ALSA: hda - Add the top speaker pin config for HP Spectre x360
[linux/fpc-iii.git] / drivers / infiniband / hw / hfi1 / user_exp_rcv.c
blob64d26525435af43172ec9518b671a2758b0dcf15
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 #include <asm/page.h>
49 #include "user_exp_rcv.h"
50 #include "trace.h"
51 #include "mmu_rb.h"
53 struct tid_group {
54 struct list_head list;
55 unsigned base;
56 u8 size;
57 u8 used;
58 u8 map;
61 struct tid_rb_node {
62 struct mmu_rb_node mmu;
63 unsigned long phys;
64 struct tid_group *grp;
65 u32 rcventry;
66 dma_addr_t dma_addr;
67 bool freed;
68 unsigned npages;
69 struct page *pages[0];
72 struct tid_pageset {
73 u16 idx;
74 u16 count;
77 #define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
79 #define num_user_pages(vaddr, len) \
80 (1 + (((((unsigned long)(vaddr) + \
81 (unsigned long)(len) - 1) & PAGE_MASK) - \
82 ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
84 static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
85 struct hfi1_filedata *);
86 static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
87 static int set_rcvarray_entry(struct file *, unsigned long, u32,
88 struct tid_group *, struct page **, unsigned);
89 static int tid_rb_insert(void *, struct mmu_rb_node *);
90 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
91 struct tid_rb_node *tnode);
92 static void tid_rb_remove(void *, struct mmu_rb_node *);
93 static int tid_rb_invalidate(void *, struct mmu_rb_node *);
94 static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
95 struct tid_pageset *, unsigned, u16, struct page **,
96 u32 *, unsigned *, unsigned *);
97 static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
98 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
100 static struct mmu_rb_ops tid_rb_ops = {
101 .insert = tid_rb_insert,
102 .remove = tid_rb_remove,
103 .invalidate = tid_rb_invalidate
106 static inline u32 rcventry2tidinfo(u32 rcventry)
108 u32 pair = rcventry & ~0x1;
110 return EXP_TID_SET(IDX, pair >> 1) |
111 EXP_TID_SET(CTRL, 1 << (rcventry - pair));
114 static inline void exp_tid_group_init(struct exp_tid_set *set)
116 INIT_LIST_HEAD(&set->list);
117 set->count = 0;
120 static inline void tid_group_remove(struct tid_group *grp,
121 struct exp_tid_set *set)
123 list_del_init(&grp->list);
124 set->count--;
127 static inline void tid_group_add_tail(struct tid_group *grp,
128 struct exp_tid_set *set)
130 list_add_tail(&grp->list, &set->list);
131 set->count++;
134 static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
136 struct tid_group *grp =
137 list_first_entry(&set->list, struct tid_group, list);
138 list_del_init(&grp->list);
139 set->count--;
140 return grp;
143 static inline void tid_group_move(struct tid_group *group,
144 struct exp_tid_set *s1,
145 struct exp_tid_set *s2)
147 tid_group_remove(group, s1);
148 tid_group_add_tail(group, s2);
152 * Initialize context and file private data needed for Expected
153 * receive caching. This needs to be done after the context has
154 * been configured with the eager/expected RcvEntry counts.
156 int hfi1_user_exp_rcv_init(struct file *fp)
158 struct hfi1_filedata *fd = fp->private_data;
159 struct hfi1_ctxtdata *uctxt = fd->uctxt;
160 struct hfi1_devdata *dd = uctxt->dd;
161 unsigned tidbase;
162 int i, ret = 0;
164 spin_lock_init(&fd->tid_lock);
165 spin_lock_init(&fd->invalid_lock);
167 if (!uctxt->subctxt_cnt || !fd->subctxt) {
168 exp_tid_group_init(&uctxt->tid_group_list);
169 exp_tid_group_init(&uctxt->tid_used_list);
170 exp_tid_group_init(&uctxt->tid_full_list);
172 tidbase = uctxt->expected_base;
173 for (i = 0; i < uctxt->expected_count /
174 dd->rcv_entries.group_size; i++) {
175 struct tid_group *grp;
177 grp = kzalloc(sizeof(*grp), GFP_KERNEL);
178 if (!grp) {
180 * If we fail here, the groups already
181 * allocated will be freed by the close
182 * call.
