x86: merge sched_clock handling
[linux/fpc-iii.git] / drivers / net / gianfar.c
blob25bdd0832df5752f4f0de2a23b8df710d0ee83ce
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
26 * Theory of operation
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
32 * day be supported.
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. Without NAPI, the packet(s) will be handled
48 * immediately. Both methods will start at the last known empty
49 * descriptor, and process every subsequent descriptor until there
50 * are none left with data (NAPI will stop after a set number of
51 * packets to give time to other tasks, but will eventually
52 * process all the packets). The data arrives inside a
53 * pre-allocated skb, and so after the skb is passed up to the
54 * stack, a new skb must be allocated, and the address field in
55 * the buffer descriptor must be updated to indicate this new
56 * skb.
58 * When the kernel requests that a packet be transmitted, the
59 * driver starts where it left off last time, and points the
60 * descriptor at the buffer which was passed in. The driver
61 * then informs the DMA engine that there are packets ready to
62 * be transmitted. Once the controller is finished transmitting
63 * the packet, an interrupt may be triggered (under the same
64 * conditions as for reception, but depending on the TXF bit).
65 * The driver then cleans up the buffer.
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/platform_device.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
100 #define TX_TIMEOUT (1*HZ)
101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS
104 #ifdef CONFIG_GFAR_NAPI
105 #define RECEIVE(x) netif_receive_skb(x)
106 #else
107 #define RECEIVE(x) netif_rx(x)
108 #endif
110 const char gfar_driver_name[] = "Gianfar Ethernet";
111 const char gfar_driver_version[] = "1.3";
113 static int gfar_enet_open(struct net_device *dev);
114 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
115 static void gfar_timeout(struct net_device *dev);
116 static int gfar_close(struct net_device *dev);
117 struct sk_buff *gfar_new_skb(struct net_device *dev);
118 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
119 struct sk_buff *skb);
120 static int gfar_set_mac_address(struct net_device *dev);
121 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
122 static irqreturn_t gfar_error(int irq, void *dev_id);
123 static irqreturn_t gfar_transmit(int irq, void *dev_id);
124 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
125 static void adjust_link(struct net_device *dev);
126 static void init_registers(struct net_device *dev);
127 static int init_phy(struct net_device *dev);
128 static int gfar_probe(struct platform_device *pdev);
129 static int gfar_remove(struct platform_device *pdev);
130 static void free_skb_resources(struct gfar_private *priv);
131 static void gfar_set_multi(struct net_device *dev);
132 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
133 static void gfar_configure_serdes(struct net_device *dev);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct napi_struct *napi, int budget);
136 #endif
137 #ifdef CONFIG_NET_POLL_CONTROLLER
138 static void gfar_netpoll(struct net_device *dev);
139 #endif
140 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
141 static int gfar_clean_tx_ring(struct net_device *dev);
142 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
143 static void gfar_vlan_rx_register(struct net_device *netdev,
144 struct vlan_group *grp);
145 void gfar_halt(struct net_device *dev);
146 void gfar_start(struct net_device *dev);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
150 extern const struct ethtool_ops gfar_ethtool_ops;
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
156 /* Returns 1 if incoming frames use an FCB */
157 static inline int gfar_uses_fcb(struct gfar_private *priv)
159 return (priv->vlan_enable || priv->rx_csum_enable);
162 /* Set up the ethernet device structure, private data,
163 * and anything else we need before we start */
164 static int gfar_probe(struct platform_device *pdev)
166 u32 tempval;
167 struct net_device *dev = NULL;
168 struct gfar_private *priv = NULL;
169 struct gianfar_platform_data *einfo;
170 struct resource *r;
171 int err = 0;
172 DECLARE_MAC_BUF(mac);
174 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
176 if (NULL == einfo) {
177 printk(KERN_ERR "gfar %d: Missing additional data!\n",
178 pdev->id);
180 return -ENODEV;
183 /* Create an ethernet device instance */
184 dev = alloc_etherdev(sizeof (*priv));
186 if (NULL == dev)
187 return -ENOMEM;
189 priv = netdev_priv(dev);
190 priv->dev = dev;
192 /* Set the info in the priv to the current info */
193 priv->einfo = einfo;
195 /* fill out IRQ fields */
196 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
197 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
198 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
199 priv->interruptError = platform_get_irq_byname(pdev, "error");
200 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
201 goto regs_fail;
202 } else {
203 priv->interruptTransmit = platform_get_irq(pdev, 0);
204 if (priv->interruptTransmit < 0)
205 goto regs_fail;
208 /* get a pointer to the register memory */
209 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
210 priv->regs = ioremap(r->start, sizeof (struct gfar));
212 if (NULL == priv->regs) {
213 err = -ENOMEM;
214 goto regs_fail;
217 spin_lock_init(&priv->txlock);
218 spin_lock_init(&priv->rxlock);
220 platform_set_drvdata(pdev, dev);
222 /* Stop the DMA engine now, in case it was running before */
223 /* (The firmware could have used it, and left it running). */
224 /* To do this, we write Graceful Receive Stop and Graceful */
225 /* Transmit Stop, and then wait until the corresponding bits */
226 /* in IEVENT indicate the stops have completed. */
227 tempval = gfar_read(&priv->regs->dmactrl);
228 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
229 gfar_write(&priv->regs->dmactrl, tempval);
231 tempval = gfar_read(&priv->regs->dmactrl);
