2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include "assigned-dev.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
59 #include <asm/debugreg.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
69 #define CREATE_TRACE_POINTS
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported
= MCG_CTL_P
| MCG_SER_P
;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported
);
77 #define emul_to_vcpu(ctxt) \
78 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81 * - enable syscall per default because its emulated by KVM
82 * - enable LME and LMA per default on 64 bit KVM
86 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
88 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
98 static void process_nmi(struct kvm_vcpu
*vcpu
);
99 static void enter_smm(struct kvm_vcpu
*vcpu
);
100 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
102 struct kvm_x86_ops
*kvm_x86_ops __read_mostly
;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
105 static bool __read_mostly ignore_msrs
= 0;
106 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
108 unsigned int min_timer_period_us
= 500;
109 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
111 static bool __read_mostly kvmclock_periodic_sync
= true;
112 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
114 bool __read_mostly kvm_has_tsc_control
;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
116 u32 __read_mostly kvm_max_guest_tsc_khz
;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
118 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits
;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits
);
120 u64 __read_mostly kvm_max_tsc_scaling_ratio
;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio
);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio
;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio
);
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm
= 250;
127 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns
= 0;
131 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
133 static bool __read_mostly vector_hashing
= true;
134 module_param(vector_hashing
, bool, S_IRUGO
);
136 static bool __read_mostly backwards_tsc_observed
= false;
138 #define KVM_NR_SHARED_MSRS 16
140 struct kvm_shared_msrs_global
{
142 u32 msrs
[KVM_NR_SHARED_MSRS
];
145 struct kvm_shared_msrs
{
146 struct user_return_notifier urn
;
148 struct kvm_shared_msr_values
{
151 } values
[KVM_NR_SHARED_MSRS
];
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
155 static struct kvm_shared_msrs __percpu
*shared_msrs
;
157 struct kvm_stats_debugfs_item debugfs_entries
[] = {
158 { "pf_fixed", VCPU_STAT(pf_fixed
) },
159 { "pf_guest", VCPU_STAT(pf_guest
) },
160 { "tlb_flush", VCPU_STAT(tlb_flush
) },
161 { "invlpg", VCPU_STAT(invlpg
) },
162 { "exits", VCPU_STAT(exits
) },
163 { "io_exits", VCPU_STAT(io_exits
) },
164 { "mmio_exits", VCPU_STAT(mmio_exits
) },
165 { "signal_exits", VCPU_STAT(signal_exits
) },
166 { "irq_window", VCPU_STAT(irq_window_exits
) },
167 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
168 { "halt_exits", VCPU_STAT(halt_exits
) },
169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
) },
171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid
) },
172 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
173 { "hypercalls", VCPU_STAT(hypercalls
) },
174 { "request_irq", VCPU_STAT(request_irq_exits
) },
175 { "irq_exits", VCPU_STAT(irq_exits
) },
176 { "host_state_reload", VCPU_STAT(host_state_reload
) },
177 { "efer_reload", VCPU_STAT(efer_reload
) },
178 { "fpu_reload", VCPU_STAT(fpu_reload
) },
179 { "insn_emulation", VCPU_STAT(insn_emulation
) },
180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
181 { "irq_injections", VCPU_STAT(irq_injections
) },
182 { "nmi_injections", VCPU_STAT(nmi_injections
) },
183 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
184 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
185 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
186 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
187 { "mmu_flooded", VM_STAT(mmu_flooded
) },
188 { "mmu_recycled", VM_STAT(mmu_recycled
) },
189 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
190 { "mmu_unsync", VM_STAT(mmu_unsync
) },
191 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
192 { "largepages", VM_STAT(lpages
) },
196 u64 __read_mostly host_xcr0
;
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
203 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
204 vcpu
->arch
.apf
.gfns
[i
] = ~0;
207 static void kvm_on_user_return(struct user_return_notifier
*urn
)
210 struct kvm_shared_msrs
*locals
211 = container_of(urn
, struct kvm_shared_msrs
, urn
);
212 struct kvm_shared_msr_values
*values
;
214 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
215 values
= &locals
->values
[slot
];
216 if (values
->host
!= values
->curr
) {
217 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
218 values
->curr
= values
->host
;
221 locals
->registered
= false;
222 user_return_notifier_unregister(urn
);
225 static void shared_msr_update(unsigned slot
, u32 msr
)
228 unsigned int cpu
= smp_processor_id();
229 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
231 /* only read, and nobody should modify it at this time,
232 * so don't need lock */
233 if (slot
>= shared_msrs_global
.nr
) {
234 printk(KERN_ERR
"kvm: invalid MSR slot!");
237 rdmsrl_safe(msr
, &value
);
238 smsr
->values
[slot
].host
= value
;
239 smsr
->values
[slot
].curr
= value
;
242 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
244 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
245 shared_msrs_global
.msrs
[slot
] = msr
;
246 if (slot
>= shared_msrs_global
.nr
)
247 shared_msrs_global
.nr
= slot
+ 1;
249 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
251 static void kvm_shared_msr_cpu_online(void)
255 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
256 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
259 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
261 unsigned int cpu
= smp_processor_id();
262 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
265 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
267 smsr
->values
[slot
].curr
= value
;
268 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
272 if (!smsr
->registered
) {
273 smsr
->urn
.on_user_return
= kvm_on_user_return
;
274 user_return_notifier_register(&smsr
->urn
);
275 smsr
->registered
= true;
279 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
281 static void drop_user_return_notifiers(void)
283 unsigned int cpu
= smp_processor_id();
284 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
286 if (smsr
->registered
)
287 kvm_on_user_return(&smsr
->urn
);
290 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
292 return vcpu
->arch
.apic_base
;
294 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
296 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
298 u64 old_state
= vcpu
->arch
.apic_base
&
299 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
300 u64 new_state
= msr_info
->data
&
301 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
302 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) |
303 0x2ff | (guest_cpuid_has_x2apic(vcpu
) ? 0 : X2APIC_ENABLE
);
305 if (!msr_info
->host_initiated
&&
306 ((msr_info
->data
& reserved_bits
) != 0 ||
307 new_state
== X2APIC_ENABLE
||
308 (new_state
== MSR_IA32_APICBASE_ENABLE
&&
309 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
310 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
314 kvm_lapic_set_base(vcpu
, msr_info
->data
);
317 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
319 asmlinkage __visible
void kvm_spurious_fault(void)
321 /* Fault while not rebooting. We want the trace. */
324 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
326 #define EXCPT_BENIGN 0
327 #define EXCPT_CONTRIBUTORY 1
330 static int exception_class(int vector
)
340 return EXCPT_CONTRIBUTORY
;
347 #define EXCPT_FAULT 0
349 #define EXCPT_ABORT 2
350 #define EXCPT_INTERRUPT 3
352 static int exception_type(int vector
)
356 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
357 return EXCPT_INTERRUPT
;
361 /* #DB is trap, as instruction watchpoints are handled elsewhere */
362 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
365 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
368 /* Reserved exceptions will result in fault */
372 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
373 unsigned nr
, bool has_error
, u32 error_code
,
379 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
381 if (!vcpu
->arch
.exception
.pending
) {
383 if (has_error
&& !is_protmode(vcpu
))
385 vcpu
->arch
.exception
.pending
= true;
386 vcpu
->arch
.exception
.has_error_code
= has_error
;
387 vcpu
->arch
.exception
.nr
= nr
;
388 vcpu
->arch
.exception
.error_code
= error_code
;
389 vcpu
->arch
.exception
.reinject
= reinject
;
393 /* to check exception */
394 prev_nr
= vcpu
->arch
.exception
.nr
;
395 if (prev_nr
== DF_VECTOR
) {
396 /* triple fault -> shutdown */
397 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
400 class1
= exception_class(prev_nr
);
401 class2
= exception_class(nr
);
402 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
403 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
404 /* generate double fault per SDM Table 5-5 */
405 vcpu
->arch
.exception
.pending
= true;
406 vcpu
->arch
.exception
.has_error_code
= true;
407 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
408 vcpu
->arch
.exception
.error_code
= 0;
410 /* replace previous exception with a new one in a hope
411 that instruction re-execution will regenerate lost
416 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
418 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
420 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
422 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
424 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
426 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
428 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
431 kvm_inject_gp(vcpu
, 0);
433 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
435 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
437 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
439 ++vcpu
->stat
.pf_guest
;
440 vcpu
->arch
.cr2
= fault
->address
;
441 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
443 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
445 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
447 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
448 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
450 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
452 return fault
->nested_page_fault
;
455 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
457 atomic_inc(&vcpu
->arch
.nmi_queued
);
458 kvm_make_request(KVM_REQ_NMI
, vcpu
);
460 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
462 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
464 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
466 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
468 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
470 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
472 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
475 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
476 * a #GP and return false.
478 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
480 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
482 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
485 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
487 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
489 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
492 kvm_queue_exception(vcpu
, UD_VECTOR
);
495 EXPORT_SYMBOL_GPL(kvm_require_dr
);
498 * This function will be used to read from the physical memory of the currently
499 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
500 * can read from guest physical or from the guest's guest physical memory.
502 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
503 gfn_t ngfn
, void *data
, int offset
, int len
,
506 struct x86_exception exception
;
510 ngpa
= gfn_to_gpa(ngfn
);
511 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
512 if (real_gfn
== UNMAPPED_GVA
)
515 real_gfn
= gpa_to_gfn(real_gfn
);
517 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
519 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
521 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
522 void *data
, int offset
, int len
, u32 access
)
524 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
525 data
, offset
, len
, access
);
529 * Load the pae pdptrs. Return true is they are all valid.
531 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
533 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
534 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
537 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
539 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
540 offset
* sizeof(u64
), sizeof(pdpte
),
541 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
546 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
547 if ((pdpte
[i
] & PT_PRESENT_MASK
) &&
549 vcpu
->arch
.mmu
.guest_rsvd_check
.rsvd_bits_mask
[0][2])) {
556 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
557 __set_bit(VCPU_EXREG_PDPTR
,
558 (unsigned long *)&vcpu
->arch
.regs_avail
);
559 __set_bit(VCPU_EXREG_PDPTR
,
560 (unsigned long *)&vcpu
->arch
.regs_dirty
);
565 EXPORT_SYMBOL_GPL(load_pdptrs
);
567 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
569 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
575 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
578 if (!test_bit(VCPU_EXREG_PDPTR
,
579 (unsigned long *)&vcpu
->arch
.regs_avail
))
582 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
583 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
584 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
585 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
588 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
594 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
596 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
597 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
602 if (cr0
& 0xffffffff00000000UL
)
606 cr0
&= ~CR0_RESERVED_BITS
;
608 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
611 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
614 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
616 if ((vcpu
->arch
.efer
& EFER_LME
)) {
621 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
626 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
631 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
634 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
636 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
637 kvm_clear_async_pf_completion_queue(vcpu
);
638 kvm_async_pf_hash_reset(vcpu
);
641 if ((cr0
^ old_cr0
) & update_bits
)
642 kvm_mmu_reset_context(vcpu
);
644 if (((cr0
^ old_cr0
) & X86_CR0_CD
) &&
645 kvm_arch_has_noncoherent_dma(vcpu
->kvm
) &&
646 !kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
647 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
651 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
653 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
655 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
657 EXPORT_SYMBOL_GPL(kvm_lmsw
);
659 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
661 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
662 !vcpu
->guest_xcr0_loaded
) {
663 /* kvm_set_xcr() also depends on this */
664 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
665 vcpu
->guest_xcr0_loaded
= 1;
669 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
671 if (vcpu
->guest_xcr0_loaded
) {
672 if (vcpu
->arch
.xcr0
!= host_xcr0
)
673 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
674 vcpu
->guest_xcr0_loaded
= 0;
678 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
681 u64 old_xcr0
= vcpu
->arch
.xcr0
;
684 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
685 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
687 if (!(xcr0
& XFEATURE_MASK_FP
))
689 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
693 * Do not allow the guest to set bits that we do not support
694 * saving. However, xcr0 bit 0 is always set, even if the
695 * emulated CPU does not support XSAVE (see fx_init).
697 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
698 if (xcr0
& ~valid_bits
)
701 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
702 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
705 if (xcr0
& XFEATURE_MASK_AVX512
) {
706 if (!(xcr0
& XFEATURE_MASK_YMM
))
708 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
711 vcpu
->arch
.xcr0
= xcr0
;
713 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
714 kvm_update_cpuid(vcpu
);
718 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
720 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
721 __kvm_set_xcr(vcpu
, index
, xcr
)) {
722 kvm_inject_gp(vcpu
, 0);
727 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
729 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
731 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
732 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
733 X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
;
735 if (cr4
& CR4_RESERVED_BITS
)
738 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
741 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
744 if (!guest_cpuid_has_smap(vcpu
) && (cr4
& X86_CR4_SMAP
))
747 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
750 if (!guest_cpuid_has_pku(vcpu
) && (cr4
& X86_CR4_PKE
))
753 if (is_long_mode(vcpu
)) {
754 if (!(cr4
& X86_CR4_PAE
))
756 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
757 && ((cr4
^ old_cr4
) & pdptr_bits
)
758 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
762 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
763 if (!guest_cpuid_has_pcid(vcpu
))
766 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
767 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
771 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
774 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
775 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
776 kvm_mmu_reset_context(vcpu
);
778 if ((cr4
^ old_cr4
) & (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
779 kvm_update_cpuid(vcpu
);
783 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
785 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
788 cr3
&= ~CR3_PCID_INVD
;
791 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
792 kvm_mmu_sync_roots(vcpu
);
793 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
797 if (is_long_mode(vcpu
)) {
798 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
800 } else if (is_pae(vcpu
) && is_paging(vcpu
) &&
801 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
804 vcpu
->arch
.cr3
= cr3
;
805 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
806 kvm_mmu_new_cr3(vcpu
);
809 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
811 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
813 if (cr8
& CR8_RESERVED_BITS
)
815 if (lapic_in_kernel(vcpu
))
816 kvm_lapic_set_tpr(vcpu
, cr8
);
818 vcpu
->arch
.cr8
= cr8
;
821 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
823 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
825 if (lapic_in_kernel(vcpu
))
826 return kvm_lapic_get_cr8(vcpu
);
828 return vcpu
->arch
.cr8
;
830 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
832 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
836 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
837 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
838 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
839 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
843 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
845 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
846 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
849 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
853 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
854 dr7
= vcpu
->arch
.guest_debug_dr7
;
856 dr7
= vcpu
->arch
.dr7
;
857 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
858 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
859 if (dr7
& DR7_BP_EN_MASK
)
860 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
863 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
865 u64 fixed
= DR6_FIXED_1
;
867 if (!guest_cpuid_has_rtm(vcpu
))
872 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
876 vcpu
->arch
.db
[dr
] = val
;
877 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
878 vcpu
->arch
.eff_db
[dr
] = val
;
883 if (val
& 0xffffffff00000000ULL
)
885 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
886 kvm_update_dr6(vcpu
);
891 if (val
& 0xffffffff00000000ULL
)
893 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
894 kvm_update_dr7(vcpu
);
901 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
903 if (__kvm_set_dr(vcpu
, dr
, val
)) {
904 kvm_inject_gp(vcpu
, 0);
909 EXPORT_SYMBOL_GPL(kvm_set_dr
);
911 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
915 *val
= vcpu
->arch
.db
[dr
];
920 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
921 *val
= vcpu
->arch
.dr6
;
923 *val
= kvm_x86_ops
->get_dr6(vcpu
);
928 *val
= vcpu
->arch
.dr7
;
933 EXPORT_SYMBOL_GPL(kvm_get_dr
);
935 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
937 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
941 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
944 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
945 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
948 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
951 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
952 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
954 * This list is modified at module load time to reflect the
955 * capabilities of the host cpu. This capabilities test skips MSRs that are
956 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
957 * may depend on host virtualization features rather than host cpu features.
960 static u32 msrs_to_save
[] = {
961 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
964 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
966 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
967 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
970 static unsigned num_msrs_to_save
;
972 static u32 emulated_msrs
[] = {
973 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
974 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
975 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
976 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
977 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
978 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
981 HV_X64_MSR_VP_RUNTIME
,
983 HV_X64_MSR_STIMER0_CONFIG
,
984 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
988 MSR_IA32_TSCDEADLINE
,
989 MSR_IA32_MISC_ENABLE
,
992 MSR_IA32_MCG_EXT_CTL
,
996 static unsigned num_emulated_msrs
;
998 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1000 if (efer
& efer_reserved_bits
)
1003 if (efer
& EFER_FFXSR
) {
1004 struct kvm_cpuid_entry2
*feat
;
1006 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
1007 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
1011 if (efer
& EFER_SVME
) {
1012 struct kvm_cpuid_entry2
*feat
;
1014 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
1015 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
1021 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1023 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1025 u64 old_efer
= vcpu
->arch
.efer
;
1027 if (!kvm_valid_efer(vcpu
, efer
))
1031 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1035 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1037 kvm_x86_ops
->set_efer(vcpu
, efer
);
1039 /* Update reserved bits */
1040 if ((efer
^ old_efer
) & EFER_NX
)
1041 kvm_mmu_reset_context(vcpu
);
1046 void kvm_enable_efer_bits(u64 mask
)
1048 efer_reserved_bits
&= ~mask
;
1050 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1053 * Writes msr value into into the appropriate "register".
1054 * Returns 0 on success, non-0 otherwise.
1055 * Assumes vcpu_load() was already called.
1057 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1059 switch (msr
->index
) {
1062 case MSR_KERNEL_GS_BASE
:
1065 if (is_noncanonical_address(msr
->data
))
1068 case MSR_IA32_SYSENTER_EIP
:
1069 case MSR_IA32_SYSENTER_ESP
:
1071 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1072 * non-canonical address is written on Intel but not on
1073 * AMD (which ignores the top 32-bits, because it does
1074 * not implement 64-bit SYSENTER).
1076 * 64-bit code should hence be able to write a non-canonical
1077 * value on AMD. Making the address canonical ensures that
1078 * vmentry does not fail on Intel after writing a non-canonical
1079 * value, and that something deterministic happens if the guest
1080 * invokes 64-bit SYSENTER.
1082 msr
->data
= get_canonical(msr
->data
);
1084 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1086 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1089 * Adapt set_msr() to msr_io()'s calling convention
1091 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1093 struct msr_data msr
;
1097 msr
.host_initiated
= true;
1098 r
= kvm_get_msr(vcpu
, &msr
);
1106 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1108 struct msr_data msr
;
1112 msr
.host_initiated
= true;
1113 return kvm_set_msr(vcpu
, &msr
);
1116 #ifdef CONFIG_X86_64
1117 struct pvclock_gtod_data
{
1120 struct { /* extract of a clocksource struct */
1132 static struct pvclock_gtod_data pvclock_gtod_data
;
1134 static void update_pvclock_gtod(struct timekeeper
*tk
)
1136 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1139 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1141 write_seqcount_begin(&vdata
->seq
);
1143 /* copy pvclock gtod data */
1144 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1145 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1146 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1147 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1148 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1150 vdata
->boot_ns
= boot_ns
;
1151 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1153 write_seqcount_end(&vdata
->seq
);
1157 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1160 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1161 * vcpu_enter_guest. This function is only called from
1162 * the physical CPU that is running vcpu.
1164 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1167 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1171 struct pvclock_wall_clock wc
;
1172 struct timespec64 boot
;
1177 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1182 ++version
; /* first time write, random junk */
1186 if (kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
)))
1190 * The guest calculates current wall clock time by adding
1191 * system time (updated by kvm_guest_time_update below) to the
1192 * wall clock specified here. guest system time equals host
1193 * system time for us, thus we must fill in host boot time here.
1195 getboottime64(&boot
);
1197 if (kvm
->arch
.kvmclock_offset
) {
1198 struct timespec64 ts
= ns_to_timespec64(kvm
->arch
.kvmclock_offset
);
1199 boot
= timespec64_sub(boot
, ts
);
1201 wc
.sec
= (u32
)boot
.tv_sec
; /* overflow in 2106 guest time */
1202 wc
.nsec
= boot
.tv_nsec
;
1203 wc
.version
= version
;
1205 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1208 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1211 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1213 do_shl32_div32(dividend
, divisor
);
1217 static void kvm_get_time_scale(uint64_t scaled_hz
, uint64_t base_hz
,
1218 s8
*pshift
, u32
*pmultiplier
)
1226 scaled64
= scaled_hz
;
1227 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1232 tps32
= (uint32_t)tps64
;
1233 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1234 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1242 *pmultiplier
= div_frac(scaled64
, tps32
);
1244 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1245 __func__
, base_hz
, scaled_hz
, shift
, *pmultiplier
);
1248 #ifdef CONFIG_X86_64
1249 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1252 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1253 static unsigned long max_tsc_khz
;
1255 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1257 u64 v
= (u64
)khz
* (1000000 + ppm
);
1262 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1266 /* Guest TSC same frequency as host TSC? */
1268 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1272 /* TSC scaling supported? */
1273 if (!kvm_has_tsc_control
) {
1274 if (user_tsc_khz
> tsc_khz
) {
1275 vcpu
->arch
.tsc_catchup
= 1;
1276 vcpu
->arch
.tsc_always_catchup
= 1;
1279 WARN(1, "user requested TSC rate below hardware speed\n");
1284 /* TSC scaling required - calculate ratio */
1285 ratio
= mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits
,
1286 user_tsc_khz
, tsc_khz
);
1288 if (ratio
== 0 || ratio
>= kvm_max_tsc_scaling_ratio
) {
1289 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1294 vcpu
->arch
.tsc_scaling_ratio
= ratio
;
1298 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
1300 u32 thresh_lo
, thresh_hi
;
1301 int use_scaling
= 0;
1303 /* tsc_khz can be zero if TSC calibration fails */
1304 if (user_tsc_khz
== 0) {
1305 /* set tsc_scaling_ratio to a safe value */
1306 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1310 /* Compute a scale to convert nanoseconds in TSC cycles */
1311 kvm_get_time_scale(user_tsc_khz
* 1000LL, NSEC_PER_SEC
,
1312 &vcpu
->arch
.virtual_tsc_shift
,
1313 &vcpu
->arch
.virtual_tsc_mult
);
1314 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
1317 * Compute the variation in TSC rate which is acceptable
1318 * within the range of tolerance and decide if the
1319 * rate being applied is within that bounds of the hardware
1320 * rate. If so, no scaling or compensation need be done.
