept_for_msr(
9508 vmx_msr_bitmap_nested
,
9509 APIC_BASE_MSR
+ (APIC_EOI
>> 4),
9511 nested_vmx_disable_intercept_for_msr(
9513 vmx_msr_bitmap_nested
,
9514 APIC_BASE_MSR
+ (APIC_SELF_IPI
>> 4),
9519 * Enable reading intercept of all the x2apic
9520 * MSRs. We should not rely on vmcs12 to do any
9521 * optimizations here, it may have been modified
9524 for (msr
= 0x800; msr
<= 0x8ff; msr
++)
9525 __vmx_enable_intercept_for_msr(
9526 vmx_msr_bitmap_nested
,
9530 __vmx_enable_intercept_for_msr(
9531 vmx_msr_bitmap_nested
,
9532 APIC_BASE_MSR
+ (APIC_TASKPRI
>> 4),
9534 __vmx_enable_intercept_for_msr(
9535 vmx_msr_bitmap_nested
,
9536 APIC_BASE_MSR
+ (APIC_EOI
>> 4),
9538 __vmx_enable_intercept_for_msr(
9539 vmx_msr_bitmap_nested
,
9540 APIC_BASE_MSR
+ (APIC_SELF_IPI
>> 4),
9544 nested_release_page_clean(page
);
9549 static int nested_vmx_check_apicv_controls(struct kvm_vcpu
*vcpu
,
9550 struct vmcs12
*vmcs12
)
9552 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
9553 !nested_cpu_has_apic_reg_virt(vmcs12
) &&
9554 !nested_cpu_has_vid(vmcs12
) &&
9555 !nested_cpu_has_posted_intr(vmcs12
))
9559 * If virtualize x2apic mode is enabled,
9560 * virtualize apic access must be disabled.
9562 if (nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
9563 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
9567 * If virtual interrupt delivery is enabled,
9568 * we must exit on external interrupts.
9570 if (nested_cpu_has_vid(vmcs12
) &&
9571 !nested_exit_on_intr(vcpu
))
9575 * bits 15:8 should be zero in posted_intr_nv,
9576 * the descriptor address has been already checked
9577 * in nested_get_vmcs12_pages.
9579 if (nested_cpu_has_posted_intr(vmcs12
) &&
9580 (!nested_cpu_has_vid(vmcs12
) ||
9581 !nested_exit_intr_ack_set(vcpu
) ||
9582 vmcs12
->posted_intr_nv
& 0xff00))
9585 /* tpr shadow is needed by all apicv features. */
9586 if (!nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
9592 static int nested_vmx_check_msr_switch(struct kvm_vcpu
*vcpu
,
9593 unsigned long count_field
,
9594 unsigned long addr_field
)
9599 if (vmcs12_read_any(vcpu
, count_field
, &count
) ||
9600 vmcs12_read_any(vcpu
, addr_field
, &addr
)) {
9606 maxphyaddr
= cpuid_maxphyaddr(vcpu
);
9607 if (!IS_ALIGNED(addr
, 16) || addr
>> maxphyaddr
||
9608 (addr
+ count
* sizeof(struct vmx_msr_entry
) - 1) >> maxphyaddr
) {
9609 pr_warn_ratelimited(
9610 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9611 addr_field
, maxphyaddr
, count
, addr
);
9617 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu
*vcpu
,
9618 struct vmcs12
*vmcs12
)
9620 if (vmcs12
->vm_exit_msr_load_count
== 0 &&
9621 vmcs12
->vm_exit_msr_store_count
== 0 &&
9622 vmcs12
->vm_entry_msr_load_count
== 0)
9623 return 0; /* Fast path */
9624 if (nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_LOAD_COUNT
,
9625 VM_EXIT_MSR_LOAD_ADDR
) ||
9626 nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_STORE_COUNT
,
9627 VM_EXIT_MSR_STORE_ADDR
) ||
9628 nested_vmx_check_msr_switch(vcpu
, VM_ENTRY_MSR_LOAD_COUNT
,
9629 VM_ENTRY_MSR_LOAD_ADDR
))
9634 static int nested_vmx_msr_check_common(struct kvm_vcpu
*vcpu
,
9635 struct vmx_msr_entry
*e
)
9637 /* x2APIC MSR accesses are not allowed */
9638 if (vcpu
->arch
.apic_base
& X2APIC_ENABLE
&& e
->index
>> 8 == 0x8)
9640 if (e
->index
== MSR_IA32_UCODE_WRITE
|| /* SDM Table 35-2 */
9641 e
->index
== MSR_IA32_UCODE_REV
)
9643 if (e
->reserved
!= 0)
9648 static int nested_vmx_load_msr_check(struct kvm_vcpu
*vcpu
,
9649 struct vmx_msr_entry
*e
)
9651 if (e
->index
== MSR_FS_BASE
||
9652 e
->index
== MSR_GS_BASE
||
9653 e
->index
== MSR_IA32_SMM_MONITOR_CTL
|| /* SMM is not supported */
9654 nested_vmx_msr_check_common(vcpu
, e
))
9659 static int nested_vmx_store_msr_check(struct kvm_vcpu
*vcpu
,
9660 struct vmx_msr_entry
*e
)
9662 if (e
->index
== MSR_IA32_SMBASE
|| /* SMM is not supported */
9663 nested_vmx_msr_check_common(vcpu
, e
))
9669 * Load guest's/host's msr at nested entry/exit.
9670 * return 0 for success, entry index for failure.
9672 static u32
nested_vmx_load_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
9675 struct vmx_msr_entry e
;
9676 struct msr_data msr
;
9678 msr
.host_initiated
= false;
9679 for (i
= 0; i
< count
; i
++) {
9680 if (kvm_vcpu_read_guest(vcpu
, gpa
+ i
* sizeof(e
),
9682 pr_warn_ratelimited(
9683 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9684 __func__
, i
, gpa
+ i
* sizeof(e
));
9687 if (nested_vmx_load_msr_check(vcpu
, &e
)) {
9688 pr_warn_ratelimited(
9689 "%s check failed (%u, 0x%x, 0x%x)\n",
9690 __func__
, i
, e
.index
, e
.reserved
);
9693 msr
.index
= e
.index
;
9695 if (kvm_set_msr(vcpu
, &msr
)) {
9696 pr_warn_ratelimited(
9697 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9698 __func__
, i
, e
.index
, e
.value
);
9707 static int nested_vmx_store_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
9710 struct vmx_msr_entry e
;
9712 for (i
= 0; i
< count
; i
++) {
9713 struct msr_data msr_info
;
9714 if (kvm_vcpu_read_guest(vcpu
,
9715 gpa
+ i
* sizeof(e
),
9716 &e
, 2 * sizeof(u32
))) {
9717 pr_warn_ratelimited(
9718 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9719 __func__
, i
, gpa
+ i
* sizeof(e
));
9722 if (nested_vmx_store_msr_check(vcpu
, &e
)) {
9723 pr_warn_ratelimited(
9724 "%s check failed (%u, 0x%x, 0x%x)\n",
9725 __func__
, i
, e
.index
, e
.reserved
);
9728 msr_info
.host_initiated
= false;
9729 msr_info
.index
= e
.index
;
9730 if (kvm_get_msr(vcpu
, &msr_info
)) {
9731 pr_warn_ratelimited(
9732 "%s cannot read MSR (%u, 0x%x)\n",
9733 __func__
, i
, e
.index
);
9736 if (kvm_vcpu_write_guest(vcpu
,
9737 gpa
+ i
* sizeof(e
) +
9738 offsetof(struct vmx_msr_entry
, value
),
9739 &msr_info
.data
, sizeof(msr_info
.data
))) {
9740 pr_warn_ratelimited(
9741 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9742 __func__
, i
, e
.index
, msr_info
.data
);
9750 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9751 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9752 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9753 * guest in a way that will both be appropriate to L1's requests, and our
9754 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9755 * function also has additional necessary side-effects, like setting various
9756 * vcpu->arch fields.