184 ret = -ENOMEM;
185 goto done;
187 grp->size = dd->rcv_entries.group_size;
188 grp->base = tidbase;
189 tid_group_add_tail(grp, &uctxt->tid_group_list);
190 tidbase += dd->rcv_entries.group_size;
194 fd->entry_to_rb = kcalloc(uctxt->expected_count,
195 sizeof(struct rb_node *),
196 GFP_KERNEL);
197 if (!fd->entry_to_rb)
198 return -ENOMEM;
200 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
201 fd->invalid_tid_idx = 0;
202 fd->invalid_tids = kzalloc(uctxt->expected_count *
203 sizeof(u32), GFP_KERNEL);
204 if (!fd->invalid_tids) {
205 ret = -ENOMEM;
206 goto done;
210 * Register MMU notifier callbacks. If the registration
211 * fails, continue without TID caching for this context.
213 ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
214 dd->pport->hfi1_wq,
215 &fd->handler);
216 if (ret) {
217 dd_dev_info(dd,
218 "Failed MMU notifier registration %d\n",
219 ret);
220 ret = 0;
225 * PSM does not have a good way to separate, count, and
226 * effectively enforce a limit on RcvArray entries used by
227 * subctxts (when context sharing is used) when TID caching
228 * is enabled. To help with that, we calculate a per-process
229 * RcvArray entry share and enforce that.
230 * If TID caching is not in use, PSM deals with usage on its
231 * own. In that case, we allow any subctxt to take all of the
232 * entries.
234 * Make sure that we set the tid counts only after successful
235 * init.
237 spin_lock(&fd->tid_lock);
238 if (uctxt->subctxt_cnt && fd->handler) {
239 u16 remainder;
241 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
242 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
243 if (remainder && fd->subctxt < remainder)
244 fd->tid_limit++;
245 } else {
246 fd->tid_limit = uctxt->expected_count;
248 spin_unlock(&fd->tid_lock);
249 done:
250 return ret;
253 int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
255 struct hfi1_ctxtdata *uctxt = fd->uctxt;
256 struct tid_group *grp, *gptr;
258 if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags))
259 return 0;
261 * The notifier would have been removed when the process'es mm
262 * was freed.
264 if (fd->handler)
265 hfi1_mmu_rb_unregister(fd->handler);
267 kfree(fd->invalid_tids);
269 if (!uctxt->cnt) {
270 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
271 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
272 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
273 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
274 list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
275 list) {
276 list_del_init(&grp->list);
277 kfree(grp);
279 hfi1_clear_tids(uctxt);
282 kfree(fd->entry_to_rb);
283 return 0;
287 * Write an "empty" RcvArray entry.
288 * This function exists so the TID registaration code can use it
289 * to write to unused/unneeded entries and still take advantage
290 * of the WC performance improvements. The HFI will ignore this
291 * write to the RcvArray entry.
293 static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
296 * Doing the WC fill writes only makes sense if the device is
297 * present and the RcvArray has been mapped as WC memory.
299 if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
300 writeq(0, dd->rcvarray_wc + (index * 8));
304 * RcvArray entry allocation for Expected Receives is done by the
305 * following algorithm:
307 * The context keeps 3 lists of groups of RcvArray entries:
308 * 1. List of empty groups - tid_group_list
309 * This list is created during user context creation and
310 * contains elements which describe sets (of 8) of empty
311 * RcvArray entries.
312 * 2. List of partially used groups - tid_used_list
313 * This list contains sets of RcvArray entries which are
314 * not completely used up. Another mapping request could
315 * use some of all of the remaining entries.
316 * 3. List of full groups - tid_full_list
317 * This is the list where sets that are completely used
318 * up go.
320 * An attempt to optimize the usage of RcvArray entries is
321 * made by finding all sets of physically contiguous pages in a
322 * user's buffer.
323 * These physically contiguous sets are further split into
324 * sizes supported by the receive engine of the HFI. The
325 * resulting sets of pages are stored in struct tid_pageset,
326 * which describes the sets as:
327 * * .count - number of pages in this set
328 * * .idx - starting index into struct page ** array
329 * of this set
331 * From this point on, the algorithm deals with the page sets
332 * described above. The number of pagesets is divided by the
333 * RcvArray group size to produce the number of full groups
334 * needed.