1322 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1323 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1324 if (user_tsc_khz
< thresh_lo
|| user_tsc_khz
> thresh_hi
) {
1325 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz
, thresh_lo
, thresh_hi
);
1328 return set_tsc_khz(vcpu
, user_tsc_khz
, use_scaling
);
1331 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1333 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1334 vcpu
->arch
.virtual_tsc_mult
,
1335 vcpu
->arch
.virtual_tsc_shift
);
1336 tsc
+= vcpu
->arch
.this_tsc_write
;
1340 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1342 #ifdef CONFIG_X86_64
1344 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1345 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1347 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1348 atomic_read(&vcpu
->kvm
->online_vcpus
));
1351 * Once the masterclock is enabled, always perform request in
1352 * order to update it.
1354 * In order to enable masterclock, the host clocksource must be TSC
1355 * and the vcpus need to have matched TSCs. When that happens,
1356 * perform request to enable masterclock.
1358 if (ka
->use_master_clock
||
1359 (gtod
->clock
.vclock_mode
== VCLOCK_TSC
&& vcpus_matched
))
1360 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1362 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1363 atomic_read(&vcpu
->kvm
->online_vcpus
),
1364 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1368 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1370 u64 curr_offset
= kvm_x86_ops
->read_tsc_offset(vcpu
);
1371 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1375 * Multiply tsc by a fixed point number represented by ratio.
1377 * The most significant 64-N bits (mult) of ratio represent the
1378 * integral part of the fixed point number; the remaining N bits
1379 * (frac) represent the fractional part, ie. ratio represents a fixed
1380 * point number (mult + frac * 2^(-N)).
1382 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1384 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
1386 return mul_u64_u64_shr(tsc
, ratio
, kvm_tsc_scaling_ratio_frac_bits
);
1389 u64
kvm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
1392 u64 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1394 if (ratio
!= kvm_default_tsc_scaling_ratio
)
1395 _tsc
= __scale_tsc(ratio
, tsc
);
1399 EXPORT_SYMBOL_GPL(kvm_scale_tsc
);
1401 static u64
kvm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1405 tsc
= kvm_scale_tsc(vcpu
, rdtsc());
1407 return target_tsc
- tsc
;
1410 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1412 return kvm_x86_ops
->read_l1_tsc(vcpu
, kvm_scale_tsc(vcpu
, host_tsc
));
1414 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
1416 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1418 struct kvm
*kvm
= vcpu
->kvm
;
1419 u64 offset
, ns
, elapsed
;
1420 unsigned long flags
;
1423 bool already_matched
;
1424 u64 data
= msr
->data
;
1426 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1427 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1428 ns
= get_kernel_ns();
1429 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1431 if (vcpu
->arch
.virtual_tsc_khz
) {
1434 /* n.b - signed multiplication and division required */
1435 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1436 #ifdef CONFIG_X86_64
1437 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1439 /* do_div() only does unsigned */
1440 asm("1: idivl %[divisor]\n"
1441 "2: xor %%edx, %%edx\n"
1442 " movl $0, %[faulted]\n"
1444 ".section .fixup,\"ax\"\n"
1445 "4: movl $1, %[faulted]\n"
1449 _ASM_EXTABLE(1b
, 4b
)
1451 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1452 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1455 do_div(elapsed
, 1000);
1460 /* idivl overflow => difference is larger than USEC_PER_SEC */
1462 usdiff
= USEC_PER_SEC
;
1464 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1467 * Special case: TSC write with a small delta (1 second) of virtual
1468 * cycle time against real time is interpreted as an attempt to
1469 * synchronize the CPU.
1471 * For a reliable TSC, we can match TSC offsets, and for an unstable
1472 * TSC, we add elapsed time in this computation. We could let the
1473 * compensation code attempt to catch up if we fall behind, but
1474 * it's better to try to match offsets from the beginning.
1476 if (usdiff
< USEC_PER_SEC
&&
1477 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1478 if (!check_tsc_unstable()) {
1479 offset
= kvm
->arch
.cur_tsc_offset
;
1480 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1482 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1484 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1485 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1488 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1491 * We split periods of matched TSC writes into generations.
1492 * For each generation, we track the original measured
1493 * nanosecond time, offset, and write, so if TSCs are in
1494 * sync, we can match exact offset, and if not, we can match
1495 * exact software computation in compute_guest_tsc()
1497 * These values are tracked in kvm->arch.cur_xxx variables.
1499 kvm
->arch
.cur_tsc_generation
++;
1500 kvm
->arch
.cur_tsc_nsec
= ns
;
1501 kvm
->arch
.cur_tsc_write
= data
;
1502 kvm
->arch
.cur_tsc_offset
= offset
;
1504 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1505 kvm
->arch
.cur_tsc_generation
, data
);
1509 * We also track th most recent recorded KHZ, write and time to
1510 * allow the matching interval to be extended at each write.
1512 kvm
->arch
.last_tsc_nsec
= ns
;
1513 kvm
->arch
.last_tsc_write
= data
;
1514 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1516 vcpu
->arch
.last_guest_tsc
= data
;
1518 /* Keep track of which generation this VCPU has synchronized to */
1519 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1520 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1521 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1523 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1524 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1525 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1526 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1528 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1530 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1531 } else if (!already_matched
) {
1532 kvm
->arch
.nr_vcpus_matched_tsc
++;
1535 kvm_track_tsc_matching(vcpu
);
1536 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1539 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1541 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
1544 kvm_x86_ops
->adjust_tsc_offset_guest(vcpu
, adjustment
);
1547 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1549 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
)
1550 WARN_ON(adjustment
< 0);
1551 adjustment
= kvm_scale_tsc(vcpu
, (u64
) adjustment
);
1552 kvm_x86_ops
->adjust_tsc_offset_guest(vcpu
, adjustment
);
1555 #ifdef CONFIG_X86_64
1557 static cycle_t
read_tsc(void)
1559 cycle_t ret
= (cycle_t
)rdtsc_ordered();
1560 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
1562 if (likely(ret
>= last
))
1566 * GCC likes to generate cmov here, but this branch is extremely
1567 * predictable (it's just a function of time and the likely is
1568 * very likely) and there's a data dependence, so force GCC
1569 * to generate a branch instead. I don't barrier() because
1570 * we don't actually need a barrier, and if this function
1571 * ever gets inlined it will generate worse code.
1577 static inline u64
vgettsc(cycle_t
*cycle_now
)
1580 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1582 *cycle_now
= read_tsc();
1584 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1585 return v
* gtod
->clock
.mult
;
1588 static int do_monotonic_boot(s64
*t
, cycle_t
*cycle_now
)
1590 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1596 seq
= read_seqcount_begin(>od
->seq
);
1597 mode
= gtod
->clock
.vclock_mode
;
1598 ns
= gtod
->nsec_base
;
1599 ns
+= vgettsc(cycle_now
);
1600 ns
>>= gtod
->clock
.shift
;
1601 ns
+= gtod
->boot_ns
;
1602 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1608 /* returns true if host is using tsc clocksource */
1609 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1611 /* checked again under seqlock below */
1612 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1615 return do_monotonic_boot(kernel_ns
, cycle_now
) == VCLOCK_TSC
;
1621 * Assuming a stable TSC across physical CPUS, and a stable TSC
1622 * across virtual CPUs, the following condition is possible.
1623 * Each numbered line represents an event visible to both
1624 * CPUs at the next numbered event.
1626 * "timespecX" represents host monotonic time. "tscX" represents
1629 * VCPU0 on CPU0 | VCPU1 on CPU1
1631 * 1. read timespec0,tsc0
1632 * 2. | timespec1 = timespec0 + N
1634 * 3. transition to guest | transition to guest
1635 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1636 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1637 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1639 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1642 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1644 * - 0 < N - M => M < N
1646 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1647 * always the case (the difference between two distinct xtime instances
1648 * might be smaller then the difference between corresponding TSC reads,
1649 * when updating guest vcpus pvclock areas).
1651 * To avoid that problem, do not allow visibility of distinct
1652 * system_timestamp/tsc_timestamp values simultaneously: use a master
1653 * copy of host monotonic time values. Update that master copy
1656 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1660 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1662 #ifdef CONFIG_X86_64
1663 struct kvm_arch
*ka
= &kvm
->arch
;
1665 bool host_tsc_clocksource
, vcpus_matched
;
1667 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1668 atomic_read(&kvm
->online_vcpus
));
1671 * If the host uses TSC clock, then passthrough TSC as stable
1674 host_tsc_clocksource
= kvm_get_time_and_clockread(
1675 &ka
->master_kernel_ns
,
1676 &ka
->master_cycle_now
);
1678 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1679 && !backwards_tsc_observed
1680 && !ka
->boot_vcpu_runs_old_kvmclock
;
1682 if (ka
->use_master_clock
)
1683 atomic_set(&kvm_guest_has_master_clock
, 1);
1685 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1686 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1691 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
1693 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
1696 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1698 #ifdef CONFIG_X86_64
1700 struct kvm_vcpu
*vcpu
;
1701 struct kvm_arch
*ka
= &kvm
->arch
;
1703 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1704 kvm_make_mclock_inprogress_request(kvm
);
1705 /* no guest entries from this point */
1706 pvclock_update_vm_gtod_copy(kvm
);
1708 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1709 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1711 /* guest entries allowed */
1712 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1713 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1715 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1719 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1721 unsigned long flags
, tgt_tsc_khz
;
1722 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1723 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1725 u64 tsc_timestamp
, host_tsc
;
1726 struct pvclock_vcpu_time_info guest_hv_clock
;
1728 bool use_master_clock
;
1734 * If the host uses TSC clock, then passthrough TSC as stable
1737 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1738 use_master_clock
= ka
->use_master_clock
;
1739 if (use_master_clock
) {
1740 host_tsc
= ka
->master_cycle_now
;
1741 kernel_ns
= ka
->master_kernel_ns
;
1743 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1745 /* Keep irq disabled to prevent changes to the clock */
1746 local_irq_save(flags
);
1747 tgt_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1748 if (unlikely(tgt_tsc_khz
== 0)) {
1749 local_irq_restore(flags
);
1750 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1753 if (!use_master_clock
) {
1755 kernel_ns
= get_kernel_ns();
1758 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
1761 * We may have to catch up the TSC to match elapsed wall clock
1762 * time for two reasons, even if kvmclock is used.
1763 * 1) CPU could have been running below the maximum TSC rate
1764 * 2) Broken TSC compensation resets the base at each VCPU
1765 * entry to avoid unknown leaps of TSC even when running
1766 * again on the same CPU. This may cause apparent elapsed
1767 * time to disappear, and the guest to stand still or run
1770 if (vcpu
->tsc_catchup
) {
1771 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1772 if (tsc
> tsc_timestamp
) {
1773 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1774 tsc_timestamp
= tsc
;
1778 local_irq_restore(flags
);
1780 if (!vcpu
->pv_time_enabled
)
1783 if (kvm_has_tsc_control
)
1784 tgt_tsc_khz
= kvm_scale_tsc(v
, tgt_tsc_khz
);
1786 if (unlikely(vcpu
->hw_tsc_khz
!= tgt_tsc_khz
)) {
1787 kvm_get_time_scale(NSEC_PER_SEC
, tgt_tsc_khz
* 1000LL,
1788 &vcpu
->hv_clock
.tsc_shift
,
1789 &vcpu
->hv_clock
.tsc_to_system_mul
);
1790 vcpu
->hw_tsc_khz
= tgt_tsc_khz
;
1793 /* With all the info we got, fill in the values */
1794 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1795 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1796 vcpu
->last_guest_tsc
= tsc_timestamp
;
1798 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1799 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1802 /* This VCPU is paused, but it's legal for a guest to read another
1803 * VCPU's kvmclock, so we really have to follow the specification where
1804 * it says that version is odd if data is being modified, and even after
1807 * Version field updates must be kept separate. This is because
1808 * kvm_write_guest_cached might use a "rep movs" instruction, and
1809 * writes within a string instruction are weakly ordered. So there
1810 * are three writes overall.
1812 * As a small optimization, only write the version field in the first
1813 * and third write. The vcpu->pv_time cache is still valid, because the
1814 * version field is the first in the struct.
1816 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
1818 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
1819 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1821 sizeof(vcpu
->hv_clock
.version
));
1825 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1826 pvclock_flags
= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1828 if (vcpu
->pvclock_set_guest_stopped_request
) {
1829 pvclock_flags
|= PVCLOCK_GUEST_STOPPED
;
1830 vcpu
->pvclock_set_guest_stopped_request
= false;
1833 /* If the host uses TSC clocksource, then it is stable */
1834 if (use_master_clock
)
1835 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1837 vcpu
->hv_clock
.flags
= pvclock_flags
;
1839 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
1841 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1843 sizeof(vcpu
->hv_clock
));
1847 vcpu
->hv_clock
.version
++;
1848 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1850 sizeof(vcpu
->hv_clock
.version
));
1855 * kvmclock updates which are isolated to a given vcpu, such as
1856 * vcpu->cpu migration, should not allow system_timestamp from
1857 * the rest of the vcpus to remain static. Otherwise ntp frequency
1858 * correction applies to one vcpu's system_timestamp but not
1861 * So in those cases, request a kvmclock update for all vcpus.
1862 * We need to rate-limit these requests though, as they can
1863 * considerably slow guests that have a large number of vcpus.
1864 * The time for a remote vcpu to update its kvmclock is bound
1865 * by the delay we use to rate-limit the updates.
1868 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1870 static void kvmclock_update_fn(struct work_struct
*work
)
1873 struct delayed_work
*dwork
= to_delayed_work(work
);
1874 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1875 kvmclock_update_work
);
1876 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1877 struct kvm_vcpu
*vcpu
;
1879 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1880 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1881 kvm_vcpu_kick(vcpu
);
1885 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1887 struct kvm
*kvm
= v
->kvm
;
1889 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1890 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
1891 KVMCLOCK_UPDATE_DELAY
);
1894 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1896 static void kvmclock_sync_fn(struct work_struct
*work
)
1898 struct delayed_work
*dwork
= to_delayed_work(work
);
1899 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1900 kvmclock_sync_work
);
1901 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1903 if (!kvmclock_periodic_sync
)
1906 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
1907 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
1908 KVMCLOCK_SYNC_PERIOD
);
1911 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1913 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1914 unsigned bank_num
= mcg_cap
& 0xff;
1917 case MSR_IA32_MCG_STATUS
:
1918 vcpu
->arch
.mcg_status
= data
;
1920 case MSR_IA32_MCG_CTL
:
1921 if (!(mcg_cap
& MCG_CTL_P
))
1923 if (data
!= 0 && data
!= ~(u64
)0)
1925 vcpu
->arch
.mcg_ctl
= data
;
1928 if (msr
>= MSR_IA32_MC0_CTL
&&
1929 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
1930 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1931 /* only 0 or all 1s can be written to IA32_MCi_CTL
1932 * some Linux kernels though clear bit 10 in bank 4 to
1933 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1934 * this to avoid an uncatched #GP in the guest
1936 if ((offset
& 0x3) == 0 &&
1937 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1939 vcpu
->arch
.mce_banks
[offset
] = data
;
1947 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1949 struct kvm
*kvm
= vcpu
->kvm
;
1950 int lm
= is_long_mode(vcpu
);
1951 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1952 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1953 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1954 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1955 u32 page_num
= data
& ~PAGE_MASK
;
1956 u64 page_addr
= data
& PAGE_MASK
;
1961 if (page_num
>= blob_size
)
1964 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1969 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
1978 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1980 gpa_t gpa
= data
& ~0x3f;
1982 /* Bits 2:5 are reserved, Should be zero */
1986 vcpu
->arch
.apf
.msr_val
= data
;
1988 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1989 kvm_clear_async_pf_completion_queue(vcpu
);
1990 kvm_async_pf_hash_reset(vcpu
);
1994 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
1998 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1999 kvm_async_pf_wakeup_all(vcpu
);
2003 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2005 vcpu
->arch
.pv_time_enabled
= false;
2008 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2010 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2013 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2014 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2017 if (vcpu
->arch
.st
.steal
.version
& 1)
2018 vcpu
->arch
.st
.steal
.version
+= 1; /* first time write, random junk */
2020 vcpu
->arch
.st
.steal
.version
+= 1;
2022 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2023 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2027 vcpu
->arch
.st
.steal
.steal
+= current
->sched_info
.run_delay
-
2028 vcpu
->arch
.st
.last_steal
;
2029 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2031 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2032 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2036 vcpu
->arch
.st
.steal
.version
+= 1;
2038 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2039 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2042 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2045 u32 msr
= msr_info
->index
;
2046 u64 data
= msr_info
->data
;
2049 case MSR_AMD64_NB_CFG
:
2050 case MSR_IA32_UCODE_REV
:
2051 case MSR_IA32_UCODE_WRITE
:
2052 case MSR_VM_HSAVE_PA
:
2053 case MSR_AMD64_PATCH_LOADER
:
2054 case MSR_AMD64_BU_CFG2
:
2058 return set_efer(vcpu
, data
);
2060 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2061 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2062 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2063 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2065 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2070 case MSR_FAM10H_MMIO_CONF_BASE
:
2072 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2077 case MSR_IA32_DEBUGCTLMSR
:
2079 /* We support the non-activated case already */
2081 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2082 /* Values other than LBR and BTF are vendor-specific,
2083 thus reserved and should throw a #GP */
2086 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2089 case 0x200 ... 0x2ff:
2090 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2091 case MSR_IA32_APICBASE
:
2092 return kvm_set_apic_base(vcpu
, msr_info
);
2093 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2094 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2095 case MSR_IA32_TSCDEADLINE
:
2096 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2098 case MSR_IA32_TSC_ADJUST
:
2099 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2100 if (!msr_info
->host_initiated
) {
2101 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2102 adjust_tsc_offset_guest(vcpu
, adj
);
2104 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2107 case MSR_IA32_MISC_ENABLE
:
2108 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2110 case MSR_IA32_SMBASE
:
2111 if (!msr_info
->host_initiated
)
2113 vcpu
->arch
.smbase
= data
;
2115 case MSR_KVM_WALL_CLOCK_NEW
:
2116 case MSR_KVM_WALL_CLOCK
:
2117 vcpu
->kvm
->arch
.wall_clock
= data
;
2118 kvm_write_wall_clock(vcpu
->kvm
, data
);
2120 case MSR_KVM_SYSTEM_TIME_NEW
:
2121 case MSR_KVM_SYSTEM_TIME
: {
2123 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2125 kvmclock_reset(vcpu
);
2127 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2128 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2130 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2131 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
2134 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2137 vcpu
->arch
.time
= data
;
2138 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2140 /* we verify if the enable bit is set... */
2144 gpa_offset
= data
& ~(PAGE_MASK
| 1);
2146 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2147 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2148 sizeof(struct pvclock_vcpu_time_info
)))
2149 vcpu
->arch
.pv_time_enabled
= false;
2151 vcpu
->arch
.pv_time_enabled
= true;
2155 case MSR_KVM_ASYNC_PF_EN
:
2156 if (kvm_pv_enable_async_pf(vcpu
, data
))
2159 case MSR_KVM_STEAL_TIME
:
2161 if (unlikely(!sched_info_on()))
2164 if (data
& KVM_STEAL_RESERVED_MASK
)
2167 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2168 data
& KVM_STEAL_VALID_BITS
,
2169 sizeof(struct kvm_steal_time
)))
2172 vcpu
->arch
.st
.msr_val
= data
;
2174 if (!(data
& KVM_MSR_ENABLED
))
2177 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2180 case MSR_KVM_PV_EOI_EN
:
2181 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2185 case MSR_IA32_MCG_CTL
:
2186 case MSR_IA32_MCG_STATUS
:
2187 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2188 return set_msr_mce(vcpu
, msr
, data
);
2190 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2191 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2192 pr
= true; /* fall through */
2193 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2194 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2195 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2196 return kvm_pmu_set_msr(vcpu
, msr_info
);
2198 if (pr
|| data
!= 0)
2199 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2200 "0x%x data 0x%llx\n", msr
, data
);
2202 case MSR_K7_CLK_CTL
:
2204 * Ignore all writes to this no longer documented MSR.