9758 static void prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
9760 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9763 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
9764 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
9765 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
9766 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
9767 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
9768 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
9769 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
9770 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
9771 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
9772 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
9773 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
9774 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
9775 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
9776 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
9777 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
9778 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
9779 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
9780 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
9781 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
9782 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
9783 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
9784 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
9785 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
9786 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
9787 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
9788 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
9789 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
9790 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
9791 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
9792 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
9793 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
9794 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
9795 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
9796 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
9797 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
9798 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
9800 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
) {
9801 kvm_set_dr(vcpu
, 7, vmcs12
->guest_dr7
);
9802 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
9804 kvm_set_dr(vcpu
, 7, vcpu
->arch
.dr7
);
9805 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmx
->nested
.vmcs01_debugctl
);
9807 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
9808 vmcs12
->vm_entry_intr_info_field
);
9809 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
9810 vmcs12
->vm_entry_exception_error_code
);
9811 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
9812 vmcs12
->vm_entry_instruction_len
);
9813 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
9814 vmcs12
->guest_interruptibility_info
);
9815 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
9816 vmx_set_rflags(vcpu
, vmcs12
->guest_rflags
);
9817 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
9818 vmcs12
->guest_pending_dbg_exceptions
);
9819 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
9820 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
9822 if (nested_cpu_has_xsaves(vmcs12
))
9823 vmcs_write64(XSS_EXIT_BITMAP
, vmcs12
->xss_exit_bitmap
);
9824 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
9826 exec_control
= vmcs12
->pin_based_vm_exec_control
;
9828 /* Preemption timer setting is only taken from vmcs01. */
9829 exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
9830 exec_control
|= vmcs_config
.pin_based_exec_ctrl
;
9831 if (vmx
->hv_deadline_tsc
== -1)
9832 exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
9834 /* Posted interrupts setting is only taken from vmcs12. */
9835 if (nested_cpu_has_posted_intr(vmcs12
)) {
9837 * Note that we use L0's vector here and in
9838 * vmx_deliver_nested_posted_interrupt.
9840 vmx
->nested
.posted_intr_nv
= vmcs12
->posted_intr_nv
;
9841 vmx
->nested
.pi_pending
= false;
9842 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
9843 vmcs_write64(POSTED_INTR_DESC_ADDR
,
9844 page_to_phys(vmx
->nested
.pi_desc_page
) +
9845 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
9848 exec_control
&= ~PIN_BASED_POSTED_INTR
;
9850 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, exec_control
);
9852 vmx
->nested
.preemption_timer_expired
= false;
9853 if (nested_cpu_has_preemption_timer(vmcs12
))
9854 vmx_start_preemption_timer(vcpu
);
9857 * Whether page-faults are trapped is determined by a combination of
9858 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9859 * If enable_ept, L0 doesn't care about page faults and we should
9860 * set all of these to L1's desires. However, if !enable_ept, L0 does
9861 * care about (at least some) page faults, and because it is not easy
9862 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9863 * to exit on each and every L2 page fault. This is done by setting
9864 * MASK=MATCH=0 and (see below) EB.PF=1.
9865 * Note that below we don't need special code to set EB.PF beyond the
9866 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9867 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9868 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9870 * A problem with this approach (when !enable_ept) is that L1 may be
9871 * injected with more page faults than it asked for. This could have
9872 * caused problems, but in practice existing hypervisors don't care.
9873 * To fix this, we will need to emulate the PFEC checking (on the L1
9874 * page tables), using walk_addr(), when injecting PFs to L1.
9876 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
,
9877 enable_ept
? vmcs12
->page_fault_error_code_mask
: 0);
9878 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
,
9879 enable_ept
? vmcs12
->page_fault_error_code_match
: 0);
9881 if (cpu_has_secondary_exec_ctrls()) {
9882 exec_control
= vmx_secondary_exec_control(vmx
);
9884 /* Take the following fields only from vmcs12 */
9885 exec_control
&= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
9886 SECONDARY_EXEC_RDTSCP
|
9887 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
9888 SECONDARY_EXEC_APIC_REGISTER_VIRT
);
9889 if (nested_cpu_has(vmcs12
,
9890 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
))
9891 exec_control
|= vmcs12
->secondary_vm_exec_control
;
9893 if (exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) {
9895 * If translation failed, no matter: This feature asks
9896 * to exit when accessing the given address, and if it
9897 * can never be accessed, this feature won't do
9900 if (!vmx
->nested
.apic_access_page
)
9902 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
9904 vmcs_write64(APIC_ACCESS_ADDR
,
9905 page_to_phys(vmx
->nested
.apic_access_page
));
9906 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12
)) &&
9907 cpu_need_virtualize_apic_accesses(&vmx
->vcpu
)) {
9909 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
9910 kvm_vcpu_reload_apic_access_page(vcpu
);
9913 if (exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
) {
9914 vmcs_write64(EOI_EXIT_BITMAP0
,
9915 vmcs12
->eoi_exit_bitmap0
);
9916 vmcs_write64(EOI_EXIT_BITMAP1
,
9917 vmcs12
->eoi_exit_bitmap1
);
9918 vmcs_write64(EOI_EXIT_BITMAP2
,
9919 vmcs12
->eoi_exit_bitmap2
);
9920 vmcs_write64(EOI_EXIT_BITMAP3
,
9921 vmcs12
->eoi_exit_bitmap3
);
9922 vmcs_write16(GUEST_INTR_STATUS
,
9923 vmcs12
->guest_intr_status
);
9926 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
9931 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9932 * Some constant fields are set here by vmx_set_constant_host_state().
9933 * Other fields are different per CPU, and will be set later when
9934 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9936 vmx_set_constant_host_state(vmx
);
9939 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9940 * entry, but only if the current (host) sp changed from the value
9941 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9942 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9943 * here we just force the write to happen on entry.
9947 exec_control
= vmx_exec_control(vmx
); /* L0's desires */
9948 exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
9949 exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
9950 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
9951 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
9953 if (exec_control
& CPU_BASED_TPR_SHADOW
) {
9954 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
9955 page_to_phys(vmx
->nested
.virtual_apic_page
));
9956 vmcs_write32(TPR_THRESHOLD
, vmcs12
->tpr_threshold
);
9959 if (cpu_has_vmx_msr_bitmap() &&
9960 exec_control
& CPU_BASED_USE_MSR_BITMAPS
) {
9961 nested_vmx_merge_msr_bitmap(vcpu
, vmcs12
);
9962 /* MSR_BITMAP will be set by following vmx_set_efer. */
9964 exec_control
&= ~CPU_BASED_USE_MSR_BITMAPS
;
9967 * Merging of IO bitmap not currently supported.
9968 * Rather, exit every time.
9970 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
9971 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
9973 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
9975 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9976 * bitwise-or of what L1 wants to trap for L2, and what we want to
9977 * trap. Note that CR0.TS also needs updating - we do this later.
9979 update_exception_bitmap(vcpu
);
9980 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
9981 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
9983 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9984 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9985 * bits are further modified by vmx_set_efer() below.
9987 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
9989 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9990 * emulated by vmx_set_efer(), below.