336 * Groups from the 3 lists are manipulated using the following
337 * rules:
338 * 1. For each set of 8 pagesets, a complete group from
339 * tid_group_list is taken, programmed, and moved to
340 * the tid_full_list list.
341 * 2. For all remaining pagesets:
342 * 2.1 If the tid_used_list is empty and the tid_group_list
343 * is empty, stop processing pageset and return only
344 * what has been programmed up to this point.
345 * 2.2 If the tid_used_list is empty and the tid_group_list
346 * is not empty, move a group from tid_group_list to
347 * tid_used_list.
348 * 2.3 For each group is tid_used_group, program as much as
349 * can fit into the group. If the group becomes fully
350 * used, move it to tid_full_list.
352 int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
354 int ret = 0, need_group = 0, pinned;
355 struct hfi1_filedata *fd = fp->private_data;
356 struct hfi1_ctxtdata *uctxt = fd->uctxt;
357 struct hfi1_devdata *dd = uctxt->dd;
358 unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
359 tididx = 0, mapped, mapped_pages = 0;
360 unsigned long vaddr = tinfo->vaddr;
361 struct page **pages = NULL;
362 u32 *tidlist = NULL;
363 struct tid_pageset *pagesets = NULL;
365 /* Get the number of pages the user buffer spans */
366 npages = num_user_pages(vaddr, tinfo->length);
367 if (!npages)
368 return -EINVAL;
370 if (npages > uctxt->expected_count) {
371 dd_dev_err(dd, "Expected buffer too big\n");
372 return -EINVAL;
375 /* Verify that access is OK for the user buffer */
376 if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
377 npages * PAGE_SIZE)) {
378 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
379 (void *)vaddr, npages);
380 return -EFAULT;
383 pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
384 GFP_KERNEL);
385 if (!pagesets)
386 return -ENOMEM;
388 /* Allocate the array of struct page pointers needed for pinning */
389 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
390 if (!pages) {
391 ret = -ENOMEM;
392 goto bail;
396 * Pin all the pages of the user buffer. If we can't pin all the
397 * pages, accept the amount pinned so far and program only that.
398 * User space knows how to deal with partially programmed buffers.
400 if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
401 ret = -ENOMEM;
402 goto bail;
405 pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
406 if (pinned <= 0) {
407 ret = pinned;
408 goto bail;
410 fd->tid_n_pinned += npages;
412 /* Find sets of physically contiguous pages */
413 npagesets = find_phys_blocks(pages, pinned, pagesets);
416 * We don't need to access this under a lock since tid_used is per
417 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
418 * and hfi1_user_exp_rcv_setup() at the same time.
420 spin_lock(&fd->tid_lock);
421 if (fd->tid_used + npagesets > fd->tid_limit)
422 pageset_count = fd->tid_limit - fd->tid_used;
423 else
424 pageset_count = npagesets;
425 spin_unlock(&fd->tid_lock);
427 if (!pageset_count)
428 goto bail;
430 ngroups = pageset_count / dd->rcv_entries.group_size;
431 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
432 if (!tidlist) {
433 ret = -ENOMEM;
434 goto nomem;
437 tididx = 0;
440 * From this point on, we are going to be using shared (between master
441 * and subcontexts) context resources. We need to take the lock.
443 mutex_lock(&uctxt->exp_lock);
445 * The first step is to program the RcvArray entries which are complete
446 * groups.
448 while (ngroups && uctxt->tid_group_list.count) {
449 struct tid_group *grp =
450 tid_group_pop(&uctxt->tid_group_list);
452 ret = program_rcvarray(fp, vaddr, grp, pagesets,
453 pageidx, dd->rcv_entries.group_size,
454 pages, tidlist, &tididx, &mapped);
456 * If there was a failure to program the RcvArray
457 * entries for the entire group, reset the grp fields
458 * and add the grp back to the free group list.
460 if (ret <= 0) {
461 tid_group_add_tail(grp, &uctxt->tid_group_list);
462 hfi1_cdbg(TID,
463 "Failed to program RcvArray group %d", ret);
464 goto unlock;
467 tid_group_add_tail(grp, &uctxt->tid_full_list);
468 ngroups--;
469 pageidx += ret;
470 mapped_pages += mapped;
473 while (pageidx < pageset_count) {
474 struct tid_group *grp, *ptr;
476 * If we don't have any partially used tid groups, check
477 * if we have empty groups. If so, take one from there and
478 * put in the partially used list.
