2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
50 #include <rdma/ib_addr.h>
55 static char *states
[] = {
72 module_param(nocong
, int, 0644);
73 MODULE_PARM_DESC(nocong
, "Turn of congestion control (default=0)");
75 static int enable_ecn
;
76 module_param(enable_ecn
, int, 0644);
77 MODULE_PARM_DESC(enable_ecn
, "Enable ECN (default=0/disabled)");
79 static int dack_mode
= 1;
80 module_param(dack_mode
, int, 0644);
81 MODULE_PARM_DESC(dack_mode
, "Delayed ack mode (default=1)");
83 uint c4iw_max_read_depth
= 32;
84 module_param(c4iw_max_read_depth
, int, 0644);
85 MODULE_PARM_DESC(c4iw_max_read_depth
,
86 "Per-connection max ORD/IRD (default=32)");
88 static int enable_tcp_timestamps
;
89 module_param(enable_tcp_timestamps
, int, 0644);
90 MODULE_PARM_DESC(enable_tcp_timestamps
, "Enable tcp timestamps (default=0)");
92 static int enable_tcp_sack
;
93 module_param(enable_tcp_sack
, int, 0644);
94 MODULE_PARM_DESC(enable_tcp_sack
, "Enable tcp SACK (default=0)");
96 static int enable_tcp_window_scaling
= 1;
97 module_param(enable_tcp_window_scaling
, int, 0644);
98 MODULE_PARM_DESC(enable_tcp_window_scaling
,
99 "Enable tcp window scaling (default=1)");
102 module_param(c4iw_debug
, int, 0644);
103 MODULE_PARM_DESC(c4iw_debug
, "Enable debug logging (default=0)");
105 static int peer2peer
= 1;
106 module_param(peer2peer
, int, 0644);
107 MODULE_PARM_DESC(peer2peer
, "Support peer2peer ULPs (default=1)");
109 static int p2p_type
= FW_RI_INIT_P2PTYPE_READ_REQ
;
110 module_param(p2p_type
, int, 0644);
111 MODULE_PARM_DESC(p2p_type
, "RDMAP opcode to use for the RTR message: "
112 "1=RDMA_READ 0=RDMA_WRITE (default 1)");
114 static int ep_timeout_secs
= 60;
115 module_param(ep_timeout_secs
, int, 0644);
116 MODULE_PARM_DESC(ep_timeout_secs
, "CM Endpoint operation timeout "
117 "in seconds (default=60)");
119 static int mpa_rev
= 2;
120 module_param(mpa_rev
, int, 0644);
121 MODULE_PARM_DESC(mpa_rev
, "MPA Revision, 0 supports amso1100, "
122 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
123 " compliant (default=2)");
125 static int markers_enabled
;
126 module_param(markers_enabled
, int, 0644);
127 MODULE_PARM_DESC(markers_enabled
, "Enable MPA MARKERS (default(0)=disabled)");
129 static int crc_enabled
= 1;
130 module_param(crc_enabled
, int, 0644);
131 MODULE_PARM_DESC(crc_enabled
, "Enable MPA CRC (default(1)=enabled)");
133 static int rcv_win
= 256 * 1024;
134 module_param(rcv_win
, int, 0644);
135 MODULE_PARM_DESC(rcv_win
, "TCP receive window in bytes (default=256KB)");
137 static int snd_win
= 128 * 1024;
138 module_param(snd_win
, int, 0644);
139 MODULE_PARM_DESC(snd_win
, "TCP send window in bytes (default=128KB)");
141 static struct workqueue_struct
*workq
;
143 static struct sk_buff_head rxq
;
145 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
);
146 static void ep_timeout(unsigned long arg
);
147 static void connect_reply_upcall(struct c4iw_ep
*ep
, int status
);
148 static int sched(struct c4iw_dev
*dev
, struct sk_buff
*skb
);
150 static LIST_HEAD(timeout_list
);
151 static spinlock_t timeout_lock
;
153 static void deref_cm_id(struct c4iw_ep_common
*epc
)
155 epc
->cm_id
->rem_ref(epc
->cm_id
);
157 set_bit(CM_ID_DEREFED
, &epc
->history
);
160 static void ref_cm_id(struct c4iw_ep_common
*epc
)
162 set_bit(CM_ID_REFED
, &epc
->history
);
163 epc
->cm_id
->add_ref(epc
->cm_id
);
166 static void deref_qp(struct c4iw_ep
*ep
)
168 c4iw_qp_rem_ref(&ep
->com
.qp
->ibqp
);
169 clear_bit(QP_REFERENCED
, &ep
->com
.flags
);
170 set_bit(QP_DEREFED
, &ep
->com
.history
);
173 static void ref_qp(struct c4iw_ep
*ep
)
175 set_bit(QP_REFERENCED
, &ep
->com
.flags
);
176 set_bit(QP_REFED
, &ep
->com
.history
);
177 c4iw_qp_add_ref(&ep
->com
.qp
->ibqp
);
180 static void start_ep_timer(struct c4iw_ep
*ep
)
182 PDBG("%s ep %p\n", __func__
, ep
);
183 if (timer_pending(&ep
->timer
)) {
184 pr_err("%s timer already started! ep %p\n",
188 clear_bit(TIMEOUT
, &ep
->com
.flags
);
189 c4iw_get_ep(&ep
->com
);
190 ep
->timer
.expires
= jiffies
+ ep_timeout_secs
* HZ
;
191 ep
->timer
.data
= (unsigned long)ep
;
192 ep
->timer
.function
= ep_timeout
;
193 add_timer(&ep
->timer
);
196 static int stop_ep_timer(struct c4iw_ep
*ep
)
198 PDBG("%s ep %p stopping\n", __func__
, ep
);
199 del_timer_sync(&ep
->timer
);
200 if (!test_and_set_bit(TIMEOUT
, &ep
->com
.flags
)) {
201 c4iw_put_ep(&ep
->com
);
207 static int c4iw_l2t_send(struct c4iw_rdev
*rdev
, struct sk_buff
*skb
,
208 struct l2t_entry
*l2e
)
212 if (c4iw_fatal_error(rdev
)) {
214 PDBG("%s - device in error state - dropping\n", __func__
);
217 error
= cxgb4_l2t_send(rdev
->lldi
.ports
[0], skb
, l2e
);
220 else if (error
== NET_XMIT_DROP
)
222 return error
< 0 ? error
: 0;
225 int c4iw_ofld_send(struct c4iw_rdev
*rdev
, struct sk_buff
*skb
)
229 if (c4iw_fatal_error(rdev
)) {
231 PDBG("%s - device in error state - dropping\n", __func__
);
234 error
= cxgb4_ofld_send(rdev
->lldi
.ports
[0], skb
);
237 return error
< 0 ? error
: 0;
240 static void release_tid(struct c4iw_rdev
*rdev
, u32 hwtid
, struct sk_buff
*skb
)
242 struct cpl_tid_release
*req
;
244 skb
= get_skb(skb
, sizeof *req
, GFP_KERNEL
);
247 req
= (struct cpl_tid_release
*) skb_put(skb
, sizeof(*req
));
248 INIT_TP_WR(req
, hwtid
);
249 OPCODE_TID(req
) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE
, hwtid
));
250 set_wr_txq(skb
, CPL_PRIORITY_SETUP
, 0);
251 c4iw_ofld_send(rdev
, skb
);
255 static void set_emss(struct c4iw_ep
*ep
, u16 opt
)
257 ep
->emss
= ep
->com
.dev
->rdev
.lldi
.mtus
[TCPOPT_MSS_G(opt
)] -
258 ((AF_INET
== ep
->com
.remote_addr
.ss_family
) ?
259 sizeof(struct iphdr
) : sizeof(struct ipv6hdr
)) -
260 sizeof(struct tcphdr
);
262 if (TCPOPT_TSTAMP_G(opt
))
263 ep
->emss
-= round_up(TCPOLEN_TIMESTAMP
, 4);
267 PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n",
268 TCPOPT_MSS_G(opt
), ep
->mss
, ep
->emss
);
269 PDBG("%s mss_idx %u mss %u emss=%u\n", __func__
, TCPOPT_MSS_G(opt
),
273 static enum c4iw_ep_state
state_read(struct c4iw_ep_common
*epc
)
275 enum c4iw_ep_state state
;
277 mutex_lock(&epc
->mutex
);
279 mutex_unlock(&epc
->mutex
);
283 static void __state_set(struct c4iw_ep_common
*epc
, enum c4iw_ep_state
new)
288 static void state_set(struct c4iw_ep_common
*epc
, enum c4iw_ep_state
new)
290 mutex_lock(&epc
->mutex
);
291 PDBG("%s - %s -> %s\n", __func__
, states
[epc
->state
], states
[new]);
292 __state_set(epc
, new);
293 mutex_unlock(&epc
->mutex
);
297 static int alloc_ep_skb_list(struct sk_buff_head
*ep_skb_list
, int size
)
303 len
= roundup(sizeof(union cpl_wr_size
), 16);
304 for (i
= 0; i
< size
; i
++) {
305 skb
= alloc_skb(len
, GFP_KERNEL
);
308 skb_queue_tail(ep_skb_list
, skb
);
312 skb_queue_purge(ep_skb_list
);
316 static void *alloc_ep(int size
, gfp_t gfp
)
318 struct c4iw_ep_common
*epc
;
320 epc
= kzalloc(size
, gfp
);
322 kref_init(&epc
->kref
);
323 mutex_init(&epc
->mutex
);
324 c4iw_init_wr_wait(&epc
->wr_wait
);
326 PDBG("%s alloc ep %p\n", __func__
, epc
);
330 static void remove_ep_tid(struct c4iw_ep
*ep
)
334 spin_lock_irqsave(&ep
->com
.dev
->lock
, flags
);
335 _remove_handle(ep
->com
.dev
, &ep
->com
.dev
->hwtid_idr
, ep
->hwtid
, 0);
336 spin_unlock_irqrestore(&ep
->com
.dev
->lock
, flags
);
339 static void insert_ep_tid(struct c4iw_ep
*ep
)
343 spin_lock_irqsave(&ep
->com
.dev
->lock
, flags
);
344 _insert_handle(ep
->com
.dev
, &ep
->com
.dev
->hwtid_idr
, ep
, ep
->hwtid
, 0);
345 spin_unlock_irqrestore(&ep
->com
.dev
->lock
, flags
);
349 * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
351 static struct c4iw_ep
*get_ep_from_tid(struct c4iw_dev
*dev
, unsigned int tid
)
356 spin_lock_irqsave(&dev
->lock
, flags
);
357 ep
= idr_find(&dev
->hwtid_idr
, tid
);
359 c4iw_get_ep(&ep
->com
);
360 spin_unlock_irqrestore(&dev
->lock
, flags
);
365 * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
367 static struct c4iw_listen_ep
*get_ep_from_stid(struct c4iw_dev
*dev
,
370 struct c4iw_listen_ep
*ep
;
373 spin_lock_irqsave(&dev
->lock
, flags
);
374 ep
= idr_find(&dev
->stid_idr
, stid
);
376 c4iw_get_ep(&ep
->com
);
377 spin_unlock_irqrestore(&dev
->lock
, flags
);
381 void _c4iw_free_ep(struct kref
*kref
)
385 ep
= container_of(kref
, struct c4iw_ep
, com
.kref
);
386 PDBG("%s ep %p state %s\n", __func__
, ep
, states
[ep
->com
.state
]);
387 if (test_bit(QP_REFERENCED
, &ep
->com
.flags
))
389 if (test_bit(RELEASE_RESOURCES
, &ep
->com
.flags
)) {
390 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
391 struct sockaddr_in6
*sin6
=
392 (struct sockaddr_in6
*)
396 ep
->com
.dev
->rdev
.lldi
.ports
[0],
397 (const u32
*)&sin6
->sin6_addr
.s6_addr
,
400 cxgb4_remove_tid(ep
->com
.dev
->rdev
.lldi
.tids
, 0, ep
->hwtid
);
401 dst_release(ep
->dst
);
402 cxgb4_l2t_release(ep
->l2t
);
404 kfree_skb(ep
->mpa_skb
);
406 if (!skb_queue_empty(&ep
->com
.ep_skb_list
))
407 skb_queue_purge(&ep
->com
.ep_skb_list
);
411 static void release_ep_resources(struct c4iw_ep
*ep
)
413 set_bit(RELEASE_RESOURCES
, &ep
->com
.flags
);
416 * If we have a hwtid, then remove it from the idr table
417 * so lookups will no longer find this endpoint. Otherwise
418 * we have a race where one thread finds the ep ptr just
419 * before the other thread is freeing the ep memory.
423 c4iw_put_ep(&ep
->com
);
426 static int status2errno(int status
)
431 case CPL_ERR_CONN_RESET
:
433 case CPL_ERR_ARP_MISS
:
434 return -EHOSTUNREACH
;
435 case CPL_ERR_CONN_TIMEDOUT
:
437 case CPL_ERR_TCAM_FULL
:
439 case CPL_ERR_CONN_EXIST
:
447 * Try and reuse skbs already allocated...
449 static struct sk_buff
*get_skb(struct sk_buff
*skb
, int len
, gfp_t gfp
)
451 if (skb
&& !skb_is_nonlinear(skb
) && !skb_cloned(skb
)) {
454 skb_reset_transport_header(skb
);
456 skb
= alloc_skb(len
, gfp
);
458 t4_set_arp_err_handler(skb
, NULL
, NULL
);
462 static struct net_device
*get_real_dev(struct net_device
*egress_dev
)
464 return rdma_vlan_dev_real_dev(egress_dev
) ? : egress_dev
;
467 static int our_interface(struct c4iw_dev
*dev
, struct net_device
*egress_dev
)
471 egress_dev
= get_real_dev(egress_dev
);
472 for (i
= 0; i
< dev
->rdev
.lldi
.nports
; i
++)
473 if (dev
->rdev
.lldi
.ports
[i
] == egress_dev
)
478 static struct dst_entry
*find_route6(struct c4iw_dev
*dev
, __u8
*local_ip
,
479 __u8
*peer_ip
, __be16 local_port
,
480 __be16 peer_port
, u8 tos
,
483 struct dst_entry
*dst
= NULL
;
485 if (IS_ENABLED(CONFIG_IPV6
)) {
488 memset(&fl6
, 0, sizeof(fl6
));
489 memcpy(&fl6
.daddr
, peer_ip
, 16);
490 memcpy(&fl6
.saddr
, local_ip
, 16);
491 if (ipv6_addr_type(&fl6
.daddr
) & IPV6_ADDR_LINKLOCAL
)
492 fl6
.flowi6_oif
= sin6_scope_id
;
493 dst
= ip6_route_output(&init_net
, NULL
, &fl6
);
496 if (!our_interface(dev
, ip6_dst_idev(dst
)->dev
) &&
497 !(ip6_dst_idev(dst
)->dev
->flags
& IFF_LOOPBACK
)) {
507 static struct dst_entry
*find_route(struct c4iw_dev
*dev
, __be32 local_ip
,
508 __be32 peer_ip
, __be16 local_port
,
509 __be16 peer_port
, u8 tos
)
515 rt
= ip_route_output_ports(&init_net
, &fl4
, NULL
, peer_ip
, local_ip
,
516 peer_port
, local_port
, IPPROTO_TCP
,
520 n
= dst_neigh_lookup(&rt
->dst
, &peer_ip
);
523 if (!our_interface(dev
, n
->dev
) &&
524 !(n
->dev
->flags
& IFF_LOOPBACK
)) {
526 dst_release(&rt
->dst
);
533 static void arp_failure_discard(void *handle
, struct sk_buff
*skb
)
535 pr_err(MOD
"ARP failure\n");
539 static void mpa_start_arp_failure(void *handle
, struct sk_buff
*skb
)
541 pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
546 FAKE_CPL_PUT_EP_SAFE
= NUM_CPL_CMDS
+ 0,
547 FAKE_CPL_PASS_PUT_EP_SAFE
= NUM_CPL_CMDS
+ 1,
550 static int _put_ep_safe(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
554 ep
= *((struct c4iw_ep
**)(skb
->cb
+ 2 * sizeof(void *)));
555 release_ep_resources(ep
);
559 static int _put_pass_ep_safe(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
563 ep
= *((struct c4iw_ep
**)(skb
->cb
+ 2 * sizeof(void *)));
564 c4iw_put_ep(&ep
->parent_ep
->com
);
565 release_ep_resources(ep
);
570 * Fake up a special CPL opcode and call sched() so process_work() will call
571 * _put_ep_safe() in a safe context to free the ep resources. This is needed
572 * because ARP error handlers are called in an ATOMIC context, and
573 * _c4iw_free_ep() needs to block.
575 static void queue_arp_failure_cpl(struct c4iw_ep
*ep
, struct sk_buff
*skb
,
578 struct cpl_act_establish
*rpl
= cplhdr(skb
);
580 /* Set our special ARP_FAILURE opcode */
581 rpl
->ot
.opcode
= cpl
;
584 * Save ep in the skb->cb area, after where sched() will save the dev
587 *((struct c4iw_ep
**)(skb
->cb
+ 2 * sizeof(void *))) = ep
;
588 sched(ep
->com
.dev
, skb
);
591 /* Handle an ARP failure for an accept */
592 static void pass_accept_rpl_arp_failure(void *handle
, struct sk_buff
*skb
)
594 struct c4iw_ep
*ep
= handle
;
596 pr_err(MOD
"ARP failure during accept - tid %u -dropping connection\n",
599 __state_set(&ep
->com
, DEAD
);
600 queue_arp_failure_cpl(ep
, skb
, FAKE_CPL_PASS_PUT_EP_SAFE
);
604 * Handle an ARP failure for an active open.