232 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
233 gfar_write(&priv->regs->dmactrl, tempval);
235 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
236 cpu_relax();
238 /* Reset MAC layer */
239 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
241 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
242 gfar_write(&priv->regs->maccfg1, tempval);
244 /* Initialize MACCFG2. */
245 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
247 /* Initialize ECNTRL */
248 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
250 /* Copy the station address into the dev structure, */
251 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
253 /* Set the dev->base_addr to the gfar reg region */
254 dev->base_addr = (unsigned long) (priv->regs);
256 SET_NETDEV_DEV(dev, &pdev->dev);
258 /* Fill in the dev structure */
259 dev->open = gfar_enet_open;
260 dev->hard_start_xmit = gfar_start_xmit;
261 dev->tx_timeout = gfar_timeout;
262 dev->watchdog_timeo = TX_TIMEOUT;
263 #ifdef CONFIG_GFAR_NAPI
264 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
265 #endif
266 #ifdef CONFIG_NET_POLL_CONTROLLER
267 dev->poll_controller = gfar_netpoll;
268 #endif
269 dev->stop = gfar_close;
270 dev->change_mtu = gfar_change_mtu;
271 dev->mtu = 1500;
272 dev->set_multicast_list = gfar_set_multi;
274 dev->ethtool_ops = &gfar_ethtool_ops;
276 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
277 priv->rx_csum_enable = 1;
278 dev->features |= NETIF_F_IP_CSUM;
279 } else
280 priv->rx_csum_enable = 0;
282 priv->vlgrp = NULL;
284 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
285 dev->vlan_rx_register = gfar_vlan_rx_register;
287 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
289 priv->vlan_enable = 1;
292 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
293 priv->extended_hash = 1;
294 priv->hash_width = 9;
296 priv->hash_regs[0] = &priv->regs->igaddr0;
297 priv->hash_regs[1] = &priv->regs->igaddr1;
298 priv->hash_regs[2] = &priv->regs->igaddr2;
299 priv->hash_regs[3] = &priv->regs->igaddr3;
300 priv->hash_regs[4] = &priv->regs->igaddr4;
301 priv->hash_regs[5] = &priv->regs->igaddr5;
302 priv->hash_regs[6] = &priv->regs->igaddr6;
303 priv->hash_regs[7] = &priv->regs->igaddr7;
304 priv->hash_regs[8] = &priv->regs->gaddr0;
305 priv->hash_regs[9] = &priv->regs->gaddr1;
306 priv->hash_regs[10] = &priv->regs->gaddr2;
307 priv->hash_regs[11] = &priv->regs->gaddr3;
308 priv->hash_regs[12] = &priv->regs->gaddr4;
309 priv->hash_regs[13] = &priv->regs->gaddr5;
310 priv->hash_regs[14] = &priv->regs->gaddr6;
311 priv->hash_regs[15] = &priv->regs->gaddr7;
313 } else {
314 priv->extended_hash = 0;
315 priv->hash_width = 8;
317 priv->hash_regs[0] = &priv->regs->gaddr0;
318 priv->hash_regs[1] = &priv->regs->gaddr1;
319 priv->hash_regs[2] = &priv->regs->gaddr2;
320 priv->hash_regs[3] = &priv->regs->gaddr3;
321 priv->hash_regs[4] = &priv->regs->gaddr4;
322 priv->hash_regs[5] = &priv->regs->gaddr5;
323 priv->hash_regs[6] = &priv->regs->gaddr6;
324 priv->hash_regs[7] = &priv->regs->gaddr7;
327 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
328 priv->padding = DEFAULT_PADDING;
329 else
330 priv->padding = 0;
332 if (dev->features & NETIF_F_IP_CSUM)
333 dev->hard_header_len += GMAC_FCB_LEN;
335 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
336 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
337 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
339 priv->txcoalescing = DEFAULT_TX_COALESCE;
340 priv->txcount = DEFAULT_TXCOUNT;
341 priv->txtime = DEFAULT_TXTIME;
342 priv->rxcoalescing = DEFAULT_RX_COALESCE;
343 priv->rxcount = DEFAULT_RXCOUNT;
344 priv->rxtime = DEFAULT_RXTIME;
346 /* Enable most messages by default */
347 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
349 err = register_netdev(dev);
351 if (err) {
352 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
353 dev->name);
354 goto register_fail;
357 /* Create all the sysfs files */
358 gfar_init_sysfs(dev);
360 /* Print out the device info */
361 printk(KERN_INFO DEVICE_NAME "%s\n",
362 dev->name, print_mac(mac, dev->dev_addr));
364 /* Even more device info helps when determining which kernel */
365 /* provided which set of benchmarks. */
366 #ifdef CONFIG_GFAR_NAPI
367 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
368 #else
369 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
370 #endif
371 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
372 dev->name, priv->rx_ring_size, priv->tx_ring_size);
374 return 0;
376 register_fail:
377 iounmap(priv->regs);
378 regs_fail:
379 free_netdev(dev);
380 return err;
383 static int gfar_remove(struct platform_device *pdev)
385 struct net_device *dev = platform_get_drvdata(pdev);
386 struct gfar_private *priv = netdev_priv(dev);
388 platform_set_drvdata(pdev, NULL);
390 iounmap(priv->regs);
391 free_netdev(dev);
393 return 0;
397 /* Reads the controller's registers to determine what interface
398 * connects it to the PHY.
400 static phy_interface_t gfar_get_interface(struct net_device *dev)
402 struct gfar_private *priv = netdev_priv(dev);
403 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
405 if (ecntrl & ECNTRL_SGMII_MODE)
406 return PHY_INTERFACE_MODE_SGMII;
408 if (ecntrl & ECNTRL_TBI_MODE) {
409 if (ecntrl & ECNTRL_REDUCED_MODE)
410 return PHY_INTERFACE_MODE_RTBI;
411 else
412 return PHY_INTERFACE_MODE_TBI;
415 if (ecntrl & ECNTRL_REDUCED_MODE) {
416 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
417 return PHY_INTERFACE_MODE_RMII;
418 else {
419 phy_interface_t interface = priv->einfo->interface;
422 * This isn't autodetected right now, so it must
423 * be set by the device tree or platform code.
425 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
426 return PHY_INTERFACE_MODE_RGMII_ID;
428 return PHY_INTERFACE_MODE_RGMII;
432 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
433 return PHY_INTERFACE_MODE_GMII;
435 return PHY_INTERFACE_MODE_MII;
439 /* Initializes driver's PHY state, and attaches to the PHY.
440 * Returns 0 on success.