480 if (!uctxt->tid_used_list.count || need_group) {
481 if (!uctxt->tid_group_list.count)
482 goto unlock;
484 grp = tid_group_pop(&uctxt->tid_group_list);
485 tid_group_add_tail(grp, &uctxt->tid_used_list);
486 need_group = 0;
489 * There is an optimization opportunity here - instead of
490 * fitting as many page sets as we can, check for a group
491 * later on in the list that could fit all of them.
493 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
494 list) {
495 unsigned use = min_t(unsigned, pageset_count - pageidx,
496 grp->size - grp->used);
498 ret = program_rcvarray(fp, vaddr, grp, pagesets,
499 pageidx, use, pages, tidlist,
500 &tididx, &mapped);
501 if (ret < 0) {
502 hfi1_cdbg(TID,
503 "Failed to program RcvArray entries %d",
504 ret);
505 ret = -EFAULT;
506 goto unlock;
507 } else if (ret > 0) {
508 if (grp->used == grp->size)
509 tid_group_move(grp,
510 &uctxt->tid_used_list,
511 &uctxt->tid_full_list);
512 pageidx += ret;
513 mapped_pages += mapped;
514 need_group = 0;
515 /* Check if we are done so we break out early */
516 if (pageidx >= pageset_count)
517 break;
518 } else if (WARN_ON(ret == 0)) {
520 * If ret is 0, we did not program any entries
521 * into this group, which can only happen if
522 * we've screwed up the accounting somewhere.
523 * Warn and try to continue.
525 need_group = 1;
529 unlock:
530 mutex_unlock(&uctxt->exp_lock);
531 nomem:
532 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
533 mapped_pages, ret);
534 if (tididx) {
535 spin_lock(&fd->tid_lock);
536 fd->tid_used += tididx;
537 spin_unlock(&fd->tid_lock);
538 tinfo->tidcnt = tididx;
539 tinfo->length = mapped_pages * PAGE_SIZE;
541 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
542 tidlist, sizeof(tidlist[0]) * tididx)) {
544 * On failure to copy to the user level, we need to undo
545 * everything done so far so we don't leak resources.
547 tinfo->tidlist = (unsigned long)&tidlist;
548 hfi1_user_exp_rcv_clear(fp, tinfo);
549 tinfo->tidlist = 0;
550 ret = -EFAULT;
551 goto bail;
556 * If not everything was mapped (due to insufficient RcvArray entries,
557 * for example), unpin all unmapped pages so we can pin them nex time.
559 if (mapped_pages != pinned) {
560 hfi1_release_user_pages(fd->mm, &pages[mapped_pages],
561 pinned - mapped_pages,
562 false);
563 fd->tid_n_pinned -= pinned - mapped_pages;
565 bail:
566 kfree(pagesets);
567 kfree(pages);
568 kfree(tidlist);
569 return ret > 0 ? 0 : ret;
572 int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
574 int ret = 0;
575 struct hfi1_filedata *fd = fp->private_data;
576 struct hfi1_ctxtdata *uctxt = fd->uctxt;
577 u32 *tidinfo;
578 unsigned tididx;
580 tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
581 if (!tidinfo)
582 return -ENOMEM;
584 if (copy_from_user(tidinfo, (void __user *)(unsigned long)
585 tinfo->tidlist, sizeof(tidinfo[0]) *
586 tinfo->tidcnt)) {
587 ret = -EFAULT;
588 goto done;
591 mutex_lock(&uctxt->exp_lock);
592 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
593 ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
594 if (ret) {
595 hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
596 ret);
597 break;
600 spin_lock(&fd->tid_lock);
601 fd->tid_used -= tididx;
602 spin_unlock(&fd->tid_lock);
603 tinfo->tidcnt = tididx;
604 mutex_unlock(&uctxt->exp_lock);
605 done:
606 kfree(tidinfo);
607 return ret;
610 int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
612 struct hfi1_filedata *fd = fp->private_data;
613 struct hfi1_ctxtdata *uctxt = fd->uctxt;
614 unsigned long *ev = uctxt->dd->events +
615 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
616 HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
617 u32 *array;
618 int ret = 0;
620 if (!fd->invalid_tids)
621 return -EINVAL;
624 * copy_to_user() can sleep, which will leave the invalid_lock
625 * locked and cause the MMU notifier to be blocked on the lock
626 * for a long time.