606 static void act_open_req_arp_failure(void *handle
, struct sk_buff
*skb
)
608 struct c4iw_ep
*ep
= handle
;
610 printk(KERN_ERR MOD
"ARP failure during connect\n");
611 connect_reply_upcall(ep
, -EHOSTUNREACH
);
612 __state_set(&ep
->com
, DEAD
);
613 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
614 struct sockaddr_in6
*sin6
=
615 (struct sockaddr_in6
*)&ep
->com
.local_addr
;
616 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
617 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
619 remove_handle(ep
->com
.dev
, &ep
->com
.dev
->atid_idr
, ep
->atid
);
620 cxgb4_free_atid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
->atid
);
621 queue_arp_failure_cpl(ep
, skb
, FAKE_CPL_PUT_EP_SAFE
);
625 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
628 static void abort_arp_failure(void *handle
, struct sk_buff
*skb
)
631 struct c4iw_ep
*ep
= handle
;
632 struct c4iw_rdev
*rdev
= &ep
->com
.dev
->rdev
;
633 struct cpl_abort_req
*req
= cplhdr(skb
);
635 PDBG("%s rdev %p\n", __func__
, rdev
);
636 req
->cmd
= CPL_ABORT_NO_RST
;
637 ret
= c4iw_ofld_send(rdev
, skb
);
639 __state_set(&ep
->com
, DEAD
);
640 queue_arp_failure_cpl(ep
, skb
, FAKE_CPL_PUT_EP_SAFE
);
644 static int send_flowc(struct c4iw_ep
*ep
)
646 struct fw_flowc_wr
*flowc
;
647 struct sk_buff
*skb
= skb_dequeue(&ep
->com
.ep_skb_list
);
649 u16 vlan
= ep
->l2t
->vlan
;
655 if (vlan
== CPL_L2T_VLAN_NONE
)
660 flowc
= (struct fw_flowc_wr
*)__skb_put(skb
, FLOWC_LEN
);
662 flowc
->op_to_nparams
= cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR
) |
663 FW_FLOWC_WR_NPARAMS_V(nparams
));
664 flowc
->flowid_len16
= cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN
,
665 16)) | FW_WR_FLOWID_V(ep
->hwtid
));
667 flowc
->mnemval
[0].mnemonic
= FW_FLOWC_MNEM_PFNVFN
;
668 flowc
->mnemval
[0].val
= cpu_to_be32(FW_PFVF_CMD_PFN_V
669 (ep
->com
.dev
->rdev
.lldi
.pf
));
670 flowc
->mnemval
[1].mnemonic
= FW_FLOWC_MNEM_CH
;
671 flowc
->mnemval
[1].val
= cpu_to_be32(ep
->tx_chan
);
672 flowc
->mnemval
[2].mnemonic
= FW_FLOWC_MNEM_PORT
;
673 flowc
->mnemval
[2].val
= cpu_to_be32(ep
->tx_chan
);
674 flowc
->mnemval
[3].mnemonic
= FW_FLOWC_MNEM_IQID
;
675 flowc
->mnemval
[3].val
= cpu_to_be32(ep
->rss_qid
);
676 flowc
->mnemval
[4].mnemonic
= FW_FLOWC_MNEM_SNDNXT
;
677 flowc
->mnemval
[4].val
= cpu_to_be32(ep
->snd_seq
);
678 flowc
->mnemval
[5].mnemonic
= FW_FLOWC_MNEM_RCVNXT
;
679 flowc
->mnemval
[5].val
= cpu_to_be32(ep
->rcv_seq
);
680 flowc
->mnemval
[6].mnemonic
= FW_FLOWC_MNEM_SNDBUF
;
681 flowc
->mnemval
[6].val
= cpu_to_be32(ep
->snd_win
);
682 flowc
->mnemval
[7].mnemonic
= FW_FLOWC_MNEM_MSS
;
683 flowc
->mnemval
[7].val
= cpu_to_be32(ep
->emss
);
687 pri
= (vlan
& VLAN_PRIO_MASK
) >> VLAN_PRIO_SHIFT
;
688 flowc
->mnemval
[8].mnemonic
= FW_FLOWC_MNEM_SCHEDCLASS
;
689 flowc
->mnemval
[8].val
= cpu_to_be32(pri
);
691 /* Pad WR to 16 byte boundary */
692 flowc
->mnemval
[8].mnemonic
= 0;
693 flowc
->mnemval
[8].val
= 0;
695 for (i
= 0; i
< 9; i
++) {
696 flowc
->mnemval
[i
].r4
[0] = 0;
697 flowc
->mnemval
[i
].r4
[1] = 0;
698 flowc
->mnemval
[i
].r4
[2] = 0;
701 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
702 return c4iw_ofld_send(&ep
->com
.dev
->rdev
, skb
);
705 static int send_halfclose(struct c4iw_ep
*ep
)
707 struct cpl_close_con_req
*req
;
708 struct sk_buff
*skb
= skb_dequeue(&ep
->com
.ep_skb_list
);
709 int wrlen
= roundup(sizeof *req
, 16);
711 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
715 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
716 t4_set_arp_err_handler(skb
, NULL
, arp_failure_discard
);
717 req
= (struct cpl_close_con_req
*) skb_put(skb
, wrlen
);
718 memset(req
, 0, wrlen
);
719 INIT_TP_WR(req
, ep
->hwtid
);
720 OPCODE_TID(req
) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ
,
722 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
725 static int send_abort(struct c4iw_ep
*ep
)
727 struct cpl_abort_req
*req
;
728 int wrlen
= roundup(sizeof *req
, 16);
729 struct sk_buff
*req_skb
= skb_dequeue(&ep
->com
.ep_skb_list
);
731 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
732 if (WARN_ON(!req_skb
))
735 set_wr_txq(req_skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
736 t4_set_arp_err_handler(req_skb
, ep
, abort_arp_failure
);
737 req
= (struct cpl_abort_req
*)skb_put(req_skb
, wrlen
);
738 memset(req
, 0, wrlen
);
739 INIT_TP_WR(req
, ep
->hwtid
);
740 OPCODE_TID(req
) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ
, ep
->hwtid
));
741 req
->cmd
= CPL_ABORT_SEND_RST
;
742 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, req_skb
, ep
->l2t
);
745 static void best_mtu(const unsigned short *mtus
, unsigned short mtu
,
746 unsigned int *idx
, int use_ts
, int ipv6
)
748 unsigned short hdr_size
= (ipv6
?
749 sizeof(struct ipv6hdr
) :
750 sizeof(struct iphdr
)) +
751 sizeof(struct tcphdr
) +
753 round_up(TCPOLEN_TIMESTAMP
, 4) : 0);
754 unsigned short data_size
= mtu
- hdr_size
;
756 cxgb4_best_aligned_mtu(mtus
, hdr_size
, data_size
, 8, idx
);
759 static int send_connect(struct c4iw_ep
*ep
)
761 struct cpl_act_open_req
*req
= NULL
;
762 struct cpl_t5_act_open_req
*t5req
= NULL
;
763 struct cpl_t6_act_open_req
*t6req
= NULL
;
764 struct cpl_act_open_req6
*req6
= NULL
;
765 struct cpl_t5_act_open_req6
*t5req6
= NULL
;
766 struct cpl_t6_act_open_req6
*t6req6
= NULL
;
770 unsigned int mtu_idx
;
772 int win
, sizev4
, sizev6
, wrlen
;
773 struct sockaddr_in
*la
= (struct sockaddr_in
*)
775 struct sockaddr_in
*ra
= (struct sockaddr_in
*)
776 &ep
->com
.remote_addr
;
777 struct sockaddr_in6
*la6
= (struct sockaddr_in6
*)
779 struct sockaddr_in6
*ra6
= (struct sockaddr_in6
*)
780 &ep
->com
.remote_addr
;
782 enum chip_type adapter_type
= ep
->com
.dev
->rdev
.lldi
.adapter_type
;
783 u32 isn
= (prandom_u32() & ~7UL) - 1;
785 switch (CHELSIO_CHIP_VERSION(adapter_type
)) {
787 sizev4
= sizeof(struct cpl_act_open_req
);
788 sizev6
= sizeof(struct cpl_act_open_req6
);
791 sizev4
= sizeof(struct cpl_t5_act_open_req
);
792 sizev6
= sizeof(struct cpl_t5_act_open_req6
);
795 sizev4
= sizeof(struct cpl_t6_act_open_req
);
796 sizev6
= sizeof(struct cpl_t6_act_open_req6
);
799 pr_err("T%d Chip is not supported\n",
800 CHELSIO_CHIP_VERSION(adapter_type
));
804 wrlen
= (ep
->com
.remote_addr
.ss_family
== AF_INET
) ?
805 roundup(sizev4
, 16) :
808 PDBG("%s ep %p atid %u\n", __func__
, ep
, ep
->atid
);
810 skb
= get_skb(NULL
, wrlen
, GFP_KERNEL
);
812 printk(KERN_ERR MOD
"%s - failed to alloc skb.\n",
816 set_wr_txq(skb
, CPL_PRIORITY_SETUP
, ep
->ctrlq_idx
);
818 best_mtu(ep
->com
.dev
->rdev
.lldi
.mtus
, ep
->mtu
, &mtu_idx
,
819 enable_tcp_timestamps
,
820 (AF_INET
== ep
->com
.remote_addr
.ss_family
) ? 0 : 1);
821 wscale
= compute_wscale(rcv_win
);
824 * Specify the largest window that will fit in opt0. The
825 * remainder will be specified in the rx_data_ack.
827 win
= ep
->rcv_win
>> 10;
828 if (win
> RCV_BUFSIZ_M
)
831 opt0
= (nocong
? NO_CONG_F
: 0) |
834 WND_SCALE_V(wscale
) |
836 L2T_IDX_V(ep
->l2t
->idx
) |
837 TX_CHAN_V(ep
->tx_chan
) |
838 SMAC_SEL_V(ep
->smac_idx
) |
839 DSCP_V(ep
->tos
>> 2) |
840 ULP_MODE_V(ULP_MODE_TCPDDP
) |
842 opt2
= RX_CHANNEL_V(0) |
843 CCTRL_ECN_V(enable_ecn
) |
844 RSS_QUEUE_VALID_F
| RSS_QUEUE_V(ep
->rss_qid
);
845 if (enable_tcp_timestamps
)
846 opt2
|= TSTAMPS_EN_F
;
849 if (wscale
&& enable_tcp_window_scaling
)
850 opt2
|= WND_SCALE_EN_F
;
851 if (CHELSIO_CHIP_VERSION(adapter_type
) > CHELSIO_T4
) {
855 opt2
|= T5_OPT_2_VALID_F
;
856 opt2
|= CONG_CNTRL_V(CONG_ALG_TAHOE
);
860 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
)
861 cxgb4_clip_get(ep
->com
.dev
->rdev
.lldi
.ports
[0],
862 (const u32
*)&la6
->sin6_addr
.s6_addr
, 1);
864 t4_set_arp_err_handler(skb
, ep
, act_open_req_arp_failure
);
866 if (ep
->com
.remote_addr
.ss_family
== AF_INET
) {
867 switch (CHELSIO_CHIP_VERSION(adapter_type
)) {
869 req
= (struct cpl_act_open_req
*)skb_put(skb
, wrlen
);
873 t5req
= (struct cpl_t5_act_open_req
*)skb_put(skb
,
875 INIT_TP_WR(t5req
, 0);
876 req
= (struct cpl_act_open_req
*)t5req
;
879 t6req
= (struct cpl_t6_act_open_req
*)skb_put(skb
,
881 INIT_TP_WR(t6req
, 0);
882 req
= (struct cpl_act_open_req
*)t6req
;
883 t5req
= (struct cpl_t5_act_open_req
*)t6req
;
886 pr_err("T%d Chip is not supported\n",
887 CHELSIO_CHIP_VERSION(adapter_type
));
892 OPCODE_TID(req
) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ
,
893 ((ep
->rss_qid
<<14) | ep
->atid
)));
894 req
->local_port
= la
->sin_port
;
895 req
->peer_port
= ra
->sin_port
;
896 req
->local_ip
= la
->sin_addr
.s_addr
;
897 req
->peer_ip
= ra
->sin_addr
.s_addr
;
898 req
->opt0
= cpu_to_be64(opt0
);
900 if (is_t4(ep
->com
.dev
->rdev
.lldi
.adapter_type
)) {
901 req
->params
= cpu_to_be32(cxgb4_select_ntuple(
902 ep
->com
.dev
->rdev
.lldi
.ports
[0],
904 req
->opt2
= cpu_to_be32(opt2
);
906 t5req
->params
= cpu_to_be64(FILTER_TUPLE_V(
908 ep
->com
.dev
->rdev
.lldi
.ports
[0],
910 t5req
->rsvd
= cpu_to_be32(isn
);
911 PDBG("%s snd_isn %u\n", __func__
, t5req
->rsvd
);
912 t5req
->opt2
= cpu_to_be32(opt2
);
915 switch (CHELSIO_CHIP_VERSION(adapter_type
)) {
917 req6
= (struct cpl_act_open_req6
*)skb_put(skb
, wrlen
);
921 t5req6
= (struct cpl_t5_act_open_req6
*)skb_put(skb
,
923 INIT_TP_WR(t5req6
, 0);
924 req6
= (struct cpl_act_open_req6
*)t5req6
;
927 t6req6
= (struct cpl_t6_act_open_req6
*)skb_put(skb
,
929 INIT_TP_WR(t6req6
, 0);
930 req6
= (struct cpl_act_open_req6
*)t6req6
;
931 t5req6
= (struct cpl_t5_act_open_req6
*)t6req6
;
934 pr_err("T%d Chip is not supported\n",
935 CHELSIO_CHIP_VERSION(adapter_type
));
940 OPCODE_TID(req6
) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6
,
941 ((ep
->rss_qid
<<14)|ep
->atid
)));
942 req6
->local_port
= la6
->sin6_port
;
943 req6
->peer_port
= ra6
->sin6_port
;
944 req6
->local_ip_hi
= *((__be64
*)(la6
->sin6_addr
.s6_addr
));
945 req6
->local_ip_lo
= *((__be64
*)(la6
->sin6_addr
.s6_addr
+ 8));
946 req6
->peer_ip_hi
= *((__be64
*)(ra6
->sin6_addr
.s6_addr
));
947 req6
->peer_ip_lo
= *((__be64
*)(ra6
->sin6_addr
.s6_addr
+ 8));
948 req6
->opt0
= cpu_to_be64(opt0
);
950 if (is_t4(ep
->com
.dev
->rdev
.lldi
.adapter_type
)) {
951 req6
->params
= cpu_to_be32(cxgb4_select_ntuple(
952 ep
->com
.dev
->rdev
.lldi
.ports
[0],
954 req6
->opt2
= cpu_to_be32(opt2
);
956 t5req6
->params
= cpu_to_be64(FILTER_TUPLE_V(
958 ep
->com
.dev
->rdev
.lldi
.ports
[0],
960 t5req6
->rsvd
= cpu_to_be32(isn
);
961 PDBG("%s snd_isn %u\n", __func__
, t5req6
->rsvd
);
962 t5req6
->opt2
= cpu_to_be32(opt2
);
966 set_bit(ACT_OPEN_REQ
, &ep
->com
.history
);
967 ret
= c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
969 if (ret
&& ep
->com
.remote_addr
.ss_family
== AF_INET6
)
970 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
971 (const u32
*)&la6
->sin6_addr
.s6_addr
, 1);
975 static int send_mpa_req(struct c4iw_ep
*ep
, struct sk_buff
*skb
,
978 int mpalen
, wrlen
, ret
;
979 struct fw_ofld_tx_data_wr
*req
;
980 struct mpa_message
*mpa
;
981 struct mpa_v2_conn_params mpa_v2_params
;
983 PDBG("%s ep %p tid %u pd_len %d\n", __func__
, ep
, ep
->hwtid
, ep
->plen
);
985 BUG_ON(skb_cloned(skb
));
987 mpalen
= sizeof(*mpa
) + ep
->plen
;
988 if (mpa_rev_to_use
== 2)
989 mpalen
+= sizeof(struct mpa_v2_conn_params
);
990 wrlen
= roundup(mpalen
+ sizeof *req
, 16);
991 skb
= get_skb(skb
, wrlen
, GFP_KERNEL
);
993 connect_reply_upcall(ep
, -ENOMEM
);
996 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
998 req
= (struct fw_ofld_tx_data_wr
*)skb_put(skb
, wrlen
);
999 memset(req
, 0, wrlen
);
1000 req
->op_to_immdlen
= cpu_to_be32(
1001 FW_WR_OP_V(FW_OFLD_TX_DATA_WR
) |
1003 FW_WR_IMMDLEN_V(mpalen
));
1004 req
->flowid_len16
= cpu_to_be32(
1005 FW_WR_FLOWID_V(ep
->hwtid
) |
1006 FW_WR_LEN16_V(wrlen
>> 4));
1007 req
->plen
= cpu_to_be32(mpalen
);
1008 req
->tunnel_to_proxy
= cpu_to_be32(
1009 FW_OFLD_TX_DATA_WR_FLUSH_F
|
1010 FW_OFLD_TX_DATA_WR_SHOVE_F
);
1012 mpa
= (struct mpa_message
*)(req
+ 1);
1013 memcpy(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
));
1017 mpa
->flags
|= MPA_CRC
;
1018 if (markers_enabled
) {
1019 mpa
->flags
|= MPA_MARKERS
;
1020 ep
->mpa_attr
.recv_marker_enabled
= 1;
1022 ep
->mpa_attr
.recv_marker_enabled
= 0;
1024 if (mpa_rev_to_use
== 2)
1025 mpa
->flags
|= MPA_ENHANCED_RDMA_CONN
;
1027 mpa
->private_data_size
= htons(ep
->plen
);
1028 mpa
->revision
= mpa_rev_to_use
;
1029 if (mpa_rev_to_use
== 1) {
1030 ep
->tried_with_mpa_v1
= 1;
1031 ep
->retry_with_mpa_v1
= 0;
1034 if (mpa_rev_to_use
== 2) {
1035 mpa
->private_data_size
= htons(ntohs(mpa
->private_data_size
) +
1036 sizeof (struct mpa_v2_conn_params
));
1037 PDBG("%s initiator ird %u ord %u\n", __func__
, ep
->ird
,
1039 mpa_v2_params
.ird
= htons((u16
)ep
->ird
);
1040 mpa_v2_params
.ord
= htons((u16
)ep
->ord
);
1043 mpa_v2_params
.ird
|= htons(MPA_V2_PEER2PEER_MODEL
);
1044 if (p2p_type
== FW_RI_INIT_P2PTYPE_RDMA_WRITE
)
1045 mpa_v2_params
.ord
|=
1046 htons(MPA_V2_RDMA_WRITE_RTR
);
1047 else if (p2p_type
== FW_RI_INIT_P2PTYPE_READ_REQ
)
1048 mpa_v2_params
.ord
|=
1049 htons(MPA_V2_RDMA_READ_RTR
);
1051 memcpy(mpa
->private_data
, &mpa_v2_params
,
1052 sizeof(struct mpa_v2_conn_params
));
1055 memcpy(mpa
->private_data
+
1056 sizeof(struct mpa_v2_conn_params
),
1057 ep
->mpa_pkt
+ sizeof(*mpa
), ep
->plen
);
1060 memcpy(mpa
->private_data
,
1061 ep
->mpa_pkt
+ sizeof(*mpa
), ep
->plen
);
1064 * Reference the mpa skb. This ensures the data area
1065 * will remain in memory until the hw acks the tx.
1066 * Function fw4_ack() will deref it.
1069 t4_set_arp_err_handler(skb
, NULL
, arp_failure_discard
);
1070 BUG_ON(ep
->mpa_skb
);
1072 ret
= c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
1076 __state_set(&ep
->com
, MPA_REQ_SENT
);
1077 ep
->mpa_attr
.initiator
= 1;
1078 ep
->snd_seq
+= mpalen
;
1082 static int send_mpa_reject(struct c4iw_ep
*ep
, const void *pdata
, u8 plen
)
1085 struct fw_ofld_tx_data_wr
*req
;
1086 struct mpa_message
*mpa
;
1087 struct sk_buff
*skb
;
1088 struct mpa_v2_conn_params mpa_v2_params
;
1090 PDBG("%s ep %p tid %u pd_len %d\n", __func__
, ep
, ep
->hwtid
, ep
->plen
);
1092 mpalen
= sizeof(*mpa
) + plen
;
1093 if (ep
->mpa_attr
.version
== 2 && ep
->mpa_attr
.enhanced_rdma_conn
)
1094 mpalen
+= sizeof(struct mpa_v2_conn_params
);
1095 wrlen
= roundup(mpalen
+ sizeof *req
, 16);
1097 skb
= get_skb(NULL
, wrlen
, GFP_KERNEL
);
1099 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __func__
);
1102 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
1104 req
= (struct fw_ofld_tx_data_wr
*)skb_put(skb
, wrlen
);
1105 memset(req
, 0, wrlen
);
1106 req
->op_to_immdlen
= cpu_to_be32(
1107 FW_WR_OP_V(FW_OFLD_TX_DATA_WR
) |
1109 FW_WR_IMMDLEN_V(mpalen
));
1110 req
->flowid_len16
= cpu_to_be32(
1111 FW_WR_FLOWID_V(ep
->hwtid
) |
1112 FW_WR_LEN16_V(wrlen
>> 4));
1113 req
->plen
= cpu_to_be32(mpalen
);
1114 req
->tunnel_to_proxy
= cpu_to_be32(
1115 FW_OFLD_TX_DATA_WR_FLUSH_F
|
1116 FW_OFLD_TX_DATA_WR_SHOVE_F
);
1118 mpa
= (struct mpa_message
*)(req
+ 1);
1119 memset(mpa
, 0, sizeof(*mpa
));
1120 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
1121 mpa
->flags
= MPA_REJECT
;
1122 mpa
->revision
= ep
->mpa_attr
.version
;
1123 mpa
->private_data_size
= htons(plen
);
1125 if (ep
->mpa_attr
.version
== 2 && ep
->mpa_attr
.enhanced_rdma_conn
) {
1126 mpa
->flags
|= MPA_ENHANCED_RDMA_CONN
;
1127 mpa
->private_data_size
= htons(ntohs(mpa
->private_data_size
) +
1128 sizeof (struct mpa_v2_conn_params
));
1129 mpa_v2_params
.ird
= htons(((u16
)ep
->ird
) |
1130 (peer2peer
? MPA_V2_PEER2PEER_MODEL
:
1132 mpa_v2_params
.ord
= htons(((u16
)ep
->ord
) | (peer2peer
?