442 static int init_phy(struct net_device *dev)
444 struct gfar_private *priv = netdev_priv(dev);
445 uint gigabit_support =
446 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
447 SUPPORTED_1000baseT_Full : 0;
448 struct phy_device *phydev;
449 char phy_id[BUS_ID_SIZE];
450 phy_interface_t interface;
452 priv->oldlink = 0;
453 priv->oldspeed = 0;
454 priv->oldduplex = -1;
456 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
458 interface = gfar_get_interface(dev);
460 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
462 if (interface == PHY_INTERFACE_MODE_SGMII)
463 gfar_configure_serdes(dev);
465 if (IS_ERR(phydev)) {
466 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
467 return PTR_ERR(phydev);
470 /* Remove any features not supported by the controller */
471 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
472 phydev->advertising = phydev->supported;
474 priv->phydev = phydev;
476 return 0;
480 * Initialize TBI PHY interface for communicating with the
481 * SERDES lynx PHY on the chip. We communicate with this PHY
482 * through the MDIO bus on each controller, treating it as a
483 * "normal" PHY at the address found in the TBIPA register. We assume
484 * that the TBIPA register is valid. Either the MDIO bus code will set
485 * it to a value that doesn't conflict with other PHYs on the bus, or the
486 * value doesn't matter, as there are no other PHYs on the bus.
488 static void gfar_configure_serdes(struct net_device *dev)
490 struct gfar_private *priv = netdev_priv(dev);
491 struct gfar_mii __iomem *regs =
492 (void __iomem *)&priv->regs->gfar_mii_regs;
493 int tbipa = gfar_read(&priv->regs->tbipa);
495 /* Single clk mode, mii mode off(for serdes communication) */
496 gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
498 gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
499 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
500 ADVERTISE_1000XPSE_ASYM);
502 gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
503 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
506 static void init_registers(struct net_device *dev)
508 struct gfar_private *priv = netdev_priv(dev);
510 /* Clear IEVENT */
511 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
513 /* Initialize IMASK */
514 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
516 /* Init hash registers to zero */
517 gfar_write(&priv->regs->igaddr0, 0);
518 gfar_write(&priv->regs->igaddr1, 0);
519 gfar_write(&priv->regs->igaddr2, 0);
520 gfar_write(&priv->regs->igaddr3, 0);
521 gfar_write(&priv->regs->igaddr4, 0);
522 gfar_write(&priv->regs->igaddr5, 0);
523 gfar_write(&priv->regs->igaddr6, 0);
524 gfar_write(&priv->regs->igaddr7, 0);
526 gfar_write(&priv->regs->gaddr0, 0);
527 gfar_write(&priv->regs->gaddr1, 0);
528 gfar_write(&priv->regs->gaddr2, 0);
529 gfar_write(&priv->regs->gaddr3, 0);
530 gfar_write(&priv->regs->gaddr4, 0);
531 gfar_write(&priv->regs->gaddr5, 0);
532 gfar_write(&priv->regs->gaddr6, 0);
533 gfar_write(&priv->regs->gaddr7, 0);
535 /* Zero out the rmon mib registers if it has them */
536 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
537 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
539 /* Mask off the CAM interrupts */
540 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
541 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
544 /* Initialize the max receive buffer length */
545 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
547 /* Initialize the Minimum Frame Length Register */
548 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
552 /* Halt the receive and transmit queues */
553 void gfar_halt(struct net_device *dev)
555 struct gfar_private *priv = netdev_priv(dev);
556 struct gfar __iomem *regs = priv->regs;
557 u32 tempval;
559 /* Mask all interrupts */
560 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
562 /* Clear all interrupts */
563 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
565 /* Stop the DMA, and wait for it to stop */
566 tempval = gfar_read(&priv->regs->dmactrl);
567 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
568 != (DMACTRL_GRS | DMACTRL_GTS)) {
569 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
570 gfar_write(&priv->regs->dmactrl, tempval);
572 while (!(gfar_read(&priv->regs->ievent) &
573 (IEVENT_GRSC | IEVENT_GTSC)))
574 cpu_relax();
577 /* Disable Rx and Tx */
578 tempval = gfar_read(&regs->maccfg1);
579 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
580 gfar_write(&regs->maccfg1, tempval);
583 void stop_gfar(struct net_device *dev)
585 struct gfar_private *priv = netdev_priv(dev);
586 struct gfar __iomem *regs = priv->regs;
587 unsigned long flags;
589 phy_stop(priv->phydev);
591 /* Lock it down */
592 spin_lock_irqsave(&priv->txlock, flags);
593 spin_lock(&priv->rxlock);
595 gfar_halt(dev);
597 spin_unlock(&priv->rxlock);
598 spin_unlock_irqrestore(&priv->txlock, flags);
600 /* Free the IRQs */
601 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
602 free_irq(priv->interruptError, dev);
603 free_irq(priv->interruptTransmit, dev);
604 free_irq(priv->interruptReceive, dev);
605 } else {
606 free_irq(priv->interruptTransmit, dev);
609 free_skb_resources(priv);
611 dma_free_coherent(&dev->dev,
612 sizeof(struct txbd8)*priv->tx_ring_size
613 + sizeof(struct rxbd8)*priv->rx_ring_size,
614 priv->tx_bd_base,
615 gfar_read(&regs->tbase0));
618 /* If there are any tx skbs or rx skbs still around, free them.