2205 * Writes are only relevant for old K7 processors,
2206 * all pre-dating SVM, but a recommended workaround from
2207 * AMD for these chips. It is possible to specify the
2208 * affected processor models on the command line, hence
2209 * the need to ignore the workaround.
2212 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2213 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2214 case HV_X64_MSR_CRASH_CTL
:
2215 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2216 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
2217 msr_info
->host_initiated
);
2218 case MSR_IA32_BBL_CR_CTL3
:
2219 /* Drop writes to this legacy MSR -- see rdmsr
2220 * counterpart for further detail.
2222 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
2224 case MSR_AMD64_OSVW_ID_LENGTH
:
2225 if (!guest_cpuid_has_osvw(vcpu
))
2227 vcpu
->arch
.osvw
.length
= data
;
2229 case MSR_AMD64_OSVW_STATUS
:
2230 if (!guest_cpuid_has_osvw(vcpu
))
2232 vcpu
->arch
.osvw
.status
= data
;
2235 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2236 return xen_hvm_config(vcpu
, data
);
2237 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2238 return kvm_pmu_set_msr(vcpu
, msr_info
);
2240 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
2244 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
2251 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2255 * Reads an msr value (of 'msr_index') into 'pdata'.
2256 * Returns 0 on success, non-0 otherwise.
2257 * Assumes vcpu_load() was already called.
2259 int kvm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2261 return kvm_x86_ops
->get_msr(vcpu
, msr
);
2263 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2265 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2268 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2269 unsigned bank_num
= mcg_cap
& 0xff;
2272 case MSR_IA32_P5_MC_ADDR
:
2273 case MSR_IA32_P5_MC_TYPE
:
2276 case MSR_IA32_MCG_CAP
:
2277 data
= vcpu
->arch
.mcg_cap
;
2279 case MSR_IA32_MCG_CTL
:
2280 if (!(mcg_cap
& MCG_CTL_P
))
2282 data
= vcpu
->arch
.mcg_ctl
;
2284 case MSR_IA32_MCG_STATUS
:
2285 data
= vcpu
->arch
.mcg_status
;
2288 if (msr
>= MSR_IA32_MC0_CTL
&&
2289 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2290 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2291 data
= vcpu
->arch
.mce_banks
[offset
];
2300 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2302 switch (msr_info
->index
) {
2303 case MSR_IA32_PLATFORM_ID
:
2304 case MSR_IA32_EBL_CR_POWERON
:
2305 case MSR_IA32_DEBUGCTLMSR
:
2306 case MSR_IA32_LASTBRANCHFROMIP
:
2307 case MSR_IA32_LASTBRANCHTOIP
:
2308 case MSR_IA32_LASTINTFROMIP
:
2309 case MSR_IA32_LASTINTTOIP
:
2311 case MSR_K8_TSEG_ADDR
:
2312 case MSR_K8_TSEG_MASK
:
2314 case MSR_VM_HSAVE_PA
:
2315 case MSR_K8_INT_PENDING_MSG
:
2316 case MSR_AMD64_NB_CFG
:
2317 case MSR_FAM10H_MMIO_CONF_BASE
:
2318 case MSR_AMD64_BU_CFG2
:
2319 case MSR_IA32_PERF_CTL
:
2322 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2323 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2324 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2325 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2326 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2327 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2330 case MSR_IA32_UCODE_REV
:
2331 msr_info
->data
= 0x100000000ULL
;
2334 case 0x200 ... 0x2ff:
2335 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2336 case 0xcd: /* fsb frequency */
2340 * MSR_EBC_FREQUENCY_ID
2341 * Conservative value valid for even the basic CPU models.
2342 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2343 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2344 * and 266MHz for model 3, or 4. Set Core Clock
2345 * Frequency to System Bus Frequency Ratio to 1 (bits
2346 * 31:24) even though these are only valid for CPU
2347 * models > 2, however guests may end up dividing or
2348 * multiplying by zero otherwise.
2350 case MSR_EBC_FREQUENCY_ID
:
2351 msr_info
->data
= 1 << 24;
2353 case MSR_IA32_APICBASE
:
2354 msr_info
->data
= kvm_get_apic_base(vcpu
);
2356 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2357 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
2359 case MSR_IA32_TSCDEADLINE
:
2360 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2362 case MSR_IA32_TSC_ADJUST
:
2363 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2365 case MSR_IA32_MISC_ENABLE
:
2366 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
2368 case MSR_IA32_SMBASE
:
2369 if (!msr_info
->host_initiated
)
2371 msr_info
->data
= vcpu
->arch
.smbase
;
2373 case MSR_IA32_PERF_STATUS
:
2374 /* TSC increment by tick */
2375 msr_info
->data
= 1000ULL;
2376 /* CPU multiplier */
2377 msr_info
->data
|= (((uint64_t)4ULL) << 40);
2380 msr_info
->data
= vcpu
->arch
.efer
;
2382 case MSR_KVM_WALL_CLOCK
:
2383 case MSR_KVM_WALL_CLOCK_NEW
:
2384 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
2386 case MSR_KVM_SYSTEM_TIME
:
2387 case MSR_KVM_SYSTEM_TIME_NEW
:
2388 msr_info
->data
= vcpu
->arch
.time
;
2390 case MSR_KVM_ASYNC_PF_EN
:
2391 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
2393 case MSR_KVM_STEAL_TIME
:
2394 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
2396 case MSR_KVM_PV_EOI_EN
:
2397 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
2399 case MSR_IA32_P5_MC_ADDR
:
2400 case MSR_IA32_P5_MC_TYPE
:
2401 case MSR_IA32_MCG_CAP
:
2402 case MSR_IA32_MCG_CTL
:
2403 case MSR_IA32_MCG_STATUS
:
2404 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2405 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
);
2406 case MSR_K7_CLK_CTL
:
2408 * Provide expected ramp-up count for K7. All other
2409 * are set to zero, indicating minimum divisors for
2412 * This prevents guest kernels on AMD host with CPU
2413 * type 6, model 8 and higher from exploding due to
2414 * the rdmsr failing.
2416 msr_info
->data
= 0x20000000;
2418 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2419 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2420 case HV_X64_MSR_CRASH_CTL
:
2421 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2422 return kvm_hv_get_msr_common(vcpu
,
2423 msr_info
->index
, &msr_info
->data
);
2425 case MSR_IA32_BBL_CR_CTL3
:
2426 /* This legacy MSR exists but isn't fully documented in current
2427 * silicon. It is however accessed by winxp in very narrow
2428 * scenarios where it sets bit #19, itself documented as
2429 * a "reserved" bit. Best effort attempt to source coherent
2430 * read data here should the balance of the register be
2431 * interpreted by the guest:
2433 * L2 cache control register 3: 64GB range, 256KB size,
2434 * enabled, latency 0x1, configured
2436 msr_info
->data
= 0xbe702111;
2438 case MSR_AMD64_OSVW_ID_LENGTH
:
2439 if (!guest_cpuid_has_osvw(vcpu
))
2441 msr_info
->data
= vcpu
->arch
.osvw
.length
;
2443 case MSR_AMD64_OSVW_STATUS
:
2444 if (!guest_cpuid_has_osvw(vcpu
))
2446 msr_info
->data
= vcpu
->arch
.osvw
.status
;
2449 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2450 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2452 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr_info
->index
);
2455 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr_info
->index
);
2462 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2465 * Read or write a bunch of msrs. All parameters are kernel addresses.
2467 * @return number of msrs set successfully.
2469 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2470 struct kvm_msr_entry
*entries
,
2471 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2472 unsigned index
, u64
*data
))
2476 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2477 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2478 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2480 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2486 * Read or write a bunch of msrs. Parameters are user addresses.
2488 * @return number of msrs set successfully.
2490 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2491 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2492 unsigned index
, u64
*data
),
2495 struct kvm_msrs msrs
;
2496 struct kvm_msr_entry
*entries
;
2501 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2505 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2508 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2509 entries
= memdup_user(user_msrs
->entries
, size
);
2510 if (IS_ERR(entries
)) {
2511 r
= PTR_ERR(entries
);
2515 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2520 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2531 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2536 case KVM_CAP_IRQCHIP
:
2538 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2539 case KVM_CAP_SET_TSS_ADDR
:
2540 case KVM_CAP_EXT_CPUID
:
2541 case KVM_CAP_EXT_EMUL_CPUID
:
2542 case KVM_CAP_CLOCKSOURCE
:
2544 case KVM_CAP_NOP_IO_DELAY
:
2545 case KVM_CAP_MP_STATE
:
2546 case KVM_CAP_SYNC_MMU
:
2547 case KVM_CAP_USER_NMI
:
2548 case KVM_CAP_REINJECT_CONTROL
:
2549 case KVM_CAP_IRQ_INJECT_STATUS
:
2550 case KVM_CAP_IOEVENTFD
:
2551 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2553 case KVM_CAP_PIT_STATE2
:
2554 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2555 case KVM_CAP_XEN_HVM
:
2556 case KVM_CAP_ADJUST_CLOCK
:
2557 case KVM_CAP_VCPU_EVENTS
:
2558 case KVM_CAP_HYPERV
:
2559 case KVM_CAP_HYPERV_VAPIC
:
2560 case KVM_CAP_HYPERV_SPIN
:
2561 case KVM_CAP_HYPERV_SYNIC
:
2562 case KVM_CAP_PCI_SEGMENT
:
2563 case KVM_CAP_DEBUGREGS
:
2564 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2566 case KVM_CAP_ASYNC_PF
:
2567 case KVM_CAP_GET_TSC_KHZ
:
2568 case KVM_CAP_KVMCLOCK_CTRL
:
2569 case KVM_CAP_READONLY_MEM
:
2570 case KVM_CAP_HYPERV_TIME
:
2571 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2572 case KVM_CAP_TSC_DEADLINE_TIMER
:
2573 case KVM_CAP_ENABLE_CAP_VM
:
2574 case KVM_CAP_DISABLE_QUIRKS
:
2575 case KVM_CAP_SET_BOOT_CPU_ID
:
2576 case KVM_CAP_SPLIT_IRQCHIP
:
2577 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2578 case KVM_CAP_ASSIGN_DEV_IRQ
:
2579 case KVM_CAP_PCI_2_3
:
2583 case KVM_CAP_X86_SMM
:
2584 /* SMBASE is usually relocated above 1M on modern chipsets,
2585 * and SMM handlers might indeed rely on 4G segment limits,
2586 * so do not report SMM to be available if real mode is
2587 * emulated via vm86 mode. Still, do not go to great lengths
2588 * to avoid userspace's usage of the feature, because it is a
2589 * fringe case that is not enabled except via specific settings
2590 * of the module parameters.
2592 r
= kvm_x86_ops
->cpu_has_high_real_mode_segbase();
2594 case KVM_CAP_COALESCED_MMIO
:
2595 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2598 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2600 case KVM_CAP_NR_VCPUS
:
2601 r
= KVM_SOFT_MAX_VCPUS
;
2603 case KVM_CAP_MAX_VCPUS
:
2606 case KVM_CAP_NR_MEMSLOTS
:
2607 r
= KVM_USER_MEM_SLOTS
;
2609 case KVM_CAP_PV_MMU
: /* obsolete */
2612 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2614 r
= iommu_present(&pci_bus_type
);
2618 r
= KVM_MAX_MCE_BANKS
;
2621 r
= boot_cpu_has(X86_FEATURE_XSAVE
);
2623 case KVM_CAP_TSC_CONTROL
:
2624 r
= kvm_has_tsc_control
;
2626 case KVM_CAP_X2APIC_API
:
2627 r
= KVM_X2APIC_API_VALID_FLAGS
;
2637 long kvm_arch_dev_ioctl(struct file
*filp
,
2638 unsigned int ioctl
, unsigned long arg
)
2640 void __user
*argp
= (void __user
*)arg
;
2644 case KVM_GET_MSR_INDEX_LIST
: {
2645 struct kvm_msr_list __user
*user_msr_list
= argp
;
2646 struct kvm_msr_list msr_list
;
2650 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2653 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
2654 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2657 if (n
< msr_list
.nmsrs
)
2660 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2661 num_msrs_to_save
* sizeof(u32
)))
2663 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2665 num_emulated_msrs
* sizeof(u32
)))
2670 case KVM_GET_SUPPORTED_CPUID
:
2671 case KVM_GET_EMULATED_CPUID
: {
2672 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2673 struct kvm_cpuid2 cpuid
;
2676 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2679 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2685 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2690 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2692 if (copy_to_user(argp
, &kvm_mce_cap_supported
,
2693 sizeof(kvm_mce_cap_supported
)))
2705 static void wbinvd_ipi(void *garbage
)
2710 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2712 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2715 static inline void kvm_migrate_timers(struct kvm_vcpu
*vcpu
)
2717 set_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
);
2720 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2722 /* Address WBINVD may be executed by guest */
2723 if (need_emulate_wbinvd(vcpu
)) {
2724 if (kvm_x86_ops
->has_wbinvd_exit())
2725 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2726 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2727 smp_call_function_single(vcpu
->cpu
,
2728 wbinvd_ipi
, NULL
, 1);
2731 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2733 /* Apply any externally detected TSC adjustments (due to suspend) */
2734 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2735 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2736 vcpu
->arch
.tsc_offset_adjustment
= 0;
2737 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2740 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2741 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2742 rdtsc() - vcpu
->arch
.last_host_tsc
;
2744 mark_tsc_unstable("KVM discovered backwards TSC");
2746 if (kvm_lapic_hv_timer_in_use(vcpu
) &&
2747 kvm_x86_ops
->set_hv_timer(vcpu
,
2748 kvm_get_lapic_tscdeadline_msr(vcpu
)))
2749 kvm_lapic_switch_to_sw_timer(vcpu
);
2750 if (check_tsc_unstable()) {
2751 u64 offset
= kvm_compute_tsc_offset(vcpu
,
2752 vcpu
->arch
.last_guest_tsc
);
2753 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
2754 vcpu
->arch
.tsc_catchup
= 1;
2757 * On a host with synchronized TSC, there is no need to update
2758 * kvmclock on vcpu->cpu migration
2760 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2761 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2762 if (vcpu
->cpu
!= cpu
)
2763 kvm_migrate_timers(vcpu
);
2767 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2770 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2772 kvm_x86_ops
->vcpu_put(vcpu
);
2773 kvm_put_guest_fpu(vcpu
);
2774 vcpu
->arch
.last_host_tsc
= rdtsc();
2777 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2778 struct kvm_lapic_state
*s
)
2780 if (vcpu
->arch
.apicv_active
)
2781 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2783 return kvm_apic_get_state(vcpu
, s
);
2786 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2787 struct kvm_lapic_state
*s
)
2791 r
= kvm_apic_set_state(vcpu
, s
);
2794 update_cr8_intercept(vcpu
);
2799 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
2801 return (!lapic_in_kernel(vcpu
) ||
2802 kvm_apic_accept_pic_intr(vcpu
));
2806 * if userspace requested an interrupt window, check that the
2807 * interrupt window is open.
2809 * No need to exit to userspace if we already have an interrupt queued.
2811 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
2813 return kvm_arch_interrupt_allowed(vcpu
) &&
2814 !kvm_cpu_has_interrupt(vcpu
) &&
2815 !kvm_event_needs_reinjection(vcpu
) &&
2816 kvm_cpu_accept_dm_intr(vcpu
);
2819 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2820 struct kvm_interrupt
*irq
)
2822 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2825 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2826 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2827 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2832 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2833 * fail for in-kernel 8259.
2835 if (pic_in_kernel(vcpu
->kvm
))
2838 if (vcpu
->arch
.pending_external_vector
!= -1)
2841 vcpu
->arch
.pending_external_vector
= irq
->irq
;
2842 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2846 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2848 kvm_inject_nmi(vcpu
);
2853 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
2855 kvm_make_request(KVM_REQ_SMI
, vcpu
);
2860 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2861 struct kvm_tpr_access_ctl
*tac
)
2865 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2869 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2873 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2876 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2878 if (mcg_cap
& ~(kvm_mce_cap_supported
| 0xff | 0xff0000))
2881 vcpu
->arch
.mcg_cap
= mcg_cap
;
2882 /* Init IA32_MCG_CTL to all 1s */
2883 if (mcg_cap
& MCG_CTL_P
)
2884 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2885 /* Init IA32_MCi_CTL to all 1s */
2886 for (bank
= 0; bank
< bank_num
; bank
++)
2887 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2889 if (kvm_x86_ops
->setup_mce
)
2890 kvm_x86_ops
->setup_mce(vcpu
);
2895 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2896 struct kvm_x86_mce
*mce
)
2898 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2899 unsigned bank_num
= mcg_cap
& 0xff;
2900 u64
*banks
= vcpu
->arch
.mce_banks
;
2902 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2905 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2906 * reporting is disabled
2908 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2909 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2911 banks
+= 4 * mce
->bank
;
2913 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2914 * reporting is disabled for the bank
2916 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2918 if (mce
->status
& MCI_STATUS_UC
) {
2919 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2920 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2921 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2924 if (banks
[1] & MCI_STATUS_VAL
)
2925 mce
->status
|= MCI_STATUS_OVER
;
2926 banks
[2] = mce
->addr
;
2927 banks
[3] = mce
->misc
;
2928 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2929 banks
[1] = mce
->status
;
2930 kvm_queue_exception(vcpu
, MC_VECTOR
);
2931 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2932 || !(banks
[1] & MCI_STATUS_UC
)) {
2933 if (banks
[1] & MCI_STATUS_VAL
)
2934 mce
->status
|= MCI_STATUS_OVER
;
2935 banks
[2] = mce
->addr
;
2936 banks
[3] = mce
->misc
;
2937 banks
[1] = mce
->status
;
2939 banks
[1] |= MCI_STATUS_OVER
;
2943 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2944 struct kvm_vcpu_events
*events
)
2947 events
->exception
.injected
=
2948 vcpu
->arch
.exception
.pending
&&
2949 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2950 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2951 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2952 events
->exception
.pad
= 0;
2953 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2955 events
->interrupt
.injected
=
2956 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2957 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2958 events
->interrupt
.soft
= 0;
2959 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
2961 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2962 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2963 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2964 events
->nmi
.pad
= 0;
2966 events
->sipi_vector
= 0; /* never valid when reporting to user space */
2968 events
->smi
.smm
= is_smm(vcpu
);
2969 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
2970 events
->smi
.smm_inside_nmi
=
2971 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
2972 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
2974 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2975 | KVM_VCPUEVENT_VALID_SHADOW
2976 | KVM_VCPUEVENT_VALID_SMM
);
2977 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2980 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2981 struct kvm_vcpu_events
*events
)
2983 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2984 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2985 | KVM_VCPUEVENT_VALID_SHADOW
2986 | KVM_VCPUEVENT_VALID_SMM
))
2989 if (events
->exception
.injected
&&
2990 (events
->exception
.nr
> 31 || events
->exception
.nr
== NMI_VECTOR
))
2994 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2995 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2996 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2997 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2999 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
3000 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3001 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3002 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3003 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3004 events
->interrupt
.shadow
);
3006 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3007 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3008 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3009 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3011 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3012 lapic_in_kernel(vcpu
))
3013 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3015 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
3016 if (events
->smi
.smm
)
3017 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
3019 vcpu
->arch
.hflags
&= ~HF_SMM_MASK
;
3020 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
3021 if (events
->smi
.smm_inside_nmi
)
3022 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
3024 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
3025 if (lapic_in_kernel(vcpu
)) {
3026 if (events
->smi
.latched_init
)
3027 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3029 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3033 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3038 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3039 struct kvm_debugregs
*dbgregs
)
3043 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3044 kvm_get_dr(vcpu
, 6, &val
);
3046 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3048 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3051 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3052 struct kvm_debugregs
*dbgregs
)
3057 if (dbgregs
->dr6
& ~0xffffffffull
)
3059 if (dbgregs
->dr7
& ~0xffffffffull
)
3062 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3063 kvm_update_dr0123(vcpu
);
3064 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3065 kvm_update_dr6(vcpu
);
3066 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3067 kvm_update_dr7(vcpu
);
3072 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3074 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3076 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3077 u64 xstate_bv
= xsave
->header
.xfeatures
;
3081 * Copy legacy XSAVE area, to avoid complications with CPUID
3082 * leaves 0 and 1 in the loop below.
3084 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3087 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3090 * Copy each region from the possibly compacted offset to the
3091 * non-compacted offset.
3093 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3095 u64 feature
= valid
& -valid
;
3096 int index
= fls64(feature
) - 1;
3097 void *src
= get_xsave_addr(xsave
, feature
);
3100 u32 size
, offset
, ecx
, edx
;
3101 cpuid_count(XSTATE_CPUID
, index
,
3102 &size
, &offset
, &ecx
, &edx
);
3103 memcpy(dest
+ offset
, src
, size
);
3110 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3112 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3113 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3117 * Copy legacy XSAVE area, to avoid complications with CPUID
3118 * leaves 0 and 1 in the loop below.