9992 vm_entry_controls_init(vmx
,
9993 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_LOAD_IA32_EFER
&
9994 ~VM_ENTRY_IA32E_MODE
) |
9995 (vmcs_config
.vmentry_ctrl
& ~VM_ENTRY_IA32E_MODE
));
9997 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
) {
9998 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
9999 vcpu
->arch
.pat
= vmcs12
->guest_ia32_pat
;
10000 } else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
10001 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
10004 set_cr4_guest_host_mask(vmx
);
10006 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
)
10007 vmcs_write64(GUEST_BNDCFGS
, vmcs12
->guest_bndcfgs
);
10009 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
10010 vmcs_write64(TSC_OFFSET
,
10011 vmx
->nested
.vmcs01_tsc_offset
+ vmcs12
->tsc_offset
);
10013 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
10017 * There is no direct mapping between vpid02 and vpid12, the
10018 * vpid02 is per-vCPU for L0 and reused while the value of
10019 * vpid12 is changed w/ one invvpid during nested vmentry.
10020 * The vpid12 is allocated by L1 for L2, so it will not
10021 * influence global bitmap(for vpid01 and vpid02 allocation)
10022 * even if spawn a lot of nested vCPUs.
10024 if (nested_cpu_has_vpid(vmcs12
) && vmx
->nested
.vpid02
) {
10025 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->nested
.vpid02
);
10026 if (vmcs12
->virtual_processor_id
!= vmx
->nested
.last_vpid
) {
10027 vmx
->nested
.last_vpid
= vmcs12
->virtual_processor_id
;
10028 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->nested
.vpid02
);
10031 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
10032 vmx_flush_tlb(vcpu
);
10037 if (nested_cpu_has_ept(vmcs12
)) {
10038 kvm_mmu_unload(vcpu
);
10039 nested_ept_init_mmu_context(vcpu
);
10042 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)
10043 vcpu
->arch
.efer
= vmcs12
->guest_ia32_efer
;
10044 else if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
10045 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
10047 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
10048 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10049 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
10052 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
10053 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
10054 * The CR0_READ_SHADOW is what L2 should have expected to read given
10055 * the specifications by L1; It's not enough to take
10056 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10057 * have more bits than L1 expected.
10059 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
10060 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
10062 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
10063 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
10065 /* shadow page tables on either EPT or shadow page tables */
10066 kvm_set_cr3(vcpu
, vmcs12
->guest_cr3
);
10067 kvm_mmu_reset_context(vcpu
);
10070 vcpu
->arch
.walk_mmu
->inject_page_fault
= vmx_inject_page_fault_nested
;
10073 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10076 vmcs_write64(GUEST_PDPTR0
, vmcs12
->guest_pdptr0
);
10077 vmcs_write64(GUEST_PDPTR1
, vmcs12
->guest_pdptr1
);
10078 vmcs_write64(GUEST_PDPTR2
, vmcs12
->guest_pdptr2
);
10079 vmcs_write64(GUEST_PDPTR3
, vmcs12
->guest_pdptr3
);
10082 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->guest_rsp
);
10083 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->guest_rip
);
10087 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10088 * for running an L2 nested guest.
10090 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
10092 struct vmcs12
*vmcs12
;
10093 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10095 struct loaded_vmcs
*vmcs02
;
10099 if (!nested_vmx_check_permission(vcpu
) ||
10100 !nested_vmx_check_vmcs12(vcpu
))
10103 skip_emulated_instruction(vcpu
);
10104 vmcs12
= get_vmcs12(vcpu
);
10106 if (enable_shadow_vmcs
)
10107 copy_shadow_to_vmcs12(vmx
);
10110 * The nested entry process starts with enforcing various prerequisites
10111 * on vmcs12 as required by the Intel SDM, and act appropriately when
10112 * they fail: As the SDM explains, some conditions should cause the
10113 * instruction to fail, while others will cause the instruction to seem
10114 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10115 * To speed up the normal (success) code path, we should avoid checking
10116 * for misconfigurations which will anyway be caught by the processor
10117 * when using the merged vmcs02.
10119 if (vmcs12
->launch_state
== launch
) {
10120 nested_vmx_failValid(vcpu
,
10121 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10122 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
10126 if (vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_ACTIVE
&&
10127 vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_HLT
) {
10128 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
10132 if (!nested_get_vmcs12_pages(vcpu
, vmcs12
)) {
10133 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
10137 if (nested_vmx_check_msr_bitmap_controls(vcpu
, vmcs12
)) {
10138 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
10142 if (nested_vmx_check_apicv_controls(vcpu
, vmcs12
)) {
10143 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
10147 if (nested_vmx_check_msr_switch_controls(vcpu
, vmcs12
)) {
10148 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
10152 if (!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
10153 vmx
->nested
.nested_vmx_true_procbased_ctls_low
,
10154 vmx
->nested
.nested_vmx_procbased_ctls_high
) ||
10155 !vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
10156 vmx
->nested
.nested_vmx_secondary_ctls_low
,
10157 vmx
->nested
.nested_vmx_secondary_ctls_high
) ||
10158 !vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
10159 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
10160 vmx
->nested
.nested_vmx_pinbased_ctls_high
) ||
10161 !vmx_control_verify(vmcs12
->vm_exit_controls
,
10162 vmx
->nested
.nested_vmx_true_exit_ctls_low
,
10163 vmx
->nested
.nested_vmx_exit_ctls_high
) ||
10164 !vmx_control_verify(vmcs12
->vm_entry_controls
,
10165 vmx
->nested
.nested_vmx_true_entry_ctls_low
,
10166 vmx
->nested
.nested_vmx_entry_ctls_high
))
10168 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
10172 if (((vmcs12
->host_cr0
& VMXON_CR0_ALWAYSON
) != VMXON_CR0_ALWAYSON
) ||
10173 ((vmcs12
->host_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
10174 nested_vmx_failValid(vcpu
,
10175 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
);
10179 if (!nested_cr0_valid(vcpu
, vmcs12
->guest_cr0
) ||
10180 ((vmcs12
->guest_cr4
& VMXON_CR4_ALWAYSON
) != VMXON_CR4_ALWAYSON
)) {
10181 nested_vmx_entry_failure(vcpu
, vmcs12
,
10182 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
10185 if (vmcs12
->vmcs_link_pointer
!= -1ull) {
10186 nested_vmx_entry_failure(vcpu
, vmcs12
,
10187 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_VMCS_LINK_PTR
);
10192 * If the load IA32_EFER VM-entry control is 1, the following checks
10193 * are performed on the field for the IA32_EFER MSR:
10194 * - Bits reserved in the IA32_EFER MSR must be 0.
10195 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10196 * the IA-32e mode guest VM-exit control. It must also be identical
10197 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10200 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
) {
10201 ia32e
= (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
) != 0;
10202 if (!kvm_valid_efer(vcpu
, vmcs12
->guest_ia32_efer
) ||
10203 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LMA
) ||
10204 ((vmcs12
->guest_cr0
& X86_CR0_PG
) &&
10205 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LME
))) {
10206 nested_vmx_entry_failure(vcpu
, vmcs12
,
10207 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
10213 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10214 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10215 * the values of the LMA and LME bits in the field must each be that of
10216 * the host address-space size VM-exit control.
10218 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
) {
10219 ia32e
= (vmcs12
->vm_exit_controls
&
10220 VM_EXIT_HOST_ADDR_SPACE_SIZE
) != 0;
10221 if (!kvm_valid_efer(vcpu
, vmcs12
->host_ia32_efer
) ||
10222 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LMA
) ||
10223 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LME
)) {
10224 nested_vmx_entry_failure(vcpu
, vmcs12
,
10225 EXIT_REASON_INVALID_STATE
, ENTRY_FAIL_DEFAULT
);
10231 * We're finally done with prerequisite checking, and can start with
10232 * the nested entry.