1134 FW_RI_INIT_P2PTYPE_RDMA_WRITE
?
1135 MPA_V2_RDMA_WRITE_RTR
: p2p_type
==
1136 FW_RI_INIT_P2PTYPE_READ_REQ
?
1137 MPA_V2_RDMA_READ_RTR
: 0) : 0));
1138 memcpy(mpa
->private_data
, &mpa_v2_params
,
1139 sizeof(struct mpa_v2_conn_params
));
1142 memcpy(mpa
->private_data
+
1143 sizeof(struct mpa_v2_conn_params
), pdata
, plen
);
1146 memcpy(mpa
->private_data
, pdata
, plen
);
1149 * Reference the mpa skb again. This ensures the data area
1150 * will remain in memory until the hw acks the tx.
1151 * Function fw4_ack() will deref it.
1154 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
1155 t4_set_arp_err_handler(skb
, NULL
, mpa_start_arp_failure
);
1156 BUG_ON(ep
->mpa_skb
);
1158 ep
->snd_seq
+= mpalen
;
1159 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
1162 static int send_mpa_reply(struct c4iw_ep
*ep
, const void *pdata
, u8 plen
)
1165 struct fw_ofld_tx_data_wr
*req
;
1166 struct mpa_message
*mpa
;
1167 struct sk_buff
*skb
;
1168 struct mpa_v2_conn_params mpa_v2_params
;
1170 PDBG("%s ep %p tid %u pd_len %d\n", __func__
, ep
, ep
->hwtid
, ep
->plen
);
1172 mpalen
= sizeof(*mpa
) + plen
;
1173 if (ep
->mpa_attr
.version
== 2 && ep
->mpa_attr
.enhanced_rdma_conn
)
1174 mpalen
+= sizeof(struct mpa_v2_conn_params
);
1175 wrlen
= roundup(mpalen
+ sizeof *req
, 16);
1177 skb
= get_skb(NULL
, wrlen
, GFP_KERNEL
);
1179 printk(KERN_ERR MOD
"%s - cannot alloc skb!\n", __func__
);
1182 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
1184 req
= (struct fw_ofld_tx_data_wr
*) skb_put(skb
, wrlen
);
1185 memset(req
, 0, wrlen
);
1186 req
->op_to_immdlen
= cpu_to_be32(
1187 FW_WR_OP_V(FW_OFLD_TX_DATA_WR
) |
1189 FW_WR_IMMDLEN_V(mpalen
));
1190 req
->flowid_len16
= cpu_to_be32(
1191 FW_WR_FLOWID_V(ep
->hwtid
) |
1192 FW_WR_LEN16_V(wrlen
>> 4));
1193 req
->plen
= cpu_to_be32(mpalen
);
1194 req
->tunnel_to_proxy
= cpu_to_be32(
1195 FW_OFLD_TX_DATA_WR_FLUSH_F
|
1196 FW_OFLD_TX_DATA_WR_SHOVE_F
);
1198 mpa
= (struct mpa_message
*)(req
+ 1);
1199 memset(mpa
, 0, sizeof(*mpa
));
1200 memcpy(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
));
1202 if (ep
->mpa_attr
.crc_enabled
)
1203 mpa
->flags
|= MPA_CRC
;
1204 if (ep
->mpa_attr
.recv_marker_enabled
)
1205 mpa
->flags
|= MPA_MARKERS
;
1206 mpa
->revision
= ep
->mpa_attr
.version
;
1207 mpa
->private_data_size
= htons(plen
);
1209 if (ep
->mpa_attr
.version
== 2 && ep
->mpa_attr
.enhanced_rdma_conn
) {
1210 mpa
->flags
|= MPA_ENHANCED_RDMA_CONN
;
1211 mpa
->private_data_size
= htons(ntohs(mpa
->private_data_size
) +
1212 sizeof (struct mpa_v2_conn_params
));
1213 mpa_v2_params
.ird
= htons((u16
)ep
->ird
);
1214 mpa_v2_params
.ord
= htons((u16
)ep
->ord
);
1215 if (peer2peer
&& (ep
->mpa_attr
.p2p_type
!=
1216 FW_RI_INIT_P2PTYPE_DISABLED
)) {
1217 mpa_v2_params
.ird
|= htons(MPA_V2_PEER2PEER_MODEL
);
1219 if (p2p_type
== FW_RI_INIT_P2PTYPE_RDMA_WRITE
)
1220 mpa_v2_params
.ord
|=
1221 htons(MPA_V2_RDMA_WRITE_RTR
);
1222 else if (p2p_type
== FW_RI_INIT_P2PTYPE_READ_REQ
)
1223 mpa_v2_params
.ord
|=
1224 htons(MPA_V2_RDMA_READ_RTR
);
1227 memcpy(mpa
->private_data
, &mpa_v2_params
,
1228 sizeof(struct mpa_v2_conn_params
));
1231 memcpy(mpa
->private_data
+
1232 sizeof(struct mpa_v2_conn_params
), pdata
, plen
);
1235 memcpy(mpa
->private_data
, pdata
, plen
);
1238 * Reference the mpa skb. This ensures the data area
1239 * will remain in memory until the hw acks the tx.
1240 * Function fw4_ack() will deref it.
1243 t4_set_arp_err_handler(skb
, NULL
, mpa_start_arp_failure
);
1245 __state_set(&ep
->com
, MPA_REP_SENT
);
1246 ep
->snd_seq
+= mpalen
;
1247 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
1250 static int act_establish(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
1253 struct cpl_act_establish
*req
= cplhdr(skb
);
1254 unsigned int tid
= GET_TID(req
);
1255 unsigned int atid
= TID_TID_G(ntohl(req
->tos_atid
));
1256 struct tid_info
*t
= dev
->rdev
.lldi
.tids
;
1259 ep
= lookup_atid(t
, atid
);
1261 PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__
, ep
, tid
,
1262 be32_to_cpu(req
->snd_isn
), be32_to_cpu(req
->rcv_isn
));
1264 mutex_lock(&ep
->com
.mutex
);
1265 dst_confirm(ep
->dst
);
1267 /* setup the hwtid for this connection */
1269 cxgb4_insert_tid(t
, ep
, tid
);
1272 ep
->snd_seq
= be32_to_cpu(req
->snd_isn
);
1273 ep
->rcv_seq
= be32_to_cpu(req
->rcv_isn
);
1275 set_emss(ep
, ntohs(req
->tcp_opt
));
1277 /* dealloc the atid */
1278 remove_handle(ep
->com
.dev
, &ep
->com
.dev
->atid_idr
, atid
);
1279 cxgb4_free_atid(t
, atid
);
1280 set_bit(ACT_ESTAB
, &ep
->com
.history
);
1282 /* start MPA negotiation */
1283 ret
= send_flowc(ep
);
1286 if (ep
->retry_with_mpa_v1
)
1287 ret
= send_mpa_req(ep
, skb
, 1);
1289 ret
= send_mpa_req(ep
, skb
, mpa_rev
);
1292 mutex_unlock(&ep
->com
.mutex
);
1295 mutex_unlock(&ep
->com
.mutex
);
1296 connect_reply_upcall(ep
, -ENOMEM
);
1297 c4iw_ep_disconnect(ep
, 0, GFP_KERNEL
);
1301 static void close_complete_upcall(struct c4iw_ep
*ep
, int status
)
1303 struct iw_cm_event event
;
1305 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1306 memset(&event
, 0, sizeof(event
));
1307 event
.event
= IW_CM_EVENT_CLOSE
;
1308 event
.status
= status
;
1309 if (ep
->com
.cm_id
) {
1310 PDBG("close complete delivered ep %p cm_id %p tid %u\n",
1311 ep
, ep
->com
.cm_id
, ep
->hwtid
);
1312 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
1313 deref_cm_id(&ep
->com
);
1314 set_bit(CLOSE_UPCALL
, &ep
->com
.history
);
1318 static void peer_close_upcall(struct c4iw_ep
*ep
)
1320 struct iw_cm_event event
;
1322 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1323 memset(&event
, 0, sizeof(event
));
1324 event
.event
= IW_CM_EVENT_DISCONNECT
;
1325 if (ep
->com
.cm_id
) {
1326 PDBG("peer close delivered ep %p cm_id %p tid %u\n",
1327 ep
, ep
->com
.cm_id
, ep
->hwtid
);
1328 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
1329 set_bit(DISCONN_UPCALL
, &ep
->com
.history
);
1333 static void peer_abort_upcall(struct c4iw_ep
*ep
)
1335 struct iw_cm_event event
;
1337 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1338 memset(&event
, 0, sizeof(event
));
1339 event
.event
= IW_CM_EVENT_CLOSE
;
1340 event
.status
= -ECONNRESET
;
1341 if (ep
->com
.cm_id
) {
1342 PDBG("abort delivered ep %p cm_id %p tid %u\n", ep
,
1343 ep
->com
.cm_id
, ep
->hwtid
);
1344 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
1345 deref_cm_id(&ep
->com
);
1346 set_bit(ABORT_UPCALL
, &ep
->com
.history
);
1350 static void connect_reply_upcall(struct c4iw_ep
*ep
, int status
)
1352 struct iw_cm_event event
;
1354 PDBG("%s ep %p tid %u status %d\n", __func__
, ep
, ep
->hwtid
, status
);
1355 memset(&event
, 0, sizeof(event
));
1356 event
.event
= IW_CM_EVENT_CONNECT_REPLY
;
1357 event
.status
= status
;
1358 memcpy(&event
.local_addr
, &ep
->com
.local_addr
,
1359 sizeof(ep
->com
.local_addr
));
1360 memcpy(&event
.remote_addr
, &ep
->com
.remote_addr
,
1361 sizeof(ep
->com
.remote_addr
));
1363 if ((status
== 0) || (status
== -ECONNREFUSED
)) {
1364 if (!ep
->tried_with_mpa_v1
) {
1365 /* this means MPA_v2 is used */
1366 event
.ord
= ep
->ird
;
1367 event
.ird
= ep
->ord
;
1368 event
.private_data_len
= ep
->plen
-
1369 sizeof(struct mpa_v2_conn_params
);
1370 event
.private_data
= ep
->mpa_pkt
+
1371 sizeof(struct mpa_message
) +
1372 sizeof(struct mpa_v2_conn_params
);
1374 /* this means MPA_v1 is used */
1375 event
.ord
= cur_max_read_depth(ep
->com
.dev
);
1376 event
.ird
= cur_max_read_depth(ep
->com
.dev
);
1377 event
.private_data_len
= ep
->plen
;
1378 event
.private_data
= ep
->mpa_pkt
+
1379 sizeof(struct mpa_message
);
1383 PDBG("%s ep %p tid %u status %d\n", __func__
, ep
,
1385 set_bit(CONN_RPL_UPCALL
, &ep
->com
.history
);
1386 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
1389 deref_cm_id(&ep
->com
);
1392 static int connect_request_upcall(struct c4iw_ep
*ep
)
1394 struct iw_cm_event event
;
1397 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1398 memset(&event
, 0, sizeof(event
));
1399 event
.event
= IW_CM_EVENT_CONNECT_REQUEST
;
1400 memcpy(&event
.local_addr
, &ep
->com
.local_addr
,
1401 sizeof(ep
->com
.local_addr
));
1402 memcpy(&event
.remote_addr
, &ep
->com
.remote_addr
,
1403 sizeof(ep
->com
.remote_addr
));
1404 event
.provider_data
= ep
;
1405 if (!ep
->tried_with_mpa_v1
) {
1406 /* this means MPA_v2 is used */
1407 event
.ord
= ep
->ord
;
1408 event
.ird
= ep
->ird
;
1409 event
.private_data_len
= ep
->plen
-
1410 sizeof(struct mpa_v2_conn_params
);
1411 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
) +
1412 sizeof(struct mpa_v2_conn_params
);
1414 /* this means MPA_v1 is used. Send max supported */
1415 event
.ord
= cur_max_read_depth(ep
->com
.dev
);
1416 event
.ird
= cur_max_read_depth(ep
->com
.dev
);
1417 event
.private_data_len
= ep
->plen
;
1418 event
.private_data
= ep
->mpa_pkt
+ sizeof(struct mpa_message
);
1420 c4iw_get_ep(&ep
->com
);
1421 ret
= ep
->parent_ep
->com
.cm_id
->event_handler(ep
->parent_ep
->com
.cm_id
,
1424 c4iw_put_ep(&ep
->com
);
1425 set_bit(CONNREQ_UPCALL
, &ep
->com
.history
);
1426 c4iw_put_ep(&ep
->parent_ep
->com
);
1430 static void established_upcall(struct c4iw_ep
*ep
)
1432 struct iw_cm_event event
;
1434 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1435 memset(&event
, 0, sizeof(event
));
1436 event
.event
= IW_CM_EVENT_ESTABLISHED
;
1437 event
.ird
= ep
->ord
;
1438 event
.ord
= ep
->ird
;
1439 if (ep
->com
.cm_id
) {
1440 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1441 ep
->com
.cm_id
->event_handler(ep
->com
.cm_id
, &event
);
1442 set_bit(ESTAB_UPCALL
, &ep
->com
.history
);
1446 static int update_rx_credits(struct c4iw_ep
*ep
, u32 credits
)
1448 struct cpl_rx_data_ack
*req
;
1449 struct sk_buff
*skb
;
1450 int wrlen
= roundup(sizeof *req
, 16);
1452 PDBG("%s ep %p tid %u credits %u\n", __func__
, ep
, ep
->hwtid
, credits
);
1453 skb
= get_skb(NULL
, wrlen
, GFP_KERNEL
);
1455 printk(KERN_ERR MOD
"update_rx_credits - cannot alloc skb!\n");
1460 * If we couldn't specify the entire rcv window at connection setup
1461 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1462 * then add the overage in to the credits returned.
1464 if (ep
->rcv_win
> RCV_BUFSIZ_M
* 1024)
1465 credits
+= ep
->rcv_win
- RCV_BUFSIZ_M
* 1024;
1467 req
= (struct cpl_rx_data_ack
*) skb_put(skb
, wrlen
);
1468 memset(req
, 0, wrlen
);
1469 INIT_TP_WR(req
, ep
->hwtid
);
1470 OPCODE_TID(req
) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK
,
1472 req
->credit_dack
= cpu_to_be32(credits
| RX_FORCE_ACK_F
|
1474 RX_DACK_MODE_V(dack_mode
));
1475 set_wr_txq(skb
, CPL_PRIORITY_ACK
, ep
->ctrlq_idx
);
1476 c4iw_ofld_send(&ep
->com
.dev
->rdev
, skb
);
1480 #define RELAXED_IRD_NEGOTIATION 1
1483 * process_mpa_reply - process streaming mode MPA reply
1487 * 0 upon success indicating a connect request was delivered to the ULP
1488 * or the mpa request is incomplete but valid so far.
1490 * 1 if a failure requires the caller to close the connection.
1492 * 2 if a failure requires the caller to abort the connection.
1494 static int process_mpa_reply(struct c4iw_ep
*ep
, struct sk_buff
*skb
)
1496 struct mpa_message
*mpa
;
1497 struct mpa_v2_conn_params
*mpa_v2_params
;
1499 u16 resp_ird
, resp_ord
;
1500 u8 rtr_mismatch
= 0, insuff_ird
= 0;
1501 struct c4iw_qp_attributes attrs
;
1502 enum c4iw_qp_attr_mask mask
;
1506 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1509 * If we get more than the supported amount of private data
1510 * then we must fail this connection.
1512 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
)) {
1514 goto err_stop_timer
;
1518 * copy the new data into our accumulation buffer.
1520 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
1522 ep
->mpa_pkt_len
+= skb
->len
;
1525 * if we don't even have the mpa message, then bail.
1527 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
1529 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
1531 /* Validate MPA header. */
1532 if (mpa
->revision
> mpa_rev
) {
1533 printk(KERN_ERR MOD
"%s MPA version mismatch. Local = %d,"
1534 " Received = %d\n", __func__
, mpa_rev
, mpa
->revision
);
1536 goto err_stop_timer
;
1538 if (memcmp(mpa
->key
, MPA_KEY_REP
, sizeof(mpa
->key
))) {
1540 goto err_stop_timer
;
1543 plen
= ntohs(mpa
->private_data_size
);
1546 * Fail if there's too much private data.
1548 if (plen
> MPA_MAX_PRIVATE_DATA
) {
1550 goto err_stop_timer
;
1554 * If plen does not account for pkt size
1556 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
)) {
1558 goto err_stop_timer
;
1561 ep
->plen
= (u8
) plen
;
1564 * If we don't have all the pdata yet, then bail.
1565 * We'll continue process when more data arrives.
1567 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
1570 if (mpa
->flags
& MPA_REJECT
) {
1571 err
= -ECONNREFUSED
;
1572 goto err_stop_timer
;
1576 * Stop mpa timer. If it expired, then
1577 * we ignore the MPA reply. process_timeout()
1578 * will abort the connection.
1580 if (stop_ep_timer(ep
))
1584 * If we get here we have accumulated the entire mpa
1585 * start reply message including private data. And
1586 * the MPA header is valid.
1588 __state_set(&ep
->com
, FPDU_MODE
);
1589 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
1590 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
1591 ep
->mpa_attr
.version
= mpa
->revision
;
1592 ep
->mpa_attr
.p2p_type
= FW_RI_INIT_P2PTYPE_DISABLED
;
1594 if (mpa
->revision
== 2) {
1595 ep
->mpa_attr
.enhanced_rdma_conn
=
1596 mpa
->flags
& MPA_ENHANCED_RDMA_CONN
? 1 : 0;
1597 if (ep
->mpa_attr
.enhanced_rdma_conn
) {
1598 mpa_v2_params
= (struct mpa_v2_conn_params
*)
1599 (ep
->mpa_pkt
+ sizeof(*mpa
));
1600 resp_ird
= ntohs(mpa_v2_params
->ird
) &
1601 MPA_V2_IRD_ORD_MASK
;
1602 resp_ord
= ntohs(mpa_v2_params
->ord
) &
1603 MPA_V2_IRD_ORD_MASK
;
1604 PDBG("%s responder ird %u ord %u ep ird %u ord %u\n",
1605 __func__
, resp_ird
, resp_ord
, ep
->ird
, ep
->ord
);
1608 * This is a double-check. Ideally, below checks are
1609 * not required since ird/ord stuff has been taken
1610 * care of in c4iw_accept_cr
1612 if (ep
->ird
< resp_ord
) {
1613 if (RELAXED_IRD_NEGOTIATION
&& resp_ord
<=
1614 ep
->com
.dev
->rdev
.lldi
.max_ordird_qp
)
1618 } else if (ep
->ird
> resp_ord
) {
1621 if (ep
->ord
> resp_ird
) {
1622 if (RELAXED_IRD_NEGOTIATION
)
1633 if (ntohs(mpa_v2_params
->ird
) &
1634 MPA_V2_PEER2PEER_MODEL
) {
1635 if (ntohs(mpa_v2_params
->ord
) &
1636 MPA_V2_RDMA_WRITE_RTR
)
1637 ep
->mpa_attr
.p2p_type
=
1638 FW_RI_INIT_P2PTYPE_RDMA_WRITE
;
1639 else if (ntohs(mpa_v2_params
->ord
) &
1640 MPA_V2_RDMA_READ_RTR
)
1641 ep
->mpa_attr
.p2p_type
=
1642 FW_RI_INIT_P2PTYPE_READ_REQ
;
1645 } else if (mpa
->revision
== 1)
1647 ep
->mpa_attr
.p2p_type
= p2p_type
;
1649 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1650 "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
1651 "%d\n", __func__
, ep
->mpa_attr
.crc_enabled
,
1652 ep
->mpa_attr
.recv_marker_enabled
,
1653 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
,
1654 ep
->mpa_attr
.p2p_type
, p2p_type
);
1657 * If responder's RTR does not match with that of initiator, assign
1658 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1659 * generated when moving QP to RTS state.