627 * Copy the data to a local buffer so we can release the lock.
629 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
630 if (!array)
631 return -EFAULT;
633 spin_lock(&fd->invalid_lock);
634 if (fd->invalid_tid_idx) {
635 memcpy(array, fd->invalid_tids, sizeof(*array) *
636 fd->invalid_tid_idx);
637 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
638 fd->invalid_tid_idx);
639 tinfo->tidcnt = fd->invalid_tid_idx;
640 fd->invalid_tid_idx = 0;
642 * Reset the user flag while still holding the lock.
643 * Otherwise, PSM can miss events.
645 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
646 } else {
647 tinfo->tidcnt = 0;
649 spin_unlock(&fd->invalid_lock);
651 if (tinfo->tidcnt) {
652 if (copy_to_user((void __user *)tinfo->tidlist,
653 array, sizeof(*array) * tinfo->tidcnt))
654 ret = -EFAULT;
656 kfree(array);
658 return ret;
661 static u32 find_phys_blocks(struct page **pages, unsigned npages,
662 struct tid_pageset *list)
664 unsigned pagecount, pageidx, setcount = 0, i;
665 unsigned long pfn, this_pfn;
667 if (!npages)
668 return 0;
671 * Look for sets of physically contiguous pages in the user buffer.
672 * This will allow us to optimize Expected RcvArray entry usage by
673 * using the bigger supported sizes.
675 pfn = page_to_pfn(pages[0]);
676 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
677 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
680 * If the pfn's are not sequential, pages are not physically
681 * contiguous.
683 if (this_pfn != ++pfn) {
685 * At this point we have to loop over the set of
686 * physically contiguous pages and break them down it
687 * sizes supported by the HW.
688 * There are two main constraints:
689 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
690 * If the total set size is bigger than that
691 * program only a MAX_EXPECTED_BUFFER chunk.
692 * 2. The buffer size has to be a power of two. If
693 * it is not, round down to the closes power of
694 * 2 and program that size.
696 while (pagecount) {
697 int maxpages = pagecount;
698 u32 bufsize = pagecount * PAGE_SIZE;
700 if (bufsize > MAX_EXPECTED_BUFFER)
701 maxpages =
702 MAX_EXPECTED_BUFFER >>
703 PAGE_SHIFT;
704 else if (!is_power_of_2(bufsize))
705 maxpages =
706 rounddown_pow_of_two(bufsize) >>
707 PAGE_SHIFT;
709 list[setcount].idx = pageidx;
710 list[setcount].count = maxpages;
711 pagecount -= maxpages;
712 pageidx += maxpages;
713 setcount++;
715 pageidx = i;
716 pagecount = 1;
717 pfn = this_pfn;
718 } else {
719 pagecount++;
722 return setcount;
726 * program_rcvarray() - program an RcvArray group with receive buffers
727 * @fp: file pointer
728 * @vaddr: starting user virtual address
729 * @grp: RcvArray group
730 * @sets: array of struct tid_pageset holding information on physically
731 * contiguous chunks from the user buffer
732 * @start: starting index into sets array
733 * @count: number of struct tid_pageset's to program
734 * @pages: an array of struct page * for the user buffer
735 * @tidlist: the array of u32 elements when the information about the
736 * programmed RcvArray entries is to be encoded.
737 * @tididx: starting offset into tidlist
738 * @pmapped: (output parameter) number of pages programmed into the RcvArray
739 * entries.
741 * This function will program up to 'count' number of RcvArray entries from the
742 * group 'grp'. To make best use of write-combining writes, the function will
743 * perform writes to the unused RcvArray entries which will be ignored by the
744 * HW. Each RcvArray entry will be programmed with a physically contiguous
745 * buffer chunk from the user's virtual buffer.
747 * Return:
748 * -EINVAL if the requested count is larger than the size of the group,
749 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
750 * number of RcvArray entries programmed.