3120 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3122 /* Set XSTATE_BV and possibly XCOMP_BV. */
3123 xsave
->header
.xfeatures
= xstate_bv
;
3124 if (boot_cpu_has(X86_FEATURE_XSAVES
))
3125 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3128 * Copy each region from the non-compacted offset to the
3129 * possibly compacted offset.
3131 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3133 u64 feature
= valid
& -valid
;
3134 int index
= fls64(feature
) - 1;
3135 void *dest
= get_xsave_addr(xsave
, feature
);
3138 u32 size
, offset
, ecx
, edx
;
3139 cpuid_count(XSTATE_CPUID
, index
,
3140 &size
, &offset
, &ecx
, &edx
);
3141 memcpy(dest
, src
+ offset
, size
);
3148 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3149 struct kvm_xsave
*guest_xsave
)
3151 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3152 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3153 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3155 memcpy(guest_xsave
->region
,
3156 &vcpu
->arch
.guest_fpu
.state
.fxsave
,
3157 sizeof(struct fxregs_state
));
3158 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3159 XFEATURE_MASK_FPSSE
;
3163 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3164 struct kvm_xsave
*guest_xsave
)
3167 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3169 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3171 * Here we allow setting states that are not present in
3172 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3173 * with old userspace.
3175 if (xstate_bv
& ~kvm_supported_xcr0())
3177 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3179 if (xstate_bv
& ~XFEATURE_MASK_FPSSE
)
3181 memcpy(&vcpu
->arch
.guest_fpu
.state
.fxsave
,
3182 guest_xsave
->region
, sizeof(struct fxregs_state
));
3187 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3188 struct kvm_xcrs
*guest_xcrs
)
3190 if (!boot_cpu_has(X86_FEATURE_XSAVE
)) {
3191 guest_xcrs
->nr_xcrs
= 0;
3195 guest_xcrs
->nr_xcrs
= 1;
3196 guest_xcrs
->flags
= 0;
3197 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3198 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3201 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3202 struct kvm_xcrs
*guest_xcrs
)
3206 if (!boot_cpu_has(X86_FEATURE_XSAVE
))
3209 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3212 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3213 /* Only support XCR0 currently */
3214 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3215 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3216 guest_xcrs
->xcrs
[i
].value
);
3225 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3226 * stopped by the hypervisor. This function will be called from the host only.
3227 * EINVAL is returned when the host attempts to set the flag for a guest that
3228 * does not support pv clocks.
3230 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3232 if (!vcpu
->arch
.pv_time_enabled
)
3234 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3235 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3239 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
3240 struct kvm_enable_cap
*cap
)
3246 case KVM_CAP_HYPERV_SYNIC
:
3247 return kvm_hv_activate_synic(vcpu
);
3253 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3254 unsigned int ioctl
, unsigned long arg
)
3256 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3257 void __user
*argp
= (void __user
*)arg
;
3260 struct kvm_lapic_state
*lapic
;
3261 struct kvm_xsave
*xsave
;
3262 struct kvm_xcrs
*xcrs
;
3268 case KVM_GET_LAPIC
: {
3270 if (!lapic_in_kernel(vcpu
))
3272 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3277 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3281 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3286 case KVM_SET_LAPIC
: {
3288 if (!lapic_in_kernel(vcpu
))
3290 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3291 if (IS_ERR(u
.lapic
))
3292 return PTR_ERR(u
.lapic
);
3294 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3297 case KVM_INTERRUPT
: {
3298 struct kvm_interrupt irq
;
3301 if (copy_from_user(&irq
, argp
, sizeof irq
))
3303 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3307 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3311 r
= kvm_vcpu_ioctl_smi(vcpu
);
3314 case KVM_SET_CPUID
: {
3315 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3316 struct kvm_cpuid cpuid
;
3319 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3321 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3324 case KVM_SET_CPUID2
: {
3325 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3326 struct kvm_cpuid2 cpuid
;
3329 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3331 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3332 cpuid_arg
->entries
);
3335 case KVM_GET_CPUID2
: {
3336 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3337 struct kvm_cpuid2 cpuid
;
3340 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3342 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3343 cpuid_arg
->entries
);
3347 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3353 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
3356 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3358 case KVM_TPR_ACCESS_REPORTING
: {
3359 struct kvm_tpr_access_ctl tac
;
3362 if (copy_from_user(&tac
, argp
, sizeof tac
))
3364 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3368 if (copy_to_user(argp
, &tac
, sizeof tac
))
3373 case KVM_SET_VAPIC_ADDR
: {
3374 struct kvm_vapic_addr va
;
3377 if (!lapic_in_kernel(vcpu
))
3380 if (copy_from_user(&va
, argp
, sizeof va
))
3382 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3385 case KVM_X86_SETUP_MCE
: {
3389 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3391 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3394 case KVM_X86_SET_MCE
: {
3395 struct kvm_x86_mce mce
;
3398 if (copy_from_user(&mce
, argp
, sizeof mce
))
3400 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3403 case KVM_GET_VCPU_EVENTS
: {
3404 struct kvm_vcpu_events events
;
3406 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3409 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3414 case KVM_SET_VCPU_EVENTS
: {
3415 struct kvm_vcpu_events events
;
3418 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3421 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3424 case KVM_GET_DEBUGREGS
: {
3425 struct kvm_debugregs dbgregs
;
3427 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3430 if (copy_to_user(argp
, &dbgregs
,
3431 sizeof(struct kvm_debugregs
)))
3436 case KVM_SET_DEBUGREGS
: {
3437 struct kvm_debugregs dbgregs
;
3440 if (copy_from_user(&dbgregs
, argp
,
3441 sizeof(struct kvm_debugregs
)))
3444 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3447 case KVM_GET_XSAVE
: {
3448 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3453 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3456 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3461 case KVM_SET_XSAVE
: {
3462 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3463 if (IS_ERR(u
.xsave
))
3464 return PTR_ERR(u
.xsave
);
3466 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3469 case KVM_GET_XCRS
: {
3470 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3475 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3478 if (copy_to_user(argp
, u
.xcrs
,
3479 sizeof(struct kvm_xcrs
)))
3484 case KVM_SET_XCRS
: {
3485 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3487 return PTR_ERR(u
.xcrs
);
3489 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3492 case KVM_SET_TSC_KHZ
: {
3496 user_tsc_khz
= (u32
)arg
;
3498 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3501 if (user_tsc_khz
== 0)
3502 user_tsc_khz
= tsc_khz
;
3504 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
3509 case KVM_GET_TSC_KHZ
: {
3510 r
= vcpu
->arch
.virtual_tsc_khz
;
3513 case KVM_KVMCLOCK_CTRL
: {
3514 r
= kvm_set_guest_paused(vcpu
);
3517 case KVM_ENABLE_CAP
: {
3518 struct kvm_enable_cap cap
;
3521 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
3523 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
3534 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3536 return VM_FAULT_SIGBUS
;
3539 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3543 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3545 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3549 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3552 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3556 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3557 u32 kvm_nr_mmu_pages
)
3559 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3562 mutex_lock(&kvm
->slots_lock
);
3564 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3565 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3567 mutex_unlock(&kvm
->slots_lock
);
3571 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3573 return kvm
->arch
.n_max_mmu_pages
;
3576 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3581 switch (chip
->chip_id
) {
3582 case KVM_IRQCHIP_PIC_MASTER
:
3583 memcpy(&chip
->chip
.pic
,
3584 &pic_irqchip(kvm
)->pics
[0],
3585 sizeof(struct kvm_pic_state
));
3587 case KVM_IRQCHIP_PIC_SLAVE
:
3588 memcpy(&chip
->chip
.pic
,
3589 &pic_irqchip(kvm
)->pics
[1],
3590 sizeof(struct kvm_pic_state
));
3592 case KVM_IRQCHIP_IOAPIC
:
3593 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3602 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3607 switch (chip
->chip_id
) {
3608 case KVM_IRQCHIP_PIC_MASTER
:
3609 spin_lock(&pic_irqchip(kvm
)->lock
);
3610 memcpy(&pic_irqchip(kvm
)->pics
[0],
3612 sizeof(struct kvm_pic_state
));
3613 spin_unlock(&pic_irqchip(kvm
)->lock
);
3615 case KVM_IRQCHIP_PIC_SLAVE
:
3616 spin_lock(&pic_irqchip(kvm
)->lock
);
3617 memcpy(&pic_irqchip(kvm
)->pics
[1],
3619 sizeof(struct kvm_pic_state
));
3620 spin_unlock(&pic_irqchip(kvm
)->lock
);
3622 case KVM_IRQCHIP_IOAPIC
:
3623 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3629 kvm_pic_update_irq(pic_irqchip(kvm
));
3633 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3635 struct kvm_kpit_state
*kps
= &kvm
->arch
.vpit
->pit_state
;
3637 BUILD_BUG_ON(sizeof(*ps
) != sizeof(kps
->channels
));
3639 mutex_lock(&kps
->lock
);
3640 memcpy(ps
, &kps
->channels
, sizeof(*ps
));
3641 mutex_unlock(&kps
->lock
);
3645 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3648 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3650 mutex_lock(&pit
->pit_state
.lock
);
3651 memcpy(&pit
->pit_state
.channels
, ps
, sizeof(*ps
));
3652 for (i
= 0; i
< 3; i
++)
3653 kvm_pit_load_count(pit
, i
, ps
->channels
[i
].count
, 0);
3654 mutex_unlock(&pit
->pit_state
.lock
);
3658 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3660 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3661 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3662 sizeof(ps
->channels
));
3663 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3664 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3665 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3669 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3673 u32 prev_legacy
, cur_legacy
;
3674 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3676 mutex_lock(&pit
->pit_state
.lock
);
3677 prev_legacy
= pit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3678 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3679 if (!prev_legacy
&& cur_legacy
)
3681 memcpy(&pit
->pit_state
.channels
, &ps
->channels
,
3682 sizeof(pit
->pit_state
.channels
));
3683 pit
->pit_state
.flags
= ps
->flags
;
3684 for (i
= 0; i
< 3; i
++)
3685 kvm_pit_load_count(pit
, i
, pit
->pit_state
.channels
[i
].count
,
3687 mutex_unlock(&pit
->pit_state
.lock
);
3691 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3692 struct kvm_reinject_control
*control
)
3694 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3699 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3700 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3701 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3703 mutex_lock(&pit
->pit_state
.lock
);
3704 kvm_pit_set_reinject(pit
, control
->pit_reinject
);
3705 mutex_unlock(&pit
->pit_state
.lock
);
3711 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3712 * @kvm: kvm instance
3713 * @log: slot id and address to which we copy the log
3715 * Steps 1-4 below provide general overview of dirty page logging. See
3716 * kvm_get_dirty_log_protect() function description for additional details.
3718 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3719 * always flush the TLB (step 4) even if previous step failed and the dirty
3720 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3721 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3722 * writes will be marked dirty for next log read.
3724 * 1. Take a snapshot of the bit and clear it if needed.
3725 * 2. Write protect the corresponding page.
3726 * 3. Copy the snapshot to the userspace.
3727 * 4. Flush TLB's if needed.
3729 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3731 bool is_dirty
= false;
3734 mutex_lock(&kvm
->slots_lock
);
3737 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3739 if (kvm_x86_ops
->flush_log_dirty
)
3740 kvm_x86_ops
->flush_log_dirty(kvm
);
3742 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
3745 * All the TLBs can be flushed out of mmu lock, see the comments in
3746 * kvm_mmu_slot_remove_write_access().
3748 lockdep_assert_held(&kvm
->slots_lock
);
3750 kvm_flush_remote_tlbs(kvm
);
3752 mutex_unlock(&kvm
->slots_lock
);
3756 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3759 if (!irqchip_in_kernel(kvm
))
3762 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3763 irq_event
->irq
, irq_event
->level
,
3768 static int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
3769 struct kvm_enable_cap
*cap
)
3777 case KVM_CAP_DISABLE_QUIRKS
:
3778 kvm
->arch
.disabled_quirks
= cap
->args
[0];
3781 case KVM_CAP_SPLIT_IRQCHIP
: {
3782 mutex_lock(&kvm
->lock
);
3784 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
3785 goto split_irqchip_unlock
;
3787 if (irqchip_in_kernel(kvm
))
3788 goto split_irqchip_unlock
;
3789 if (kvm
->created_vcpus
)
3790 goto split_irqchip_unlock
;
3791 r
= kvm_setup_empty_irq_routing(kvm
);
3793 goto split_irqchip_unlock
;
3794 /* Pairs with irqchip_in_kernel. */
3796 kvm
->arch
.irqchip_split
= true;
3797 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
3799 split_irqchip_unlock
:
3800 mutex_unlock(&kvm
->lock
);
3803 case KVM_CAP_X2APIC_API
:
3805 if (cap
->args
[0] & ~KVM_X2APIC_API_VALID_FLAGS
)
3808 if (cap
->args
[0] & KVM_X2APIC_API_USE_32BIT_IDS
)
3809 kvm
->arch
.x2apic_format
= true;
3810 if (cap
->args
[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
)
3811 kvm
->arch
.x2apic_broadcast_quirk_disabled
= true;
3822 long kvm_arch_vm_ioctl(struct file
*filp
,
3823 unsigned int ioctl
, unsigned long arg
)
3825 struct kvm
*kvm
= filp
->private_data
;
3826 void __user
*argp
= (void __user
*)arg
;
3829 * This union makes it completely explicit to gcc-3.x
3830 * that these two variables' stack usage should be
3831 * combined, not added together.
3834 struct kvm_pit_state ps
;
3835 struct kvm_pit_state2 ps2
;
3836 struct kvm_pit_config pit_config
;
3840 case KVM_SET_TSS_ADDR
:
3841 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3843 case KVM_SET_IDENTITY_MAP_ADDR
: {
3847 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3849 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3852 case KVM_SET_NR_MMU_PAGES
:
3853 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3855 case KVM_GET_NR_MMU_PAGES
:
3856 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3858 case KVM_CREATE_IRQCHIP
: {
3859 struct kvm_pic
*vpic
;
3861 mutex_lock(&kvm
->lock
);
3864 goto create_irqchip_unlock
;
3866 if (kvm
->created_vcpus
)
3867 goto create_irqchip_unlock
;
3869 vpic
= kvm_create_pic(kvm
);
3871 r
= kvm_ioapic_init(kvm
);
3873 mutex_lock(&kvm
->slots_lock
);
3874 kvm_destroy_pic(vpic
);
3875 mutex_unlock(&kvm
->slots_lock
);
3876 goto create_irqchip_unlock
;
3879 goto create_irqchip_unlock
;
3880 r
= kvm_setup_default_irq_routing(kvm
);
3882 mutex_lock(&kvm
->slots_lock
);
3883 mutex_lock(&kvm
->irq_lock
);
3884 kvm_ioapic_destroy(kvm
);
3885 kvm_destroy_pic(vpic
);
3886 mutex_unlock(&kvm
->irq_lock
);
3887 mutex_unlock(&kvm
->slots_lock
);
3888 goto create_irqchip_unlock
;
3890 /* Write kvm->irq_routing before kvm->arch.vpic. */
3892 kvm
->arch
.vpic
= vpic
;
3893 create_irqchip_unlock
:
3894 mutex_unlock(&kvm
->lock
);
3897 case KVM_CREATE_PIT
:
3898 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3900 case KVM_CREATE_PIT2
:
3902 if (copy_from_user(&u
.pit_config
, argp
,
3903 sizeof(struct kvm_pit_config
)))
3906 mutex_lock(&kvm
->lock
);
3909 goto create_pit_unlock
;
3911 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3915 mutex_unlock(&kvm
->lock
);
3917 case KVM_GET_IRQCHIP
: {
3918 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3919 struct kvm_irqchip
*chip
;
3921 chip
= memdup_user(argp
, sizeof(*chip
));
3928 if (!irqchip_in_kernel(kvm
) || irqchip_split(kvm
))
3929 goto get_irqchip_out
;
3930 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3932 goto get_irqchip_out
;
3934 if (copy_to_user(argp
, chip
, sizeof *chip
))
3935 goto get_irqchip_out
;
3941 case KVM_SET_IRQCHIP
: {
3942 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3943 struct kvm_irqchip
*chip
;
3945 chip
= memdup_user(argp
, sizeof(*chip
));
3952 if (!irqchip_in_kernel(kvm
) || irqchip_split(kvm
))
3953 goto set_irqchip_out
;
3954 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3956 goto set_irqchip_out
;
3964 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3967 if (!kvm
->arch
.vpit
)
3969 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3973 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3980 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3983 if (!kvm
->arch
.vpit
)
3985 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3988 case KVM_GET_PIT2
: {
3990 if (!kvm
->arch
.vpit
)
3992 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3996 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
4001 case KVM_SET_PIT2
: {
4003 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
4006 if (!kvm
->arch
.vpit
)
4008 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
4011 case KVM_REINJECT_CONTROL
: {
4012 struct kvm_reinject_control control
;
4014 if (copy_from_user(&control
, argp
, sizeof(control
)))
4016 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
4019 case KVM_SET_BOOT_CPU_ID
:
4021 mutex_lock(&kvm
->lock
);
4022 if (kvm
->created_vcpus
)
4025 kvm
->arch
.bsp_vcpu_id
= arg
;
4026 mutex_unlock(&kvm
->lock
);
4028 case KVM_XEN_HVM_CONFIG
: {
4030 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
4031 sizeof(struct kvm_xen_hvm_config
)))
4034 if (kvm
->arch
.xen_hvm_config
.flags
)
4039 case KVM_SET_CLOCK
: {
4040 struct kvm_clock_data user_ns
;
4045 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
4053 local_irq_disable();
4054 now_ns
= get_kernel_ns();
4055 delta
= user_ns
.clock
- now_ns
;
4057 kvm
->arch
.kvmclock_offset
= delta
;
4058 kvm_gen_update_masterclock(kvm
);
4061 case KVM_GET_CLOCK
: {
4062 struct kvm_clock_data user_ns
;
4065 local_irq_disable();
4066 now_ns
= get_kernel_ns();
4067 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
4070 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4073 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4078 case KVM_ENABLE_CAP
: {
4079 struct kvm_enable_cap cap
;
4082 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4084 r
= kvm_vm_ioctl_enable_cap(kvm
, &cap
);
4088 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
4094 static void kvm_init_msr_list(void)
4099 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4100 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4104 * Even MSRs that are valid in the host may not be exposed
4105 * to the guests in some cases.
4107 switch (msrs_to_save
[i
]) {
4108 case MSR_IA32_BNDCFGS
:
4109 if (!kvm_x86_ops
->mpx_supported())
4113 if (!kvm_x86_ops
->rdtscp_supported())
4121 msrs_to_save
[j
] = msrs_to_save
[i
];
4124 num_msrs_to_save
= j
;
4126 for (i
= j
= 0; i
< ARRAY_SIZE(emulated_msrs
); i
++) {
4127 switch (emulated_msrs
[i
]) {
4128 case MSR_IA32_SMBASE
:
4129 if (!kvm_x86_ops
->cpu_has_high_real_mode_segbase())
4137 emulated_msrs
[j
] = emulated_msrs
[i
];
4140 num_emulated_msrs
= j
;
4143 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4151 if (!(lapic_in_kernel(vcpu
) &&
4152 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4153 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4164 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4171 if (!(lapic_in_kernel(vcpu
) &&
4172 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4174 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4176 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
4186 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4187 struct kvm_segment
*var
, int seg
)
4189 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4192 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4193 struct kvm_segment
*var
, int seg
)
4195 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4198 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4199 struct x86_exception
*exception
)
4203 BUG_ON(!mmu_is_nested(vcpu
));
4205 /* NPT walks are always user-walks */
4206 access
|= PFERR_USER_MASK
;
4207 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4212 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4213 struct x86_exception
*exception
)
4215 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4216 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4219 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4220 struct x86_exception
*exception
)
4222 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4223 access
|= PFERR_FETCH_MASK
;
4224 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4227 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4228 struct x86_exception
*exception
)
4230 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4231 access
|= PFERR_WRITE_MASK
;
4232 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4235 /* uses this to access any guest's mapped memory without checking CPL */
4236 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4237 struct x86_exception
*exception
)
4239 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4242 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4243 struct kvm_vcpu
*vcpu
, u32 access
,
4244 struct x86_exception
*exception
)
4247 int r
= X86EMUL_CONTINUE
;
4250 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4252 unsigned offset
= addr
& (PAGE_SIZE
-1);
4253 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4256 if (gpa
== UNMAPPED_GVA
)
4257 return X86EMUL_PROPAGATE_FAULT
;
4258 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
4261 r
= X86EMUL_IO_NEEDED
;
4273 /* used for instruction fetching */
4274 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4275 gva_t addr
, void *val
, unsigned int bytes
,
4276 struct x86_exception
*exception
)
4278 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4279 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4283 /* Inline kvm_read_guest_virt_helper for speed. */
4284 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4286 if (unlikely(gpa
== UNMAPPED_GVA
))
4287 return X86EMUL_PROPAGATE_FAULT
;
4289 offset
= addr
& (PAGE_SIZE
-1);
4290 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4291 bytes
= (unsigned)PAGE_SIZE
- offset
;
4292 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
4294 if (unlikely(ret
< 0))
4295 return X86EMUL_IO_NEEDED
;
4297 return X86EMUL_CONTINUE
;
4300 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4301 gva_t addr
, void *val
, unsigned int bytes
,
4302 struct x86_exception
*exception
)
4304 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4305 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4307 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4310 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4312 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4313 gva_t addr
, void *val
, unsigned int bytes
,
4314 struct x86_exception
*exception
)
4316 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4317 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4320 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt
*ctxt
,
4321 unsigned long addr
, void *val
, unsigned int bytes
)
4323 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4324 int r
= kvm_vcpu_read_guest(vcpu
, addr
, val
, bytes
);
4326 return r
< 0 ? X86EMUL_IO_NEEDED
: X86EMUL_CONTINUE
;
4329 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4330 gva_t addr
, void *val
,
4332 struct x86_exception
*exception
)
4334 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4336 int r
= X86EMUL_CONTINUE
;
4339 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4342 unsigned offset
= addr
& (PAGE_SIZE
-1);
4343 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4346 if (gpa
== UNMAPPED_GVA
)
4347 return X86EMUL_PROPAGATE_FAULT
;
4348 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
4350 r
= X86EMUL_IO_NEEDED
;
4361 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4363 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4364 gpa_t
*gpa
, struct x86_exception
*exception
,
4367 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4368 | (write
? PFERR_WRITE_MASK
: 0);
4371 * currently PKRU is only applied to ept enabled guest so
4372 * there is no pkey in EPT page table for L1 guest or EPT
4373 * shadow page table for L2 guest.