10235 vmcs02
= nested_get_current_vmcs02(vmx
);
10239 enter_guest_mode(vcpu
);
10241 vmx
->nested
.vmcs01_tsc_offset
= vmcs_read64(TSC_OFFSET
);
10243 if (!(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
))
10244 vmx
->nested
.vmcs01_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
10247 vmx
->loaded_vmcs
= vmcs02
;
10248 vmx_vcpu_put(vcpu
);
10249 vmx_vcpu_load(vcpu
, cpu
);
10253 vmx_segment_cache_clear(vmx
);
10255 prepare_vmcs02(vcpu
, vmcs12
);
10257 msr_entry_idx
= nested_vmx_load_msr(vcpu
,
10258 vmcs12
->vm_entry_msr_load_addr
,
10259 vmcs12
->vm_entry_msr_load_count
);
10260 if (msr_entry_idx
) {
10261 leave_guest_mode(vcpu
);
10262 vmx_load_vmcs01(vcpu
);
10263 nested_vmx_entry_failure(vcpu
, vmcs12
,
10264 EXIT_REASON_MSR_LOAD_FAIL
, msr_entry_idx
);
10268 vmcs12
->launch_state
= 1;
10270 if (vmcs12
->guest_activity_state
== GUEST_ACTIVITY_HLT
)
10271 return kvm_vcpu_halt(vcpu
);
10273 vmx
->nested
.nested_run_pending
= 1;
10276 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10277 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10278 * returned as far as L1 is concerned. It will only return (and set
10279 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10285 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10286 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10287 * This function returns the new value we should put in vmcs12.guest_cr0.
10288 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10289 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10290 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10291 * didn't trap the bit, because if L1 did, so would L0).
10292 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10293 * been modified by L2, and L1 knows it. So just leave the old value of
10294 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10295 * isn't relevant, because if L0 traps this bit it can set it to anything.
10296 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10297 * changed these bits, and therefore they need to be updated, but L0
10298 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10299 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10301 static inline unsigned long
10302 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
10305 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
10306 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
10307 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
10308 vcpu
->arch
.cr0_guest_owned_bits
));
10311 static inline unsigned long
10312 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
10315 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
10316 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
10317 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
10318 vcpu
->arch
.cr4_guest_owned_bits
));
10321 static void vmcs12_save_pending_event(struct kvm_vcpu
*vcpu
,
10322 struct vmcs12
*vmcs12
)
10327 if (vcpu
->arch
.exception
.pending
&& vcpu
->arch
.exception
.reinject
) {
10328 nr
= vcpu
->arch
.exception
.nr
;
10329 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
10331 if (kvm_exception_is_soft(nr
)) {
10332 vmcs12
->vm_exit_instruction_len
=
10333 vcpu
->arch
.event_exit_inst_len
;
10334 idt_vectoring
|= INTR_TYPE_SOFT_EXCEPTION
;
10336 idt_vectoring
|= INTR_TYPE_HARD_EXCEPTION
;
10338 if (vcpu
->arch
.exception
.has_error_code
) {
10339 idt_vectoring
|= VECTORING_INFO_DELIVER_CODE_MASK
;
10340 vmcs12
->idt_vectoring_error_code
=
10341 vcpu
->arch
.exception
.error_code
;
10344 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
10345 } else if (vcpu
->arch
.nmi_injected
) {
10346 vmcs12
->idt_vectoring_info_field
=
10347 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
;
10348 } else if (vcpu
->arch
.interrupt
.pending
) {
10349 nr
= vcpu
->arch
.interrupt
.nr
;
10350 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
10352 if (vcpu
->arch
.interrupt
.soft
) {
10353 idt_vectoring
|= INTR_TYPE_SOFT_INTR
;
10354 vmcs12
->vm_entry_instruction_len
=
10355 vcpu
->arch
.event_exit_inst_len
;
10357 idt_vectoring
|= INTR_TYPE_EXT_INTR
;
10359 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
10363 static int vmx_check_nested_events(struct kvm_vcpu
*vcpu
, bool external_intr
)
10365 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10367 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu
)) &&
10368 vmx
->nested
.preemption_timer_expired
) {
10369 if (vmx
->nested
.nested_run_pending
)
10371 nested_vmx_vmexit(vcpu
, EXIT_REASON_PREEMPTION_TIMER
, 0, 0);
10375 if (vcpu
->arch
.nmi_pending
&& nested_exit_on_nmi(vcpu
)) {
10376 if (vmx
->nested
.nested_run_pending
||
10377 vcpu
->arch
.interrupt
.pending
)
10379 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
10380 NMI_VECTOR
| INTR_TYPE_NMI_INTR
|
10381 INTR_INFO_VALID_MASK
, 0);
10383 * The NMI-triggered VM exit counts as injection:
10384 * clear this one and block further NMIs.
10386 vcpu
->arch
.nmi_pending
= 0;
10387 vmx_set_nmi_mask(vcpu
, true);
10391 if ((kvm_cpu_has_interrupt(vcpu
) || external_intr
) &&
10392 nested_exit_on_intr(vcpu
)) {
10393 if (vmx
->nested
.nested_run_pending
)
10395 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXTERNAL_INTERRUPT
, 0, 0);
10399 return vmx_complete_nested_posted_interrupt(vcpu
);
10402 static u32
vmx_get_preemption_timer_value(struct kvm_vcpu
*vcpu
)
10404 ktime_t remaining
=
10405 hrtimer_get_remaining(&to_vmx(vcpu
)->nested
.preemption_timer
);
10408 if (ktime_to_ns(remaining
) <= 0)
10411 value
= ktime_to_ns(remaining
) * vcpu
->arch
.virtual_tsc_khz
;
10412 do_div(value
, 1000000);
10413 return value
>> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
10417 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10418 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10419 * and this function updates it to reflect the changes to the guest state while
10420 * L2 was running (and perhaps made some exits which were handled directly by L0
10421 * without going back to L1), and to reflect the exit reason.
10422 * Note that we do not have to copy here all VMCS fields, just those that
10423 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10424 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10425 * which already writes to vmcs12 directly.
10427 static void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
10428 u32 exit_reason
, u32 exit_intr_info
,
10429 unsigned long exit_qualification
)
10431 /* update guest state fields: */
10432 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
10433 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
10435 vmcs12
->guest_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
10436 vmcs12
->guest_rip
= kvm_register_read(vcpu
, VCPU_REGS_RIP
);
10437 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
10439 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
10440 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
10441 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
10442 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
10443 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
10444 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
10445 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
10446 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
10447 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
10448 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
10449 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
10450 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
10451 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
10452 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
10453 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
10454 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
10455 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
10456 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
10457 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
10458 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
10459 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
10460 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
10461 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
10462 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
10463 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
10464 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
10465 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
10466 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
10467 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
10468 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
10469 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
10470 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
10471 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
10472 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
10473 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
10474 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
10476 vmcs12
->guest_interruptibility_info
=
10477 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
10478 vmcs12
->guest_pending_dbg_exceptions
=
10479 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
10480 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
10481 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_HLT
;
10483 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_ACTIVE
;
10485 if (nested_cpu_has_preemption_timer(vmcs12
)) {
10486 if (vmcs12
->vm_exit_controls
&
10487 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
)
10488 vmcs12
->vmx_preemption_timer_value
=
10489 vmx_get_preemption_timer_value(vcpu
);
10490 hrtimer_cancel(&to_vmx(vcpu
)->nested
.preemption_timer
);
10494 * In some cases (usually, nested EPT), L2 is allowed to change its
10495 * own CR3 without exiting. If it has changed it, we must keep it.