619 * Then free tx_skbuff and rx_skbuff */
620 static void free_skb_resources(struct gfar_private *priv)
622 struct rxbd8 *rxbdp;
623 struct txbd8 *txbdp;
624 int i;
626 /* Go through all the buffer descriptors and free their data buffers */
627 txbdp = priv->tx_bd_base;
629 for (i = 0; i < priv->tx_ring_size; i++) {
631 if (priv->tx_skbuff[i]) {
632 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
633 txbdp->length,
634 DMA_TO_DEVICE);
635 dev_kfree_skb_any(priv->tx_skbuff[i]);
636 priv->tx_skbuff[i] = NULL;
639 txbdp++;
642 kfree(priv->tx_skbuff);
644 rxbdp = priv->rx_bd_base;
646 /* rx_skbuff is not guaranteed to be allocated, so only
647 * free it and its contents if it is allocated */
648 if(priv->rx_skbuff != NULL) {
649 for (i = 0; i < priv->rx_ring_size; i++) {
650 if (priv->rx_skbuff[i]) {
651 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
652 priv->rx_buffer_size,
653 DMA_FROM_DEVICE);
655 dev_kfree_skb_any(priv->rx_skbuff[i]);
656 priv->rx_skbuff[i] = NULL;
659 rxbdp->status = 0;
660 rxbdp->length = 0;
661 rxbdp->bufPtr = 0;
663 rxbdp++;
666 kfree(priv->rx_skbuff);
670 void gfar_start(struct net_device *dev)
672 struct gfar_private *priv = netdev_priv(dev);
673 struct gfar __iomem *regs = priv->regs;
674 u32 tempval;
676 /* Enable Rx and Tx in MACCFG1 */
677 tempval = gfar_read(&regs->maccfg1);
678 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
679 gfar_write(&regs->maccfg1, tempval);
681 /* Initialize DMACTRL to have WWR and WOP */
682 tempval = gfar_read(&priv->regs->dmactrl);
683 tempval |= DMACTRL_INIT_SETTINGS;
684 gfar_write(&priv->regs->dmactrl, tempval);
686 /* Make sure we aren't stopped */
687 tempval = gfar_read(&priv->regs->dmactrl);
688 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
689 gfar_write(&priv->regs->dmactrl, tempval);
691 /* Clear THLT/RHLT, so that the DMA starts polling now */
692 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
693 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
695 /* Unmask the interrupts we look for */
696 gfar_write(&regs->imask, IMASK_DEFAULT);
699 /* Bring the controller up and running */
700 int startup_gfar(struct net_device *dev)
702 struct txbd8 *txbdp;
703 struct rxbd8 *rxbdp;
704 dma_addr_t addr = 0;
705 unsigned long vaddr;
706 int i;
707 struct gfar_private *priv = netdev_priv(dev);
708 struct gfar __iomem *regs = priv->regs;
709 int err = 0;
710 u32 rctrl = 0;
711 u32 attrs = 0;
713 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
715 /* Allocate memory for the buffer descriptors */
716 vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
717 sizeof (struct txbd8) * priv->tx_ring_size +
718 sizeof (struct rxbd8) * priv->rx_ring_size,
719 &addr, GFP_KERNEL);
721 if (vaddr == 0) {
722 if (netif_msg_ifup(priv))
723 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
724 dev->name);
725 return -ENOMEM;
728 priv->tx_bd_base = (struct txbd8 *) vaddr;
730 /* enet DMA only understands physical addresses */
731 gfar_write(&regs->tbase0, addr);
733 /* Start the rx descriptor ring where the tx ring leaves off */
734 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
735 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
736 priv->rx_bd_base = (struct rxbd8 *) vaddr;
737 gfar_write(&regs->rbase0, addr);
739 /* Setup the skbuff rings */
740 priv->tx_skbuff =
741 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
742 priv->tx_ring_size, GFP_KERNEL);
744 if (NULL == priv->tx_skbuff) {
745 if (netif_msg_ifup(priv))
746 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
747 dev->name);
748 err = -ENOMEM;
749 goto tx_skb_fail;
752 for (i = 0; i < priv->tx_ring_size; i++)
753 priv->tx_skbuff[i] = NULL;
755 priv->rx_skbuff =
756 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
757 priv->rx_ring_size, GFP_KERNEL);
759 if (NULL == priv->rx_skbuff) {
760 if (netif_msg_ifup(priv))
761 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
762 dev->name);
763 err = -ENOMEM;
764 goto rx_skb_fail;
767 for (i = 0; i < priv->rx_ring_size; i++)
768 priv->rx_skbuff[i] = NULL;
770 /* Initialize some variables in our dev structure */
771 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
772 priv->cur_rx = priv->rx_bd_base;
773 priv->skb_curtx = priv->skb_dirtytx = 0;
774 priv->skb_currx = 0;
776 /* Initialize Transmit Descriptor Ring */
777 txbdp = priv->tx_bd_base;
778 for (i = 0; i < priv->tx_ring_size; i++) {
779 txbdp->status = 0;
780 txbdp->length = 0;
781 txbdp->bufPtr = 0;
782 txbdp++;
785 /* Set the last descriptor in the ring to indicate wrap */
786 txbdp--;
787 txbdp->status |= TXBD_WRAP;
789 rxbdp = priv->rx_bd_base;
790 for (i = 0; i < priv->rx_ring_size; i++) {
791 struct sk_buff *skb;
793 skb = gfar_new_skb(dev);
795 if (!skb) {
796 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
797 dev->name);
799 goto err_rxalloc_fail;
802 priv->rx_skbuff[i] = skb;
804 gfar_new_rxbdp(dev, rxbdp, skb);
806 rxbdp++;
809 /* Set the last descriptor in the ring to wrap */
810 rxbdp--;
811 rxbdp->status |= RXBD_WRAP;
813 /* If the device has multiple interrupts, register for
814 * them. Otherwise, only register for the one */
815 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
816 /* Install our interrupt handlers for Error,
817 * Transmit, and Receive */
818 if (request_irq(priv->interruptError, gfar_error,
819 0, "enet_error", dev) < 0) {
820 if (netif_msg_intr(priv))
821 printk(KERN_ERR "%s: Can't get IRQ %d\n",
822 dev->name, priv->interruptError);
824 err = -1;
825 goto err_irq_fail;
828 if (request_irq(priv->interruptTransmit, gfar_transmit,
829 0, "enet_tx", dev) < 0) {
830 if (netif_msg_intr(priv))
831 printk(KERN_ERR "%s: Can't get IRQ %d\n",
832 dev->name, priv->interruptTransmit);
834 err = -1;
836 goto tx_irq_fail;
839 if (request_irq(priv->interruptReceive, gfar_receive,
840 0, "enet_rx", dev) < 0) {
841 if (netif_msg_intr(priv))
842 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
843 dev->name, priv->interruptReceive);
845 err = -1;
846 goto rx_irq_fail;
848 } else {
849 if (request_irq(priv->interruptTransmit, gfar_interrupt,
850 0, "gfar_interrupt", dev) < 0) {
851 if (netif_msg_intr(priv))