4375 if (vcpu_match_mmio_gva(vcpu
, gva
)
4376 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4377 vcpu
->arch
.access
, 0, access
)) {
4378 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4379 (gva
& (PAGE_SIZE
- 1));
4380 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4384 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4386 if (*gpa
== UNMAPPED_GVA
)
4389 /* For APIC access vmexit */
4390 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4393 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4394 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4401 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4402 const void *val
, int bytes
)
4406 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
4409 kvm_page_track_write(vcpu
, gpa
, val
, bytes
);
4413 struct read_write_emulator_ops
{
4414 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4416 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4417 void *val
, int bytes
);
4418 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4419 int bytes
, void *val
);
4420 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4421 void *val
, int bytes
);
4425 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4427 if (vcpu
->mmio_read_completed
) {
4428 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4429 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4430 vcpu
->mmio_read_completed
= 0;
4437 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4438 void *val
, int bytes
)
4440 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
4443 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4444 void *val
, int bytes
)
4446 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4449 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4451 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4452 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4455 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4456 void *val
, int bytes
)
4458 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4459 return X86EMUL_IO_NEEDED
;
4462 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4463 void *val
, int bytes
)
4465 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4467 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4468 return X86EMUL_CONTINUE
;
4471 static const struct read_write_emulator_ops read_emultor
= {
4472 .read_write_prepare
= read_prepare
,
4473 .read_write_emulate
= read_emulate
,
4474 .read_write_mmio
= vcpu_mmio_read
,
4475 .read_write_exit_mmio
= read_exit_mmio
,
4478 static const struct read_write_emulator_ops write_emultor
= {
4479 .read_write_emulate
= write_emulate
,
4480 .read_write_mmio
= write_mmio
,
4481 .read_write_exit_mmio
= write_exit_mmio
,
4485 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4487 struct x86_exception
*exception
,
4488 struct kvm_vcpu
*vcpu
,
4489 const struct read_write_emulator_ops
*ops
)
4493 bool write
= ops
->write
;
4494 struct kvm_mmio_fragment
*frag
;
4496 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4499 return X86EMUL_PROPAGATE_FAULT
;
4501 /* For APIC access vmexit */
4505 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4506 return X86EMUL_CONTINUE
;
4510 * Is this MMIO handled locally?
4512 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4513 if (handled
== bytes
)
4514 return X86EMUL_CONTINUE
;
4520 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4521 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4525 return X86EMUL_CONTINUE
;
4528 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
4530 void *val
, unsigned int bytes
,
4531 struct x86_exception
*exception
,
4532 const struct read_write_emulator_ops
*ops
)
4534 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4538 if (ops
->read_write_prepare
&&
4539 ops
->read_write_prepare(vcpu
, val
, bytes
))
4540 return X86EMUL_CONTINUE
;
4542 vcpu
->mmio_nr_fragments
= 0;
4544 /* Crossing a page boundary? */
4545 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4548 now
= -addr
& ~PAGE_MASK
;
4549 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4552 if (rc
!= X86EMUL_CONTINUE
)
4555 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
4561 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4563 if (rc
!= X86EMUL_CONTINUE
)
4566 if (!vcpu
->mmio_nr_fragments
)
4569 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4571 vcpu
->mmio_needed
= 1;
4572 vcpu
->mmio_cur_fragment
= 0;
4574 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4575 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4576 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4577 vcpu
->run
->mmio
.phys_addr
= gpa
;
4579 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4582 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4586 struct x86_exception
*exception
)
4588 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4589 exception
, &read_emultor
);
4592 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4596 struct x86_exception
*exception
)
4598 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4599 exception
, &write_emultor
);
4602 #define CMPXCHG_TYPE(t, ptr, old, new) \
4603 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4605 #ifdef CONFIG_X86_64
4606 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4608 # define CMPXCHG64(ptr, old, new) \
4609 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4612 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4617 struct x86_exception
*exception
)
4619 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4625 /* guests cmpxchg8b have to be emulated atomically */
4626 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4629 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4631 if (gpa
== UNMAPPED_GVA
||
4632 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4635 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4638 page
= kvm_vcpu_gfn_to_page(vcpu
, gpa
>> PAGE_SHIFT
);
4639 if (is_error_page(page
))
4642 kaddr
= kmap_atomic(page
);
4643 kaddr
+= offset_in_page(gpa
);
4646 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4649 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4652 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4655 exchanged
= CMPXCHG64(kaddr
, old
, new);
4660 kunmap_atomic(kaddr
);
4661 kvm_release_page_dirty(page
);
4664 return X86EMUL_CMPXCHG_FAILED
;
4666 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
4667 kvm_page_track_write(vcpu
, gpa
, new, bytes
);
4669 return X86EMUL_CONTINUE
;
4672 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4674 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4677 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4679 /* TODO: String I/O for in kernel device */
4682 if (vcpu
->arch
.pio
.in
)
4683 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4684 vcpu
->arch
.pio
.size
, pd
);
4686 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
4687 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4692 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4693 unsigned short port
, void *val
,
4694 unsigned int count
, bool in
)
4696 vcpu
->arch
.pio
.port
= port
;
4697 vcpu
->arch
.pio
.in
= in
;
4698 vcpu
->arch
.pio
.count
= count
;
4699 vcpu
->arch
.pio
.size
= size
;
4701 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4702 vcpu
->arch
.pio
.count
= 0;
4706 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4707 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4708 vcpu
->run
->io
.size
= size
;
4709 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4710 vcpu
->run
->io
.count
= count
;
4711 vcpu
->run
->io
.port
= port
;
4716 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4717 int size
, unsigned short port
, void *val
,
4720 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4723 if (vcpu
->arch
.pio
.count
)
4726 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4729 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4730 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
4731 vcpu
->arch
.pio
.count
= 0;
4738 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4739 int size
, unsigned short port
,
4740 const void *val
, unsigned int count
)
4742 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4744 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4745 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
4746 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4749 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4751 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4754 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4756 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4759 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
4761 if (!need_emulate_wbinvd(vcpu
))
4762 return X86EMUL_CONTINUE
;
4764 if (kvm_x86_ops
->has_wbinvd_exit()) {
4765 int cpu
= get_cpu();
4767 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4768 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4769 wbinvd_ipi
, NULL
, 1);
4771 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4774 return X86EMUL_CONTINUE
;
4777 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4779 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
4780 return kvm_emulate_wbinvd_noskip(vcpu
);
4782 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4786 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4788 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
4791 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4792 unsigned long *dest
)
4794 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4797 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4798 unsigned long value
)
4801 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4804 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4806 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4809 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4811 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4812 unsigned long value
;
4816 value
= kvm_read_cr0(vcpu
);
4819 value
= vcpu
->arch
.cr2
;
4822 value
= kvm_read_cr3(vcpu
);
4825 value
= kvm_read_cr4(vcpu
);
4828 value
= kvm_get_cr8(vcpu
);
4831 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4838 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4840 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4845 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4848 vcpu
->arch
.cr2
= val
;
4851 res
= kvm_set_cr3(vcpu
, val
);
4854 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4857 res
= kvm_set_cr8(vcpu
, val
);
4860 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4867 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4869 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4872 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4874 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4877 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4879 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4882 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4884 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4887 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4889 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4892 static unsigned long emulator_get_cached_segment_base(
4893 struct x86_emulate_ctxt
*ctxt
, int seg
)
4895 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4898 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4899 struct desc_struct
*desc
, u32
*base3
,
4902 struct kvm_segment var
;
4904 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4905 *selector
= var
.selector
;
4908 memset(desc
, 0, sizeof(*desc
));
4914 set_desc_limit(desc
, var
.limit
);
4915 set_desc_base(desc
, (unsigned long)var
.base
);
4916 #ifdef CONFIG_X86_64
4918 *base3
= var
.base
>> 32;
4920 desc
->type
= var
.type
;
4922 desc
->dpl
= var
.dpl
;
4923 desc
->p
= var
.present
;
4924 desc
->avl
= var
.avl
;
4932 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4933 struct desc_struct
*desc
, u32 base3
,
4936 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4937 struct kvm_segment var
;
4939 var
.selector
= selector
;
4940 var
.base
= get_desc_base(desc
);
4941 #ifdef CONFIG_X86_64
4942 var
.base
|= ((u64
)base3
) << 32;
4944 var
.limit
= get_desc_limit(desc
);
4946 var
.limit
= (var
.limit
<< 12) | 0xfff;
4947 var
.type
= desc
->type
;
4948 var
.dpl
= desc
->dpl
;
4953 var
.avl
= desc
->avl
;
4954 var
.present
= desc
->p
;
4955 var
.unusable
= !var
.present
;
4958 kvm_set_segment(vcpu
, &var
, seg
);
4962 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4963 u32 msr_index
, u64
*pdata
)
4965 struct msr_data msr
;
4968 msr
.index
= msr_index
;
4969 msr
.host_initiated
= false;
4970 r
= kvm_get_msr(emul_to_vcpu(ctxt
), &msr
);
4978 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4979 u32 msr_index
, u64 data
)
4981 struct msr_data msr
;
4984 msr
.index
= msr_index
;
4985 msr
.host_initiated
= false;
4986 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
4989 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
4991 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4993 return vcpu
->arch
.smbase
;
4996 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
4998 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5000 vcpu
->arch
.smbase
= smbase
;
5003 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
5006 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt
), pmc
);
5009 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
5010 u32 pmc
, u64
*pdata
)
5012 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
5015 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
5017 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
5020 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
5023 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
5025 * CR0.TS may reference the host fpu state, not the guest fpu state,
5026 * so it may be clear at this point.
5031 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
5036 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
5037 struct x86_instruction_info
*info
,
5038 enum x86_intercept_stage stage
)
5040 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
5043 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
5044 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
5046 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
5049 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
5051 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
5054 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
5056 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
5059 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
5061 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
5064 static const struct x86_emulate_ops emulate_ops
= {
5065 .read_gpr
= emulator_read_gpr
,
5066 .write_gpr
= emulator_write_gpr
,
5067 .read_std
= kvm_read_guest_virt_system
,
5068 .write_std
= kvm_write_guest_virt_system
,
5069 .read_phys
= kvm_read_guest_phys_system
,
5070 .fetch
= kvm_fetch_guest_virt
,
5071 .read_emulated
= emulator_read_emulated
,
5072 .write_emulated
= emulator_write_emulated
,
5073 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
5074 .invlpg
= emulator_invlpg
,
5075 .pio_in_emulated
= emulator_pio_in_emulated
,
5076 .pio_out_emulated
= emulator_pio_out_emulated
,
5077 .get_segment
= emulator_get_segment
,
5078 .set_segment
= emulator_set_segment
,
5079 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5080 .get_gdt
= emulator_get_gdt
,
5081 .get_idt
= emulator_get_idt
,
5082 .set_gdt
= emulator_set_gdt
,
5083 .set_idt
= emulator_set_idt
,
5084 .get_cr
= emulator_get_cr
,
5085 .set_cr
= emulator_set_cr
,
5086 .cpl
= emulator_get_cpl
,
5087 .get_dr
= emulator_get_dr
,
5088 .set_dr
= emulator_set_dr
,
5089 .get_smbase
= emulator_get_smbase
,
5090 .set_smbase
= emulator_set_smbase
,
5091 .set_msr
= emulator_set_msr
,
5092 .get_msr
= emulator_get_msr
,
5093 .check_pmc
= emulator_check_pmc
,
5094 .read_pmc
= emulator_read_pmc
,
5095 .halt
= emulator_halt
,
5096 .wbinvd
= emulator_wbinvd
,
5097 .fix_hypercall
= emulator_fix_hypercall
,
5098 .get_fpu
= emulator_get_fpu
,
5099 .put_fpu
= emulator_put_fpu
,
5100 .intercept
= emulator_intercept
,
5101 .get_cpuid
= emulator_get_cpuid
,
5102 .set_nmi_mask
= emulator_set_nmi_mask
,
5105 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5107 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5109 * an sti; sti; sequence only disable interrupts for the first
5110 * instruction. So, if the last instruction, be it emulated or
5111 * not, left the system with the INT_STI flag enabled, it
5112 * means that the last instruction is an sti. We should not
5113 * leave the flag on in this case. The same goes for mov ss
5115 if (int_shadow
& mask
)
5117 if (unlikely(int_shadow
|| mask
)) {
5118 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5120 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5124 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5126 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5127 if (ctxt
->exception
.vector
== PF_VECTOR
)
5128 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5130 if (ctxt
->exception
.error_code_valid
)
5131 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5132 ctxt
->exception
.error_code
);
5134 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5138 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5140 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5143 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5145 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5146 ctxt
->eip
= kvm_rip_read(vcpu
);
5147 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5148 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5149 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5150 cs_db
? X86EMUL_MODE_PROT32
:
5151 X86EMUL_MODE_PROT16
;
5152 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
5153 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
5154 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
5155 ctxt
->emul_flags
= vcpu
->arch
.hflags
;
5157 init_decode_cache(ctxt
);
5158 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5161 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5163 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5166 init_emulate_ctxt(vcpu
);
5170 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5171 ret
= emulate_int_real(ctxt
, irq
);
5173 if (ret
!= X86EMUL_CONTINUE
)
5174 return EMULATE_FAIL
;
5176 ctxt
->eip
= ctxt
->_eip
;
5177 kvm_rip_write(vcpu
, ctxt
->eip
);
5178 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5180 if (irq
== NMI_VECTOR
)
5181 vcpu
->arch
.nmi_pending
= 0;
5183 vcpu
->arch
.interrupt
.pending
= false;
5185 return EMULATE_DONE
;
5187 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5189 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
5191 int r
= EMULATE_DONE
;
5193 ++vcpu
->stat
.insn_emulation_fail
;
5194 trace_kvm_emulate_insn_failed(vcpu
);
5195 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5196 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5197 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5198 vcpu
->run
->internal
.ndata
= 0;
5201 kvm_queue_exception(vcpu
, UD_VECTOR
);
5206 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5207 bool write_fault_to_shadow_pgtable
,
5213 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
5216 if (!vcpu
->arch
.mmu
.direct_map
) {
5218 * Write permission should be allowed since only
5219 * write access need to be emulated.
5221 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5224 * If the mapping is invalid in guest, let cpu retry
5225 * it to generate fault.
5227 if (gpa
== UNMAPPED_GVA
)
5232 * Do not retry the unhandleable instruction if it faults on the
5233 * readonly host memory, otherwise it will goto a infinite loop:
5234 * retry instruction -> write #PF -> emulation fail -> retry
5235 * instruction -> ...
5237 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5240 * If the instruction failed on the error pfn, it can not be fixed,
5241 * report the error to userspace.
5243 if (is_error_noslot_pfn(pfn
))
5246 kvm_release_pfn_clean(pfn
);
5248 /* The instructions are well-emulated on direct mmu. */
5249 if (vcpu
->arch
.mmu
.direct_map
) {
5250 unsigned int indirect_shadow_pages
;
5252 spin_lock(&vcpu
->kvm
->mmu_lock
);
5253 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5254 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5256 if (indirect_shadow_pages
)
5257 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5263 * if emulation was due to access to shadowed page table
5264 * and it failed try to unshadow page and re-enter the
5265 * guest to let CPU execute the instruction.
5267 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5270 * If the access faults on its page table, it can not
5271 * be fixed by unprotecting shadow page and it should
5272 * be reported to userspace.
5274 return !write_fault_to_shadow_pgtable
;
5277 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5278 unsigned long cr2
, int emulation_type
)
5280 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5281 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5283 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5284 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5287 * If the emulation is caused by #PF and it is non-page_table
5288 * writing instruction, it means the VM-EXIT is caused by shadow
5289 * page protected, we can zap the shadow page and retry this
5290 * instruction directly.
5292 * Note: if the guest uses a non-page-table modifying instruction
5293 * on the PDE that points to the instruction, then we will unmap
5294 * the instruction and go to an infinite loop. So, we cache the
5295 * last retried eip and the last fault address, if we meet the eip
5296 * and the address again, we can break out of the potential infinite
5299 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5301 if (!(emulation_type
& EMULTYPE_RETRY
))
5304 if (x86_page_table_writing_insn(ctxt
))
5307 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5310 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5311 vcpu
->arch
.last_retry_addr
= cr2
;
5313 if (!vcpu
->arch
.mmu
.direct_map
)
5314 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5316 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5321 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5322 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5324 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
5326 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
5327 /* This is a good place to trace that we are exiting SMM. */
5328 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
5330 /* Process a latched INIT or SMI, if any. */
5331 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5334 kvm_mmu_reset_context(vcpu
);
5337 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
)
5339 unsigned changed
= vcpu
->arch
.hflags
^ emul_flags
;
5341 vcpu
->arch
.hflags
= emul_flags
;
5343 if (changed
& HF_SMM_MASK
)
5344 kvm_smm_changed(vcpu
);
5347 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5356 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5357 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5362 static void kvm_vcpu_check_singlestep(struct kvm_vcpu
*vcpu
, unsigned long rflags
, int *r
)
5364 struct kvm_run
*kvm_run
= vcpu
->run
;
5367 * rflags is the old, "raw" value of the flags. The new value has
5368 * not been saved yet.
5370 * This is correct even for TF set by the guest, because "the
5371 * processor will not generate this exception after the instruction
5372 * that sets the TF flag".
5374 if (unlikely(rflags
& X86_EFLAGS_TF
)) {
5375 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5376 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
|
5378 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5379 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5380 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5381 *r
= EMULATE_USER_EXIT
;
5383 vcpu
->arch
.emulate_ctxt
.eflags
&= ~X86_EFLAGS_TF
;
5385 * "Certain debug exceptions may clear bit 0-3. The
5386 * remaining contents of the DR6 register are never
5387 * cleared by the processor".
5389 vcpu
->arch
.dr6
&= ~15;
5390 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5391 kvm_queue_exception(vcpu
, DB_VECTOR
);
5396 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5398 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5399 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5400 struct kvm_run
*kvm_run
= vcpu
->run
;
5401 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5402 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5403 vcpu
->arch
.guest_debug_dr7
,
5407 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
5408 kvm_run
->debug
.arch
.pc
= eip
;
5409 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5410 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5411 *r
= EMULATE_USER_EXIT
;
5416 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
5417 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
5418 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5419 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5424 vcpu
->arch
.dr6
&= ~15;
5425 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5426 kvm_queue_exception(vcpu
, DB_VECTOR
);
5435 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5442 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5443 bool writeback
= true;
5444 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5447 * Clear write_fault_to_shadow_pgtable here to ensure it is
5450 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5451 kvm_clear_exception_queue(vcpu
);
5453 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5454 init_emulate_ctxt(vcpu
);
5457 * We will reenter on the same instruction since
5458 * we do not set complete_userspace_io. This does not
5459 * handle watchpoints yet, those would be handled in
5462 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5465 ctxt
->interruptibility
= 0;
5466 ctxt
->have_exception
= false;
5467 ctxt
->exception
.vector
= -1;
5468 ctxt
->perm_ok
= false;
5470 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5472 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5474 trace_kvm_emulate_insn_start(vcpu
);
5475 ++vcpu
->stat
.insn_emulation
;
5476 if (r
!= EMULATION_OK
) {
5477 if (emulation_type
& EMULTYPE_TRAP_UD
)
5478 return EMULATE_FAIL
;
5479 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5481 return EMULATE_DONE
;
5482 if (emulation_type
& EMULTYPE_SKIP
)
5483 return EMULATE_FAIL
;
5484 return handle_emulation_failure(vcpu
);
5488 if (emulation_type
& EMULTYPE_SKIP
) {
5489 kvm_rip_write(vcpu
, ctxt
->_eip
);
5490 if (ctxt
->eflags
& X86_EFLAGS_RF
)
5491 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
5492 return EMULATE_DONE
;
5495 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5496 return EMULATE_DONE
;
5498 /* this is needed for vmware backdoor interface to work since it
5499 changes registers values during IO operation */
5500 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5501 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5502 emulator_invalidate_register_cache(ctxt
);
5506 r
= x86_emulate_insn(ctxt
);
5508 if (r
== EMULATION_INTERCEPTED
)
5509 return EMULATE_DONE
;
5511 if (r
== EMULATION_FAILED
) {
5512 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5514 return EMULATE_DONE
;
5516 return handle_emulation_failure(vcpu
);
5519 if (ctxt
->have_exception
) {
5521 if (inject_emulated_exception(vcpu
))
5523 } else if (vcpu
->arch
.pio
.count
) {
5524 if (!vcpu
->arch
.pio
.in
) {
5525 /* FIXME: return into emulator if single-stepping. */
5526 vcpu
->arch
.pio
.count
= 0;
5529 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5531 r
= EMULATE_USER_EXIT
;
5532 } else if (vcpu
->mmio_needed
) {
5533 if (!vcpu
->mmio_is_write
)
5535 r
= EMULATE_USER_EXIT
;
5536 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5537 } else if (r
== EMULATION_RESTART
)
5543 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5544 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5545 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5546 if (vcpu
->arch
.hflags
!= ctxt
->emul_flags
)
5547 kvm_set_hflags(vcpu
, ctxt
->emul_flags
);
5548 kvm_rip_write(vcpu
, ctxt
->eip
);
5549 if (r
== EMULATE_DONE
)
5550 kvm_vcpu_check_singlestep(vcpu
, rflags
, &r
);
5551 if (!ctxt
->have_exception
||
5552 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
5553 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
5556 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5557 * do nothing, and it will be requested again as soon as
5558 * the shadow expires. But we still need to check here,
5559 * because POPF has no interrupt shadow.