1660 * A TERM message will be sent after QP has moved to RTS state
1662 if ((ep
->mpa_attr
.version
== 2) && peer2peer
&&
1663 (ep
->mpa_attr
.p2p_type
!= p2p_type
)) {
1664 ep
->mpa_attr
.p2p_type
= FW_RI_INIT_P2PTYPE_DISABLED
;
1668 attrs
.mpa_attr
= ep
->mpa_attr
;
1669 attrs
.max_ird
= ep
->ird
;
1670 attrs
.max_ord
= ep
->ord
;
1671 attrs
.llp_stream_handle
= ep
;
1672 attrs
.next_state
= C4IW_QP_STATE_RTS
;
1674 mask
= C4IW_QP_ATTR_NEXT_STATE
|
1675 C4IW_QP_ATTR_LLP_STREAM_HANDLE
| C4IW_QP_ATTR_MPA_ATTR
|
1676 C4IW_QP_ATTR_MAX_IRD
| C4IW_QP_ATTR_MAX_ORD
;
1678 /* bind QP and TID with INIT_WR */
1679 err
= c4iw_modify_qp(ep
->com
.qp
->rhp
,
1680 ep
->com
.qp
, mask
, &attrs
, 1);
1685 * If responder's RTR requirement did not match with what initiator
1686 * supports, generate TERM message
1689 printk(KERN_ERR
"%s: RTR mismatch, sending TERM\n", __func__
);
1690 attrs
.layer_etype
= LAYER_MPA
| DDP_LLP
;
1691 attrs
.ecode
= MPA_NOMATCH_RTR
;
1692 attrs
.next_state
= C4IW_QP_STATE_TERMINATE
;
1693 attrs
.send_term
= 1;
1694 err
= c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1695 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1702 * Generate TERM if initiator IRD is not sufficient for responder
1703 * provided ORD. Currently, we do the same behaviour even when
1704 * responder provided IRD is also not sufficient as regards to
1708 printk(KERN_ERR
"%s: Insufficient IRD, sending TERM\n",
1710 attrs
.layer_etype
= LAYER_MPA
| DDP_LLP
;
1711 attrs
.ecode
= MPA_INSUFF_IRD
;
1712 attrs
.next_state
= C4IW_QP_STATE_TERMINATE
;
1713 attrs
.send_term
= 1;
1714 err
= c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1715 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1726 connect_reply_upcall(ep
, err
);
1731 * process_mpa_request - process streaming mode MPA request
1735 * 0 upon success indicating a connect request was delivered to the ULP
1736 * or the mpa request is incomplete but valid so far.
1738 * 1 if a failure requires the caller to close the connection.
1740 * 2 if a failure requires the caller to abort the connection.
1742 static int process_mpa_request(struct c4iw_ep
*ep
, struct sk_buff
*skb
)
1744 struct mpa_message
*mpa
;
1745 struct mpa_v2_conn_params
*mpa_v2_params
;
1748 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1751 * If we get more than the supported amount of private data
1752 * then we must fail this connection.
1754 if (ep
->mpa_pkt_len
+ skb
->len
> sizeof(ep
->mpa_pkt
))
1755 goto err_stop_timer
;
1757 PDBG("%s enter (%s line %u)\n", __func__
, __FILE__
, __LINE__
);
1760 * Copy the new data into our accumulation buffer.
1762 skb_copy_from_linear_data(skb
, &(ep
->mpa_pkt
[ep
->mpa_pkt_len
]),
1764 ep
->mpa_pkt_len
+= skb
->len
;
1767 * If we don't even have the mpa message, then bail.
1768 * We'll continue process when more data arrives.
1770 if (ep
->mpa_pkt_len
< sizeof(*mpa
))
1773 PDBG("%s enter (%s line %u)\n", __func__
, __FILE__
, __LINE__
);
1774 mpa
= (struct mpa_message
*) ep
->mpa_pkt
;
1777 * Validate MPA Header.
1779 if (mpa
->revision
> mpa_rev
) {
1780 printk(KERN_ERR MOD
"%s MPA version mismatch. Local = %d,"
1781 " Received = %d\n", __func__
, mpa_rev
, mpa
->revision
);
1782 goto err_stop_timer
;
1785 if (memcmp(mpa
->key
, MPA_KEY_REQ
, sizeof(mpa
->key
)))
1786 goto err_stop_timer
;
1788 plen
= ntohs(mpa
->private_data_size
);
1791 * Fail if there's too much private data.
1793 if (plen
> MPA_MAX_PRIVATE_DATA
)
1794 goto err_stop_timer
;
1797 * If plen does not account for pkt size
1799 if (ep
->mpa_pkt_len
> (sizeof(*mpa
) + plen
))
1800 goto err_stop_timer
;
1801 ep
->plen
= (u8
) plen
;
1804 * If we don't have all the pdata yet, then bail.
1806 if (ep
->mpa_pkt_len
< (sizeof(*mpa
) + plen
))
1810 * If we get here we have accumulated the entire mpa
1811 * start reply message including private data.
1813 ep
->mpa_attr
.initiator
= 0;
1814 ep
->mpa_attr
.crc_enabled
= (mpa
->flags
& MPA_CRC
) | crc_enabled
? 1 : 0;
1815 ep
->mpa_attr
.recv_marker_enabled
= markers_enabled
;
1816 ep
->mpa_attr
.xmit_marker_enabled
= mpa
->flags
& MPA_MARKERS
? 1 : 0;
1817 ep
->mpa_attr
.version
= mpa
->revision
;
1818 if (mpa
->revision
== 1)
1819 ep
->tried_with_mpa_v1
= 1;
1820 ep
->mpa_attr
.p2p_type
= FW_RI_INIT_P2PTYPE_DISABLED
;
1822 if (mpa
->revision
== 2) {
1823 ep
->mpa_attr
.enhanced_rdma_conn
=
1824 mpa
->flags
& MPA_ENHANCED_RDMA_CONN
? 1 : 0;
1825 if (ep
->mpa_attr
.enhanced_rdma_conn
) {
1826 mpa_v2_params
= (struct mpa_v2_conn_params
*)
1827 (ep
->mpa_pkt
+ sizeof(*mpa
));
1828 ep
->ird
= ntohs(mpa_v2_params
->ird
) &
1829 MPA_V2_IRD_ORD_MASK
;
1830 ep
->ord
= ntohs(mpa_v2_params
->ord
) &
1831 MPA_V2_IRD_ORD_MASK
;
1832 PDBG("%s initiator ird %u ord %u\n", __func__
, ep
->ird
,
1834 if (ntohs(mpa_v2_params
->ird
) & MPA_V2_PEER2PEER_MODEL
)
1836 if (ntohs(mpa_v2_params
->ord
) &
1837 MPA_V2_RDMA_WRITE_RTR
)
1838 ep
->mpa_attr
.p2p_type
=
1839 FW_RI_INIT_P2PTYPE_RDMA_WRITE
;
1840 else if (ntohs(mpa_v2_params
->ord
) &
1841 MPA_V2_RDMA_READ_RTR
)
1842 ep
->mpa_attr
.p2p_type
=
1843 FW_RI_INIT_P2PTYPE_READ_REQ
;
1846 } else if (mpa
->revision
== 1)
1848 ep
->mpa_attr
.p2p_type
= p2p_type
;
1850 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1851 "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__
,
1852 ep
->mpa_attr
.crc_enabled
, ep
->mpa_attr
.recv_marker_enabled
,
1853 ep
->mpa_attr
.xmit_marker_enabled
, ep
->mpa_attr
.version
,
1854 ep
->mpa_attr
.p2p_type
);
1856 __state_set(&ep
->com
, MPA_REQ_RCVD
);
1859 mutex_lock_nested(&ep
->parent_ep
->com
.mutex
, SINGLE_DEPTH_NESTING
);
1860 if (ep
->parent_ep
->com
.state
!= DEAD
) {
1861 if (connect_request_upcall(ep
))
1862 goto err_unlock_parent
;
1864 goto err_unlock_parent
;
1866 mutex_unlock(&ep
->parent_ep
->com
.mutex
);
1870 mutex_unlock(&ep
->parent_ep
->com
.mutex
);
1873 (void)stop_ep_timer(ep
);
1878 static int rx_data(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
1881 struct cpl_rx_data
*hdr
= cplhdr(skb
);
1882 unsigned int dlen
= ntohs(hdr
->len
);
1883 unsigned int tid
= GET_TID(hdr
);
1884 __u8 status
= hdr
->status
;
1887 ep
= get_ep_from_tid(dev
, tid
);
1890 PDBG("%s ep %p tid %u dlen %u\n", __func__
, ep
, ep
->hwtid
, dlen
);
1891 skb_pull(skb
, sizeof(*hdr
));
1892 skb_trim(skb
, dlen
);
1893 mutex_lock(&ep
->com
.mutex
);
1895 /* update RX credits */
1896 update_rx_credits(ep
, dlen
);
1898 switch (ep
->com
.state
) {
1900 ep
->rcv_seq
+= dlen
;
1901 disconnect
= process_mpa_reply(ep
, skb
);
1904 ep
->rcv_seq
+= dlen
;
1905 disconnect
= process_mpa_request(ep
, skb
);
1908 struct c4iw_qp_attributes attrs
;
1909 BUG_ON(!ep
->com
.qp
);
1911 pr_err("%s Unexpected streaming data." \
1912 " qpid %u ep %p state %d tid %u status %d\n",
1913 __func__
, ep
->com
.qp
->wq
.sq
.qid
, ep
,
1914 ep
->com
.state
, ep
->hwtid
, status
);
1915 attrs
.next_state
= C4IW_QP_STATE_TERMINATE
;
1916 c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
1917 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
1924 mutex_unlock(&ep
->com
.mutex
);
1926 c4iw_ep_disconnect(ep
, disconnect
== 2, GFP_KERNEL
);
1927 c4iw_put_ep(&ep
->com
);
1931 static int abort_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
1934 struct cpl_abort_rpl_rss
*rpl
= cplhdr(skb
);
1936 unsigned int tid
= GET_TID(rpl
);
1938 ep
= get_ep_from_tid(dev
, tid
);
1940 printk(KERN_WARNING MOD
"Abort rpl to freed endpoint\n");
1943 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
1944 mutex_lock(&ep
->com
.mutex
);
1945 switch (ep
->com
.state
) {
1947 c4iw_wake_up(&ep
->com
.wr_wait
, -ECONNRESET
);
1948 __state_set(&ep
->com
, DEAD
);
1952 printk(KERN_ERR
"%s ep %p state %d\n",
1953 __func__
, ep
, ep
->com
.state
);
1956 mutex_unlock(&ep
->com
.mutex
);
1959 release_ep_resources(ep
);
1960 c4iw_put_ep(&ep
->com
);
1964 static int send_fw_act_open_req(struct c4iw_ep
*ep
, unsigned int atid
)
1966 struct sk_buff
*skb
;
1967 struct fw_ofld_connection_wr
*req
;
1968 unsigned int mtu_idx
;
1970 struct sockaddr_in
*sin
;
1973 skb
= get_skb(NULL
, sizeof(*req
), GFP_KERNEL
);
1974 req
= (struct fw_ofld_connection_wr
*)__skb_put(skb
, sizeof(*req
));
1975 memset(req
, 0, sizeof(*req
));
1976 req
->op_compl
= htonl(WR_OP_V(FW_OFLD_CONNECTION_WR
));
1977 req
->len16_pkd
= htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req
), 16)));
1978 req
->le
.filter
= cpu_to_be32(cxgb4_select_ntuple(
1979 ep
->com
.dev
->rdev
.lldi
.ports
[0],
1981 sin
= (struct sockaddr_in
*)&ep
->com
.local_addr
;
1982 req
->le
.lport
= sin
->sin_port
;
1983 req
->le
.u
.ipv4
.lip
= sin
->sin_addr
.s_addr
;
1984 sin
= (struct sockaddr_in
*)&ep
->com
.remote_addr
;
1985 req
->le
.pport
= sin
->sin_port
;
1986 req
->le
.u
.ipv4
.pip
= sin
->sin_addr
.s_addr
;
1987 req
->tcb
.t_state_to_astid
=
1988 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT
) |
1989 FW_OFLD_CONNECTION_WR_ASTID_V(atid
));
1990 req
->tcb
.cplrxdataack_cplpassacceptrpl
=
1991 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F
);
1992 req
->tcb
.tx_max
= (__force __be32
) jiffies
;
1993 req
->tcb
.rcv_adv
= htons(1);
1994 best_mtu(ep
->com
.dev
->rdev
.lldi
.mtus
, ep
->mtu
, &mtu_idx
,
1995 enable_tcp_timestamps
,
1996 (AF_INET
== ep
->com
.remote_addr
.ss_family
) ? 0 : 1);
1997 wscale
= compute_wscale(rcv_win
);
2000 * Specify the largest window that will fit in opt0. The
2001 * remainder will be specified in the rx_data_ack.
2003 win
= ep
->rcv_win
>> 10;
2004 if (win
> RCV_BUFSIZ_M
)
2007 req
->tcb
.opt0
= (__force __be64
) (TCAM_BYPASS_F
|
2008 (nocong
? NO_CONG_F
: 0) |
2011 WND_SCALE_V(wscale
) |
2012 MSS_IDX_V(mtu_idx
) |
2013 L2T_IDX_V(ep
->l2t
->idx
) |
2014 TX_CHAN_V(ep
->tx_chan
) |
2015 SMAC_SEL_V(ep
->smac_idx
) |
2016 DSCP_V(ep
->tos
>> 2) |
2017 ULP_MODE_V(ULP_MODE_TCPDDP
) |
2019 req
->tcb
.opt2
= (__force __be32
) (PACE_V(1) |
2020 TX_QUEUE_V(ep
->com
.dev
->rdev
.lldi
.tx_modq
[ep
->tx_chan
]) |
2022 CCTRL_ECN_V(enable_ecn
) |
2023 RSS_QUEUE_VALID_F
| RSS_QUEUE_V(ep
->rss_qid
));
2024 if (enable_tcp_timestamps
)
2025 req
->tcb
.opt2
|= (__force __be32
)TSTAMPS_EN_F
;
2026 if (enable_tcp_sack
)
2027 req
->tcb
.opt2
|= (__force __be32
)SACK_EN_F
;
2028 if (wscale
&& enable_tcp_window_scaling
)
2029 req
->tcb
.opt2
|= (__force __be32
)WND_SCALE_EN_F
;
2030 req
->tcb
.opt0
= cpu_to_be64((__force u64
)req
->tcb
.opt0
);
2031 req
->tcb
.opt2
= cpu_to_be32((__force u32
)req
->tcb
.opt2
);
2032 set_wr_txq(skb
, CPL_PRIORITY_CONTROL
, ep
->ctrlq_idx
);
2033 set_bit(ACT_OFLD_CONN
, &ep
->com
.history
);
2034 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
2038 * Some of the error codes above implicitly indicate that there is no TID
2039 * allocated with the result of an ACT_OPEN. We use this predicate to make
2042 static inline int act_open_has_tid(int status
)
2044 return (status
!= CPL_ERR_TCAM_PARITY
&&
2045 status
!= CPL_ERR_TCAM_MISS
&&
2046 status
!= CPL_ERR_TCAM_FULL
&&
2047 status
!= CPL_ERR_CONN_EXIST_SYNRECV
&&
2048 status
!= CPL_ERR_CONN_EXIST
);
2051 /* Returns whether a CPL status conveys negative advice.
2053 static int is_neg_adv(unsigned int status
)
2055 return status
== CPL_ERR_RTX_NEG_ADVICE
||
2056 status
== CPL_ERR_PERSIST_NEG_ADVICE
||
2057 status
== CPL_ERR_KEEPALV_NEG_ADVICE
;
2060 static char *neg_adv_str(unsigned int status
)
2063 case CPL_ERR_RTX_NEG_ADVICE
:
2064 return "Retransmit timeout";
2065 case CPL_ERR_PERSIST_NEG_ADVICE
:
2066 return "Persist timeout";
2067 case CPL_ERR_KEEPALV_NEG_ADVICE
:
2068 return "Keepalive timeout";
2074 static void set_tcp_window(struct c4iw_ep
*ep
, struct port_info
*pi
)
2076 ep
->snd_win
= snd_win
;
2077 ep
->rcv_win
= rcv_win
;
2078 PDBG("%s snd_win %d rcv_win %d\n", __func__
, ep
->snd_win
, ep
->rcv_win
);
2081 #define ACT_OPEN_RETRY_COUNT 2
2083 static int import_ep(struct c4iw_ep
*ep
, int iptype
, __u8
*peer_ip
,
2084 struct dst_entry
*dst
, struct c4iw_dev
*cdev
,
2085 bool clear_mpa_v1
, enum chip_type adapter_type
, u8 tos
)
2087 struct neighbour
*n
;
2089 struct net_device
*pdev
;
2091 n
= dst_neigh_lookup(dst
, peer_ip
);
2097 if (n
->dev
->flags
& IFF_LOOPBACK
) {
2099 pdev
= ip_dev_find(&init_net
, *(__be32
*)peer_ip
);
2100 else if (IS_ENABLED(CONFIG_IPV6
))
2101 for_each_netdev(&init_net
, pdev
) {
2102 if (ipv6_chk_addr(&init_net
,
2103 (struct in6_addr
*)peer_ip
,
2114 ep
->l2t
= cxgb4_l2t_get(cdev
->rdev
.lldi
.l2t
,
2115 n
, pdev
, rt_tos2priority(tos
));
2118 ep
->mtu
= pdev
->mtu
;
2119 ep
->tx_chan
= cxgb4_port_chan(pdev
);
2120 ep
->smac_idx
= cxgb4_tp_smt_idx(adapter_type
,
2121 cxgb4_port_viid(pdev
));
2122 step
= cdev
->rdev
.lldi
.ntxq
/
2123 cdev
->rdev
.lldi
.nchan
;
2124 ep
->txq_idx
= cxgb4_port_idx(pdev
) * step
;
2125 step
= cdev
->rdev
.lldi
.nrxq
/
2126 cdev
->rdev
.lldi
.nchan
;
2127 ep
->ctrlq_idx
= cxgb4_port_idx(pdev
);
2128 ep
->rss_qid
= cdev
->rdev
.lldi
.rxq_ids
[
2129 cxgb4_port_idx(pdev
) * step
];
2130 set_tcp_window(ep
, (struct port_info
*)netdev_priv(pdev
));
2133 pdev
= get_real_dev(n
->dev
);
2134 ep
->l2t
= cxgb4_l2t_get(cdev
->rdev
.lldi
.l2t
,
2138 ep
->mtu
= dst_mtu(dst
);
2139 ep
->tx_chan
= cxgb4_port_chan(pdev
);
2140 ep
->smac_idx
= cxgb4_tp_smt_idx(adapter_type
,
2141 cxgb4_port_viid(pdev
));
2142 step
= cdev
->rdev
.lldi
.ntxq
/
2143 cdev
->rdev
.lldi
.nchan
;
2144 ep
->txq_idx
= cxgb4_port_idx(pdev
) * step
;
2145 ep
->ctrlq_idx
= cxgb4_port_idx(pdev
);
2146 step
= cdev
->rdev
.lldi
.nrxq
/
2147 cdev
->rdev
.lldi
.nchan
;
2148 ep
->rss_qid
= cdev
->rdev
.lldi
.rxq_ids
[
2149 cxgb4_port_idx(pdev
) * step
];
2150 set_tcp_window(ep
, (struct port_info
*)netdev_priv(pdev
));
2153 ep
->retry_with_mpa_v1
= 0;
2154 ep
->tried_with_mpa_v1
= 0;
2166 static int c4iw_reconnect(struct c4iw_ep
*ep
)
2170 struct sockaddr_in
*laddr
= (struct sockaddr_in
*)
2171 &ep
->com
.cm_id
->m_local_addr
;
2172 struct sockaddr_in
*raddr
= (struct sockaddr_in
*)
2173 &ep
->com
.cm_id
->m_remote_addr
;
2174 struct sockaddr_in6
*laddr6
= (struct sockaddr_in6
*)
2175 &ep
->com
.cm_id
->m_local_addr
;
2176 struct sockaddr_in6
*raddr6
= (struct sockaddr_in6
*)
2177 &ep
->com
.cm_id
->m_remote_addr
;
2181 PDBG("%s qp %p cm_id %p\n", __func__
, ep
->com
.qp
, ep
->com
.cm_id
);
2182 init_timer(&ep
->timer
);
2183 c4iw_init_wr_wait(&ep
->com
.wr_wait
);
2185 /* When MPA revision is different on nodes, the node with MPA_rev=2
2186 * tries to reconnect with MPA_rev 1 for the same EP through
2187 * c4iw_reconnect(), where the same EP is assigned with new tid for
2188 * further connection establishment. As we are using the same EP pointer
2189 * for reconnect, few skbs are used during the previous c4iw_connect(),
2190 * which leaves the EP with inadequate skbs for further
2191 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty
2192 * skb_list() during peer_abort(). Allocate skbs which is already used.