10496 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10497 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10499 * Additionally, restore L2's PDPTR to vmcs12.
10502 vmcs12
->guest_cr3
= vmcs_readl(GUEST_CR3
);
10503 vmcs12
->guest_pdptr0
= vmcs_read64(GUEST_PDPTR0
);
10504 vmcs12
->guest_pdptr1
= vmcs_read64(GUEST_PDPTR1
);
10505 vmcs12
->guest_pdptr2
= vmcs_read64(GUEST_PDPTR2
);
10506 vmcs12
->guest_pdptr3
= vmcs_read64(GUEST_PDPTR3
);
10509 if (nested_cpu_has_vid(vmcs12
))
10510 vmcs12
->guest_intr_status
= vmcs_read16(GUEST_INTR_STATUS
);
10512 vmcs12
->vm_entry_controls
=
10513 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_IA32E_MODE
) |
10514 (vm_entry_controls_get(to_vmx(vcpu
)) & VM_ENTRY_IA32E_MODE
);
10516 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_DEBUG_CONTROLS
) {
10517 kvm_get_dr(vcpu
, 7, (unsigned long *)&vmcs12
->guest_dr7
);
10518 vmcs12
->guest_ia32_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
10521 /* TODO: These cannot have changed unless we have MSR bitmaps and
10522 * the relevant bit asks not to trap the change */
10523 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_PAT
)
10524 vmcs12
->guest_ia32_pat
= vmcs_read64(GUEST_IA32_PAT
);
10525 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_EFER
)
10526 vmcs12
->guest_ia32_efer
= vcpu
->arch
.efer
;
10527 vmcs12
->guest_sysenter_cs
= vmcs_read32(GUEST_SYSENTER_CS
);
10528 vmcs12
->guest_sysenter_esp
= vmcs_readl(GUEST_SYSENTER_ESP
);
10529 vmcs12
->guest_sysenter_eip
= vmcs_readl(GUEST_SYSENTER_EIP
);
10530 if (kvm_mpx_supported())
10531 vmcs12
->guest_bndcfgs
= vmcs_read64(GUEST_BNDCFGS
);
10532 if (nested_cpu_has_xsaves(vmcs12
))
10533 vmcs12
->xss_exit_bitmap
= vmcs_read64(XSS_EXIT_BITMAP
);
10535 /* update exit information fields: */
10537 vmcs12
->vm_exit_reason
= exit_reason
;
10538 vmcs12
->exit_qualification
= exit_qualification
;
10540 vmcs12
->vm_exit_intr_info
= exit_intr_info
;
10541 if ((vmcs12
->vm_exit_intr_info
&
10542 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) ==
10543 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
))
10544 vmcs12
->vm_exit_intr_error_code
=
10545 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
10546 vmcs12
->idt_vectoring_info_field
= 0;
10547 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
10548 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
10550 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
)) {
10551 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10552 * instead of reading the real value. */
10553 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
10556 * Transfer the event that L0 or L1 may wanted to inject into
10557 * L2 to IDT_VECTORING_INFO_FIELD.
10559 vmcs12_save_pending_event(vcpu
, vmcs12
);
10563 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10564 * preserved above and would only end up incorrectly in L1.
10566 vcpu
->arch
.nmi_injected
= false;
10567 kvm_clear_exception_queue(vcpu
);
10568 kvm_clear_interrupt_queue(vcpu
);
10572 * A part of what we need to when the nested L2 guest exits and we want to
10573 * run its L1 parent, is to reset L1's guest state to the host state specified
10575 * This function is to be called not only on normal nested exit, but also on
10576 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10577 * Failures During or After Loading Guest State").
10578 * This function should be called when the active VMCS is L1's (vmcs01).
10580 static void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
,
10581 struct vmcs12
*vmcs12
)
10583 struct kvm_segment seg
;
10585 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
10586 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
10587 else if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
10588 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
10590 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
10591 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
10593 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->host_rsp
);
10594 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->host_rip
);
10595 vmx_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
10597 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10598 * actually changed, because it depends on the current state of
10599 * fpu_active (which may have changed).
10600 * Note that vmx_set_cr0 refers to efer set above.
10602 vmx_set_cr0(vcpu
, vmcs12
->host_cr0
);
10604 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10605 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10606 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10608 update_exception_bitmap(vcpu
);
10609 vcpu
->arch
.cr0_guest_owned_bits
= (vcpu
->fpu_active
? X86_CR0_TS
: 0);
10610 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
10613 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10614 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10616 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
10617 kvm_set_cr4(vcpu
, vmcs12
->host_cr4
);
10619 nested_ept_uninit_mmu_context(vcpu
);
10621 kvm_set_cr3(vcpu
, vmcs12
->host_cr3
);
10622 kvm_mmu_reset_context(vcpu
);
10625 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
10629 * Trivially support vpid by letting L2s share their parent
10630 * L1's vpid. TODO: move to a more elaborate solution, giving
10631 * each L2 its own vpid and exposing the vpid feature to L1.
10633 vmx_flush_tlb(vcpu
);
10637 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
10638 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
10639 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
10640 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
10641 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
10643 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10644 if (vmcs12
->vm_exit_controls
& VM_EXIT_CLEAR_BNDCFGS
)
10645 vmcs_write64(GUEST_BNDCFGS
, 0);
10647 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
) {
10648 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
10649 vcpu
->arch
.pat
= vmcs12
->host_ia32_pat
;
10651 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
10652 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL
,
10653 vmcs12
->host_ia32_perf_global_ctrl
);
10655 /* Set L1 segment info according to Intel SDM
10656 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10657 seg
= (struct kvm_segment
) {
10659 .limit
= 0xFFFFFFFF,
10660 .selector
= vmcs12
->host_cs_selector
,
10666 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
10670 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_CS
);
10671 seg
= (struct kvm_segment
) {
10673 .limit
= 0xFFFFFFFF,
10680 seg
.selector
= vmcs12
->host_ds_selector
;
10681 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_DS
);
10682 seg
.selector
= vmcs12
->host_es_selector
;
10683 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_ES
);
10684 seg
.selector
= vmcs12
->host_ss_selector
;
10685 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_SS
);
10686 seg
.selector
= vmcs12
->host_fs_selector
;
10687 seg
.base
= vmcs12
->host_fs_base
;
10688 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_FS
);
10689 seg
.selector
= vmcs12
->host_gs_selector
;
10690 seg
.base
= vmcs12
->host_gs_base
;
10691 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_GS
);
10692 seg
= (struct kvm_segment
) {
10693 .base
= vmcs12
->host_tr_base
,
10695 .selector
= vmcs12
->host_tr_selector
,
10699 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_TR
);
10701 kvm_set_dr(vcpu