5561 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
5562 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5564 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5568 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5570 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5572 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5573 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5574 size
, port
, &val
, 1);
5575 /* do not return to emulator after return from userspace */
5576 vcpu
->arch
.pio
.count
= 0;
5579 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5581 static int kvmclock_cpu_down_prep(unsigned int cpu
)
5583 __this_cpu_write(cpu_tsc_khz
, 0);
5587 static void tsc_khz_changed(void *data
)
5589 struct cpufreq_freqs
*freq
= data
;
5590 unsigned long khz
= 0;
5594 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5595 khz
= cpufreq_quick_get(raw_smp_processor_id());
5598 __this_cpu_write(cpu_tsc_khz
, khz
);
5601 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5604 struct cpufreq_freqs
*freq
= data
;
5606 struct kvm_vcpu
*vcpu
;
5607 int i
, send_ipi
= 0;
5610 * We allow guests to temporarily run on slowing clocks,
5611 * provided we notify them after, or to run on accelerating
5612 * clocks, provided we notify them before. Thus time never
5615 * However, we have a problem. We can't atomically update
5616 * the frequency of a given CPU from this function; it is
5617 * merely a notifier, which can be called from any CPU.
5618 * Changing the TSC frequency at arbitrary points in time
5619 * requires a recomputation of local variables related to
5620 * the TSC for each VCPU. We must flag these local variables
5621 * to be updated and be sure the update takes place with the
5622 * new frequency before any guests proceed.
5624 * Unfortunately, the combination of hotplug CPU and frequency
5625 * change creates an intractable locking scenario; the order
5626 * of when these callouts happen is undefined with respect to
5627 * CPU hotplug, and they can race with each other. As such,
5628 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5629 * undefined; you can actually have a CPU frequency change take
5630 * place in between the computation of X and the setting of the
5631 * variable. To protect against this problem, all updates of
5632 * the per_cpu tsc_khz variable are done in an interrupt
5633 * protected IPI, and all callers wishing to update the value
5634 * must wait for a synchronous IPI to complete (which is trivial
5635 * if the caller is on the CPU already). This establishes the
5636 * necessary total order on variable updates.
5638 * Note that because a guest time update may take place
5639 * anytime after the setting of the VCPU's request bit, the
5640 * correct TSC value must be set before the request. However,
5641 * to ensure the update actually makes it to any guest which
5642 * starts running in hardware virtualization between the set
5643 * and the acquisition of the spinlock, we must also ping the
5644 * CPU after setting the request bit.
5648 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5650 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5653 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5655 spin_lock(&kvm_lock
);
5656 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5657 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5658 if (vcpu
->cpu
!= freq
->cpu
)
5660 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5661 if (vcpu
->cpu
!= smp_processor_id())
5665 spin_unlock(&kvm_lock
);
5667 if (freq
->old
< freq
->new && send_ipi
) {
5669 * We upscale the frequency. Must make the guest
5670 * doesn't see old kvmclock values while running with
5671 * the new frequency, otherwise we risk the guest sees
5672 * time go backwards.
5674 * In case we update the frequency for another cpu
5675 * (which might be in guest context) send an interrupt
5676 * to kick the cpu out of guest context. Next time
5677 * guest context is entered kvmclock will be updated,
5678 * so the guest will not see stale values.
5680 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5685 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5686 .notifier_call
= kvmclock_cpufreq_notifier
5689 static int kvmclock_cpu_online(unsigned int cpu
)
5691 tsc_khz_changed(NULL
);
5695 static void kvm_timer_init(void)
5699 max_tsc_khz
= tsc_khz
;
5701 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5702 #ifdef CONFIG_CPU_FREQ
5703 struct cpufreq_policy policy
;
5704 memset(&policy
, 0, sizeof(policy
));
5706 cpufreq_get_policy(&policy
, cpu
);
5707 if (policy
.cpuinfo
.max_freq
)
5708 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5711 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5712 CPUFREQ_TRANSITION_NOTIFIER
);
5714 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5716 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE
, "AP_X86_KVM_CLK_ONLINE",
5717 kvmclock_cpu_online
, kvmclock_cpu_down_prep
);
5720 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5722 int kvm_is_in_guest(void)
5724 return __this_cpu_read(current_vcpu
) != NULL
;
5727 static int kvm_is_user_mode(void)
5731 if (__this_cpu_read(current_vcpu
))
5732 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5734 return user_mode
!= 0;
5737 static unsigned long kvm_get_guest_ip(void)
5739 unsigned long ip
= 0;
5741 if (__this_cpu_read(current_vcpu
))
5742 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5747 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5748 .is_in_guest
= kvm_is_in_guest
,
5749 .is_user_mode
= kvm_is_user_mode
,
5750 .get_guest_ip
= kvm_get_guest_ip
,
5753 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5755 __this_cpu_write(current_vcpu
, vcpu
);
5757 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5759 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5761 __this_cpu_write(current_vcpu
, NULL
);
5763 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5765 static void kvm_set_mmio_spte_mask(void)
5768 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5771 * Set the reserved bits and the present bit of an paging-structure
5772 * entry to generate page fault with PFER.RSV = 1.
5774 /* Mask the reserved physical address bits. */
5775 mask
= rsvd_bits(maxphyaddr
, 51);
5777 /* Bit 62 is always reserved for 32bit host. */
5778 mask
|= 0x3ull
<< 62;
5780 /* Set the present bit. */
5783 #ifdef CONFIG_X86_64
5785 * If reserved bit is not supported, clear the present bit to disable
5788 if (maxphyaddr
== 52)
5792 kvm_mmu_set_mmio_spte_mask(mask
);
5795 #ifdef CONFIG_X86_64
5796 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5800 struct kvm_vcpu
*vcpu
;
5803 spin_lock(&kvm_lock
);
5804 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5805 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5806 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
5807 atomic_set(&kvm_guest_has_master_clock
, 0);
5808 spin_unlock(&kvm_lock
);
5811 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5814 * Notification about pvclock gtod data update.
5816 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5819 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5820 struct timekeeper
*tk
= priv
;
5822 update_pvclock_gtod(tk
);
5824 /* disable master clock if host does not trust, or does not
5825 * use, TSC clocksource
5827 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5828 atomic_read(&kvm_guest_has_master_clock
) != 0)
5829 queue_work(system_long_wq
, &pvclock_gtod_work
);
5834 static struct notifier_block pvclock_gtod_notifier
= {
5835 .notifier_call
= pvclock_gtod_notify
,
5839 int kvm_arch_init(void *opaque
)
5842 struct kvm_x86_ops
*ops
= opaque
;
5845 printk(KERN_ERR
"kvm: already loaded the other module\n");
5850 if (!ops
->cpu_has_kvm_support()) {
5851 printk(KERN_ERR
"kvm: no hardware support\n");
5855 if (ops
->disabled_by_bios()) {
5856 printk(KERN_ERR
"kvm: disabled by bios\n");
5862 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
5864 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
5868 r
= kvm_mmu_module_init();
5870 goto out_free_percpu
;
5872 kvm_set_mmio_spte_mask();
5876 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5877 PT_DIRTY_MASK
, PT64_NX_MASK
, 0,
5881 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5883 if (boot_cpu_has(X86_FEATURE_XSAVE
))
5884 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5887 #ifdef CONFIG_X86_64
5888 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
5894 free_percpu(shared_msrs
);
5899 void kvm_arch_exit(void)
5901 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5903 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5904 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5905 CPUFREQ_TRANSITION_NOTIFIER
);
5906 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE
);
5907 #ifdef CONFIG_X86_64
5908 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
5911 kvm_mmu_module_exit();
5912 free_percpu(shared_msrs
);
5915 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
5917 ++vcpu
->stat
.halt_exits
;
5918 if (lapic_in_kernel(vcpu
)) {
5919 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5922 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5926 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
5928 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5930 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5931 return kvm_vcpu_halt(vcpu
);
5933 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5936 * kvm_pv_kick_cpu_op: Kick a vcpu.
5938 * @apicid - apicid of vcpu to be kicked.
5940 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
5942 struct kvm_lapic_irq lapic_irq
;
5944 lapic_irq
.shorthand
= 0;
5945 lapic_irq
.dest_mode
= 0;
5946 lapic_irq
.dest_id
= apicid
;
5947 lapic_irq
.msi_redir_hint
= false;
5949 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
5950 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
5953 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu
*vcpu
)
5955 vcpu
->arch
.apicv_active
= false;
5956 kvm_x86_ops
->refresh_apicv_exec_ctrl(vcpu
);
5959 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5961 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5962 int op_64_bit
, r
= 1;
5964 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5966 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5967 return kvm_hv_hypercall(vcpu
);
5969 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5970 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5971 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5972 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5973 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5975 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5977 op_64_bit
= is_64_bit_mode(vcpu
);
5986 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5992 case KVM_HC_VAPIC_POLL_IRQ
:
5995 case KVM_HC_KICK_CPU
:
5996 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
6006 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
6007 ++vcpu
->stat
.hypercalls
;
6010 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
6012 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
6014 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6015 char instruction
[3];
6016 unsigned long rip
= kvm_rip_read(vcpu
);
6018 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
6020 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
6023 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
6025 return vcpu
->run
->request_interrupt_window
&&
6026 likely(!pic_in_kernel(vcpu
->kvm
));
6029 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
6031 struct kvm_run
*kvm_run
= vcpu
->run
;
6033 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
6034 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
6035 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
6036 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
6037 kvm_run
->ready_for_interrupt_injection
=
6038 pic_in_kernel(vcpu
->kvm
) ||
6039 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
6042 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
6046 if (!kvm_x86_ops
->update_cr8_intercept
)
6049 if (!lapic_in_kernel(vcpu
))
6052 if (vcpu
->arch
.apicv_active
)
6055 if (!vcpu
->arch
.apic
->vapic_addr
)
6056 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6063 tpr
= kvm_lapic_get_cr8(vcpu
);
6065 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
6068 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
6072 /* try to reinject previous events if any */
6073 if (vcpu
->arch
.exception
.pending
) {
6074 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
6075 vcpu
->arch
.exception
.has_error_code
,
6076 vcpu
->arch
.exception
.error_code
);
6078 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
6079 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
6082 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
6083 (vcpu
->arch
.dr7
& DR7_GD
)) {
6084 vcpu
->arch
.dr7
&= ~DR7_GD
;
6085 kvm_update_dr7(vcpu
);
6088 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
6089 vcpu
->arch
.exception
.has_error_code
,
6090 vcpu
->arch
.exception
.error_code
,
6091 vcpu
->arch
.exception
.reinject
);
6095 if (vcpu
->arch
.nmi_injected
) {
6096 kvm_x86_ops
->set_nmi(vcpu
);
6100 if (vcpu
->arch
.interrupt
.pending
) {
6101 kvm_x86_ops
->set_irq(vcpu
);
6105 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6106 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6111 /* try to inject new event if pending */
6112 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
)) {
6113 vcpu
->arch
.smi_pending
= false;
6115 } else if (vcpu
->arch
.nmi_pending
&& kvm_x86_ops
->nmi_allowed(vcpu
)) {
6116 --vcpu
->arch
.nmi_pending
;
6117 vcpu
->arch
.nmi_injected
= true;
6118 kvm_x86_ops
->set_nmi(vcpu
);
6119 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6121 * Because interrupts can be injected asynchronously, we are
6122 * calling check_nested_events again here to avoid a race condition.
6123 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6124 * proposal and current concerns. Perhaps we should be setting
6125 * KVM_REQ_EVENT only on certain events and not unconditionally?
6127 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6128 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6132 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6133 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6135 kvm_x86_ops
->set_irq(vcpu
);
6142 static void process_nmi(struct kvm_vcpu
*vcpu
)
6147 * x86 is limited to one NMI running, and one NMI pending after it.
6148 * If an NMI is already in progress, limit further NMIs to just one.
6149 * Otherwise, allow two (and we'll inject the first one immediately).
6151 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6154 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6155 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6156 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6159 #define put_smstate(type, buf, offset, val) \
6160 *(type *)((buf) + (offset) - 0x7e00) = val
6162 static u32
enter_smm_get_segment_flags(struct kvm_segment
*seg
)
6165 flags
|= seg
->g
<< 23;
6166 flags
|= seg
->db
<< 22;
6167 flags
|= seg
->l
<< 21;
6168 flags
|= seg
->avl
<< 20;
6169 flags
|= seg
->present
<< 15;
6170 flags
|= seg
->dpl
<< 13;
6171 flags
|= seg
->s
<< 12;
6172 flags
|= seg
->type
<< 8;
6176 static void enter_smm_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6178 struct kvm_segment seg
;
6181 kvm_get_segment(vcpu
, &seg
, n
);
6182 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
6185 offset
= 0x7f84 + n
* 12;
6187 offset
= 0x7f2c + (n
- 3) * 12;
6189 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
6190 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6191 put_smstate(u32
, buf
, offset
, enter_smm_get_segment_flags(&seg
));
6194 #ifdef CONFIG_X86_64
6195 static void enter_smm_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6197 struct kvm_segment seg
;
6201 kvm_get_segment(vcpu
, &seg
, n
);
6202 offset
= 0x7e00 + n
* 16;
6204 flags
= enter_smm_get_segment_flags(&seg
) >> 8;
6205 put_smstate(u16
, buf
, offset
, seg
.selector
);
6206 put_smstate(u16
, buf
, offset
+ 2, flags
);
6207 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6208 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
6212 static void enter_smm_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
6215 struct kvm_segment seg
;
6219 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
6220 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
6221 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
6222 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
6224 for (i
= 0; i
< 8; i
++)
6225 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
6227 kvm_get_dr(vcpu
, 6, &val
);
6228 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
6229 kvm_get_dr(vcpu
, 7, &val
);
6230 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
6232 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6233 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
6234 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
6235 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
6236 put_smstate(u32
, buf
, 0x7f5c, enter_smm_get_segment_flags(&seg
));
6238 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6239 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
6240 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
6241 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
6242 put_smstate(u32
, buf
, 0x7f78, enter_smm_get_segment_flags(&seg
));
6244 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6245 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
6246 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
6248 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6249 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
6250 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
6252 for (i
= 0; i
< 6; i
++)
6253 enter_smm_save_seg_32(vcpu
, buf
, i
);
6255 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
6258 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
6259 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
6262 static void enter_smm_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
6264 #ifdef CONFIG_X86_64
6266 struct kvm_segment seg
;
6270 for (i
= 0; i
< 16; i
++)
6271 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
6273 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
6274 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
6276 kvm_get_dr(vcpu
, 6, &val
);
6277 put_smstate(u64
, buf
, 0x7f68, val
);
6278 kvm_get_dr(vcpu
, 7, &val
);
6279 put_smstate(u64
, buf
, 0x7f60, val
);
6281 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
6282 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
6283 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
6285 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
6288 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
6290 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
6292 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6293 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
6294 put_smstate(u16
, buf
, 0x7e92, enter_smm_get_segment_flags(&seg
) >> 8);
6295 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
6296 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
6298 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6299 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
6300 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
6302 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6303 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
6304 put_smstate(u16
, buf
, 0x7e72, enter_smm_get_segment_flags(&seg
) >> 8);
6305 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
6306 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
6308 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6309 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
6310 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
6312 for (i
= 0; i
< 6; i
++)
6313 enter_smm_save_seg_64(vcpu
, buf
, i
);
6319 static void enter_smm(struct kvm_vcpu
*vcpu
)
6321 struct kvm_segment cs
, ds
;
6326 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
6327 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
6328 memset(buf
, 0, 512);
6329 if (guest_cpuid_has_longmode(vcpu
))
6330 enter_smm_save_state_64(vcpu
, buf
);
6332 enter_smm_save_state_32(vcpu
, buf
);
6334 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
6336 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
6337 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
6339 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
6341 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
6342 kvm_rip_write(vcpu
, 0x8000);
6344 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
6345 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
6346 vcpu
->arch
.cr0
= cr0
;
6348 kvm_x86_ops
->set_cr4(vcpu
, 0);
6350 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6351 dt
.address
= dt
.size
= 0;
6352 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6354 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
6356 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
6357 cs
.base
= vcpu
->arch
.smbase
;
6362 cs
.limit
= ds
.limit
= 0xffffffff;
6363 cs
.type
= ds
.type
= 0x3;
6364 cs
.dpl
= ds
.dpl
= 0;
6369 cs
.avl
= ds
.avl
= 0;
6370 cs
.present
= ds
.present
= 1;
6371 cs
.unusable
= ds
.unusable
= 0;
6372 cs
.padding
= ds
.padding
= 0;
6374 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6375 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
6376 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
6377 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
6378 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
6379 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
6381 if (guest_cpuid_has_longmode(vcpu
))
6382 kvm_x86_ops
->set_efer(vcpu
, 0);
6384 kvm_update_cpuid(vcpu
);
6385 kvm_mmu_reset_context(vcpu
);
6388 static void process_smi(struct kvm_vcpu
*vcpu
)
6390 vcpu
->arch
.smi_pending
= true;
6391 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6394 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
6396 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
6399 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
6401 u64 eoi_exit_bitmap
[4];
6403 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
6406 bitmap_zero(vcpu
->arch
.ioapic_handled_vectors
, 256);
6408 if (irqchip_split(vcpu
->kvm
))
6409 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6411 if (vcpu
->arch
.apicv_active
)
6412 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
6413 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6415 bitmap_or((ulong
*)eoi_exit_bitmap
, vcpu
->arch
.ioapic_handled_vectors
,
6416 vcpu_to_synic(vcpu
)->vec_bitmap
, 256);
6417 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
6420 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
)
6422 ++vcpu
->stat
.tlb_flush
;
6423 kvm_x86_ops
->tlb_flush(vcpu
);
6426 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
6428 struct page
*page
= NULL
;
6430 if (!lapic_in_kernel(vcpu
))
6433 if (!kvm_x86_ops
->set_apic_access_page_addr
)
6436 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6437 if (is_error_page(page
))
6439 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
6442 * Do not pin apic access page in memory, the MMU notifier
6443 * will call us again if it is migrated or swapped out.
6447 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
6449 void kvm_arch_mmu_notifier_invalidate_page(struct kvm
*kvm
,
6450 unsigned long address
)
6453 * The physical address of apic access page is stored in the VMCS.
6454 * Update it when it becomes invalid.