852 printk(KERN_ERR "%s: Can't get IRQ %d\n",
853 dev->name, priv->interruptError);
855 err = -1;
856 goto err_irq_fail;
860 phy_start(priv->phydev);
862 /* Configure the coalescing support */
863 if (priv->txcoalescing)
864 gfar_write(&regs->txic,
865 mk_ic_value(priv->txcount, priv->txtime));
866 else
867 gfar_write(&regs->txic, 0);
869 if (priv->rxcoalescing)
870 gfar_write(&regs->rxic,
871 mk_ic_value(priv->rxcount, priv->rxtime));
872 else
873 gfar_write(&regs->rxic, 0);
875 if (priv->rx_csum_enable)
876 rctrl |= RCTRL_CHECKSUMMING;
878 if (priv->extended_hash) {
879 rctrl |= RCTRL_EXTHASH;
881 gfar_clear_exact_match(dev);
882 rctrl |= RCTRL_EMEN;
885 if (priv->vlan_enable)
886 rctrl |= RCTRL_VLAN;
888 if (priv->padding) {
889 rctrl &= ~RCTRL_PAL_MASK;
890 rctrl |= RCTRL_PADDING(priv->padding);
893 /* Init rctrl based on our settings */
894 gfar_write(&priv->regs->rctrl, rctrl);
896 if (dev->features & NETIF_F_IP_CSUM)
897 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
899 /* Set the extraction length and index */
900 attrs = ATTRELI_EL(priv->rx_stash_size) |
901 ATTRELI_EI(priv->rx_stash_index);
903 gfar_write(&priv->regs->attreli, attrs);
905 /* Start with defaults, and add stashing or locking
906 * depending on the approprate variables */
907 attrs = ATTR_INIT_SETTINGS;
909 if (priv->bd_stash_en)
910 attrs |= ATTR_BDSTASH;
912 if (priv->rx_stash_size != 0)
913 attrs |= ATTR_BUFSTASH;
915 gfar_write(&priv->regs->attr, attrs);
917 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
918 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
919 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
921 /* Start the controller */
922 gfar_start(dev);
924 return 0;
926 rx_irq_fail:
927 free_irq(priv->interruptTransmit, dev);
928 tx_irq_fail:
929 free_irq(priv->interruptError, dev);
930 err_irq_fail:
931 err_rxalloc_fail:
932 rx_skb_fail:
933 free_skb_resources(priv);
934 tx_skb_fail:
935 dma_free_coherent(&dev->dev,
936 sizeof(struct txbd8)*priv->tx_ring_size
937 + sizeof(struct rxbd8)*priv->rx_ring_size,
938 priv->tx_bd_base,
939 gfar_read(&regs->tbase0));
941 return err;
944 /* Called when something needs to use the ethernet device */
945 /* Returns 0 for success. */
946 static int gfar_enet_open(struct net_device *dev)
948 #ifdef CONFIG_GFAR_NAPI
949 struct gfar_private *priv = netdev_priv(dev);
950 #endif
951 int err;
953 #ifdef CONFIG_GFAR_NAPI
954 napi_enable(&priv->napi);
955 #endif
957 /* Initialize a bunch of registers */
958 init_registers(dev);
960 gfar_set_mac_address(dev);
962 err = init_phy(dev);
964 if(err) {
965 #ifdef CONFIG_GFAR_NAPI
966 napi_disable(&priv->napi);
967 #endif
968 return err;
971 err = startup_gfar(dev);
972 if (err) {
973 #ifdef CONFIG_GFAR_NAPI
974 napi_disable(&priv->napi);
975 #endif
976 return err;
979 netif_start_queue(dev);
981 return err;
984 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
986 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
988 memset(fcb, 0, GMAC_FCB_LEN);
990 return fcb;
993 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
995 u8 flags = 0;
997 /* If we're here, it's a IP packet with a TCP or UDP
998 * payload. We set it to checksum, using a pseudo-header
999 * we provide
1001 flags = TXFCB_DEFAULT;
1003 /* Tell the controller what the protocol is */
1004 /* And provide the already calculated phcs */
1005 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1006 flags |= TXFCB_UDP;
1007 fcb->phcs = udp_hdr(skb)->check;
1008 } else
1009 fcb->phcs = tcp_hdr(skb)->check;
1011 /* l3os is the distance between the start of the
1012 * frame (skb->data) and the start of the IP hdr.
1013 * l4os is the distance between the start of the
1014 * l3 hdr and the l4 hdr */
1015 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1016 fcb->l4os = skb_network_header_len(skb);
1018 fcb->flags = flags;
1021 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1023 fcb->flags |= TXFCB_VLN;
1024 fcb->vlctl = vlan_tx_tag_get(skb);
1027 /* This is called by the kernel when a frame is ready for transmission. */
1028 /* It is pointed to by the dev->hard_start_xmit function pointer */
1029 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1031 struct gfar_private *priv = netdev_priv(dev);
1032 struct txfcb *fcb = NULL;
1033 struct txbd8 *txbdp;
1034 u16 status;
1035 unsigned long flags;
1037 /* Update transmit stats */
1038 dev->stats.tx_bytes += skb->len;
1040 /* Lock priv now */
1041 spin_lock_irqsave(&priv->txlock, flags);
1043 /* Point at the first free tx descriptor */
1044 txbdp = priv->cur_tx;
1046 /* Clear all but the WRAP status flags */
1047 status = txbdp->status & TXBD_WRAP;
1049 /* Set up checksumming */
1050 if (likely((dev->features & NETIF_F_IP_CSUM)
1051 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1052 fcb = gfar_add_fcb(skb, txbdp);
1053 status |= TXBD_TOE;
1054 gfar_tx_checksum(skb, fcb);
1057 if (priv->vlan_enable &&
1058 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1059 if (unlikely(NULL == fcb)) {
1060 fcb = gfar_add_fcb(skb, txbdp);
1061 status |= TXBD_TOE;
1064 gfar_tx_vlan(skb, fcb);
1067 /* Set buffer length and pointer */
1068 txbdp->length = skb->len;
1069 txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1070 skb->len, DMA_TO_DEVICE);
1072 /* Save the skb pointer so we can free it later */
1073 priv->tx_skbuff[priv->skb_curtx] = skb;
1075 /* Update the current skb pointer (wrapping if this was the last) */
1076 priv->skb_curtx =
1077 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1079 /* Flag the BD as interrupt-causing */
1080 status |= TXBD_INTERRUPT;
1082 /* Flag the BD as ready to go, last in frame, and */
1083 /* in need of CRC */
1084 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1086 dev->trans_start = jiffies;
1088 /* The powerpc-specific eieio() is used, as wmb() has too strong
1089 * semantics (it requires synchronization between cacheable and
1090 * uncacheable mappings, which eieio doesn't provide and which we
1091 * don't need), thus requiring a more expensive sync instruction. At
1092 * some point, the set of architecture-independent barrier functions
1093 * should be expanded to include weaker barriers.