2194 size
= (CN_MAX_CON_BUF
- skb_queue_len(&ep
->com
.ep_skb_list
));
2195 if (alloc_ep_skb_list(&ep
->com
.ep_skb_list
, size
)) {
2201 * Allocate an active TID to initiate a TCP connection.
2203 ep
->atid
= cxgb4_alloc_atid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
);
2204 if (ep
->atid
== -1) {
2205 pr_err("%s - cannot alloc atid.\n", __func__
);
2209 insert_handle(ep
->com
.dev
, &ep
->com
.dev
->atid_idr
, ep
, ep
->atid
);
2212 if (ep
->com
.cm_id
->m_local_addr
.ss_family
== AF_INET
) {
2213 ep
->dst
= find_route(ep
->com
.dev
, laddr
->sin_addr
.s_addr
,
2214 raddr
->sin_addr
.s_addr
, laddr
->sin_port
,
2215 raddr
->sin_port
, ep
->com
.cm_id
->tos
);
2217 ra
= (__u8
*)&raddr
->sin_addr
;
2219 ep
->dst
= find_route6(ep
->com
.dev
, laddr6
->sin6_addr
.s6_addr
,
2220 raddr6
->sin6_addr
.s6_addr
,
2221 laddr6
->sin6_port
, raddr6
->sin6_port
, 0,
2222 raddr6
->sin6_scope_id
);
2224 ra
= (__u8
*)&raddr6
->sin6_addr
;
2227 pr_err("%s - cannot find route.\n", __func__
);
2228 err
= -EHOSTUNREACH
;
2231 err
= import_ep(ep
, iptype
, ra
, ep
->dst
, ep
->com
.dev
, false,
2232 ep
->com
.dev
->rdev
.lldi
.adapter_type
,
2233 ep
->com
.cm_id
->tos
);
2235 pr_err("%s - cannot alloc l2e.\n", __func__
);
2239 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2240 __func__
, ep
->txq_idx
, ep
->tx_chan
, ep
->smac_idx
, ep
->rss_qid
,
2243 state_set(&ep
->com
, CONNECTING
);
2244 ep
->tos
= ep
->com
.cm_id
->tos
;
2246 /* send connect request to rnic */
2247 err
= send_connect(ep
);
2251 cxgb4_l2t_release(ep
->l2t
);
2253 dst_release(ep
->dst
);
2255 remove_handle(ep
->com
.dev
, &ep
->com
.dev
->atid_idr
, ep
->atid
);
2256 cxgb4_free_atid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
->atid
);
2259 * remember to send notification to upper layer.
2260 * We are in here so the upper layer is not aware that this is
2261 * re-connect attempt and so, upper layer is still waiting for
2262 * response of 1st connect request.
2264 connect_reply_upcall(ep
, -ECONNRESET
);
2266 c4iw_put_ep(&ep
->com
);
2271 static int act_open_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2274 struct cpl_act_open_rpl
*rpl
= cplhdr(skb
);
2275 unsigned int atid
= TID_TID_G(AOPEN_ATID_G(
2276 ntohl(rpl
->atid_status
)));
2277 struct tid_info
*t
= dev
->rdev
.lldi
.tids
;
2278 int status
= AOPEN_STATUS_G(ntohl(rpl
->atid_status
));
2279 struct sockaddr_in
*la
;
2280 struct sockaddr_in
*ra
;
2281 struct sockaddr_in6
*la6
;
2282 struct sockaddr_in6
*ra6
;
2285 ep
= lookup_atid(t
, atid
);
2286 la
= (struct sockaddr_in
*)&ep
->com
.local_addr
;
2287 ra
= (struct sockaddr_in
*)&ep
->com
.remote_addr
;
2288 la6
= (struct sockaddr_in6
*)&ep
->com
.local_addr
;
2289 ra6
= (struct sockaddr_in6
*)&ep
->com
.remote_addr
;
2291 PDBG("%s ep %p atid %u status %u errno %d\n", __func__
, ep
, atid
,
2292 status
, status2errno(status
));
2294 if (is_neg_adv(status
)) {
2295 PDBG("%s Connection problems for atid %u status %u (%s)\n",
2296 __func__
, atid
, status
, neg_adv_str(status
));
2297 ep
->stats
.connect_neg_adv
++;
2298 mutex_lock(&dev
->rdev
.stats
.lock
);
2299 dev
->rdev
.stats
.neg_adv
++;
2300 mutex_unlock(&dev
->rdev
.stats
.lock
);
2304 set_bit(ACT_OPEN_RPL
, &ep
->com
.history
);
2307 * Log interesting failures.
2310 case CPL_ERR_CONN_RESET
:
2311 case CPL_ERR_CONN_TIMEDOUT
:
2313 case CPL_ERR_TCAM_FULL
:
2314 mutex_lock(&dev
->rdev
.stats
.lock
);
2315 dev
->rdev
.stats
.tcam_full
++;
2316 mutex_unlock(&dev
->rdev
.stats
.lock
);
2317 if (ep
->com
.local_addr
.ss_family
== AF_INET
&&
2318 dev
->rdev
.lldi
.enable_fw_ofld_conn
) {
2319 ret
= send_fw_act_open_req(ep
, TID_TID_G(AOPEN_ATID_G(
2320 ntohl(rpl
->atid_status
))));
2326 case CPL_ERR_CONN_EXIST
:
2327 if (ep
->retry_count
++ < ACT_OPEN_RETRY_COUNT
) {
2328 set_bit(ACT_RETRY_INUSE
, &ep
->com
.history
);
2329 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
2330 struct sockaddr_in6
*sin6
=
2331 (struct sockaddr_in6
*)
2332 &ep
->com
.local_addr
;
2334 ep
->com
.dev
->rdev
.lldi
.ports
[0],
2336 &sin6
->sin6_addr
.s6_addr
, 1);
2338 remove_handle(ep
->com
.dev
, &ep
->com
.dev
->atid_idr
,
2340 cxgb4_free_atid(t
, atid
);
2341 dst_release(ep
->dst
);
2342 cxgb4_l2t_release(ep
->l2t
);
2348 if (ep
->com
.local_addr
.ss_family
== AF_INET
) {
2349 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2350 atid
, status
, status2errno(status
),
2351 &la
->sin_addr
.s_addr
, ntohs(la
->sin_port
),
2352 &ra
->sin_addr
.s_addr
, ntohs(ra
->sin_port
));
2354 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2355 atid
, status
, status2errno(status
),
2356 la6
->sin6_addr
.s6_addr
, ntohs(la6
->sin6_port
),
2357 ra6
->sin6_addr
.s6_addr
, ntohs(ra6
->sin6_port
));
2363 connect_reply_upcall(ep
, status2errno(status
));
2364 state_set(&ep
->com
, DEAD
);
2366 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
2367 struct sockaddr_in6
*sin6
=
2368 (struct sockaddr_in6
*)&ep
->com
.local_addr
;
2369 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
2370 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
2372 if (status
&& act_open_has_tid(status
))
2373 cxgb4_remove_tid(ep
->com
.dev
->rdev
.lldi
.tids
, 0, GET_TID(rpl
));
2375 remove_handle(ep
->com
.dev
, &ep
->com
.dev
->atid_idr
, atid
);
2376 cxgb4_free_atid(t
, atid
);
2377 dst_release(ep
->dst
);
2378 cxgb4_l2t_release(ep
->l2t
);
2379 c4iw_put_ep(&ep
->com
);
2384 static int pass_open_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2386 struct cpl_pass_open_rpl
*rpl
= cplhdr(skb
);
2387 unsigned int stid
= GET_TID(rpl
);
2388 struct c4iw_listen_ep
*ep
= get_ep_from_stid(dev
, stid
);
2391 PDBG("%s stid %d lookup failure!\n", __func__
, stid
);
2394 PDBG("%s ep %p status %d error %d\n", __func__
, ep
,
2395 rpl
->status
, status2errno(rpl
->status
));
2396 c4iw_wake_up(&ep
->com
.wr_wait
, status2errno(rpl
->status
));
2397 c4iw_put_ep(&ep
->com
);
2402 static int close_listsrv_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2404 struct cpl_close_listsvr_rpl
*rpl
= cplhdr(skb
);
2405 unsigned int stid
= GET_TID(rpl
);
2406 struct c4iw_listen_ep
*ep
= get_ep_from_stid(dev
, stid
);
2408 PDBG("%s ep %p\n", __func__
, ep
);
2409 c4iw_wake_up(&ep
->com
.wr_wait
, status2errno(rpl
->status
));
2410 c4iw_put_ep(&ep
->com
);
2414 static int accept_cr(struct c4iw_ep
*ep
, struct sk_buff
*skb
,
2415 struct cpl_pass_accept_req
*req
)
2417 struct cpl_pass_accept_rpl
*rpl
;
2418 unsigned int mtu_idx
;
2422 struct cpl_t5_pass_accept_rpl
*rpl5
= NULL
;
2424 enum chip_type adapter_type
= ep
->com
.dev
->rdev
.lldi
.adapter_type
;
2426 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
2427 BUG_ON(skb_cloned(skb
));
2431 if (!is_t4(adapter_type
)) {
2432 skb_trim(skb
, roundup(sizeof(*rpl5
), 16));
2434 INIT_TP_WR(rpl5
, ep
->hwtid
);
2436 skb_trim(skb
, sizeof(*rpl
));
2437 INIT_TP_WR(rpl
, ep
->hwtid
);
2439 OPCODE_TID(rpl
) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL
,
2442 best_mtu(ep
->com
.dev
->rdev
.lldi
.mtus
, ep
->mtu
, &mtu_idx
,
2443 enable_tcp_timestamps
&& req
->tcpopt
.tstamp
,
2444 (AF_INET
== ep
->com
.remote_addr
.ss_family
) ? 0 : 1);
2445 wscale
= compute_wscale(rcv_win
);
2448 * Specify the largest window that will fit in opt0. The
2449 * remainder will be specified in the rx_data_ack.
2451 win
= ep
->rcv_win
>> 10;
2452 if (win
> RCV_BUFSIZ_M
)
2454 opt0
= (nocong
? NO_CONG_F
: 0) |
2457 WND_SCALE_V(wscale
) |
2458 MSS_IDX_V(mtu_idx
) |
2459 L2T_IDX_V(ep
->l2t
->idx
) |
2460 TX_CHAN_V(ep
->tx_chan
) |
2461 SMAC_SEL_V(ep
->smac_idx
) |
2462 DSCP_V(ep
->tos
>> 2) |
2463 ULP_MODE_V(ULP_MODE_TCPDDP
) |
2465 opt2
= RX_CHANNEL_V(0) |
2466 RSS_QUEUE_VALID_F
| RSS_QUEUE_V(ep
->rss_qid
);
2468 if (enable_tcp_timestamps
&& req
->tcpopt
.tstamp
)
2469 opt2
|= TSTAMPS_EN_F
;
2470 if (enable_tcp_sack
&& req
->tcpopt
.sack
)
2472 if (wscale
&& enable_tcp_window_scaling
)
2473 opt2
|= WND_SCALE_EN_F
;
2475 const struct tcphdr
*tcph
;
2476 u32 hlen
= ntohl(req
->hdr_len
);
2478 if (CHELSIO_CHIP_VERSION(adapter_type
) <= CHELSIO_T5
)
2479 tcph
= (const void *)(req
+ 1) + ETH_HDR_LEN_G(hlen
) +
2482 tcph
= (const void *)(req
+ 1) +
2483 T6_ETH_HDR_LEN_G(hlen
) + T6_IP_HDR_LEN_G(hlen
);
2484 if (tcph
->ece
&& tcph
->cwr
)
2485 opt2
|= CCTRL_ECN_V(1);
2487 if (CHELSIO_CHIP_VERSION(adapter_type
) > CHELSIO_T4
) {
2488 u32 isn
= (prandom_u32() & ~7UL) - 1;
2489 opt2
|= T5_OPT_2_VALID_F
;
2490 opt2
|= CONG_CNTRL_V(CONG_ALG_TAHOE
);
2493 memset(&rpl5
->iss
, 0, roundup(sizeof(*rpl5
)-sizeof(*rpl
), 16));
2496 rpl5
->iss
= cpu_to_be32(isn
);
2497 PDBG("%s iss %u\n", __func__
, be32_to_cpu(rpl5
->iss
));
2500 rpl
->opt0
= cpu_to_be64(opt0
);
2501 rpl
->opt2
= cpu_to_be32(opt2
);
2502 set_wr_txq(skb
, CPL_PRIORITY_SETUP
, ep
->ctrlq_idx
);
2503 t4_set_arp_err_handler(skb
, ep
, pass_accept_rpl_arp_failure
);
2505 return c4iw_l2t_send(&ep
->com
.dev
->rdev
, skb
, ep
->l2t
);
2508 static void reject_cr(struct c4iw_dev
*dev
, u32 hwtid
, struct sk_buff
*skb
)
2510 PDBG("%s c4iw_dev %p tid %u\n", __func__
, dev
, hwtid
);
2511 BUG_ON(skb_cloned(skb
));
2512 skb_trim(skb
, sizeof(struct cpl_tid_release
));
2513 release_tid(&dev
->rdev
, hwtid
, skb
);
2517 static void get_4tuple(struct cpl_pass_accept_req
*req
, enum chip_type type
,
2518 int *iptype
, __u8
*local_ip
, __u8
*peer_ip
,
2519 __be16
*local_port
, __be16
*peer_port
)
2521 int eth_len
= (CHELSIO_CHIP_VERSION(type
) <= CHELSIO_T5
) ?
2522 ETH_HDR_LEN_G(be32_to_cpu(req
->hdr_len
)) :
2523 T6_ETH_HDR_LEN_G(be32_to_cpu(req
->hdr_len
));
2524 int ip_len
= (CHELSIO_CHIP_VERSION(type
) <= CHELSIO_T5
) ?