, 7, 0x400);
10702 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
10704 if (cpu_has_vmx_msr_bitmap())
10705 vmx_set_msr_bitmap(vcpu
);
10707 if (nested_vmx_load_msr(vcpu
, vmcs12
->vm_exit_msr_load_addr
,
10708 vmcs12
->vm_exit_msr_load_count
))
10709 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_MSR_FAIL
);
10713 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10714 * and modify vmcs12 to make it see what it would expect to see there if
10715 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10717 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
10718 u32 exit_intr_info
,
10719 unsigned long exit_qualification
)
10721 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10722 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
10724 /* trying to cancel vmlaunch/vmresume is a bug */
10725 WARN_ON_ONCE(vmx
->nested
.nested_run_pending
);
10727 leave_guest_mode(vcpu
);
10728 prepare_vmcs12(vcpu
, vmcs12
, exit_reason
, exit_intr_info
,
10729 exit_qualification
);
10731 if (nested_vmx_store_msr(vcpu
, vmcs12
->vm_exit_msr_store_addr
,
10732 vmcs12
->vm_exit_msr_store_count
))
10733 nested_vmx_abort(vcpu
, VMX_ABORT_SAVE_GUEST_MSR_FAIL
);
10735 vmx_load_vmcs01(vcpu
);
10737 if ((exit_reason
== EXIT_REASON_EXTERNAL_INTERRUPT
)
10738 && nested_exit_intr_ack_set(vcpu
)) {
10739 int irq
= kvm_cpu_get_interrupt(vcpu
);
10741 vmcs12
->vm_exit_intr_info
= irq
|
10742 INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
;
10745 trace_kvm_nested_vmexit_inject(vmcs12
->vm_exit_reason
,
10746 vmcs12
->exit_qualification
,
10747 vmcs12
->idt_vectoring_info_field
,
10748 vmcs12
->vm_exit_intr_info
,
10749 vmcs12
->vm_exit_intr_error_code
,
10752 vm_entry_controls_reset_shadow(vmx
);
10753 vm_exit_controls_reset_shadow(vmx
);
10754 vmx_segment_cache_clear(vmx
);
10756 /* if no vmcs02 cache requested, remove the one we used */
10757 if (VMCS02_POOL_SIZE
== 0)
10758 nested_free_vmcs02(vmx
, vmx
->nested
.current_vmptr
);
10760 load_vmcs12_host_state(vcpu
, vmcs12
);
10762 /* Update any VMCS fields that might have changed while L2 ran */
10763 vmcs_write64(TSC_OFFSET
, vmx
->nested
.vmcs01_tsc_offset
);
10764 if (vmx
->hv_deadline_tsc
== -1)
10765 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL
,
10766 PIN_BASED_VMX_PREEMPTION_TIMER
);
10768 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL
,
10769 PIN_BASED_VMX_PREEMPTION_TIMER
);
10771 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10774 /* Unpin physical memory we referred to in vmcs02 */
10775 if (vmx
->nested
.apic_access_page
) {
10776 nested_release_page(vmx
->nested
.apic_access_page
);
10777 vmx
->nested
.apic_access_page
= NULL
;
10779 if (vmx
->nested
.virtual_apic_page
) {
10780 nested_release_page(vmx
->nested
.virtual_apic_page
);
10781 vmx
->nested
.virtual_apic_page
= NULL
;
10783 if (vmx
->nested
.pi_desc_page
) {
10784 kunmap(vmx
->nested
.pi_desc_page
);
10785 nested_release_page(vmx
->nested
.pi_desc_page
);
10786 vmx
->nested
.pi_desc_page
= NULL
;
10787 vmx
->nested
.pi_desc
= NULL
;
10791 * We are now running in L2, mmu_notifier will force to reload the
10792 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10794 kvm_vcpu_reload_apic_access_page(vcpu
);
10797 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10798 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10799 * success or failure flag accordingly.
10801 if (unlikely(vmx
->fail
)) {
10803 nested_vmx_failValid(vcpu
, vmcs_read32(VM_INSTRUCTION_ERROR
));
10805 nested_vmx_succeed(vcpu
);
10806 if (enable_shadow_vmcs
)
10807 vmx
->nested
.sync_shadow_vmcs
= true;
10809 /* in case we halted in L2 */
10810 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
10814 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10816 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
)
10818 if (is_guest_mode(vcpu
))
10819 nested_vmx_vmexit(vcpu
, -1, 0, 0);
10820 free_nested(to_vmx(vcpu
));
10824 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10825 * 23.7 "VM-entry failures during or after loading guest state" (this also
10826 * lists the acceptable exit-reason and exit-qualification parameters).
10827 * It should only be called before L2 actually succeeded to run, and when
10828 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10830 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
10831 struct vmcs12
*vmcs12
,
10832 u32 reason
, unsigned long qualification
)
10834 load_vmcs12_host_state(vcpu
, vmcs12
);
10835 vmcs12
->vm_exit_reason
= reason
| VMX_EXIT_REASONS_FAILED_VMENTRY
;
10836 vmcs12
->exit_qualification
= qualification
;
10837 nested_vmx_succeed(vcpu
);
10838 if (enable_shadow_vmcs
)
10839 to_vmx(vcpu
)->nested
.sync_shadow_vmcs
= true;
10842 static int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
10843 struct x86_instruction_info
*info
,
10844 enum x86_intercept_stage stage
)
10846 return X86EMUL_CONTINUE
;
10849 #ifdef CONFIG_X86_64
10850 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
10851 static inline int u64_shl_div_u64(u64 a
, unsigned int shift
,
10852 u64 divisor
, u64
*result
)
10854 u64 low
= a
<< shift
, high
= a
>> (64 - shift
);
10856 /* To avoid the overflow on divq */
10857 if (high
>= divisor
)
10860 /* Low hold the result, high hold rem which is discarded */
10861 asm("divq %2\n\t" : "=a" (low
), "=d" (high
) :
10862 "rm" (divisor
), "0" (low
), "1" (high
));
10868 static int vmx_set_hv_timer(struct kvm_vcpu
*vcpu
, u64 guest_deadline_tsc
)
10870 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10871 u64 tscl
= rdtsc();
10872 u64 guest_tscl
= kvm_read_l1_tsc(vcpu
, tscl
);
10873 u64 delta_tsc
= max(guest_deadline_tsc
, guest_tscl
) - guest_tscl
;
10875 /* Convert to host delta tsc if tsc scaling is enabled */
10876 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
&&
10877 u64_shl_div_u64(delta_tsc
,
10878 kvm_tsc_scaling_ratio_frac_bits
,
10879 vcpu
->arch
.tsc_scaling_ratio
,
10884 * If the delta tsc can't fit in the 32 bit after the multi shift,
10885 * we can't use the preemption timer.
10886 * It's possible that it fits on later vmentries, but checking
10887 * on every vmentry is costly so we just use an hrtimer.
10889 if (delta_tsc
>> (cpu_preemption_timer_multi
+ 32))
10892 vmx
->hv_deadline_tsc
= tscl
+ delta_tsc
;
10893 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL
,
10894 PIN_BASED_VMX_PREEMPTION_TIMER
);
10898 static void vmx_cancel_hv_timer(struct kvm_vcpu
*vcpu
)
10900 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10901 vmx
->hv_deadline_tsc
= -1;
10902 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL
,
10903 PIN_BASED_VMX_PREEMPTION_TIMER
);
10907 static void vmx_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
10910 shrink_ple_window(vcpu
);
10913 static void vmx_slot_enable_log_dirty(struct kvm
*kvm
,
10914 struct kvm_memory_slot
*slot
)
10916 kvm_mmu_slot_leaf_clear_dirty(kvm
, slot
);
10917 kvm_mmu_slot_largepage_remove_write_access(kvm
, slot
);
10920 static void vmx_slot_disable_log_dirty(struct kvm
*kvm
,
10921 struct kvm_memory_slot
*slot
)
10923 kvm_mmu_slot_set_dirty(kvm
, slot
);
10926 static void vmx_flush_log_dirty(struct kvm
*kvm
)
10928 kvm_flush_pml_buffers(kvm
);
10931 static void vmx_enable_log_dirty_pt_masked(struct kvm
*kvm
,
10932 struct kvm_memory_slot
*memslot
,
10933 gfn_t offset
, unsigned long mask
)
10935 kvm_mmu_clear_dirty_pt_masked(kvm
, memslot
, offset
, mask
);
10939 * This routine does the following things for vCPU which is going
10940 * to be blocked if VT-d PI is enabled.