1096 eieio();
1097 txbdp->status = status;
1099 /* If this was the last BD in the ring, the next one */
1100 /* is at the beginning of the ring */
1101 if (txbdp->status & TXBD_WRAP)
1102 txbdp = priv->tx_bd_base;
1103 else
1104 txbdp++;
1106 /* If the next BD still needs to be cleaned up, then the bds
1107 are full. We need to tell the kernel to stop sending us stuff. */
1108 if (txbdp == priv->dirty_tx) {
1109 netif_stop_queue(dev);
1111 dev->stats.tx_fifo_errors++;
1114 /* Update the current txbd to the next one */
1115 priv->cur_tx = txbdp;
1117 /* Tell the DMA to go go go */
1118 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1120 /* Unlock priv */
1121 spin_unlock_irqrestore(&priv->txlock, flags);
1123 return 0;
1126 /* Stops the kernel queue, and halts the controller */
1127 static int gfar_close(struct net_device *dev)
1129 struct gfar_private *priv = netdev_priv(dev);
1131 #ifdef CONFIG_GFAR_NAPI
1132 napi_disable(&priv->napi);
1133 #endif
1135 stop_gfar(dev);
1137 /* Disconnect from the PHY */
1138 phy_disconnect(priv->phydev);
1139 priv->phydev = NULL;
1141 netif_stop_queue(dev);
1143 return 0;
1146 /* Changes the mac address if the controller is not running. */
1147 static int gfar_set_mac_address(struct net_device *dev)
1149 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1151 return 0;
1155 /* Enables and disables VLAN insertion/extraction */
1156 static void gfar_vlan_rx_register(struct net_device *dev,
1157 struct vlan_group *grp)
1159 struct gfar_private *priv = netdev_priv(dev);
1160 unsigned long flags;
1161 u32 tempval;
1163 spin_lock_irqsave(&priv->rxlock, flags);
1165 priv->vlgrp = grp;
1167 if (grp) {
1168 /* Enable VLAN tag insertion */
1169 tempval = gfar_read(&priv->regs->tctrl);
1170 tempval |= TCTRL_VLINS;
1172 gfar_write(&priv->regs->tctrl, tempval);
1174 /* Enable VLAN tag extraction */
1175 tempval = gfar_read(&priv->regs->rctrl);
1176 tempval |= RCTRL_VLEX;
1177 gfar_write(&priv->regs->rctrl, tempval);
1178 } else {
1179 /* Disable VLAN tag insertion */
1180 tempval = gfar_read(&priv->regs->tctrl);
1181 tempval &= ~TCTRL_VLINS;
1182 gfar_write(&priv->regs->tctrl, tempval);
1184 /* Disable VLAN tag extraction */
1185 tempval = gfar_read(&priv->regs->rctrl);
1186 tempval &= ~RCTRL_VLEX;
1187 gfar_write(&priv->regs->rctrl, tempval);
1190 spin_unlock_irqrestore(&priv->rxlock, flags);
1193 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1195 int tempsize, tempval;
1196 struct gfar_private *priv = netdev_priv(dev);
1197 int oldsize = priv->rx_buffer_size;
1198 int frame_size = new_mtu + ETH_HLEN;
1200 if (priv->vlan_enable)
1201 frame_size += VLAN_HLEN;
1203 if (gfar_uses_fcb(priv))
1204 frame_size += GMAC_FCB_LEN;
1206 frame_size += priv->padding;
1208 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1209 if (netif_msg_drv(priv))
1210 printk(KERN_ERR "%s: Invalid MTU setting\n",
1211 dev->name);
1212 return -EINVAL;
1215 tempsize =
1216 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1217 INCREMENTAL_BUFFER_SIZE;
1219 /* Only stop and start the controller if it isn't already
1220 * stopped, and we changed something */
1221 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1222 stop_gfar(dev);
1224 priv->rx_buffer_size = tempsize;
1226 dev->mtu = new_mtu;
1228 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1229 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1231 /* If the mtu is larger than the max size for standard
1232 * ethernet frames (ie, a jumbo frame), then set maccfg2
1233 * to allow huge frames, and to check the length */
1234 tempval = gfar_read(&priv->regs->maccfg2);
1236 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1237 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1238 else
1239 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1241 gfar_write(&priv->regs->maccfg2, tempval);
1243 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1244 startup_gfar(dev);
1246 return 0;
1249 /* gfar_timeout gets called when a packet has not been
1250 * transmitted after a set amount of time.