752 static int program_rcvarray(struct file *fp, unsigned long vaddr,
753 struct tid_group *grp,
754 struct tid_pageset *sets,
755 unsigned start, u16 count, struct page **pages,
756 u32 *tidlist, unsigned *tididx, unsigned *pmapped)
758 struct hfi1_filedata *fd = fp->private_data;
759 struct hfi1_ctxtdata *uctxt = fd->uctxt;
760 struct hfi1_devdata *dd = uctxt->dd;
761 u16 idx;
762 u32 tidinfo = 0, rcventry, useidx = 0;
763 int mapped = 0;
765 /* Count should never be larger than the group size */
766 if (count > grp->size)
767 return -EINVAL;
769 /* Find the first unused entry in the group */
770 for (idx = 0; idx < grp->size; idx++) {
771 if (!(grp->map & (1 << idx))) {
772 useidx = idx;
773 break;
775 rcv_array_wc_fill(dd, grp->base + idx);
778 idx = 0;
779 while (idx < count) {
780 u16 npages, pageidx, setidx = start + idx;
781 int ret = 0;
784 * If this entry in the group is used, move to the next one.
785 * If we go past the end of the group, exit the loop.
787 if (useidx >= grp->size) {
788 break;
789 } else if (grp->map & (1 << useidx)) {
790 rcv_array_wc_fill(dd, grp->base + useidx);
791 useidx++;
792 continue;
795 rcventry = grp->base + useidx;
796 npages = sets[setidx].count;
797 pageidx = sets[setidx].idx;
799 ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
800 rcventry, grp, pages + pageidx,
801 npages);
802 if (ret)
803 return ret;
804 mapped += npages;
806 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
807 EXP_TID_SET(LEN, npages);
808 tidlist[(*tididx)++] = tidinfo;
809 grp->used++;
810 grp->map |= 1 << useidx++;
811 idx++;
814 /* Fill the rest of the group with "blank" writes */
815 for (; useidx < grp->size; useidx++)
816 rcv_array_wc_fill(dd, grp->base + useidx);
817 *pmapped = mapped;
818 return idx;
821 static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
822 u32 rcventry, struct tid_group *grp,
823 struct page **pages, unsigned npages)
825 int ret;
826 struct hfi1_filedata *fd = fp->private_data;
827 struct hfi1_ctxtdata *uctxt = fd->uctxt;
828 struct tid_rb_node *node;
829 struct hfi1_devdata *dd = uctxt->dd;
830 dma_addr_t phys;
833 * Allocate the node first so we can handle a potential
834 * failure before we've programmed anything.
836 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
837 GFP_KERNEL);
838 if (!node)
839 return -ENOMEM;
841 phys = pci_map_single(dd->pcidev,
842 __va(page_to_phys(pages[0])),
843 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
844 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
845 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
846 phys);
847 kfree(node);
848 return -EFAULT;
851 node->mmu.addr = vaddr;
852 node->mmu.len = npages * PAGE_SIZE;
853 node->phys = page_to_phys(pages[0]);
854 node->npages = npages;
855 node->rcventry = rcventry;
856 node->dma_addr = phys;
857 node->grp = grp;
858 node->freed = false;
859 memcpy(node->pages, pages, sizeof(struct page *) * npages);
861 if (!fd->handler)
862 ret = tid_rb_insert(fd, &node->mmu);
863 else
864 ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
866 if (ret) {
867 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
868 node->rcventry, node->mmu.addr, node->phys, ret);
869 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
870 PCI_DMA_FROMDEVICE);
871 kfree(node);
872 return -EFAULT;
874 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
875 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
876 node->mmu.addr, node->phys, phys);
877 return 0;
880 static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
881 struct tid_group **grp)
883 struct hfi1_filedata *fd = fp->private_data;
884 struct hfi1_ctxtdata *uctxt = fd->uctxt;
885 struct hfi1_devdata *dd = uctxt->dd;
886 struct tid_rb_node *node;
887 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
888 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
890 if (tididx >= uctxt->expected_count) {
891 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
892 tididx, uctxt->ctxt);
893 return -EINVAL;
896 if (tidctrl == 0x3)
897 return -EINVAL;
899 rcventry = tididx + (tidctrl - 1);
901 node = fd->entry_to_rb[rcventry];
902 if (!node || node->rcventry != (uctxt->expected_base + rcventry))
903 return -EBADF;
905 if (grp)
906 *grp = node->grp;
908 if (!fd->handler)
909 cacheless_tid_rb_remove(fd, node);
910 else
911 hfi1_mmu_rb_remove(fd->handler, &node->mmu);
913 return 0;
916 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
918 struct hfi1_ctxtdata *uctxt = fd->uctxt;
919 struct hfi1_devdata *dd = uctxt->dd;
921 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
922 node->npages, node->mmu.addr, node->phys,
923 node->dma_addr);
925 hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
927 * Make sure device has seen the write before we unpin the
928 * pages.