2525 IP_HDR_LEN_G(be32_to_cpu(req
->hdr_len
)) :
2526 T6_IP_HDR_LEN_G(be32_to_cpu(req
->hdr_len
));
2527 struct iphdr
*ip
= (struct iphdr
*)((u8
*)(req
+ 1) + eth_len
);
2528 struct ipv6hdr
*ip6
= (struct ipv6hdr
*)((u8
*)(req
+ 1) + eth_len
);
2529 struct tcphdr
*tcp
= (struct tcphdr
*)
2530 ((u8
*)(req
+ 1) + eth_len
+ ip_len
);
2532 if (ip
->version
== 4) {
2533 PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__
,
2534 ntohl(ip
->saddr
), ntohl(ip
->daddr
), ntohs(tcp
->source
),
2537 memcpy(peer_ip
, &ip
->saddr
, 4);
2538 memcpy(local_ip
, &ip
->daddr
, 4);
2540 PDBG("%s saddr %pI6 daddr %pI6 sport %u dport %u\n", __func__
,
2541 ip6
->saddr
.s6_addr
, ip6
->daddr
.s6_addr
, ntohs(tcp
->source
),
2544 memcpy(peer_ip
, ip6
->saddr
.s6_addr
, 16);
2545 memcpy(local_ip
, ip6
->daddr
.s6_addr
, 16);
2547 *peer_port
= tcp
->source
;
2548 *local_port
= tcp
->dest
;
2553 static int pass_accept_req(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2555 struct c4iw_ep
*child_ep
= NULL
, *parent_ep
;
2556 struct cpl_pass_accept_req
*req
= cplhdr(skb
);
2557 unsigned int stid
= PASS_OPEN_TID_G(ntohl(req
->tos_stid
));
2558 struct tid_info
*t
= dev
->rdev
.lldi
.tids
;
2559 unsigned int hwtid
= GET_TID(req
);
2560 struct dst_entry
*dst
;
2561 __u8 local_ip
[16], peer_ip
[16];
2562 __be16 local_port
, peer_port
;
2563 struct sockaddr_in6
*sin6
;
2565 u16 peer_mss
= ntohs(req
->tcpopt
.mss
);
2567 unsigned short hdrs
;
2568 u8 tos
= PASS_OPEN_TOS_G(ntohl(req
->tos_stid
));
2570 parent_ep
= (struct c4iw_ep
*)get_ep_from_stid(dev
, stid
);
2572 PDBG("%s connect request on invalid stid %d\n", __func__
, stid
);
2576 if (state_read(&parent_ep
->com
) != LISTEN
) {
2577 PDBG("%s - listening ep not in LISTEN\n", __func__
);
2581 get_4tuple(req
, parent_ep
->com
.dev
->rdev
.lldi
.adapter_type
, &iptype
,
2582 local_ip
, peer_ip
, &local_port
, &peer_port
);
2584 /* Find output route */
2586 PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2587 , __func__
, parent_ep
, hwtid
,
2588 local_ip
, peer_ip
, ntohs(local_port
),
2589 ntohs(peer_port
), peer_mss
);
2590 dst
= find_route(dev
, *(__be32
*)local_ip
, *(__be32
*)peer_ip
,
2591 local_port
, peer_port
,
2594 PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2595 , __func__
, parent_ep
, hwtid
,
2596 local_ip
, peer_ip
, ntohs(local_port
),
2597 ntohs(peer_port
), peer_mss
);
2598 dst
= find_route6(dev
, local_ip
, peer_ip
, local_port
, peer_port
,
2599 PASS_OPEN_TOS_G(ntohl(req
->tos_stid
)),
2600 ((struct sockaddr_in6
*)
2601 &parent_ep
->com
.local_addr
)->sin6_scope_id
);
2604 printk(KERN_ERR MOD
"%s - failed to find dst entry!\n",
2609 child_ep
= alloc_ep(sizeof(*child_ep
), GFP_KERNEL
);
2611 printk(KERN_ERR MOD
"%s - failed to allocate ep entry!\n",
2617 err
= import_ep(child_ep
, iptype
, peer_ip
, dst
, dev
, false,
2618 parent_ep
->com
.dev
->rdev
.lldi
.adapter_type
, tos
);
2620 printk(KERN_ERR MOD
"%s - failed to allocate l2t entry!\n",
2627 hdrs
= sizeof(struct iphdr
) + sizeof(struct tcphdr
) +
2628 ((enable_tcp_timestamps
&& req
->tcpopt
.tstamp
) ? 12 : 0);
2629 if (peer_mss
&& child_ep
->mtu
> (peer_mss
+ hdrs
))
2630 child_ep
->mtu
= peer_mss
+ hdrs
;
2632 skb_queue_head_init(&child_ep
->com
.ep_skb_list
);
2633 if (alloc_ep_skb_list(&child_ep
->com
.ep_skb_list
, CN_MAX_CON_BUF
))
2636 state_set(&child_ep
->com
, CONNECTING
);
2637 child_ep
->com
.dev
= dev
;
2638 child_ep
->com
.cm_id
= NULL
;
2641 struct sockaddr_in
*sin
= (struct sockaddr_in
*)
2642 &child_ep
->com
.local_addr
;
2644 sin
->sin_family
= PF_INET
;
2645 sin
->sin_port
= local_port
;
2646 sin
->sin_addr
.s_addr
= *(__be32
*)local_ip
;
2648 sin
= (struct sockaddr_in
*)&child_ep
->com
.local_addr
;
2649 sin
->sin_family
= PF_INET
;
2650 sin
->sin_port
= ((struct sockaddr_in
*)
2651 &parent_ep
->com
.local_addr
)->sin_port
;
2652 sin
->sin_addr
.s_addr
= *(__be32
*)local_ip
;
2654 sin
= (struct sockaddr_in
*)&child_ep
->com
.remote_addr
;
2655 sin
->sin_family
= PF_INET
;
2656 sin
->sin_port
= peer_port
;
2657 sin
->sin_addr
.s_addr
= *(__be32
*)peer_ip
;
2659 sin6
= (struct sockaddr_in6
*)&child_ep
->com
.local_addr
;
2660 sin6
->sin6_family
= PF_INET6
;
2661 sin6
->sin6_port
= local_port
;
2662 memcpy(sin6
->sin6_addr
.s6_addr
, local_ip
, 16);
2664 sin6
= (struct sockaddr_in6
*)&child_ep
->com
.local_addr
;
2665 sin6
->sin6_family
= PF_INET6
;
2666 sin6
->sin6_port
= ((struct sockaddr_in6
*)
2667 &parent_ep
->com
.local_addr
)->sin6_port
;
2668 memcpy(sin6
->sin6_addr
.s6_addr
, local_ip
, 16);
2670 sin6
= (struct sockaddr_in6
*)&child_ep
->com
.remote_addr
;
2671 sin6
->sin6_family
= PF_INET6
;
2672 sin6
->sin6_port
= peer_port
;
2673 memcpy(sin6
->sin6_addr
.s6_addr
, peer_ip
, 16);
2676 c4iw_get_ep(&parent_ep
->com
);
2677 child_ep
->parent_ep
= parent_ep
;
2678 child_ep
->tos
= tos
;
2679 child_ep
->dst
= dst
;
2680 child_ep
->hwtid
= hwtid
;
2682 PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__
,
2683 child_ep
->tx_chan
, child_ep
->smac_idx
, child_ep
->rss_qid
);
2685 init_timer(&child_ep
->timer
);
2686 cxgb4_insert_tid(t
, child_ep
, hwtid
);
2687 insert_ep_tid(child_ep
);
2688 if (accept_cr(child_ep
, skb
, req
)) {
2689 c4iw_put_ep(&parent_ep
->com
);
2690 release_ep_resources(child_ep
);
2692 set_bit(PASS_ACCEPT_REQ
, &child_ep
->com
.history
);
2695 sin6
= (struct sockaddr_in6
*)&child_ep
->com
.local_addr
;
2696 cxgb4_clip_get(child_ep
->com
.dev
->rdev
.lldi
.ports
[0],
2697 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
2701 c4iw_put_ep(&child_ep
->com
);
2703 reject_cr(dev
, hwtid
, skb
);
2705 c4iw_put_ep(&parent_ep
->com
);
2710 static int pass_establish(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2713 struct cpl_pass_establish
*req
= cplhdr(skb
);
2714 unsigned int tid
= GET_TID(req
);
2717 ep
= get_ep_from_tid(dev
, tid
);
2718 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
2719 ep
->snd_seq
= be32_to_cpu(req
->snd_isn
);
2720 ep
->rcv_seq
= be32_to_cpu(req
->rcv_isn
);
2722 PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__
, ep
, tid
,
2723 ntohs(req
->tcp_opt
));
2725 set_emss(ep
, ntohs(req
->tcp_opt
));
2727 dst_confirm(ep
->dst
);
2728 mutex_lock(&ep
->com
.mutex
);
2729 ep
->com
.state
= MPA_REQ_WAIT
;
2731 set_bit(PASS_ESTAB
, &ep
->com
.history
);
2732 ret
= send_flowc(ep
);
2733 mutex_unlock(&ep
->com
.mutex
);
2735 c4iw_ep_disconnect(ep
, 1, GFP_KERNEL
);
2736 c4iw_put_ep(&ep
->com
);
2741 static int peer_close(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2743 struct cpl_peer_close
*hdr
= cplhdr(skb
);
2745 struct c4iw_qp_attributes attrs
;
2748 unsigned int tid
= GET_TID(hdr
);
2751 ep
= get_ep_from_tid(dev
, tid
);
2755 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
2756 dst_confirm(ep
->dst
);
2758 set_bit(PEER_CLOSE
, &ep
->com
.history
);
2759 mutex_lock(&ep
->com
.mutex
);
2760 switch (ep
->com
.state
) {
2762 __state_set(&ep
->com
, CLOSING
);
2765 __state_set(&ep
->com
, CLOSING
);
2766 connect_reply_upcall(ep
, -ECONNRESET
);
2771 * We're gonna mark this puppy DEAD, but keep
2772 * the reference on it until the ULP accepts or
2773 * rejects the CR. Also wake up anyone waiting
2774 * in rdma connection migration (see c4iw_accept_cr()).
2776 __state_set(&ep
->com
, CLOSING
);
2777 PDBG("waking up ep %p tid %u\n", ep
, ep
->hwtid
);
2778 c4iw_wake_up(&ep
->com
.wr_wait
, -ECONNRESET
);
2781 __state_set(&ep
->com
, CLOSING
);
2782 PDBG("waking up ep %p tid %u\n", ep
, ep
->hwtid
);
2783 c4iw_wake_up(&ep
->com
.wr_wait
, -ECONNRESET
);
2787 __state_set(&ep
->com
, CLOSING
);
2788 attrs
.next_state
= C4IW_QP_STATE_CLOSING
;
2789 ret
= c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
2790 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
2791 if (ret
!= -ECONNRESET
) {
2792 peer_close_upcall(ep
);
2800 __state_set(&ep
->com
, MORIBUND
);
2804 (void)stop_ep_timer(ep
);
2805 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
2806 attrs
.next_state
= C4IW_QP_STATE_IDLE
;
2807 c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
2808 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
2810 close_complete_upcall(ep
, 0);
2811 __state_set(&ep
->com
, DEAD
);
2821 mutex_unlock(&ep
->com
.mutex
);
2823 c4iw_ep_disconnect(ep
, 0, GFP_KERNEL
);
2825 release_ep_resources(ep
);
2826 c4iw_put_ep(&ep
->com
);
2830 static int peer_abort(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2832 struct cpl_abort_req_rss
*req
= cplhdr(skb
);
2834 struct cpl_abort_rpl
*rpl
;
2835 struct sk_buff
*rpl_skb
;
2836 struct c4iw_qp_attributes attrs
;
2839 unsigned int tid
= GET_TID(req
);
2841 ep
= get_ep_from_tid(dev
, tid
);
2845 if (is_neg_adv(req
->status
)) {
2846 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
2847 __func__
, ep
->hwtid
, req
->status
,
2848 neg_adv_str(req
->status
));
2849 ep
->stats
.abort_neg_adv
++;
2850 mutex_lock(&dev
->rdev
.stats
.lock
);
2851 dev
->rdev
.stats
.neg_adv
++;
2852 mutex_unlock(&dev
->rdev
.stats
.lock
);
2855 PDBG("%s ep %p tid %u state %u\n", __func__
, ep
, ep
->hwtid
,
2857 set_bit(PEER_ABORT
, &ep
->com
.history
);
2860 * Wake up any threads in rdma_init() or rdma_fini().
2861 * However, this is not needed if com state is just
2864 if (ep
->com
.state
!= MPA_REQ_SENT
)
2865 c4iw_wake_up(&ep
->com
.wr_wait
, -ECONNRESET
);
2867 mutex_lock(&ep
->com
.mutex
);
2868 switch (ep
->com
.state
) {
2870 c4iw_put_ep(&ep
->parent_ep
->com
);
2873 (void)stop_ep_timer(ep
);
2876 (void)stop_ep_timer(ep
);
2877 if (mpa_rev
== 1 || (mpa_rev
== 2 && ep
->tried_with_mpa_v1
))
2878 connect_reply_upcall(ep
, -ECONNRESET
);
2881 * we just don't send notification upwards because we
2882 * want to retry with mpa_v1 without upper layers even
2885 * do some housekeeping so as to re-initiate the
2888 PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__
,
2890 ep
->retry_with_mpa_v1
= 1;
2902 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
2903 attrs
.next_state
= C4IW_QP_STATE_ERROR
;
2904 ret
= c4iw_modify_qp(ep
->com
.qp
->rhp
,
2905 ep
->com
.qp
, C4IW_QP_ATTR_NEXT_STATE
,
2909 "%s - qp <- error failed!\n",
2912 peer_abort_upcall(ep
);
2917 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__
);
2918 mutex_unlock(&ep
->com
.mutex
);
2924 dst_confirm(ep
->dst
);
2925 if (ep
->com
.state
!= ABORTING
) {
2926 __state_set(&ep
->com
, DEAD
);
2927 /* we don't release if we want to retry with mpa_v1 */
2928 if (!ep
->retry_with_mpa_v1
)
2931 mutex_unlock(&ep
->com
.mutex
);
2933 rpl_skb
= skb_dequeue(&ep
->com
.ep_skb_list
);
2934 if (WARN_ON(!rpl_skb
)) {
2938 set_wr_txq(skb
, CPL_PRIORITY_DATA
, ep
->txq_idx
);
2939 rpl
= (struct cpl_abort_rpl
*) skb_put(rpl_skb
, sizeof(*rpl
));
2940 INIT_TP_WR(rpl
, ep
->hwtid
);
2941 OPCODE_TID(rpl
) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL
, ep
->hwtid
));
2942 rpl
->cmd
= CPL_ABORT_NO_RST
;
2943 c4iw_ofld_send(&ep
->com
.dev
->rdev
, rpl_skb
);
2946 release_ep_resources(ep
);
2947 else if (ep
->retry_with_mpa_v1
) {
2948 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
2949 struct sockaddr_in6
*sin6
=
2950 (struct sockaddr_in6
*)
2951 &ep
->com
.local_addr
;
2953 ep
->com
.dev
->rdev
.lldi
.ports
[0],
2954 (const u32
*)&sin6
->sin6_addr
.s6_addr
,
2957 remove_handle(ep
->com
.dev
, &ep
->com
.dev
->hwtid_idr
, ep
->hwtid
);
2958 cxgb4_remove_tid(ep
->com
.dev
->rdev
.lldi
.tids
, 0, ep
->hwtid
);
2959 dst_release(ep
->dst
);
2960 cxgb4_l2t_release(ep
->l2t
);
2965 c4iw_put_ep(&ep
->com
);
2966 /* Dereferencing ep, referenced in peer_abort_intr() */
2967 c4iw_put_ep(&ep
->com
);
2971 static int close_con_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
2974 struct c4iw_qp_attributes attrs
;
2975 struct cpl_close_con_rpl
*rpl
= cplhdr(skb
);
2977 unsigned int tid
= GET_TID(rpl
);
2979 ep
= get_ep_from_tid(dev
, tid
);
2983 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
2986 /* The cm_id may be null if we failed to connect */
2987 mutex_lock(&ep
->com
.mutex
);
2988 set_bit(CLOSE_CON_RPL
, &ep
->com
.history
);
2989 switch (ep
->com
.state
) {
2991 __state_set(&ep
->com
, MORIBUND
);
2994 (void)stop_ep_timer(ep
);
2995 if ((ep
->com
.cm_id
) && (ep
->com
.qp
)) {
2996 attrs
.next_state
= C4IW_QP_STATE_IDLE
;
2997 c4iw_modify_qp(ep
->com
.qp
->rhp
,
2999 C4IW_QP_ATTR_NEXT_STATE
,
3002 close_complete_upcall(ep
, 0);
3003 __state_set(&ep
->com
, DEAD
);
3013 mutex_unlock(&ep
->com
.mutex
);
3015 release_ep_resources(ep
);
3016 c4iw_put_ep(&ep
->com
);
3020 static int terminate(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
3022 struct cpl_rdma_terminate
*rpl
= cplhdr(skb
);
3023 unsigned int tid
= GET_TID(rpl
);
3025 struct c4iw_qp_attributes attrs
;
3027 ep
= get_ep_from_tid(dev
, tid
);
3030 if (ep
&& ep
->com
.qp
) {
3031 printk(KERN_WARNING MOD
"TERM received tid %u qpid %u\n", tid
,
3032 ep
->com
.qp
->wq
.sq
.qid
);
3033 attrs
.next_state
= C4IW_QP_STATE_TERMINATE
;
3034 c4iw_modify_qp(ep
->com
.qp
->rhp
, ep
->com
.qp
,
3035 C4IW_QP_ATTR_NEXT_STATE
, &attrs
, 1);
3037 printk(KERN_WARNING MOD
"TERM received tid %u no ep/qp\n", tid
);
3038 c4iw_put_ep(&ep
->com
);
3044 * Upcall from the adapter indicating data has been transmitted.
3045 * For us its just the single MPA request or reply. We can now free
3046 * the skb holding the mpa message.
3048 static int fw4_ack(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
3051 struct cpl_fw4_ack
*hdr
= cplhdr(skb
);
3052 u8 credits
= hdr
->credits
;
3053 unsigned int tid
= GET_TID(hdr
);
3056 ep
= get_ep_from_tid(dev
, tid
);
3059 PDBG("%s ep %p tid %u credits %u\n", __func__
, ep
, ep
->hwtid
, credits
);
3061 PDBG("%s 0 credit ack ep %p tid %u state %u\n",
3062 __func__
, ep
, ep
->hwtid
, state_read(&ep
->com
));
3066 dst_confirm(ep
->dst
);
3068 PDBG("%s last streaming msg ack ep %p tid %u state %u "
3069 "initiator %u freeing skb\n", __func__
, ep
, ep
->hwtid
,
3070 state_read(&ep
->com
), ep
->mpa_attr
.initiator
? 1 : 0);
3071 mutex_lock(&ep
->com
.mutex
);
3072 kfree_skb(ep
->mpa_skb
);
3074 if (test_bit(STOP_MPA_TIMER
, &ep
->com
.flags
))
3076 mutex_unlock(&ep
->com
.mutex
);
3079 c4iw_put_ep(&ep
->com
);
3083 int c4iw_reject_cr(struct iw_cm_id
*cm_id
, const void *pdata
, u8 pdata_len
)
3086 struct c4iw_ep
*ep
= to_ep(cm_id
);
3088 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
3090 mutex_lock(&ep
->com
.mutex
);
3091 if (ep
->com
.state
!= MPA_REQ_RCVD
) {
3092 mutex_unlock(&ep
->com
.mutex
);
3093 c4iw_put_ep(&ep
->com
);
3096 set_bit(ULP_REJECT
, &ep
->com
.history
);
3100 abort
= send_mpa_reject(ep
, pdata
, pdata_len
);
3101 mutex_unlock(&ep
->com
.mutex
);
3104 c4iw_ep_disconnect(ep
, abort
!= 0, GFP_KERNEL
);
3105 c4iw_put_ep(&ep
->com
);
3109 int c4iw_accept_cr(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
3112 struct c4iw_qp_attributes attrs
;
3113 enum c4iw_qp_attr_mask mask
;
3114 struct c4iw_ep
*ep
= to_ep(cm_id
);
3115 struct c4iw_dev
*h
= to_c4iw_dev(cm_id
->device
);
3116 struct c4iw_qp
*qp
= get_qhp(h
, conn_param
->qpn
);
3119 PDBG("%s ep %p tid %u\n", __func__
, ep
, ep
->hwtid
);
3121 mutex_lock(&ep
->com
.mutex
);
3122 if (ep
->com
.state
!= MPA_REQ_RCVD
) {
3129 set_bit(ULP_ACCEPT
, &ep
->com
.history
);
3130 if ((conn_param
->ord
> cur_max_read_depth(ep
->com
.dev
)) ||
3131 (conn_param
->ird
> cur_max_read_depth(ep
->com
.dev
))) {
3136 if (ep
->mpa_attr
.version
== 2 && ep
->mpa_attr
.enhanced_rdma_conn
) {
3137 if (conn_param
->ord
> ep
->ird
) {
3138 if (RELAXED_IRD_NEGOTIATION
) {
3141 ep
->ird
= conn_param
->ird
;
3142 ep
->ord
= conn_param
->ord
;
3143 send_mpa_reject(ep
, conn_param
->private_data
,
3144 conn_param
->private_data_len
);
3149 if (conn_param
->ird
< ep
->ord
) {
3150 if (RELAXED_IRD_NEGOTIATION
&&
3151 ep
->ord
<= h
->rdev
.lldi
.max_ordird_qp
) {
3152 conn_param
->ird
= ep
->ord
;
3159 ep
->ird
= conn_param
->ird
;
3160 ep
->ord
= conn_param
->ord
;
3162 if (ep
->mpa_attr
.version
== 1) {
3163 if (peer2peer
&& ep
->ird
== 0)
3167 (ep
->mpa_attr
.p2p_type
!= FW_RI_INIT_P2PTYPE_DISABLED
) &&
3168 (p2p_type
== FW_RI_INIT_P2PTYPE_READ_REQ
) && ep
->ird
== 0)
3172 PDBG("%s %d ird %d ord %d\n", __func__
, __LINE__
, ep
->ird
, ep
->ord
);
3174 ep
->com
.cm_id
= cm_id
;
3175 ref_cm_id(&ep
->com
);
3179 /* bind QP to EP and move to RTS */
3180 attrs
.mpa_attr
= ep
->mpa_attr
;
3181 attrs
.max_ird
= ep
->ird
;
3182 attrs
.max_ord
= ep
->ord
;
3183 attrs
.llp_stream_handle
= ep
;
3184 attrs
.next_state
= C4IW_QP_STATE_RTS
;
3186 /* bind QP and TID with INIT_WR */
3187 mask
= C4IW_QP_ATTR_NEXT_STATE
|
3188 C4IW_QP_ATTR_LLP_STREAM_HANDLE
|
3189 C4IW_QP_ATTR_MPA_ATTR
|
3190 C4IW_QP_ATTR_MAX_IRD
|
3191 C4IW_QP_ATTR_MAX_ORD
;
3193 err
= c4iw_modify_qp(ep
->com
.qp
->rhp
,
3194 ep
->com
.qp
, mask
, &attrs
, 1);
3196 goto err_deref_cm_id
;
3198 set_bit(STOP_MPA_TIMER
, &ep
->com
.flags
);
3199 err
= send_mpa_reply(ep
, conn_param
->private_data
,
3200 conn_param
->private_data_len
);
3202 goto err_deref_cm_id
;
3204 __state_set(&ep
->com
, FPDU_MODE
);
3205 established_upcall(ep
);
3206 mutex_unlock(&ep
->com
.mutex
);
3207 c4iw_put_ep(&ep
->com
);
3210 deref_cm_id(&ep
->com
);
3214 mutex_unlock(&ep
->com
.mutex
);
3216 c4iw_ep_disconnect(ep
, 1, GFP_KERNEL
);
3217 c4iw_put_ep(&ep
->com
);
3221 static int pick_local_ipaddrs(struct c4iw_dev
*dev
, struct iw_cm_id
*cm_id
)
3223 struct in_device
*ind
;
3225 struct sockaddr_in
*laddr
= (struct sockaddr_in
*)&cm_id
->m_local_addr
;
3226 struct sockaddr_in
*raddr
= (struct sockaddr_in
*)&cm_id
->m_remote_addr
;
3228 ind
= in_dev_get(dev
->rdev
.lldi
.ports
[0]);
3230 return -EADDRNOTAVAIL
;
3231 for_primary_ifa(ind
) {
3232 laddr
->sin_addr
.s_addr
= ifa
->ifa_address
;
3233 raddr
->sin_addr
.s_addr
= ifa
->ifa_address
;
3239 return found
? 0 : -EADDRNOTAVAIL
;
3242 static int get_lladdr(struct net_device
*dev
, struct in6_addr
*addr
,
3243 unsigned char banned_flags
)
3245 struct inet6_dev
*idev
;
3246 int err
= -EADDRNOTAVAIL
;
3249 idev
= __in6_dev_get(dev
);
3251 struct inet6_ifaddr
*ifp
;
3253 read_lock_bh(&idev
->lock
);
3254 list_for_each_entry(ifp
, &idev
->addr_list
, if_list
) {
3255 if (ifp
->scope
== IFA_LINK
&&
3256 !(ifp
->flags
& banned_flags
)) {
3257 memcpy(addr
, &ifp
->addr
, 16);
3262 read_unlock_bh(&idev
->lock
);
3268 static int pick_local_ip6addrs(struct c4iw_dev
*dev
, struct iw_cm_id
*cm_id
)
3270 struct in6_addr
uninitialized_var(addr
);
3271 struct sockaddr_in6
*la6
= (struct sockaddr_in6
*)&cm_id
->m_local_addr
;
3272 struct sockaddr_in6
*ra6
= (struct sockaddr_in6
*)&cm_id
->m_remote_addr
;
3274 if (!get_lladdr(dev
->rdev
.lldi
.ports
[0], &addr
, IFA_F_TENTATIVE
)) {
3275 memcpy(la6
->sin6_addr
.s6_addr
, &addr
, 16);
3276 memcpy(ra6
->sin6_addr
.s6_addr
, &addr
, 16);
3279 return -EADDRNOTAVAIL
;
3282 int c4iw_connect(struct iw_cm_id
*cm_id
, struct iw_cm_conn_param
*conn_param
)
3284 struct c4iw_dev
*dev
= to_c4iw_dev(cm_id
->device
);
3287 struct sockaddr_in
*laddr
;
3288 struct sockaddr_in
*raddr
;
3289 struct sockaddr_in6
*laddr6
;
3290 struct sockaddr_in6
*raddr6
;
3294 if ((conn_param
->ord
> cur_max_read_depth(dev
)) ||
3295 (conn_param
->ird
> cur_max_read_depth(dev
))) {
3299 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
3301 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __func__
);
3306 skb_queue_head_init(&ep
->com
.ep_skb_list
);
3307 if (alloc_ep_skb_list(&ep
->com
.ep_skb_list
, CN_MAX_CON_BUF
)) {
3312 init_timer(&ep
->timer
);
3313 ep
->plen
= conn_param
->private_data_len
;
3315 memcpy(ep
->mpa_pkt
+ sizeof(struct mpa_message
),
3316 conn_param
->private_data
, ep
->plen
);
3317 ep
->ird
= conn_param
->ird
;
3318 ep
->ord
= conn_param
->ord
;
3320 if (peer2peer
&& ep
->ord
== 0)
3323 ep
->com
.cm_id
= cm_id
;
3324 ref_cm_id(&ep
->com
);
3326 ep
->com
.qp
= get_qhp(dev
, conn_param
->qpn
);
3328 PDBG("%s qpn 0x%x not found!\n", __func__
, conn_param
->qpn
);
3333 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__
, conn_param
->qpn
,
3337 * Allocate an active TID to initiate a TCP connection.