6456 if (address
== gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
))
6457 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
6461 * Returns 1 to let vcpu_run() continue the guest execution loop without
6462 * exiting to the userspace. Otherwise, the value will be returned to the
6465 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
6469 dm_request_for_irq_injection(vcpu
) &&
6470 kvm_cpu_accept_dm_intr(vcpu
);
6472 bool req_immediate_exit
= false;
6474 if (vcpu
->requests
) {
6475 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
6476 kvm_mmu_unload(vcpu
);
6477 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
6478 __kvm_migrate_timers(vcpu
);
6479 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
6480 kvm_gen_update_masterclock(vcpu
->kvm
);
6481 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
6482 kvm_gen_kvmclock_update(vcpu
);
6483 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
6484 r
= kvm_guest_time_update(vcpu
);
6488 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
6489 kvm_mmu_sync_roots(vcpu
);
6490 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
6491 kvm_vcpu_flush_tlb(vcpu
);
6492 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
6493 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
6497 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
6498 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6502 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
6503 vcpu
->fpu_active
= 0;
6504 kvm_x86_ops
->fpu_deactivate(vcpu
);
6506 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
6507 /* Page is swapped out. Do synthetic halt */
6508 vcpu
->arch
.apf
.halted
= true;
6512 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
6513 record_steal_time(vcpu
);
6514 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
6516 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
6518 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
6519 kvm_pmu_handle_event(vcpu
);
6520 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
6521 kvm_pmu_deliver_pmi(vcpu
);
6522 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
6523 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
6524 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
6525 vcpu
->arch
.ioapic_handled_vectors
)) {
6526 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
6527 vcpu
->run
->eoi
.vector
=
6528 vcpu
->arch
.pending_ioapic_eoi
;
6533 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
6534 vcpu_scan_ioapic(vcpu
);
6535 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
6536 kvm_vcpu_reload_apic_access_page(vcpu
);
6537 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
6538 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6539 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
6543 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
6544 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6545 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
6549 if (kvm_check_request(KVM_REQ_HV_EXIT
, vcpu
)) {
6550 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
6551 vcpu
->run
->hyperv
= vcpu
->arch
.hyperv
.exit
;
6557 * KVM_REQ_HV_STIMER has to be processed after
6558 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6559 * depend on the guest clock being up-to-date
6561 if (kvm_check_request(KVM_REQ_HV_STIMER
, vcpu
))
6562 kvm_hv_process_stimers(vcpu
);
6566 * KVM_REQ_EVENT is not set when posted interrupts are set by
6567 * VT-d hardware, so we have to update RVI unconditionally.
6569 if (kvm_lapic_enabled(vcpu
)) {
6571 * Update architecture specific hints for APIC
6572 * virtual interrupt delivery.
6574 if (vcpu
->arch
.apicv_active
)
6575 kvm_x86_ops
->hwapic_irr_update(vcpu
,
6576 kvm_lapic_find_highest_irr(vcpu
));
6579 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
6580 kvm_apic_accept_events(vcpu
);
6581 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
6586 if (inject_pending_event(vcpu
, req_int_win
) != 0)
6587 req_immediate_exit
= true;
6589 /* Enable NMI/IRQ window open exits if needed.
6591 * SMIs have two cases: 1) they can be nested, and
6592 * then there is nothing to do here because RSM will
6593 * cause a vmexit anyway; 2) or the SMI can be pending
6594 * because inject_pending_event has completed the
6595 * injection of an IRQ or NMI from the previous vmexit,
6596 * and then we request an immediate exit to inject the SMI.
6598 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
))
6599 req_immediate_exit
= true;
6600 if (vcpu
->arch
.nmi_pending
)
6601 kvm_x86_ops
->enable_nmi_window(vcpu
);
6602 if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
6603 kvm_x86_ops
->enable_irq_window(vcpu
);
6606 if (kvm_lapic_enabled(vcpu
)) {
6607 update_cr8_intercept(vcpu
);
6608 kvm_lapic_sync_to_vapic(vcpu
);
6612 r
= kvm_mmu_reload(vcpu
);
6614 goto cancel_injection
;
6619 kvm_x86_ops
->prepare_guest_switch(vcpu
);
6620 if (vcpu
->fpu_active
)
6621 kvm_load_guest_fpu(vcpu
);
6622 vcpu
->mode
= IN_GUEST_MODE
;
6624 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6627 * We should set ->mode before check ->requests,
6628 * Please see the comment in kvm_make_all_cpus_request.
6629 * This also orders the write to mode from any reads
6630 * to the page tables done while the VCPU is running.
6631 * Please see the comment in kvm_flush_remote_tlbs.
6633 smp_mb__after_srcu_read_unlock();
6635 local_irq_disable();
6637 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
6638 || need_resched() || signal_pending(current
)) {
6639 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6643 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6645 goto cancel_injection
;
6648 kvm_load_guest_xcr0(vcpu
);
6650 if (req_immediate_exit
) {
6651 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6652 smp_send_reschedule(vcpu
->cpu
);
6655 trace_kvm_entry(vcpu
->vcpu_id
);
6656 wait_lapic_expire(vcpu
);
6657 guest_enter_irqoff();
6659 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
6661 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
6662 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
6663 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
6664 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
6665 set_debugreg(vcpu
->arch
.dr6
, 6);
6666 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6669 kvm_x86_ops
->run(vcpu
);
6672 * Do this here before restoring debug registers on the host. And
6673 * since we do this before handling the vmexit, a DR access vmexit
6674 * can (a) read the correct value of the debug registers, (b) set
6675 * KVM_DEBUGREG_WONT_EXIT again.
6677 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
6678 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
6679 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
6680 kvm_update_dr0123(vcpu
);
6681 kvm_update_dr6(vcpu
);
6682 kvm_update_dr7(vcpu
);
6683 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6687 * If the guest has used debug registers, at least dr7
6688 * will be disabled while returning to the host.
6689 * If we don't have active breakpoints in the host, we don't
6690 * care about the messed up debug address registers. But if
6691 * we have some of them active, restore the old state.
6693 if (hw_breakpoint_active())
6694 hw_breakpoint_restore();
6696 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
6698 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6701 kvm_put_guest_xcr0(vcpu
);
6703 /* Interrupt is enabled by handle_external_intr() */
6704 kvm_x86_ops
->handle_external_intr(vcpu
);
6708 guest_exit_irqoff();
6713 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6716 * Profile KVM exit RIPs:
6718 if (unlikely(prof_on
== KVM_PROFILING
)) {
6719 unsigned long rip
= kvm_rip_read(vcpu
);
6720 profile_hit(KVM_PROFILING
, (void *)rip
);
6723 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
6724 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6726 if (vcpu
->arch
.apic_attention
)
6727 kvm_lapic_sync_from_vapic(vcpu
);
6729 r
= kvm_x86_ops
->handle_exit(vcpu
);
6733 kvm_x86_ops
->cancel_injection(vcpu
);
6734 if (unlikely(vcpu
->arch
.apic_attention
))
6735 kvm_lapic_sync_from_vapic(vcpu
);
6740 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
6742 if (!kvm_arch_vcpu_runnable(vcpu
) &&
6743 (!kvm_x86_ops
->pre_block
|| kvm_x86_ops
->pre_block(vcpu
) == 0)) {
6744 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6745 kvm_vcpu_block(vcpu
);
6746 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6748 if (kvm_x86_ops
->post_block
)
6749 kvm_x86_ops
->post_block(vcpu
);
6751 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
6755 kvm_apic_accept_events(vcpu
);
6756 switch(vcpu
->arch
.mp_state
) {
6757 case KVM_MP_STATE_HALTED
:
6758 vcpu
->arch
.pv
.pv_unhalted
= false;
6759 vcpu
->arch
.mp_state
=
6760 KVM_MP_STATE_RUNNABLE
;
6761 case KVM_MP_STATE_RUNNABLE
:
6762 vcpu
->arch
.apf
.halted
= false;
6764 case KVM_MP_STATE_INIT_RECEIVED
:
6773 static inline bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
6775 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6776 !vcpu
->arch
.apf
.halted
);
6779 static int vcpu_run(struct kvm_vcpu
*vcpu
)
6782 struct kvm
*kvm
= vcpu
->kvm
;
6784 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6787 if (kvm_vcpu_running(vcpu
)) {
6788 r
= vcpu_enter_guest(vcpu
);
6790 r
= vcpu_block(kvm
, vcpu
);
6796 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
6797 if (kvm_cpu_has_pending_timer(vcpu
))
6798 kvm_inject_pending_timer_irqs(vcpu
);
6800 if (dm_request_for_irq_injection(vcpu
) &&
6801 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
6803 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
6804 ++vcpu
->stat
.request_irq_exits
;
6808 kvm_check_async_pf_completion(vcpu
);
6810 if (signal_pending(current
)) {
6812 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6813 ++vcpu
->stat
.signal_exits
;
6816 if (need_resched()) {
6817 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6819 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6823 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6828 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
6831 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6832 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
6833 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6834 if (r
!= EMULATE_DONE
)
6839 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
6841 BUG_ON(!vcpu
->arch
.pio
.count
);
6843 return complete_emulated_io(vcpu
);
6847 * Implements the following, as a state machine:
6851 * for each mmio piece in the fragment
6859 * for each mmio piece in the fragment
6864 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
6866 struct kvm_run
*run
= vcpu
->run
;
6867 struct kvm_mmio_fragment
*frag
;
6870 BUG_ON(!vcpu
->mmio_needed
);
6872 /* Complete previous fragment */
6873 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
6874 len
= min(8u, frag
->len
);
6875 if (!vcpu
->mmio_is_write
)
6876 memcpy(frag
->data
, run
->mmio
.data
, len
);
6878 if (frag
->len
<= 8) {
6879 /* Switch to the next fragment. */
6881 vcpu
->mmio_cur_fragment
++;
6883 /* Go forward to the next mmio piece. */
6889 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
6890 vcpu
->mmio_needed
= 0;
6892 /* FIXME: return into emulator if single-stepping. */
6893 if (vcpu
->mmio_is_write
)
6895 vcpu
->mmio_read_completed
= 1;
6896 return complete_emulated_io(vcpu
);
6899 run
->exit_reason
= KVM_EXIT_MMIO
;
6900 run
->mmio
.phys_addr
= frag
->gpa
;
6901 if (vcpu
->mmio_is_write
)
6902 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
6903 run
->mmio
.len
= min(8u, frag
->len
);
6904 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
6905 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6910 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
6912 struct fpu
*fpu
= ¤t
->thread
.fpu
;
6916 fpu__activate_curr(fpu
);
6918 if (vcpu
->sigset_active
)
6919 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
6921 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
6922 kvm_vcpu_block(vcpu
);
6923 kvm_apic_accept_events(vcpu
);
6924 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
6929 /* re-sync apic's tpr */
6930 if (!lapic_in_kernel(vcpu
)) {
6931 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
6937 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
6938 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
6939 vcpu
->arch
.complete_userspace_io
= NULL
;
6944 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
6949 post_kvm_run_save(vcpu
);
6950 if (vcpu
->sigset_active
)
6951 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
6956 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6958 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
6960 * We are here if userspace calls get_regs() in the middle of
6961 * instruction emulation. Registers state needs to be copied
6962 * back from emulation context to vcpu. Userspace shouldn't do
6963 * that usually, but some bad designed PV devices (vmware
6964 * backdoor interface) need this to work
6966 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
6967 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6969 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6970 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6971 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6972 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6973 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6974 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
6975 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
6976 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
6977 #ifdef CONFIG_X86_64
6978 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
6979 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
6980 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
6981 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
6982 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
6983 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
6984 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
6985 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
6988 regs
->rip
= kvm_rip_read(vcpu
);
6989 regs
->rflags
= kvm_get_rflags(vcpu
);
6994 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6996 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
6997 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6999 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
7000 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
7001 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
7002 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
7003 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
7004 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
7005 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
7006 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
7007 #ifdef CONFIG_X86_64
7008 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
7009 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
7010 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
7011 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
7012 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
7013 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
7014 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
7015 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
7018 kvm_rip_write(vcpu
, regs
->rip
);
7019 kvm_set_rflags(vcpu
, regs
->rflags
);
7021 vcpu
->arch
.exception
.pending
= false;
7023 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7028 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
7030 struct kvm_segment cs
;
7032 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7036 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
7038 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
7039 struct kvm_sregs
*sregs
)
7043 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7044 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7045 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7046 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7047 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7048 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7050 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7051 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7053 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7054 sregs
->idt
.limit
= dt
.size
;
7055 sregs
->idt
.base
= dt
.address
;
7056 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7057 sregs
->gdt
.limit
= dt
.size
;
7058 sregs
->gdt
.base
= dt
.address
;
7060 sregs
->cr0
= kvm_read_cr0(vcpu
);
7061 sregs
->cr2
= vcpu
->arch
.cr2
;
7062 sregs
->cr3
= kvm_read_cr3(vcpu
);
7063 sregs
->cr4
= kvm_read_cr4(vcpu
);
7064 sregs
->cr8
= kvm_get_cr8(vcpu
);
7065 sregs
->efer
= vcpu
->arch
.efer
;
7066 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
7068 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
7070 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
7071 set_bit(vcpu
->arch
.interrupt
.nr
,
7072 (unsigned long *)sregs
->interrupt_bitmap
);
7077 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
7078 struct kvm_mp_state
*mp_state
)
7080 kvm_apic_accept_events(vcpu
);
7081 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
7082 vcpu
->arch
.pv
.pv_unhalted
)
7083 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
7085 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
7090 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
7091 struct kvm_mp_state
*mp_state
)
7093 if (!lapic_in_kernel(vcpu
) &&
7094 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
7097 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
7098 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
7099 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
7101 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
7102 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7106 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
7107 int reason
, bool has_error_code
, u32 error_code
)
7109 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
7112 init_emulate_ctxt(vcpu
);
7114 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
7115 has_error_code
, error_code
);
7118 return EMULATE_FAIL
;
7120 kvm_rip_write(vcpu
, ctxt
->eip
);
7121 kvm_set_rflags(vcpu
, ctxt
->eflags
);
7122 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7123 return EMULATE_DONE
;
7125 EXPORT_SYMBOL_GPL(kvm_task_switch
);
7127 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
7128 struct kvm_sregs
*sregs
)
7130 struct msr_data apic_base_msr
;
7131 int mmu_reset_needed
= 0;
7132 int pending_vec
, max_bits
, idx
;
7135 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
7138 dt
.size
= sregs
->idt
.limit
;
7139 dt
.address
= sregs
->idt
.base
;
7140 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7141 dt
.size
= sregs
->gdt
.limit
;
7142 dt
.address
= sregs
->gdt
.base
;
7143 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
7145 vcpu
->arch
.cr2
= sregs
->cr2
;
7146 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
7147 vcpu
->arch
.cr3
= sregs
->cr3
;
7148 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
7150 kvm_set_cr8(vcpu
, sregs
->cr8
);
7152 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
7153 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
7154 apic_base_msr
.data
= sregs
->apic_base
;
7155 apic_base_msr
.host_initiated
= true;
7156 kvm_set_apic_base(vcpu
, &apic_base_msr
);
7158 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
7159 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
7160 vcpu
->arch
.cr0
= sregs
->cr0
;
7162 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
7163 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
7164 if (sregs
->cr4
& (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
7165 kvm_update_cpuid(vcpu
);
7167 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7168 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
7169 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
7170 mmu_reset_needed
= 1;
7172 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7174 if (mmu_reset_needed
)
7175 kvm_mmu_reset_context(vcpu
);
7177 max_bits
= KVM_NR_INTERRUPTS
;
7178 pending_vec
= find_first_bit(
7179 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
7180 if (pending_vec
< max_bits
) {
7181 kvm_queue_interrupt(vcpu
, pending_vec
, false);
7182 pr_debug("Set back pending irq %d\n", pending_vec
);
7185 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7186 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7187 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7188 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7189 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7190 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7192 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7193 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7195 update_cr8_intercept(vcpu
);
7197 /* Older userspace won't unhalt the vcpu on reset. */
7198 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
7199 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
7201 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7203 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7208 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
7209 struct kvm_guest_debug
*dbg
)
7211 unsigned long rflags
;
7214 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
7216 if (vcpu
->arch
.exception
.pending
)
7218 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
7219 kvm_queue_exception(vcpu
, DB_VECTOR
);
7221 kvm_queue_exception(vcpu
, BP_VECTOR
);
7225 * Read rflags as long as potentially injected trace flags are still
7228 rflags
= kvm_get_rflags(vcpu
);
7230 vcpu
->guest_debug
= dbg
->control
;
7231 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
7232 vcpu
->guest_debug
= 0;
7234 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
7235 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
7236 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
7237 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
7239 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
7240 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
7242 kvm_update_dr7(vcpu
);
7244 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7245 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
7246 get_segment_base(vcpu
, VCPU_SREG_CS
);
7249 * Trigger an rflags update that will inject or remove the trace
7252 kvm_set_rflags(vcpu
, rflags
);
7254 kvm_x86_ops
->update_bp_intercept(vcpu
);
7264 * Translate a guest virtual address to a guest physical address.
7266 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
7267 struct kvm_translation
*tr
)
7269 unsigned long vaddr
= tr
->linear_address
;
7273 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7274 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
7275 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7276 tr
->physical_address
= gpa
;
7277 tr
->valid
= gpa
!= UNMAPPED_GVA
;
7284 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7286 struct fxregs_state
*fxsave
=
7287 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7289 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
7290 fpu
->fcw
= fxsave
->cwd
;
7291 fpu
->fsw
= fxsave
->swd
;
7292 fpu
->ftwx
= fxsave
->twd
;
7293 fpu
->last_opcode
= fxsave
->fop
;
7294 fpu
->last_ip
= fxsave
->rip
;
7295 fpu
->last_dp
= fxsave
->rdp
;
7296 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
7301 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7303 struct fxregs_state
*fxsave
=
7304 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7306 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
7307 fxsave
->cwd
= fpu
->fcw
;
7308 fxsave
->swd
= fpu
->fsw
;
7309 fxsave
->twd
= fpu
->ftwx
;
7310 fxsave
->fop
= fpu
->last_opcode
;
7311 fxsave
->rip
= fpu
->last_ip
;
7312 fxsave
->rdp
= fpu
->last_dp
;
7313 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
7318 static void fx_init(struct kvm_vcpu
*vcpu
)
7320 fpstate_init(&vcpu
->arch
.guest_fpu
.state
);
7321 if (boot_cpu_has(X86_FEATURE_XSAVES
))
7322 vcpu
->arch
.guest_fpu
.state
.xsave
.header
.xcomp_bv
=
7323 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
7326 * Ensure guest xcr0 is valid for loading
7328 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
7330 vcpu
->arch
.cr0
|= X86_CR0_ET
;
7333 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
7335 if (vcpu
->guest_fpu_loaded
)
7339 * Restore all possible states in the guest,
7340 * and assume host would use all available bits.
7341 * Guest xcr0 would be loaded later.
7343 vcpu
->guest_fpu_loaded
= 1;
7344 __kernel_fpu_begin();
7345 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
.state
);
7349 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
7351 if (!vcpu
->guest_fpu_loaded
) {
7352 vcpu
->fpu_counter
= 0;
7356 vcpu
->guest_fpu_loaded
= 0;
7357 copy_fpregs_to_fpstate(&vcpu
->arch
.guest_fpu
);
7359 ++vcpu
->stat
.fpu_reload
;
7361 * If using eager FPU mode, or if the guest is a frequent user
7362 * of the FPU, just leave the FPU active for next time.
7363 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7364 * the FPU in bursts will revert to loading it on demand.
7366 if (!use_eager_fpu()) {
7367 if (++vcpu
->fpu_counter
< 5)
7368 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
7373 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
7375 kvmclock_reset(vcpu
);
7377 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
7378 kvm_x86_ops
->vcpu_free(vcpu
);
7381 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
7384 struct kvm_vcpu
*vcpu
;
7386 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
7387 printk_once(KERN_WARNING
7388 "kvm: SMP vm created on host with unstable TSC; "
7389 "guest TSC will not be reliable\n");
7391 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
7396 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
7400 kvm_vcpu_mtrr_init(vcpu
);
7401 r
= vcpu_load(vcpu
);
7404 kvm_vcpu_reset(vcpu
, false);
7405 kvm_mmu_setup(vcpu
);
7410 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
7412 struct msr_data msr
;
7413 struct kvm
*kvm
= vcpu
->kvm
;
7415 if (vcpu_load(vcpu
))
7418 msr
.index
= MSR_IA32_TSC
;
7419 msr
.host_initiated
= true;
7420 kvm_write_tsc(vcpu
, &msr
);
7423 if (!kvmclock_periodic_sync
)
7426 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
7427 KVMCLOCK_SYNC_PERIOD
);
7430 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
7433 vcpu
->arch
.apf
.msr_val
= 0;
7435 r
= vcpu_load(vcpu
);
7437 kvm_mmu_unload(vcpu
);
7440 kvm_x86_ops
->vcpu_free(vcpu
);
7443 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
7445 vcpu
->arch
.hflags
= 0;
7447 vcpu
->arch
.smi_pending
= 0;
7448 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
7449 vcpu
->arch
.nmi_pending
= 0;
7450 vcpu
->arch
.nmi_injected
= false;
7451 kvm_clear_interrupt_queue(vcpu
);
7452 kvm_clear_exception_queue(vcpu
);
7454 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
7455 kvm_update_dr0123(vcpu
);
7456 vcpu
->arch
.dr6
= DR6_INIT
;
7457 kvm_update_dr6(vcpu
);
7458 vcpu
->arch
.dr7
= DR7_FIXED_1
;
7459 kvm_update_dr7(vcpu
);
7463 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7464 vcpu
->arch
.apf
.msr_val
= 0;
7465 vcpu
->arch
.st
.msr_val
= 0;
7467 kvmclock_reset(vcpu
);
7469 kvm_clear_async_pf_completion_queue(vcpu
);
7470 kvm_async_pf_hash_reset(vcpu
);
7471 vcpu
->arch
.apf
.halted
= false;
7474 kvm_pmu_reset(vcpu
);
7475 vcpu
->arch
.smbase
= 0x30000;
7478 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
7479 vcpu
->arch
.regs_avail
= ~0;
7480 vcpu
->arch
.regs_dirty
= ~0;
7482 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
7485 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
7487 struct kvm_segment cs
;
7489 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7490 cs
.selector
= vector
<< 8;
7491 cs
.base
= vector
<< 12;
7492 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7493 kvm_rip_write(vcpu
, 0);
7496 int kvm_arch_hardware_enable(void)
7499 struct kvm_vcpu
*vcpu
;
7504 bool stable
, backwards_tsc
= false;
7506 kvm_shared_msr_cpu_online();
7507 ret
= kvm_x86_ops
->hardware_enable();
7511 local_tsc
= rdtsc();
7512 stable
= !check_tsc_unstable();
7513 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7514 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7515 if (!stable
&& vcpu
->cpu
== smp_processor_id())
7516 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7517 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
7518 backwards_tsc
= true;
7519 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
7520 max_tsc
= vcpu
->arch
.last_host_tsc
;
7526 * Sometimes, even reliable TSCs go backwards. This happens on
7527 * platforms that reset TSC during suspend or hibernate actions, but
7528 * maintain synchronization. We must compensate. Fortunately, we can
7529 * detect that condition here, which happens early in CPU bringup,
7530 * before any KVM threads can be running. Unfortunately, we can't
7531 * bring the TSCs fully up to date with real time, as we aren't yet far
7532 * enough into CPU bringup that we know how much real time has actually
7533 * elapsed; our helper function, get_kernel_ns() will be using boot
7534 * variables that haven't been updated yet.