1251 * For now, assume that clearing out all the structures, and
1252 * starting over will fix the problem. */
1253 static void gfar_timeout(struct net_device *dev)
1255 dev->stats.tx_errors++;
1257 if (dev->flags & IFF_UP) {
1258 stop_gfar(dev);
1259 startup_gfar(dev);
1262 netif_schedule(dev);
1265 /* Interrupt Handler for Transmit complete */
1266 static int gfar_clean_tx_ring(struct net_device *dev)
1268 struct txbd8 *bdp;
1269 struct gfar_private *priv = netdev_priv(dev);
1270 int howmany = 0;
1272 bdp = priv->dirty_tx;
1273 while ((bdp->status & TXBD_READY) == 0) {
1274 /* If dirty_tx and cur_tx are the same, then either the */
1275 /* ring is empty or full now (it could only be full in the beginning, */
1276 /* obviously). If it is empty, we are done. */
1277 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1278 break;
1280 howmany++;
1282 /* Deferred means some collisions occurred during transmit, */
1283 /* but we eventually sent the packet. */
1284 if (bdp->status & TXBD_DEF)
1285 dev->stats.collisions++;
1287 /* Free the sk buffer associated with this TxBD */
1288 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1290 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1291 priv->skb_dirtytx =
1292 (priv->skb_dirtytx +
1293 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1295 /* Clean BD length for empty detection */
1296 bdp->length = 0;
1298 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1299 if (bdp->status & TXBD_WRAP)
1300 bdp = priv->tx_bd_base;
1301 else
1302 bdp++;
1304 /* Move dirty_tx to be the next bd */
1305 priv->dirty_tx = bdp;
1307 /* We freed a buffer, so now we can restart transmission */
1308 if (netif_queue_stopped(dev))
1309 netif_wake_queue(dev);
1310 } /* while ((bdp->status & TXBD_READY) == 0) */
1312 dev->stats.tx_packets += howmany;
1314 return howmany;
1317 /* Interrupt Handler for Transmit complete */
1318 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1320 struct net_device *dev = (struct net_device *) dev_id;
1321 struct gfar_private *priv = netdev_priv(dev);
1323 /* Clear IEVENT */
1324 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1326 /* Lock priv */
1327 spin_lock(&priv->txlock);
1329 gfar_clean_tx_ring(dev);
1331 /* If we are coalescing the interrupts, reset the timer */
1332 /* Otherwise, clear it */
1333 if (likely(priv->txcoalescing)) {
1334 gfar_write(&priv->regs->txic, 0);
1335 gfar_write(&priv->regs->txic,
1336 mk_ic_value(priv->txcount, priv->txtime));
1339 spin_unlock(&priv->txlock);
1341 return IRQ_HANDLED;
1344 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1345 struct sk_buff *skb)
1347 struct gfar_private *priv = netdev_priv(dev);
1348 u32 * status_len = (u32 *)bdp;
1349 u16 flags;
1351 bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1352 priv->rx_buffer_size, DMA_FROM_DEVICE);
1354 flags = RXBD_EMPTY | RXBD_INTERRUPT;
1356 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1357 flags |= RXBD_WRAP;
1359 eieio();
1361 *status_len = (u32)flags << 16;
1365 struct sk_buff * gfar_new_skb(struct net_device *dev)
1367 unsigned int alignamount;
1368 struct gfar_private *priv = netdev_priv(dev);
1369 struct sk_buff *skb = NULL;
1371 /* We have to allocate the skb, so keep trying till we succeed */
1372 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1374 if (!skb)
1375 return NULL;
1377 alignamount = RXBUF_ALIGNMENT -
1378 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1380 /* We need the data buffer to be aligned properly. We will reserve
1381 * as many bytes as needed to align the data properly
1383 skb_reserve(skb, alignamount);
1385 return skb;
1388 static inline void count_errors(unsigned short status, struct net_device *dev)
1390 struct gfar_private *priv = netdev_priv(dev);
1391 struct net_device_stats *stats = &dev->stats;
1392 struct gfar_extra_stats *estats = &priv->extra_stats;
1394 /* If the packet was truncated, none of the other errors
1395 * matter */
1396 if (status & RXBD_TRUNCATED) {
1397 stats->rx_length_errors++;
1399 estats->rx_trunc++;
1401 return;
1403 /* Count the errors, if there were any */
1404 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1405 stats->rx_length_errors++;
1407 if (status & RXBD_LARGE)
1408 estats->rx_large++;
1409 else
1410 estats->rx_short++;
1412 if (status & RXBD_NONOCTET) {
1413 stats->rx_frame_errors++;
1414 estats->rx_nonoctet++;
1416 if (status & RXBD_CRCERR) {
1417 estats->rx_crcerr++;
1418 stats->rx_crc_errors++;
1420 if (status & RXBD_OVERRUN) {
1421 estats->rx_overrun++;
1422 stats->rx_crc_errors++;
1426 irqreturn_t gfar_receive(int irq, void *dev_id)
1428 struct net_device *dev = (struct net_device *) dev_id;
1429 struct gfar_private *priv = netdev_priv(dev);
1430 #ifdef CONFIG_GFAR_NAPI
1431 u32 tempval;
1432 #else
1433 unsigned long flags;
1434 #endif
1436 /* support NAPI */
1437 #ifdef CONFIG_GFAR_NAPI
1438 /* Clear IEVENT, so interrupts aren't called again
1439 * because of the packets that have already arrived */
1440 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1442 if (netif_rx_schedule_prep(dev, &priv->napi)) {
1443 tempval = gfar_read(&priv->regs->imask);
1444 tempval &= IMASK_RTX_DISABLED;
1445 gfar_write(&priv->regs->imask, tempval);
1447 __netif_rx_schedule(dev, &priv->napi);
1448 } else {
1449 if (netif_msg_rx_err(priv))
1450 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1451 dev->name, gfar_read(&priv->regs->ievent),
1452 gfar_read(&priv->regs->imask));
1454 #else
1455 /* Clear IEVENT, so rx interrupt isn't called again
1456 * because of this interrupt */
1457 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1459 spin_lock_irqsave(&priv->rxlock, flags);
1460 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1462 /* If we are coalescing interrupts, update the timer */
1463 /* Otherwise, clear it */
1464 if (likely(priv->rxcoalescing)) {
1465 gfar_write(&priv->regs->rxic, 0);
1466 gfar_write(&priv->regs->rxic,
1467 mk_ic_value(priv->rxcount, priv->rxtime));
1470 spin_unlock_irqrestore(&priv->rxlock, flags);
1471 #endif
1473 return IRQ_HANDLED;
1476 static inline int gfar_rx_vlan(struct sk_buff *skb,
1477 struct vlan_group *vlgrp, unsigned short vlctl)
1479 #ifdef CONFIG_GFAR_NAPI
1480 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1481 #else
1482 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1483 #endif
1486 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1488 /* If valid headers were found, and valid sums
1489 * were verified, then we tell the kernel that no