10941 * - Store the vCPU to the wakeup list, so when interrupts happen
10942 * we can find the right vCPU to wake up.
10943 * - Change the Posted-interrupt descriptor as below:
10944 * 'NDST' <-- vcpu->pre_pcpu
10945 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10946 * - If 'ON' is set during this process, which means at least one
10947 * interrupt is posted for this vCPU, we cannot block it, in
10948 * this case, return 1, otherwise, return 0.
10951 static int pi_pre_block(struct kvm_vcpu
*vcpu
)
10953 unsigned long flags
;
10955 struct pi_desc old
, new;
10956 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
10958 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
10959 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
10960 !kvm_vcpu_apicv_active(vcpu
))
10963 vcpu
->pre_pcpu
= vcpu
->cpu
;
10964 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock
,
10965 vcpu
->pre_pcpu
), flags
);
10966 list_add_tail(&vcpu
->blocked_vcpu_list
,
10967 &per_cpu(blocked_vcpu_on_cpu
,
10969 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock
,
10970 vcpu
->pre_pcpu
), flags
);
10973 old
.control
= new.control
= pi_desc
->control
;
10976 * We should not block the vCPU if
10977 * an interrupt is posted for it.
10979 if (pi_test_on(pi_desc
) == 1) {
10980 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock
,
10981 vcpu
->pre_pcpu
), flags
);
10982 list_del(&vcpu
->blocked_vcpu_list
);
10983 spin_unlock_irqrestore(
10984 &per_cpu(blocked_vcpu_on_cpu_lock
,
10985 vcpu
->pre_pcpu
), flags
);
10986 vcpu
->pre_pcpu
= -1;
10991 WARN((pi_desc
->sn
== 1),
10992 "Warning: SN field of posted-interrupts "
10993 "is set before blocking\n");
10996 * Since vCPU can be preempted during this process,
10997 * vcpu->cpu could be different with pre_pcpu, we
10998 * need to set pre_pcpu as the destination of wakeup
10999 * notification event, then we can find the right vCPU
11000 * to wakeup in wakeup handler if interrupts happen
11001 * when the vCPU is in blocked state.
11003 dest
= cpu_physical_id(vcpu
->pre_pcpu
);
11005 if (x2apic_enabled())
11008 new.ndst
= (dest
<< 8) & 0xFF00;
11010 /* set 'NV' to 'wakeup vector' */
11011 new.nv
= POSTED_INTR_WAKEUP_VECTOR
;
11012 } while (cmpxchg(&pi_desc
->control
, old
.control
,
11013 new.control
) != old
.control
);
11018 static int vmx_pre_block(struct kvm_vcpu
*vcpu
)
11020 if (pi_pre_block(vcpu
))
11023 if (kvm_lapic_hv_timer_in_use(vcpu
))
11024 kvm_lapic_switch_to_sw_timer(vcpu
);
11029 static void pi_post_block(struct kvm_vcpu
*vcpu
)
11031 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
11032 struct pi_desc old
, new;
11034 unsigned long flags
;
11036 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
11037 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
11038 !kvm_vcpu_apicv_active(vcpu
))
11042 old
.control
= new.control
= pi_desc
->control
;
11044 dest
= cpu_physical_id(vcpu
->cpu
);
11046 if (x2apic_enabled())
11049 new.ndst
= (dest
<< 8) & 0xFF00;
11051 /* Allow posting non-urgent interrupts */
11054 /* set 'NV' to 'notification vector' */
11055 new.nv
= POSTED_INTR_VECTOR
;
11056 } while (cmpxchg(&pi_desc
->control
, old
.control
,
11057 new.control
) != old
.control
);
11059 if(vcpu
->pre_pcpu
!= -1) {
11061 &per_cpu(blocked_vcpu_on_cpu_lock
,
11062 vcpu
->pre_pcpu
), flags
);
11063 list_del(&vcpu
->blocked_vcpu_list
);
11064 spin_unlock_irqrestore(
11065 &per_cpu(blocked_vcpu_on_cpu_lock
,
11066 vcpu
->pre_pcpu
), flags
);
11067 vcpu
->pre_pcpu
= -1;
11071 static void vmx_post_block(struct kvm_vcpu
*vcpu
)
11073 if (kvm_x86_ops
->set_hv_timer
)
11074 kvm_lapic_switch_to_hv_timer(vcpu
);
11076 pi_post_block(vcpu
);
11080 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11083 * @host_irq: host irq of the interrupt
11084 * @guest_irq: gsi of the interrupt
11085 * @set: set or unset PI
11086 * returns 0 on success, < 0 on failure
11088 static int vmx_update_pi_irte(struct kvm
*kvm
, unsigned int host_irq
,
11089 uint32_t guest_irq
, bool set
)
11091 struct kvm_kernel_irq_routing_entry
*e
;
11092 struct kvm_irq_routing_table
*irq_rt
;
11093 struct kvm_lapic_irq irq
;
11094 struct kvm_vcpu
*vcpu
;
11095 struct vcpu_data vcpu_info
;
11096 int idx
, ret
= -EINVAL
;
11098 if (!kvm_arch_has_assigned_device(kvm
) ||
11099 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
11100 !kvm_vcpu_apicv_active(kvm
->vcpus
[0]))
11103 idx
= srcu_read_lock(&kvm
->irq_srcu
);
11104 irq_rt
= srcu_dereference(kvm
->irq_routing
, &kvm
->irq_srcu
);
11105 BUG_ON(guest_irq
>= irq_rt
->nr_rt_entries
);
11107 hlist_for_each_entry(e
, &irq_rt
->map
[guest_irq
], link
) {
11108 if (e
->type
!= KVM_IRQ_ROUTING_MSI
)
11111 * VT-d PI cannot support posting multicast/broadcast
11112 * interrupts to a vCPU, we still use interrupt remapping
11113 * for these kind of interrupts.
11115 * For lowest-priority interrupts, we only support
11116 * those with single CPU as the destination, e.g. user
11117 * configures the interrupts via /proc/irq or uses
11118 * irqbalance to make the interrupts single-CPU.
11120 * We will support full lowest-priority interrupt later.
11123 kvm_set_msi_irq(kvm
, e
, &irq
);
11124 if (!kvm_intr_is_single_vcpu(kvm
, &irq
, &vcpu
)) {
11126 * Make sure the IRTE is in remapped mode if
11127 * we don't handle it in posted mode.