7536 * So we simply find the maximum observed TSC above, then record the
7537 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7538 * the adjustment will be applied. Note that we accumulate
7539 * adjustments, in case multiple suspend cycles happen before some VCPU
7540 * gets a chance to run again. In the event that no KVM threads get a
7541 * chance to run, we will miss the entire elapsed period, as we'll have
7542 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7543 * loose cycle time. This isn't too big a deal, since the loss will be
7544 * uniform across all VCPUs (not to mention the scenario is extremely
7545 * unlikely). It is possible that a second hibernate recovery happens
7546 * much faster than a first, causing the observed TSC here to be
7547 * smaller; this would require additional padding adjustment, which is
7548 * why we set last_host_tsc to the local tsc observed here.
7550 * N.B. - this code below runs only on platforms with reliable TSC,
7551 * as that is the only way backwards_tsc is set above. Also note
7552 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7553 * have the same delta_cyc adjustment applied if backwards_tsc
7554 * is detected. Note further, this adjustment is only done once,
7555 * as we reset last_host_tsc on all VCPUs to stop this from being
7556 * called multiple times (one for each physical CPU bringup).
7558 * Platforms with unreliable TSCs don't have to deal with this, they
7559 * will be compensated by the logic in vcpu_load, which sets the TSC to
7560 * catchup mode. This will catchup all VCPUs to real time, but cannot
7561 * guarantee that they stay in perfect synchronization.
7563 if (backwards_tsc
) {
7564 u64 delta_cyc
= max_tsc
- local_tsc
;
7565 backwards_tsc_observed
= true;
7566 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7567 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7568 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
7569 vcpu
->arch
.last_host_tsc
= local_tsc
;
7570 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
7574 * We have to disable TSC offset matching.. if you were
7575 * booting a VM while issuing an S4 host suspend....
7576 * you may have some problem. Solving this issue is
7577 * left as an exercise to the reader.
7579 kvm
->arch
.last_tsc_nsec
= 0;
7580 kvm
->arch
.last_tsc_write
= 0;
7587 void kvm_arch_hardware_disable(void)
7589 kvm_x86_ops
->hardware_disable();
7590 drop_user_return_notifiers();
7593 int kvm_arch_hardware_setup(void)
7597 r
= kvm_x86_ops
->hardware_setup();
7601 if (kvm_has_tsc_control
) {
7603 * Make sure the user can only configure tsc_khz values that
7604 * fit into a signed integer.
7605 * A min value is not calculated needed because it will always
7606 * be 1 on all machines.
7608 u64 max
= min(0x7fffffffULL
,
7609 __scale_tsc(kvm_max_tsc_scaling_ratio
, tsc_khz
));
7610 kvm_max_guest_tsc_khz
= max
;
7612 kvm_default_tsc_scaling_ratio
= 1ULL << kvm_tsc_scaling_ratio_frac_bits
;
7615 kvm_init_msr_list();
7619 void kvm_arch_hardware_unsetup(void)
7621 kvm_x86_ops
->hardware_unsetup();
7624 void kvm_arch_check_processor_compat(void *rtn
)
7626 kvm_x86_ops
->check_processor_compatibility(rtn
);
7629 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
7631 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
7633 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp
);
7635 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
7637 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
7640 struct static_key kvm_no_apic_vcpu __read_mostly
;
7641 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu
);
7643 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
7649 BUG_ON(vcpu
->kvm
== NULL
);
7652 vcpu
->arch
.apicv_active
= kvm_x86_ops
->get_enable_apicv();
7653 vcpu
->arch
.pv
.pv_unhalted
= false;
7654 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
7655 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
7656 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7658 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
7660 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7665 vcpu
->arch
.pio_data
= page_address(page
);
7667 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
7669 r
= kvm_mmu_create(vcpu
);
7671 goto fail_free_pio_data
;
7673 if (irqchip_in_kernel(kvm
)) {
7674 r
= kvm_create_lapic(vcpu
);
7676 goto fail_mmu_destroy
;
7678 static_key_slow_inc(&kvm_no_apic_vcpu
);
7680 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
7682 if (!vcpu
->arch
.mce_banks
) {
7684 goto fail_free_lapic
;
7686 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
7688 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
7690 goto fail_free_mce_banks
;
7695 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
7696 vcpu
->arch
.pv_time_enabled
= false;
7698 vcpu
->arch
.guest_supported_xcr0
= 0;
7699 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
7701 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
7703 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
7705 kvm_async_pf_hash_reset(vcpu
);
7708 vcpu
->arch
.pending_external_vector
= -1;
7710 kvm_hv_vcpu_init(vcpu
);
7714 fail_free_mce_banks
:
7715 kfree(vcpu
->arch
.mce_banks
);
7717 kvm_free_lapic(vcpu
);
7719 kvm_mmu_destroy(vcpu
);
7721 free_page((unsigned long)vcpu
->arch
.pio_data
);
7726 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
7730 kvm_hv_vcpu_uninit(vcpu
);
7731 kvm_pmu_destroy(vcpu
);
7732 kfree(vcpu
->arch
.mce_banks
);
7733 kvm_free_lapic(vcpu
);
7734 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7735 kvm_mmu_destroy(vcpu
);
7736 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7737 free_page((unsigned long)vcpu
->arch
.pio_data
);
7738 if (!lapic_in_kernel(vcpu
))
7739 static_key_slow_dec(&kvm_no_apic_vcpu
);
7742 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
7744 kvm_x86_ops
->sched_in(vcpu
, cpu
);
7747 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
7752 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
7753 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
7754 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
7755 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
7756 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
7758 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7759 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
7760 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7761 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
7762 &kvm
->arch
.irq_sources_bitmap
);
7764 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
7765 mutex_init(&kvm
->arch
.apic_map_lock
);
7766 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
7768 pvclock_update_vm_gtod_copy(kvm
);
7770 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
7771 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
7773 kvm_page_track_init(kvm
);
7774 kvm_mmu_init_vm(kvm
);
7776 if (kvm_x86_ops
->vm_init
)
7777 return kvm_x86_ops
->vm_init(kvm
);
7782 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
7785 r
= vcpu_load(vcpu
);
7787 kvm_mmu_unload(vcpu
);
7791 static void kvm_free_vcpus(struct kvm
*kvm
)
7794 struct kvm_vcpu
*vcpu
;
7797 * Unpin any mmu pages first.
7799 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7800 kvm_clear_async_pf_completion_queue(vcpu
);
7801 kvm_unload_vcpu_mmu(vcpu
);
7803 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7804 kvm_arch_vcpu_free(vcpu
);
7806 mutex_lock(&kvm
->lock
);
7807 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
7808 kvm
->vcpus
[i
] = NULL
;
7810 atomic_set(&kvm
->online_vcpus
, 0);
7811 mutex_unlock(&kvm
->lock
);
7814 void kvm_arch_sync_events(struct kvm
*kvm
)
7816 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
7817 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
7818 kvm_free_all_assigned_devices(kvm
);
7822 int __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
7826 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
7827 struct kvm_memory_slot
*slot
, old
;
7829 /* Called with kvm->slots_lock held. */
7830 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
7833 slot
= id_to_memslot(slots
, id
);
7839 * MAP_SHARED to prevent internal slot pages from being moved
7842 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
7843 MAP_SHARED
| MAP_ANONYMOUS
, 0);
7844 if (IS_ERR((void *)hva
))
7845 return PTR_ERR((void *)hva
);
7854 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
7855 struct kvm_userspace_memory_region m
;
7857 m
.slot
= id
| (i
<< 16);
7859 m
.guest_phys_addr
= gpa
;
7860 m
.userspace_addr
= hva
;
7861 m
.memory_size
= size
;
7862 r
= __kvm_set_memory_region(kvm
, &m
);
7868 r
= vm_munmap(old
.userspace_addr
, old
.npages
* PAGE_SIZE
);
7874 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
7876 int x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
7880 mutex_lock(&kvm
->slots_lock
);
7881 r
= __x86_set_memory_region(kvm
, id
, gpa
, size
);
7882 mutex_unlock(&kvm
->slots_lock
);
7886 EXPORT_SYMBOL_GPL(x86_set_memory_region
);
7888 void kvm_arch_destroy_vm(struct kvm
*kvm
)
7890 if (current
->mm
== kvm
->mm
) {
7892 * Free memory regions allocated on behalf of userspace,
7893 * unless the the memory map has changed due to process exit
7896 x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
, 0, 0);
7897 x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
, 0, 0);
7898 x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
7900 if (kvm_x86_ops
->vm_destroy
)
7901 kvm_x86_ops
->vm_destroy(kvm
);
7902 kvm_iommu_unmap_guest(kvm
);
7903 kfree(kvm
->arch
.vpic
);
7904 kfree(kvm
->arch
.vioapic
);
7905 kvm_free_vcpus(kvm
);
7906 kvfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
7907 kvm_mmu_uninit_vm(kvm
);
7910 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
7911 struct kvm_memory_slot
*dont
)
7915 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7916 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
7917 kvfree(free
->arch
.rmap
[i
]);
7918 free
->arch
.rmap
[i
] = NULL
;
7923 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
7924 dont
->arch
.lpage_info
[i
- 1]) {
7925 kvfree(free
->arch
.lpage_info
[i
- 1]);
7926 free
->arch
.lpage_info
[i
- 1] = NULL
;
7930 kvm_page_track_free_memslot(free
, dont
);
7933 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
7934 unsigned long npages
)
7938 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7939 struct kvm_lpage_info
*linfo
;
7944 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
7945 slot
->base_gfn
, level
) + 1;
7947 slot
->arch
.rmap
[i
] =
7948 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
7949 if (!slot
->arch
.rmap
[i
])
7954 linfo
= kvm_kvzalloc(lpages
* sizeof(*linfo
));
7958 slot
->arch
.lpage_info
[i
- 1] = linfo
;
7960 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
7961 linfo
[0].disallow_lpage
= 1;
7962 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
7963 linfo
[lpages
- 1].disallow_lpage
= 1;
7964 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
7966 * If the gfn and userspace address are not aligned wrt each
7967 * other, or if explicitly asked to, disable large page
7968 * support for this slot
7970 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
7971 !kvm_largepages_enabled()) {
7974 for (j
= 0; j
< lpages
; ++j
)
7975 linfo
[j
].disallow_lpage
= 1;
7979 if (kvm_page_track_create_memslot(slot
, npages
))
7985 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7986 kvfree(slot
->arch
.rmap
[i
]);
7987 slot
->arch
.rmap
[i
] = NULL
;
7991 kvfree(slot
->arch
.lpage_info
[i
- 1]);
7992 slot
->arch
.lpage_info
[i
- 1] = NULL
;
7997 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
8000 * memslots->generation has been incremented.
8001 * mmio generation may have reached its maximum value.
8003 kvm_mmu_invalidate_mmio_sptes(kvm
, slots
);
8006 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
8007 struct kvm_memory_slot
*memslot
,
8008 const struct kvm_userspace_memory_region
*mem
,
8009 enum kvm_mr_change change
)
8014 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
8015 struct kvm_memory_slot
*new)
8017 /* Still write protect RO slot */
8018 if (new->flags
& KVM_MEM_READONLY
) {
8019 kvm_mmu_slot_remove_write_access(kvm
, new);
8024 * Call kvm_x86_ops dirty logging hooks when they are valid.
8026 * kvm_x86_ops->slot_disable_log_dirty is called when:
8028 * - KVM_MR_CREATE with dirty logging is disabled
8029 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8031 * The reason is, in case of PML, we need to set D-bit for any slots
8032 * with dirty logging disabled in order to eliminate unnecessary GPA
8033 * logging in PML buffer (and potential PML buffer full VMEXT). This
8034 * guarantees leaving PML enabled during guest's lifetime won't have
8035 * any additonal overhead from PML when guest is running with dirty
8036 * logging disabled for memory slots.
8038 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8039 * to dirty logging mode.
8041 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8043 * In case of write protect:
8045 * Write protect all pages for dirty logging.
8047 * All the sptes including the large sptes which point to this
8048 * slot are set to readonly. We can not create any new large
8049 * spte on this slot until the end of the logging.
8051 * See the comments in fast_page_fault().
8053 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
8054 if (kvm_x86_ops
->slot_enable_log_dirty
)
8055 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
8057 kvm_mmu_slot_remove_write_access(kvm
, new);
8059 if (kvm_x86_ops
->slot_disable_log_dirty
)
8060 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
8064 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
8065 const struct kvm_userspace_memory_region
*mem
,
8066 const struct kvm_memory_slot
*old
,
8067 const struct kvm_memory_slot
*new,
8068 enum kvm_mr_change change
)
8070 int nr_mmu_pages
= 0;
8072 if (!kvm
->arch
.n_requested_mmu_pages
)
8073 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
8076 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
8079 * Dirty logging tracks sptes in 4k granularity, meaning that large
8080 * sptes have to be split. If live migration is successful, the guest
8081 * in the source machine will be destroyed and large sptes will be
8082 * created in the destination. However, if the guest continues to run
8083 * in the source machine (for example if live migration fails), small
8084 * sptes will remain around and cause bad performance.
8086 * Scan sptes if dirty logging has been stopped, dropping those
8087 * which can be collapsed into a single large-page spte. Later
8088 * page faults will create the large-page sptes.
8090 if ((change
!= KVM_MR_DELETE
) &&
8091 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
8092 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
8093 kvm_mmu_zap_collapsible_sptes(kvm
, new);
8096 * Set up write protection and/or dirty logging for the new slot.
8098 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8099 * been zapped so no dirty logging staff is needed for old slot. For
8100 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8101 * new and it's also covered when dealing with the new slot.
8103 * FIXME: const-ify all uses of struct kvm_memory_slot.
8105 if (change
!= KVM_MR_DELETE
)
8106 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
8109 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
8111 kvm_mmu_invalidate_zap_all_pages(kvm
);
8114 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
8115 struct kvm_memory_slot
*slot
)
8117 kvm_mmu_invalidate_zap_all_pages(kvm
);
8120 static inline bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
8122 if (!list_empty_careful(&vcpu
->async_pf
.done
))
8125 if (kvm_apic_has_events(vcpu
))
8128 if (vcpu
->arch
.pv
.pv_unhalted
)
8131 if (atomic_read(&vcpu
->arch
.nmi_queued
))
8134 if (test_bit(KVM_REQ_SMI
, &vcpu
->requests
))
8137 if (kvm_arch_interrupt_allowed(vcpu
) &&
8138 kvm_cpu_has_interrupt(vcpu
))
8141 if (kvm_hv_has_stimer_pending(vcpu
))
8147 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
8149 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
8150 kvm_x86_ops
->check_nested_events(vcpu
, false);
8152 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
8155 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
8157 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
8160 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
8162 return kvm_x86_ops
->interrupt_allowed(vcpu
);
8165 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
8167 if (is_64_bit_mode(vcpu
))
8168 return kvm_rip_read(vcpu
);
8169 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
8170 kvm_rip_read(vcpu
));
8172 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
8174 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
8176 return kvm_get_linear_rip(vcpu
) == linear_rip
;
8178 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
8180 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
8182 unsigned long rflags
;
8184 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
8185 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8186 rflags
&= ~X86_EFLAGS_TF
;
8189 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
8191 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8193 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
8194 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
8195 rflags
|= X86_EFLAGS_TF
;
8196 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
8199 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8201 __kvm_set_rflags(vcpu
, rflags
);
8202 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8204 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
8206 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
8210 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
8214 r
= kvm_mmu_reload(vcpu
);
8218 if (!vcpu
->arch
.mmu
.direct_map
&&
8219 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
8222 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
8225 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
8227 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
8230 static inline u32
kvm_async_pf_next_probe(u32 key
)
8232 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
8235 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8237 u32 key
= kvm_async_pf_hash_fn(gfn
);
8239 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
8240 key
= kvm_async_pf_next_probe(key
);
8242 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
8245 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8248 u32 key
= kvm_async_pf_hash_fn(gfn
);
8250 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
8251 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
8252 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
8253 key
= kvm_async_pf_next_probe(key
);
8258 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8260 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
8263 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8267 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
8269 vcpu
->arch
.apf
.gfns
[i
] = ~0;
8271 j
= kvm_async_pf_next_probe(j
);
8272 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
8274 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
8276 * k lies cyclically in ]i,j]
8278 * |....j i.k.| or |.k..j i...|
8280 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
8281 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
8286 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
8289 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
8293 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
8294 struct kvm_async_pf
*work
)
8296 struct x86_exception fault
;
8298 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
8299 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8301 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
8302 (vcpu
->arch
.apf
.send_user_only
&&
8303 kvm_x86_ops
->get_cpl(vcpu
) == 0))
8304 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
8305 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
8306 fault
.vector
= PF_VECTOR
;
8307 fault
.error_code_valid
= true;
8308 fault
.error_code
= 0;
8309 fault
.nested_page_fault
= false;
8310 fault
.address
= work
->arch
.token
;
8311 kvm_inject_page_fault(vcpu
, &fault
);
8315 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
8316 struct kvm_async_pf
*work
)
8318 struct x86_exception fault
;
8320 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
8321 if (work
->wakeup_all
)
8322 work
->arch
.token
= ~0; /* broadcast wakeup */
8324 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8326 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
8327 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
8328 fault
.vector
= PF_VECTOR
;
8329 fault
.error_code_valid
= true;
8330 fault
.error_code
= 0;
8331 fault
.nested_page_fault
= false;
8332 fault
.address
= work
->arch
.token
;
8333 kvm_inject_page_fault(vcpu
, &fault
);
8335 vcpu
->arch
.apf
.halted
= false;
8336 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8339 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
8341 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
8344 return !kvm_event_needs_reinjection(vcpu
) &&
8345 kvm_x86_ops
->interrupt_allowed(vcpu
);
8348 void kvm_arch_start_assignment(struct kvm
*kvm
)
8350 atomic_inc(&kvm
->arch
.assigned_device_count
);
8352 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
8354 void kvm_arch_end_assignment(struct kvm
*kvm
)
8356 atomic_dec(&kvm
->arch
.assigned_device_count
);
8358 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
8360 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
8362 return atomic_read(&kvm
->arch
.assigned_device_count
);
8364 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
8366 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
8368 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
8370 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
8372 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
8374 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
8376 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
8378 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
8380 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
8382 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
8384 bool kvm_arch_has_irq_bypass(void)
8386 return kvm_x86_ops
->update_pi_irte
!= NULL
;
8389 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
8390 struct irq_bypass_producer
*prod
)
8392 struct kvm_kernel_irqfd
*irqfd
=
8393 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8395 irqfd
->producer
= prod
;
8397 return kvm_x86_ops
->update_pi_irte(irqfd
->kvm
,
8398 prod
->irq
, irqfd
->gsi
, 1);
8401 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
8402 struct irq_bypass_producer
*prod
)
8405 struct kvm_kernel_irqfd
*irqfd
=
8406 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8408 WARN_ON(irqfd
->producer
!= prod
);
8409 irqfd
->producer
= NULL
;
8412 * When producer of consumer is unregistered, we change back to
8413 * remapped mode, so we can re-use the current implementation
8414 * when the irq is masked/disabled or the consumer side (KVM
8415 * int this case doesn't want to receive the interrupts.
8417 ret
= kvm_x86_ops
->update_pi_irte(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
, 0);
8419 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
8420 " fails: %d\n", irqfd
->consumer
.token
, ret
);
8423 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
8424 uint32_t guest_irq
, bool set
)
8426 if (!kvm_x86_ops
->update_pi_irte
)
8429 return kvm_x86_ops
->update_pi_irte(kvm
, host_irq
, guest_irq
, set
);
8432 bool kvm_vector_hashing_enabled(void)
8434 return vector_hashing
;
8436 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled
);
8438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
8439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
8440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
8441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
8442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
8443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
8444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
8445 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
8446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
8447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
8448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
8449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
8450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
8451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
8452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
8453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
8454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);
8455 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access
);
8456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi
);