3339 ep
->atid
= cxgb4_alloc_atid(dev
->rdev
.lldi
.tids
, ep
);
3340 if (ep
->atid
== -1) {
3341 printk(KERN_ERR MOD
"%s - cannot alloc atid.\n", __func__
);
3345 insert_handle(dev
, &dev
->atid_idr
, ep
, ep
->atid
);
3347 memcpy(&ep
->com
.local_addr
, &cm_id
->m_local_addr
,
3348 sizeof(ep
->com
.local_addr
));
3349 memcpy(&ep
->com
.remote_addr
, &cm_id
->m_remote_addr
,
3350 sizeof(ep
->com
.remote_addr
));
3352 laddr
= (struct sockaddr_in
*)&ep
->com
.local_addr
;
3353 raddr
= (struct sockaddr_in
*)&ep
->com
.remote_addr
;
3354 laddr6
= (struct sockaddr_in6
*)&ep
->com
.local_addr
;
3355 raddr6
= (struct sockaddr_in6
*) &ep
->com
.remote_addr
;
3357 if (cm_id
->m_remote_addr
.ss_family
== AF_INET
) {
3359 ra
= (__u8
*)&raddr
->sin_addr
;
3362 * Handle loopback requests to INADDR_ANY.
3364 if (raddr
->sin_addr
.s_addr
== htonl(INADDR_ANY
)) {
3365 err
= pick_local_ipaddrs(dev
, cm_id
);
3371 PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3372 __func__
, &laddr
->sin_addr
, ntohs(laddr
->sin_port
),
3373 ra
, ntohs(raddr
->sin_port
));
3374 ep
->dst
= find_route(dev
, laddr
->sin_addr
.s_addr
,
3375 raddr
->sin_addr
.s_addr
, laddr
->sin_port
,
3376 raddr
->sin_port
, cm_id
->tos
);
3379 ra
= (__u8
*)&raddr6
->sin6_addr
;
3382 * Handle loopback requests to INADDR_ANY.
3384 if (ipv6_addr_type(&raddr6
->sin6_addr
) == IPV6_ADDR_ANY
) {
3385 err
= pick_local_ip6addrs(dev
, cm_id
);
3391 PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3392 __func__
, laddr6
->sin6_addr
.s6_addr
,
3393 ntohs(laddr6
->sin6_port
),
3394 raddr6
->sin6_addr
.s6_addr
, ntohs(raddr6
->sin6_port
));
3395 ep
->dst
= find_route6(dev
, laddr6
->sin6_addr
.s6_addr
,
3396 raddr6
->sin6_addr
.s6_addr
,
3397 laddr6
->sin6_port
, raddr6
->sin6_port
, 0,
3398 raddr6
->sin6_scope_id
);
3401 printk(KERN_ERR MOD
"%s - cannot find route.\n", __func__
);
3402 err
= -EHOSTUNREACH
;
3406 err
= import_ep(ep
, iptype
, ra
, ep
->dst
, ep
->com
.dev
, true,
3407 ep
->com
.dev
->rdev
.lldi
.adapter_type
, cm_id
->tos
);
3409 printk(KERN_ERR MOD
"%s - cannot alloc l2e.\n", __func__
);
3413 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3414 __func__
, ep
->txq_idx
, ep
->tx_chan
, ep
->smac_idx
, ep
->rss_qid
,
3417 state_set(&ep
->com
, CONNECTING
);
3418 ep
->tos
= cm_id
->tos
;
3420 /* send connect request to rnic */
3421 err
= send_connect(ep
);
3425 cxgb4_l2t_release(ep
->l2t
);
3427 dst_release(ep
->dst
);
3429 remove_handle(ep
->com
.dev
, &ep
->com
.dev
->atid_idr
, ep
->atid
);
3430 cxgb4_free_atid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
->atid
);
3432 skb_queue_purge(&ep
->com
.ep_skb_list
);
3433 deref_cm_id(&ep
->com
);
3435 c4iw_put_ep(&ep
->com
);
3440 static int create_server6(struct c4iw_dev
*dev
, struct c4iw_listen_ep
*ep
)
3443 struct sockaddr_in6
*sin6
= (struct sockaddr_in6
*)
3444 &ep
->com
.local_addr
;
3446 if (ipv6_addr_type(&sin6
->sin6_addr
) != IPV6_ADDR_ANY
) {
3447 err
= cxgb4_clip_get(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3448 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
3452 c4iw_init_wr_wait(&ep
->com
.wr_wait
);
3453 err
= cxgb4_create_server6(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3454 ep
->stid
, &sin6
->sin6_addr
,
3456 ep
->com
.dev
->rdev
.lldi
.rxq_ids
[0]);
3458 err
= c4iw_wait_for_reply(&ep
->com
.dev
->rdev
,
3462 err
= net_xmit_errno(err
);
3464 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3465 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
3466 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3468 sin6
->sin6_addr
.s6_addr
, ntohs(sin6
->sin6_port
));
3473 static int create_server4(struct c4iw_dev
*dev
, struct c4iw_listen_ep
*ep
)
3476 struct sockaddr_in
*sin
= (struct sockaddr_in
*)
3477 &ep
->com
.local_addr
;
3479 if (dev
->rdev
.lldi
.enable_fw_ofld_conn
) {
3481 err
= cxgb4_create_server_filter(
3482 ep
->com
.dev
->rdev
.lldi
.ports
[0], ep
->stid
,
3483 sin
->sin_addr
.s_addr
, sin
->sin_port
, 0,
3484 ep
->com
.dev
->rdev
.lldi
.rxq_ids
[0], 0, 0);
3485 if (err
== -EBUSY
) {
3486 if (c4iw_fatal_error(&ep
->com
.dev
->rdev
)) {
3490 set_current_state(TASK_UNINTERRUPTIBLE
);
3491 schedule_timeout(usecs_to_jiffies(100));
3493 } while (err
== -EBUSY
);
3495 c4iw_init_wr_wait(&ep
->com
.wr_wait
);
3496 err
= cxgb4_create_server(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3497 ep
->stid
, sin
->sin_addr
.s_addr
, sin
->sin_port
,
3498 0, ep
->com
.dev
->rdev
.lldi
.rxq_ids
[0]);
3500 err
= c4iw_wait_for_reply(&ep
->com
.dev
->rdev
,
3504 err
= net_xmit_errno(err
);
3507 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3509 &sin
->sin_addr
, ntohs(sin
->sin_port
));
3513 int c4iw_create_listen(struct iw_cm_id
*cm_id
, int backlog
)
3516 struct c4iw_dev
*dev
= to_c4iw_dev(cm_id
->device
);
3517 struct c4iw_listen_ep
*ep
;
3521 ep
= alloc_ep(sizeof(*ep
), GFP_KERNEL
);
3523 printk(KERN_ERR MOD
"%s - cannot alloc ep.\n", __func__
);
3527 skb_queue_head_init(&ep
->com
.ep_skb_list
);
3528 PDBG("%s ep %p\n", __func__
, ep
);
3529 ep
->com
.cm_id
= cm_id
;
3530 ref_cm_id(&ep
->com
);
3532 ep
->backlog
= backlog
;
3533 memcpy(&ep
->com
.local_addr
, &cm_id
->m_local_addr
,
3534 sizeof(ep
->com
.local_addr
));
3537 * Allocate a server TID.
3539 if (dev
->rdev
.lldi
.enable_fw_ofld_conn
&&
3540 ep
->com
.local_addr
.ss_family
== AF_INET
)
3541 ep
->stid
= cxgb4_alloc_sftid(dev
->rdev
.lldi
.tids
,
3542 cm_id
->m_local_addr
.ss_family
, ep
);
3544 ep
->stid
= cxgb4_alloc_stid(dev
->rdev
.lldi
.tids
,
3545 cm_id
->m_local_addr
.ss_family
, ep
);
3547 if (ep
->stid
== -1) {
3548 printk(KERN_ERR MOD
"%s - cannot alloc stid.\n", __func__
);
3552 insert_handle(dev
, &dev
->stid_idr
, ep
, ep
->stid
);
3554 memcpy(&ep
->com
.local_addr
, &cm_id
->m_local_addr
,
3555 sizeof(ep
->com
.local_addr
));
3557 state_set(&ep
->com
, LISTEN
);
3558 if (ep
->com
.local_addr
.ss_family
== AF_INET
)
3559 err
= create_server4(dev
, ep
);
3561 err
= create_server6(dev
, ep
);
3563 cm_id
->provider_data
= ep
;
3567 cxgb4_free_stid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
->stid
,
3568 ep
->com
.local_addr
.ss_family
);
3570 deref_cm_id(&ep
->com
);
3571 c4iw_put_ep(&ep
->com
);
3577 int c4iw_destroy_listen(struct iw_cm_id
*cm_id
)
3580 struct c4iw_listen_ep
*ep
= to_listen_ep(cm_id
);
3582 PDBG("%s ep %p\n", __func__
, ep
);
3585 state_set(&ep
->com
, DEAD
);
3586 if (ep
->com
.dev
->rdev
.lldi
.enable_fw_ofld_conn
&&
3587 ep
->com
.local_addr
.ss_family
== AF_INET
) {
3588 err
= cxgb4_remove_server_filter(
3589 ep
->com
.dev
->rdev
.lldi
.ports
[0], ep
->stid
,
3590 ep
->com
.dev
->rdev
.lldi
.rxq_ids
[0], 0);
3592 struct sockaddr_in6
*sin6
;
3593 c4iw_init_wr_wait(&ep
->com
.wr_wait
);
3594 err
= cxgb4_remove_server(
3595 ep
->com
.dev
->rdev
.lldi
.ports
[0], ep
->stid
,
3596 ep
->com
.dev
->rdev
.lldi
.rxq_ids
[0], 0);
3599 err
= c4iw_wait_for_reply(&ep
->com
.dev
->rdev
, &ep
->com
.wr_wait
,
3601 sin6
= (struct sockaddr_in6
*)&ep
->com
.local_addr
;
3602 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3603 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
3605 remove_handle(ep
->com
.dev
, &ep
->com
.dev
->stid_idr
, ep
->stid
);
3606 cxgb4_free_stid(ep
->com
.dev
->rdev
.lldi
.tids
, ep
->stid
,
3607 ep
->com
.local_addr
.ss_family
);
3609 deref_cm_id(&ep
->com
);
3610 c4iw_put_ep(&ep
->com
);
3614 int c4iw_ep_disconnect(struct c4iw_ep
*ep
, int abrupt
, gfp_t gfp
)
3619 struct c4iw_rdev
*rdev
;
3621 mutex_lock(&ep
->com
.mutex
);
3623 PDBG("%s ep %p state %s, abrupt %d\n", __func__
, ep
,
3624 states
[ep
->com
.state
], abrupt
);
3627 * Ref the ep here in case we have fatal errors causing the
3628 * ep to be released and freed.
3630 c4iw_get_ep(&ep
->com
);
3632 rdev
= &ep
->com
.dev
->rdev
;
3633 if (c4iw_fatal_error(rdev
)) {
3635 close_complete_upcall(ep
, -EIO
);
3636 ep
->com
.state
= DEAD
;
3638 switch (ep
->com
.state
) {
3647 ep
->com
.state
= ABORTING
;
3649 ep
->com
.state
= CLOSING
;
3652 * if we close before we see the fw4_ack() then we fix
3653 * up the timer state since we're reusing it.
3656 test_bit(STOP_MPA_TIMER
, &ep
->com
.flags
)) {
3657 clear_bit(STOP_MPA_TIMER
, &ep
->com
.flags
);
3662 set_bit(CLOSE_SENT
, &ep
->com
.flags
);
3665 if (!test_and_set_bit(CLOSE_SENT
, &ep
->com
.flags
)) {
3668 (void)stop_ep_timer(ep
);
3669 ep
->com
.state
= ABORTING
;
3671 ep
->com
.state
= MORIBUND
;
3677 PDBG("%s ignoring disconnect ep %p state %u\n",
3678 __func__
, ep
, ep
->com
.state
);
3687 set_bit(EP_DISC_ABORT
, &ep
->com
.history
);
3688 close_complete_upcall(ep
, -ECONNRESET
);
3689 ret
= send_abort(ep
);
3691 set_bit(EP_DISC_CLOSE
, &ep
->com
.history
);
3692 ret
= send_halfclose(ep
);
3695 set_bit(EP_DISC_FAIL
, &ep
->com
.history
);
3698 close_complete_upcall(ep
, -EIO
);
3701 struct c4iw_qp_attributes attrs
;
3703 attrs
.next_state
= C4IW_QP_STATE_ERROR
;
3704 ret
= c4iw_modify_qp(ep
->com
.qp
->rhp
,
3706 C4IW_QP_ATTR_NEXT_STATE
,
3710 "%s - qp <- error failed!\n",
3716 mutex_unlock(&ep
->com
.mutex
);
3717 c4iw_put_ep(&ep
->com
);
3719 release_ep_resources(ep
);
3723 static void active_ofld_conn_reply(struct c4iw_dev
*dev
, struct sk_buff
*skb
,
3724 struct cpl_fw6_msg_ofld_connection_wr_rpl
*req
)
3727 int atid
= be32_to_cpu(req
->tid
);
3729 ep
= (struct c4iw_ep
*)lookup_atid(dev
->rdev
.lldi
.tids
,
3730 (__force u32
) req
->tid
);
3734 switch (req
->retval
) {
3736 set_bit(ACT_RETRY_NOMEM
, &ep
->com
.history
);
3737 if (ep
->retry_count
++ < ACT_OPEN_RETRY_COUNT
) {
3738 send_fw_act_open_req(ep
, atid
);
3742 set_bit(ACT_RETRY_INUSE
, &ep
->com
.history
);
3743 if (ep
->retry_count
++ < ACT_OPEN_RETRY_COUNT
) {
3744 send_fw_act_open_req(ep
, atid
);
3749 pr_info("%s unexpected ofld conn wr retval %d\n",
3750 __func__
, req
->retval
);
3753 pr_err("active ofld_connect_wr failure %d atid %d\n",
3755 mutex_lock(&dev
->rdev
.stats
.lock
);
3756 dev
->rdev
.stats
.act_ofld_conn_fails
++;
3757 mutex_unlock(&dev
->rdev
.stats
.lock
);
3758 connect_reply_upcall(ep
, status2errno(req
->retval
));
3759 state_set(&ep
->com
, DEAD
);
3760 if (ep
->com
.remote_addr
.ss_family
== AF_INET6
) {
3761 struct sockaddr_in6
*sin6
=
3762 (struct sockaddr_in6
*)&ep
->com
.local_addr
;
3763 cxgb4_clip_release(ep
->com
.dev
->rdev
.lldi
.ports
[0],
3764 (const u32
*)&sin6
->sin6_addr
.s6_addr
, 1);
3766 remove_handle(dev
, &dev
->atid_idr
, atid
);
3767 cxgb4_free_atid(dev
->rdev
.lldi
.tids
, atid
);
3768 dst_release(ep
->dst
);
3769 cxgb4_l2t_release(ep
->l2t
);
3770 c4iw_put_ep(&ep
->com
);
3773 static void passive_ofld_conn_reply(struct c4iw_dev
*dev
, struct sk_buff
*skb
,
3774 struct cpl_fw6_msg_ofld_connection_wr_rpl
*req
)
3776 struct sk_buff
*rpl_skb
;
3777 struct cpl_pass_accept_req
*cpl
;
3780 rpl_skb
= (struct sk_buff
*)(unsigned long)req
->cookie
;
3783 PDBG("%s passive open failure %d\n", __func__
, req
->retval
);
3784 mutex_lock(&dev
->rdev
.stats
.lock
);
3785 dev
->rdev
.stats
.pas_ofld_conn_fails
++;
3786 mutex_unlock(&dev
->rdev
.stats
.lock
);
3789 cpl
= (struct cpl_pass_accept_req
*)cplhdr(rpl_skb
);
3790 OPCODE_TID(cpl
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ
,
3791 (__force u32
) htonl(
3792 (__force u32
) req
->tid
)));
3793 ret
= pass_accept_req(dev
, rpl_skb
);
3800 static int deferred_fw6_msg(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
3802 struct cpl_fw6_msg
*rpl
= cplhdr(skb
);
3803 struct cpl_fw6_msg_ofld_connection_wr_rpl
*req
;
3805 switch (rpl
->type
) {
3807 c4iw_ev_dispatch(dev
, (struct t4_cqe
*)&rpl
->data
[0]);
3809 case FW6_TYPE_OFLD_CONNECTION_WR_RPL
:
3810 req
= (struct cpl_fw6_msg_ofld_connection_wr_rpl
*)rpl
->data
;
3811 switch (req
->t_state
) {
3813 active_ofld_conn_reply(dev
, skb
, req
);
3816 passive_ofld_conn_reply(dev
, skb
, req
);
3819 pr_err("%s unexpected ofld conn wr state %d\n",
3820 __func__
, req
->t_state
);
3828 static void build_cpl_pass_accept_req(struct sk_buff
*skb
, int stid
, u8 tos
)
3831 __be16 hdr_len
, vlantag
, len
;
3833 int tcp_hdr_len
, ip_hdr_len
;
3835 struct cpl_rx_pkt
*cpl
= cplhdr(skb
);
3836 struct cpl_pass_accept_req
*req
;
3837 struct tcp_options_received tmp_opt
;
3838 struct c4iw_dev
*dev
;
3839 enum chip_type type
;
3841 dev
= *((struct c4iw_dev
**) (skb
->cb
+ sizeof(void *)));
3842 /* Store values from cpl_rx_pkt in temporary location. */
3843 vlantag
= cpl
->vlan
;
3845 l2info
= cpl
->l2info
;
3846 hdr_len
= cpl
->hdr_len
;
3849 __skb_pull(skb
, sizeof(*req
) + sizeof(struct rss_header
));
3852 * We need to parse the TCP options from SYN packet.