11129 ret
= irq_set_vcpu_affinity(host_irq
, NULL
);
11132 "failed to back to remapped mode, irq: %u\n",
11140 vcpu_info
.pi_desc_addr
= __pa(vcpu_to_pi_desc(vcpu
));
11141 vcpu_info
.vector
= irq
.vector
;
11143 trace_kvm_pi_irte_update(vcpu
->vcpu_id
, host_irq
, e
->gsi
,
11144 vcpu_info
.vector
, vcpu_info
.pi_desc_addr
, set
);
11147 ret
= irq_set_vcpu_affinity(host_irq
, &vcpu_info
);
11149 /* suppress notification event before unposting */
11150 pi_set_sn(vcpu_to_pi_desc(vcpu
));
11151 ret
= irq_set_vcpu_affinity(host_irq
, NULL
);
11152 pi_clear_sn(vcpu_to_pi_desc(vcpu
));
11156 printk(KERN_INFO
"%s: failed to update PI IRTE\n",
11164 srcu_read_unlock(&kvm
->irq_srcu
, idx
);
11168 static void vmx_setup_mce(struct kvm_vcpu
*vcpu
)
11170 if (vcpu
->arch
.mcg_cap
& MCG_LMCE_P
)
11171 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
|=
11172 FEATURE_CONTROL_LMCE
;
11174 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
&=
11175 ~FEATURE_CONTROL_LMCE
;
11178 static struct kvm_x86_ops vmx_x86_ops
= {
11179 .cpu_has_kvm_support
= cpu_has_kvm_support
,
11180 .disabled_by_bios
= vmx_disabled_by_bios
,
11181 .hardware_setup
= hardware_setup
,
11182 .hardware_unsetup
= hardware_unsetup
,
11183 .check_processor_compatibility
= vmx_check_processor_compat
,
11184 .hardware_enable
= hardware_enable
,
11185 .hardware_disable
= hardware_disable
,
11186 .cpu_has_accelerated_tpr
= report_flexpriority
,
11187 .cpu_has_high_real_mode_segbase
= vmx_has_high_real_mode_segbase
,
11189 .vcpu_create
= vmx_create_vcpu
,
11190 .vcpu_free
= vmx_free_vcpu
,
11191 .vcpu_reset
= vmx_vcpu_reset
,
11193 .prepare_guest_switch
= vmx_save_host_state
,
11194 .vcpu_load
= vmx_vcpu_load
,
11195 .vcpu_put
= vmx_vcpu_put
,
11197 .update_bp_intercept
= update_exception_bitmap
,
11198 .get_msr
= vmx_get_msr
,
11199 .set_msr
= vmx_set_msr
,
11200 .get_segment_base
= vmx_get_segment_base
,
11201 .get_segment
= vmx_get_segment
,
11202 .set_segment
= vmx_set_segment
,
11203 .get_cpl
= vmx_get_cpl
,
11204 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
11205 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
11206 .decache_cr3
= vmx_decache_cr3
,
11207 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
11208 .set_cr0
= vmx_set_cr0
,
11209 .set_cr3
= vmx_set_cr3
,
11210 .set_cr4
= vmx_set_cr4
,
11211 .set_efer
= vmx_set_efer
,
11212 .get_idt
= vmx_get_idt
,
11213 .set_idt
= vmx_set_idt
,
11214 .get_gdt
= vmx_get_gdt
,
11215 .set_gdt
= vmx_set_gdt
,
11216 .get_dr6
= vmx_get_dr6
,
11217 .set_dr6
= vmx_set_dr6
,
11218 .set_dr7
= vmx_set_dr7
,
11219 .sync_dirty_debug_regs
= vmx_sync_dirty_debug_regs
,
11220 .cache_reg
= vmx_cache_reg
,
11221 .get_rflags
= vmx_get_rflags
,
11222 .set_rflags
= vmx_set_rflags
,
11224 .get_pkru
= vmx_get_pkru
,
11226 .fpu_activate
= vmx_fpu_activate
,
11227 .fpu_deactivate
= vmx_fpu_deactivate
,
11229 .tlb_flush
= vmx_flush_tlb
,
11231 .run
= vmx_vcpu_run
,
11232 .handle_exit
= vmx_handle_exit
,
11233 .skip_emulated_instruction
= skip_emulated_instruction
,
11234 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
11235 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
11236 .patch_hypercall
= vmx_patch_hypercall
,
11237 .set_irq
= vmx_inject_irq
,
11238 .set_nmi
= vmx_inject_nmi
,
11239 .queue_exception
= vmx_queue_exception
,
11240 .cancel_injection
= vmx_cancel_injection
,
11241 .interrupt_allowed
= vmx_interrupt_allowed
,
11242 .nmi_allowed
= vmx_nmi_allowed
,
11243 .get_nmi_mask
= vmx_get_nmi_mask
,
11244 .set_nmi_mask
= vmx_set_nmi_mask
,
11245 .enable_nmi_window
= enable_nmi_window
,
11246 .enable_irq_window
= enable_irq_window
,
11247 .update_cr8_intercept
= update_cr8_intercept
,
11248 .set_virtual_x2apic_mode
= vmx_set_virtual_x2apic_mode
,
11249 .set_apic_access_page_addr
= vmx_set_apic_access_page_addr
,
11250 .get_enable_apicv
= vmx_get_enable_apicv
,
11251 .refresh_apicv_exec_ctrl
= vmx_refresh_apicv_exec_ctrl
,
11252 .load_eoi_exitmap
= vmx_load_eoi_exitmap
,
11253 .hwapic_irr_update
= vmx_hwapic_irr_update
,
11254 .hwapic_isr_update
= vmx_hwapic_isr_update
,
11255 .sync_pir_to_irr
= vmx_sync_pir_to_irr
,
11256 .deliver_posted_interrupt
= vmx_deliver_posted_interrupt
,
11258 .set_tss_addr
= vmx_set_tss_addr
,
11259 .get_tdp_level
= get_ept_level
,
11260 .get_mt_mask
= vmx_get_mt_mask
,
11262 .get_exit_info
= vmx_get_exit_info
,
11264 .get_lpage_level
= vmx_get_lpage_level
,
11266 .cpuid_update
= vmx_cpuid_update
,
11268 .rdtscp_supported
= vmx_rdtscp_supported
,
11269 .invpcid_supported
= vmx_invpcid_supported
,
11271 .set_supported_cpuid
= vmx_set_supported_cpuid
,
11273 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
11275 .read_tsc_offset
= vmx_read_tsc_offset
,
11276 .write_tsc_offset
= vmx_write_tsc_offset
,
11277 .adjust_tsc_offset_guest
= vmx_adjust_tsc_offset_guest
,
11278 .read_l1_tsc
= vmx_read_l1_tsc
,
11280 .set_tdp_cr3
= vmx_set_cr3
,
11282 .check_intercept
= vmx_check_intercept
,
11283 .handle_external_intr
= vmx_handle_external_intr
,
11284 .mpx_supported
= vmx_mpx_supported
,
11285 .xsaves_supported
= vmx_xsaves_supported
,
11287 .check_nested_events
= vmx_check_nested_events
,
11289 .sched_in
= vmx_sched_in
,
11291 .slot_enable_log_dirty
= vmx_slot_enable_log_dirty
,
11292 .slot_disable_log_dirty
= vmx_slot_disable_log_dirty
,
11293 .flush_log_dirty
= vmx_flush_log_dirty
,
11294 .enable_log_dirty_pt_masked
= vmx_enable_log_dirty_pt_masked
,
11296 .pre_block
= vmx_pre_block
,
11297 .post_block
= vmx_post_block
,
11299 .pmu_ops
= &intel_pmu_ops
,
11301 .update_pi_irte
= vmx_update_pi_irte
,
11303 #ifdef CONFIG_X86_64
11304 .set_hv_timer
= vmx_set_hv_timer
,
11305 .cancel_hv_timer
= vmx_cancel_hv_timer
,
11308 .setup_mce
= vmx_setup_mce
,
11311 static int __init
vmx_init(void)
11313 int r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
11314 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
11318 #ifdef CONFIG_KEXEC_CORE
11319 rcu_assign_pointer(crash_vmclear_loaded_vmcss
,
11320 crash_vmclear_local_loaded_vmcss
);
11326 static void __exit
vmx_exit(void)
11328 #ifdef CONFIG_KEXEC_CORE
11329 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss
, NULL
);
11336 module_init(vmx_init
)
11337 module_exit(vmx_exit
)