930 flush_wc();
932 pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
933 PCI_DMA_FROMDEVICE);
934 hfi1_release_user_pages(fd->mm, node->pages, node->npages, true);
935 fd->tid_n_pinned -= node->npages;
937 node->grp->used--;
938 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
940 if (node->grp->used == node->grp->size - 1)
941 tid_group_move(node->grp, &uctxt->tid_full_list,
942 &uctxt->tid_used_list);
943 else if (!node->grp->used)
944 tid_group_move(node->grp, &uctxt->tid_used_list,
945 &uctxt->tid_group_list);
946 kfree(node);
950 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
951 * clearing nodes in the non-cached case.
953 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
954 struct exp_tid_set *set,
955 struct hfi1_filedata *fd)
957 struct tid_group *grp, *ptr;
958 int i;
960 list_for_each_entry_safe(grp, ptr, &set->list, list) {
961 list_del_init(&grp->list);
963 for (i = 0; i < grp->size; i++) {
964 if (grp->map & (1 << i)) {
965 u16 rcventry = grp->base + i;
966 struct tid_rb_node *node;
968 node = fd->entry_to_rb[rcventry -
969 uctxt->expected_base];
970 if (!node || node->rcventry != rcventry)
971 continue;
973 cacheless_tid_rb_remove(fd, node);
980 * Always return 0 from this function. A non-zero return indicates that the
981 * remove operation will be called and that memory should be unpinned.
982 * However, the driver cannot unpin out from under PSM. Instead, retain the
983 * memory (by returning 0) and inform PSM that the memory is going away. PSM
984 * will call back later when it has removed the memory from its list.
986 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
988 struct hfi1_filedata *fdata = arg;
989 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
990 struct tid_rb_node *node =
991 container_of(mnode, struct tid_rb_node, mmu);
993 if (node->freed)
994 return 0;
996 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
997 node->rcventry, node->npages, node->dma_addr);
998 node->freed = true;
1000 spin_lock(&fdata->invalid_lock);
1001 if (fdata->invalid_tid_idx < uctxt->expected_count) {
1002 fdata->invalid_tids[fdata->invalid_tid_idx] =
1003 rcventry2tidinfo(node->rcventry - uctxt->expected_base);
1004 fdata->invalid_tids[fdata->invalid_tid_idx] |=
1005 EXP_TID_SET(LEN, node->npages);
1006 if (!fdata->invalid_tid_idx) {
1007 unsigned long *ev;
1010 * hfi1_set_uevent_bits() sets a user event flag
1011 * for all processes. Because calling into the
1012 * driver to process TID cache invalidations is
1013 * expensive and TID cache invalidations are
1014 * handled on a per-process basis, we can
1015 * optimize this to set the flag only for the
1016 * process in question.
1018 ev = uctxt->dd->events +
1019 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
1020 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
1021 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
1023 fdata->invalid_tid_idx++;
1025 spin_unlock(&fdata->invalid_lock);
1026 return 0;
1029 static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
1031 struct hfi1_filedata *fdata = arg;
1032 struct tid_rb_node *tnode =
1033 container_of(node, struct tid_rb_node, mmu);
1034 u32 base = fdata->uctxt->expected_base;
1036 fdata->entry_to_rb[tnode->rcventry - base] = tnode;
1037 return 0;
1040 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
1041 struct tid_rb_node *tnode)
1043 u32 base = fdata->uctxt->expected_base;
1045 fdata->entry_to_rb[tnode->rcventry - base] = NULL;
1046 clear_tid_node(fdata, tnode);
1049 static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
1051 struct hfi1_filedata *fdata = arg;
1052 struct tid_rb_node *tnode =
1053 container_of(node, struct tid_rb_node, mmu);
1055 cacheless_tid_rb_remove(fdata, tnode);