3853 * to generate cpl_pass_accept_req.
3855 memset(&tmp_opt
, 0, sizeof(tmp_opt
));
3856 tcp_clear_options(&tmp_opt
);
3857 tcp_parse_options(skb
, &tmp_opt
, 0, NULL
);
3859 req
= (struct cpl_pass_accept_req
*)__skb_push(skb
, sizeof(*req
));
3860 memset(req
, 0, sizeof(*req
));
3861 req
->l2info
= cpu_to_be16(SYN_INTF_V(intf
) |
3862 SYN_MAC_IDX_V(RX_MACIDX_G(
3863 be32_to_cpu(l2info
))) |
3865 type
= dev
->rdev
.lldi
.adapter_type
;
3866 tcp_hdr_len
= RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len
));
3867 ip_hdr_len
= RX_IPHDR_LEN_G(be16_to_cpu(hdr_len
));
3869 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info
))));
3870 if (CHELSIO_CHIP_VERSION(type
) <= CHELSIO_T5
) {
3871 eth_hdr_len
= is_t4(type
) ?
3872 RX_ETHHDR_LEN_G(be32_to_cpu(l2info
)) :
3873 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info
));
3874 req
->hdr_len
|= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len
) |
3875 IP_HDR_LEN_V(ip_hdr_len
) |
3876 ETH_HDR_LEN_V(eth_hdr_len
));
3877 } else { /* T6 and later */
3878 eth_hdr_len
= RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info
));
3879 req
->hdr_len
|= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len
) |
3880 T6_IP_HDR_LEN_V(ip_hdr_len
) |
3881 T6_ETH_HDR_LEN_V(eth_hdr_len
));
3883 req
->vlan
= vlantag
;
3885 req
->tos_stid
= cpu_to_be32(PASS_OPEN_TID_V(stid
) |
3886 PASS_OPEN_TOS_V(tos
));
3887 req
->tcpopt
.mss
= htons(tmp_opt
.mss_clamp
);
3888 if (tmp_opt
.wscale_ok
)
3889 req
->tcpopt
.wsf
= tmp_opt
.snd_wscale
;
3890 req
->tcpopt
.tstamp
= tmp_opt
.saw_tstamp
;
3891 if (tmp_opt
.sack_ok
)
3892 req
->tcpopt
.sack
= 1;
3893 OPCODE_TID(req
) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ
, 0));
3897 static void send_fw_pass_open_req(struct c4iw_dev
*dev
, struct sk_buff
*skb
,
3898 __be32 laddr
, __be16 lport
,
3899 __be32 raddr
, __be16 rport
,
3900 u32 rcv_isn
, u32 filter
, u16 window
,
3901 u32 rss_qid
, u8 port_id
)
3903 struct sk_buff
*req_skb
;
3904 struct fw_ofld_connection_wr
*req
;
3905 struct cpl_pass_accept_req
*cpl
= cplhdr(skb
);
3908 req_skb
= alloc_skb(sizeof(struct fw_ofld_connection_wr
), GFP_KERNEL
);
3909 req
= (struct fw_ofld_connection_wr
*)__skb_put(req_skb
, sizeof(*req
));
3910 memset(req
, 0, sizeof(*req
));
3911 req
->op_compl
= htonl(WR_OP_V(FW_OFLD_CONNECTION_WR
) | FW_WR_COMPL_F
);
3912 req
->len16_pkd
= htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req
), 16)));
3913 req
->le
.version_cpl
= htonl(FW_OFLD_CONNECTION_WR_CPL_F
);
3914 req
->le
.filter
= (__force __be32
) filter
;
3915 req
->le
.lport
= lport
;
3916 req
->le
.pport
= rport
;
3917 req
->le
.u
.ipv4
.lip
= laddr
;
3918 req
->le
.u
.ipv4
.pip
= raddr
;
3919 req
->tcb
.rcv_nxt
= htonl(rcv_isn
+ 1);
3920 req
->tcb
.rcv_adv
= htons(window
);
3921 req
->tcb
.t_state_to_astid
=
3922 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV
) |
3923 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl
->tcpopt
.wsf
) |
3924 FW_OFLD_CONNECTION_WR_ASTID_V(
3925 PASS_OPEN_TID_G(ntohl(cpl
->tos_stid
))));
3928 * We store the qid in opt2 which will be used by the firmware
3929 * to send us the wr response.
3931 req
->tcb
.opt2
= htonl(RSS_QUEUE_V(rss_qid
));
3934 * We initialize the MSS index in TCB to 0xF.
3935 * So that when driver sends cpl_pass_accept_rpl
3936 * TCB picks up the correct value. If this was 0
3937 * TP will ignore any value > 0 for MSS index.
3939 req
->tcb
.opt0
= cpu_to_be64(MSS_IDX_V(0xF));
3940 req
->cookie
= (uintptr_t)skb
;
3942 set_wr_txq(req_skb
, CPL_PRIORITY_CONTROL
, port_id
);
3943 ret
= cxgb4_ofld_send(dev
->rdev
.lldi
.ports
[0], req_skb
);
3945 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__
,
3953 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
3954 * messages when a filter is being used instead of server to
3955 * redirect a syn packet. When packets hit filter they are redirected
3956 * to the offload queue and driver tries to establish the connection
3957 * using firmware work request.
3959 static int rx_pkt(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
3962 unsigned int filter
;
3963 struct ethhdr
*eh
= NULL
;
3964 struct vlan_ethhdr
*vlan_eh
= NULL
;
3966 struct tcphdr
*tcph
;
3967 struct rss_header
*rss
= (void *)skb
->data
;
3968 struct cpl_rx_pkt
*cpl
= (void *)skb
->data
;
3969 struct cpl_pass_accept_req
*req
= (void *)(rss
+ 1);
3970 struct l2t_entry
*e
;
3971 struct dst_entry
*dst
;
3972 struct c4iw_ep
*lep
= NULL
;
3974 struct port_info
*pi
;
3975 struct net_device
*pdev
;
3976 u16 rss_qid
, eth_hdr_len
;
3979 struct neighbour
*neigh
;
3981 /* Drop all non-SYN packets */
3982 if (!(cpl
->l2info
& cpu_to_be32(RXF_SYN_F
)))
3986 * Drop all packets which did not hit the filter.
3987 * Unlikely to happen.
3989 if (!(rss
->filter_hit
&& rss
->filter_tid
))
3993 * Calculate the server tid from filter hit index from cpl_rx_pkt.
3995 stid
= (__force
int) cpu_to_be32((__force u32
) rss
->hash_val
);
3997 lep
= (struct c4iw_ep
*)get_ep_from_stid(dev
, stid
);
3999 PDBG("%s connect request on invalid stid %d\n", __func__
, stid
);
4003 switch (CHELSIO_CHIP_VERSION(dev
->rdev
.lldi
.adapter_type
)) {
4005 eth_hdr_len
= RX_ETHHDR_LEN_G(be32_to_cpu(cpl
->l2info
));
4008 eth_hdr_len
= RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl
->l2info
));
4011 eth_hdr_len
= RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl
->l2info
));
4014 pr_err("T%d Chip is not supported\n",
4015 CHELSIO_CHIP_VERSION(dev
->rdev
.lldi
.adapter_type
));
4019 if (eth_hdr_len
== ETH_HLEN
) {
4020 eh
= (struct ethhdr
*)(req
+ 1);
4021 iph
= (struct iphdr
*)(eh
+ 1);
4023 vlan_eh
= (struct vlan_ethhdr
*)(req
+ 1);
4024 iph
= (struct iphdr
*)(vlan_eh
+ 1);
4025 skb
->vlan_tci
= ntohs(cpl
->vlan
);
4028 if (iph
->version
!= 0x4)
4031 tcph
= (struct tcphdr
*)(iph
+ 1);
4032 skb_set_network_header(skb
, (void *)iph
- (void *)rss
);
4033 skb_set_transport_header(skb
, (void *)tcph
- (void *)rss
);
4036 PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__
,
4037 ntohl(iph
->daddr
), ntohs(tcph
->dest
), ntohl(iph
->saddr
),
4038 ntohs(tcph
->source
), iph
->tos
);
4040 dst
= find_route(dev
, iph
->daddr
, iph
->saddr
, tcph
->dest
, tcph
->source
,
4043 pr_err("%s - failed to find dst entry!\n",
4047 neigh
= dst_neigh_lookup_skb(dst
, skb
);
4050 pr_err("%s - failed to allocate neigh!\n",
4055 if (neigh
->dev
->flags
& IFF_LOOPBACK
) {
4056 pdev
= ip_dev_find(&init_net
, iph
->daddr
);
4057 e
= cxgb4_l2t_get(dev
->rdev
.lldi
.l2t
, neigh
,
4059 pi
= (struct port_info
*)netdev_priv(pdev
);
4060 tx_chan
= cxgb4_port_chan(pdev
);
4063 pdev
= get_real_dev(neigh
->dev
);
4064 e
= cxgb4_l2t_get(dev
->rdev
.lldi
.l2t
, neigh
,
4066 pi
= (struct port_info
*)netdev_priv(pdev
);
4067 tx_chan
= cxgb4_port_chan(pdev
);
4069 neigh_release(neigh
);
4071 pr_err("%s - failed to allocate l2t entry!\n",
4076 step
= dev
->rdev
.lldi
.nrxq
/ dev
->rdev
.lldi
.nchan
;
4077 rss_qid
= dev
->rdev
.lldi
.rxq_ids
[pi
->port_id
* step
];
4078 window
= (__force u16
) htons((__force u16
)tcph
->window
);
4080 /* Calcuate filter portion for LE region. */
4081 filter
= (__force
unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4082 dev
->rdev
.lldi
.ports
[0],
4086 * Synthesize the cpl_pass_accept_req. We have everything except the
4087 * TID. Once firmware sends a reply with TID we update the TID field
4088 * in cpl and pass it through the regular cpl_pass_accept_req path.
4090 build_cpl_pass_accept_req(skb
, stid
, iph
->tos
);
4091 send_fw_pass_open_req(dev
, skb
, iph
->daddr
, tcph
->dest
, iph
->saddr
,
4092 tcph
->source
, ntohl(tcph
->seq
), filter
, window
,
4093 rss_qid
, pi
->port_id
);
4094 cxgb4_l2t_release(e
);
4099 c4iw_put_ep(&lep
->com
);
4104 * These are the real handlers that are called from a
4107 static c4iw_handler_func work_handlers
[NUM_CPL_CMDS
+ NUM_FAKE_CPLS
] = {
4108 [CPL_ACT_ESTABLISH
] = act_establish
,
4109 [CPL_ACT_OPEN_RPL
] = act_open_rpl
,
4110 [CPL_RX_DATA
] = rx_data
,
4111 [CPL_ABORT_RPL_RSS
] = abort_rpl
,
4112 [CPL_ABORT_RPL
] = abort_rpl
,
4113 [CPL_PASS_OPEN_RPL
] = pass_open_rpl
,
4114 [CPL_CLOSE_LISTSRV_RPL
] = close_listsrv_rpl
,
4115 [CPL_PASS_ACCEPT_REQ
] = pass_accept_req
,
4116 [CPL_PASS_ESTABLISH
] = pass_establish
,
4117 [CPL_PEER_CLOSE
] = peer_close
,
4118 [CPL_ABORT_REQ_RSS
] = peer_abort
,
4119 [CPL_CLOSE_CON_RPL
] = close_con_rpl
,
4120 [CPL_RDMA_TERMINATE
] = terminate
,
4121 [CPL_FW4_ACK
] = fw4_ack
,
4122 [CPL_FW6_MSG
] = deferred_fw6_msg
,
4123 [CPL_RX_PKT
] = rx_pkt
,
4124 [FAKE_CPL_PUT_EP_SAFE
] = _put_ep_safe
,
4125 [FAKE_CPL_PASS_PUT_EP_SAFE
] = _put_pass_ep_safe
4128 static void process_timeout(struct c4iw_ep
*ep
)
4130 struct c4iw_qp_attributes attrs
;
4133 mutex_lock(&ep
->com
.mutex
);
4134 PDBG("%s ep %p tid %u state %d\n", __func__
, ep
, ep
->hwtid
,
4136 set_bit(TIMEDOUT
, &ep
->com
.history
);
4137 switch (ep
->com
.state
) {
4139 connect_reply_upcall(ep
, -ETIMEDOUT
);
4148 if (ep
->com
.cm_id
&& ep
->com
.qp
) {
4149 attrs
.next_state
= C4IW_QP_STATE_ERROR
;
4150 c4iw_modify_qp(ep
->com
.qp
->rhp
,
4151 ep
->com
.qp
, C4IW_QP_ATTR_NEXT_STATE
,
4154 close_complete_upcall(ep
, -ETIMEDOUT
);
4160 * These states are expected if the ep timed out at the same
4161 * time as another thread was calling stop_ep_timer().
4162 * So we silently do nothing for these states.
4167 WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4168 __func__
, ep
, ep
->hwtid
, ep
->com
.state
);
4171 mutex_unlock(&ep
->com
.mutex
);
4173 c4iw_ep_disconnect(ep
, 1, GFP_KERNEL
);
4174 c4iw_put_ep(&ep
->com
);
4177 static void process_timedout_eps(void)
4181 spin_lock_irq(&timeout_lock
);
4182 while (!list_empty(&timeout_list
)) {
4183 struct list_head
*tmp
;
4185 tmp
= timeout_list
.next
;
4189 spin_unlock_irq(&timeout_lock
);
4190 ep
= list_entry(tmp
, struct c4iw_ep
, entry
);
4191 process_timeout(ep
);
4192 spin_lock_irq(&timeout_lock
);
4194 spin_unlock_irq(&timeout_lock
);
4197 static void process_work(struct work_struct
*work
)
4199 struct sk_buff
*skb
= NULL
;
4200 struct c4iw_dev
*dev
;
4201 struct cpl_act_establish
*rpl
;
4202 unsigned int opcode
;
4205 process_timedout_eps();
4206 while ((skb
= skb_dequeue(&rxq
))) {
4208 dev
= *((struct c4iw_dev
**) (skb
->cb
+ sizeof(void *)));
4209 opcode
= rpl
->ot
.opcode
;
4211 BUG_ON(!work_handlers
[opcode
]);
4212 ret
= work_handlers
[opcode
](dev
, skb
);
4215 process_timedout_eps();
4219 static DECLARE_WORK(skb_work
, process_work
);
4221 static void ep_timeout(unsigned long arg
)
4223 struct c4iw_ep
*ep
= (struct c4iw_ep
*)arg
;
4226 spin_lock(&timeout_lock
);
4227 if (!test_and_set_bit(TIMEOUT
, &ep
->com
.flags
)) {
4229 * Only insert if it is not already on the list.
4231 if (!ep
->entry
.next
) {
4232 list_add_tail(&ep
->entry
, &timeout_list
);
4236 spin_unlock(&timeout_lock
);
4238 queue_work(workq
, &skb_work
);
4242 * All the CM events are handled on a work queue to have a safe context.
4244 static int sched(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
4248 * Save dev in the skb->cb area.
4250 *((struct c4iw_dev
**) (skb
->cb
+ sizeof(void *))) = dev
;
4253 * Queue the skb and schedule the worker thread.
4255 skb_queue_tail(&rxq
, skb
);
4256 queue_work(workq
, &skb_work
);
4260 static int set_tcb_rpl(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
4262 struct cpl_set_tcb_rpl
*rpl
= cplhdr(skb
);
4264 if (rpl
->status
!= CPL_ERR_NONE
) {
4265 printk(KERN_ERR MOD
"Unexpected SET_TCB_RPL status %u "
4266 "for tid %u\n", rpl
->status
, GET_TID(rpl
));
4272 static int fw6_msg(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
4274 struct cpl_fw6_msg
*rpl
= cplhdr(skb
);
4275 struct c4iw_wr_wait
*wr_waitp
;
4278 PDBG("%s type %u\n", __func__
, rpl
->type
);
4280 switch (rpl
->type
) {
4281 case FW6_TYPE_WR_RPL
:
4282 ret
= (int)((be64_to_cpu(rpl
->data
[0]) >> 8) & 0xff);
4283 wr_waitp
= (struct c4iw_wr_wait
*)(__force
unsigned long) rpl
->data
[1];
4284 PDBG("%s wr_waitp %p ret %u\n", __func__
, wr_waitp
, ret
);
4286 c4iw_wake_up(wr_waitp
, ret
? -ret
: 0);
4290 case FW6_TYPE_OFLD_CONNECTION_WR_RPL
:
4294 printk(KERN_ERR MOD
"%s unexpected fw6 msg type %u\n", __func__
,
4302 static int peer_abort_intr(struct c4iw_dev
*dev
, struct sk_buff
*skb
)
4304 struct cpl_abort_req_rss
*req
= cplhdr(skb
);
4306 unsigned int tid
= GET_TID(req
);
4308 ep
= get_ep_from_tid(dev
, tid
);
4309 /* This EP will be dereferenced in peer_abort() */
4311 printk(KERN_WARNING MOD
4312 "Abort on non-existent endpoint, tid %d\n", tid
);
4316 if (is_neg_adv(req
->status
)) {
4317 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
4318 __func__
, ep
->hwtid
, req
->status
,
4319 neg_adv_str(req
->status
));
4322 PDBG("%s ep %p tid %u state %u\n", __func__
, ep
, ep
->hwtid
,
4325 c4iw_wake_up(&ep
->com
.wr_wait
, -ECONNRESET
);
4332 * Most upcalls from the T4 Core go to sched() to
4333 * schedule the processing on a work queue.
4335 c4iw_handler_func c4iw_handlers
[NUM_CPL_CMDS
] = {
4336 [CPL_ACT_ESTABLISH
] = sched
,
4337 [CPL_ACT_OPEN_RPL
] = sched
,
4338 [CPL_RX_DATA
] = sched
,
4339 [CPL_ABORT_RPL_RSS
] = sched
,
4340 [CPL_ABORT_RPL
] = sched
,
4341 [CPL_PASS_OPEN_RPL
] = sched
,
4342 [CPL_CLOSE_LISTSRV_RPL
] = sched
,
4343 [CPL_PASS_ACCEPT_REQ
] = sched
,
4344 [CPL_PASS_ESTABLISH
] = sched
,
4345 [CPL_PEER_CLOSE
] = sched
,
4346 [CPL_CLOSE_CON_RPL
] = sched
,
4347 [CPL_ABORT_REQ_RSS
] = peer_abort_intr
,
4348 [CPL_RDMA_TERMINATE
] = sched
,
4349 [CPL_FW4_ACK
] = sched
,
4350 [CPL_SET_TCB_RPL
] = set_tcb_rpl
,
4351 [CPL_FW6_MSG
] = fw6_msg
,
4352 [CPL_RX_PKT
] = sched
4355 int __init
c4iw_cm_init(void)
4357 spin_lock_init(&timeout_lock
);
4358 skb_queue_head_init(&rxq
);
4360 workq
= create_singlethread_workqueue("iw_cxgb4");
4367 void c4iw_cm_term(void)
4369 WARN_ON(!list_empty(&timeout_list
));
4370 flush_workqueue(workq
);
4371 destroy_workqueue(workq
);