1490 * checksumming is necessary. Otherwise, it is */
1491 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1492 skb->ip_summed = CHECKSUM_UNNECESSARY;
1493 else
1494 skb->ip_summed = CHECKSUM_NONE;
1498 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1500 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1502 /* Remove the FCB from the skb */
1503 skb_pull(skb, GMAC_FCB_LEN);
1505 return fcb;
1508 /* gfar_process_frame() -- handle one incoming packet if skb
1509 * isn't NULL. */
1510 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1511 int length)
1513 struct gfar_private *priv = netdev_priv(dev);
1514 struct rxfcb *fcb = NULL;
1516 if (NULL == skb) {
1517 if (netif_msg_rx_err(priv))
1518 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1519 dev->stats.rx_dropped++;
1520 priv->extra_stats.rx_skbmissing++;
1521 } else {
1522 int ret;
1524 /* Prep the skb for the packet */
1525 skb_put(skb, length);
1527 /* Grab the FCB if there is one */
1528 if (gfar_uses_fcb(priv))
1529 fcb = gfar_get_fcb(skb);
1531 /* Remove the padded bytes, if there are any */
1532 if (priv->padding)
1533 skb_pull(skb, priv->padding);
1535 if (priv->rx_csum_enable)
1536 gfar_rx_checksum(skb, fcb);
1538 /* Tell the skb what kind of packet this is */
1539 skb->protocol = eth_type_trans(skb, dev);
1541 /* Send the packet up the stack */
1542 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1543 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1544 else
1545 ret = RECEIVE(skb);
1547 if (NET_RX_DROP == ret)
1548 priv->extra_stats.kernel_dropped++;
1551 return 0;
1554 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1555 * until the budget/quota has been reached. Returns the number
1556 * of frames handled
1558 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1560 struct rxbd8 *bdp;
1561 struct sk_buff *skb;
1562 u16 pkt_len;
1563 int howmany = 0;
1564 struct gfar_private *priv = netdev_priv(dev);
1566 /* Get the first full descriptor */
1567 bdp = priv->cur_rx;
1569 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1570 struct sk_buff *newskb;
1571 rmb();
1573 /* Add another skb for the future */
1574 newskb = gfar_new_skb(dev);
1576 skb = priv->rx_skbuff[priv->skb_currx];
1578 /* We drop the frame if we failed to allocate a new buffer */
1579 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1580 bdp->status & RXBD_ERR)) {
1581 count_errors(bdp->status, dev);
1583 if (unlikely(!newskb))
1584 newskb = skb;
1586 if (skb) {
1587 dma_unmap_single(&priv->dev->dev,
1588 bdp->bufPtr,
1589 priv->rx_buffer_size,
1590 DMA_FROM_DEVICE);
1592 dev_kfree_skb_any(skb);
1594 } else {
1595 /* Increment the number of packets */
1596 dev->stats.rx_packets++;
1597 howmany++;
1599 /* Remove the FCS from the packet length */
1600 pkt_len = bdp->length - 4;
1602 gfar_process_frame(dev, skb, pkt_len);
1604 dev->stats.rx_bytes += pkt_len;
1607 dev->last_rx = jiffies;
1609 priv->rx_skbuff[priv->skb_currx] = newskb;
1611 /* Setup the new bdp */
1612 gfar_new_rxbdp(dev, bdp, newskb);
1614 /* Update to the next pointer */
1615 if (bdp->status & RXBD_WRAP)
1616 bdp = priv->rx_bd_base;
1617 else
1618 bdp++;
1620 /* update to point at the next skb */
1621 priv->skb_currx =
1622 (priv->skb_currx + 1) &
1623 RX_RING_MOD_MASK(priv->rx_ring_size);
1626 /* Update the current rxbd pointer to be the next one */
1627 priv->cur_rx = bdp;
1629 return howmany;
1632 #ifdef CONFIG_GFAR_NAPI
1633 static int gfar_poll(struct napi_struct *napi, int budget)
1635 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1636 struct net_device *dev = priv->dev;
1637 int howmany;
1638 unsigned long flags;
1640 /* If we fail to get the lock, don't bother with the TX BDs */
1641 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1642 gfar_clean_tx_ring(dev);
1643 spin_unlock_irqrestore(&priv->txlock, flags);
1646 howmany = gfar_clean_rx_ring(dev, budget);
1648 if (howmany < budget) {
1649 netif_rx_complete(dev, napi);
1651 /* Clear the halt bit in RSTAT */
1652 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1654 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1656 /* If we are coalescing interrupts, update the timer */
1657 /* Otherwise, clear it */
1658 if (likely(priv->rxcoalescing)) {
1659 gfar_write(&priv->regs->rxic, 0);
1660 gfar_write(&priv->regs->rxic,
1661 mk_ic_value(priv->rxcount, priv->rxtime));
1665 return howmany;
1667 #endif
1669 #ifdef CONFIG_NET_POLL_CONTROLLER
1671 * Polling 'interrupt' - used by things like netconsole to send skbs
1672 * without having to re-enable interrupts. It's not called while
1673 * the interrupt routine is executing.
1675 static void gfar_netpoll(struct net_device *dev)
1677 struct gfar_private *priv = netdev_priv(dev);
1679 /* If the device has multiple interrupts, run tx/rx */
1680 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1681 disable_irq(priv->interruptTransmit);
1682 disable_irq(priv->interruptReceive);
1683 disable_irq(priv->interruptError);
1684 gfar_interrupt(priv->interruptTransmit, dev);
1685 enable_irq(priv->interruptError);
1686 enable_irq(priv->interruptReceive);
1687 enable_irq(priv->interruptTransmit);
1688 } else {
1689 disable_irq(priv->interruptTransmit);
1690 gfar_interrupt(priv->interruptTransmit, dev);
1691 enable_irq(priv->interruptTransmit);
1694 #endif
1696 /* The interrupt handler for devices with one interrupt */
1697 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1699 struct net_device *dev = dev_id;
1700 struct gfar_private *priv = netdev_priv(dev);
1702 /* Save ievent for future reference */
1703 u32 events = gfar_read(&priv->regs->ievent);
1705 /* Check for reception */
1706 if (events & IEVENT_RX_MASK)
1707 gfar_receive(irq, dev_id);
1709 /* Check for transmit completion */
1710 if (events & IEVENT_TX_MASK)
1711 gfar_transmit(irq, dev_id);
1713 /* Check for errors */
1714 if (events & IEVENT_ERR_MASK)
1715 gfar_error(irq, dev_id);
1717 return IRQ_HANDLED;
1720 /* Called every time the controller might need to be made
1721 * aware of new link state. The PHY code conveys this
1722 * information through variables in the phydev structure, and this
1723 * function converts those variables into the appropriate
1724 * register values, and can bring down the device if needed.
1726 static void adjust_link(struct net_device *dev)
1728 struct gfar_private *priv = netdev_priv(dev);
1729 struct gfar __iomem *regs = priv->regs;
1730 unsigned long flags;
1731 struct phy_device *phydev = priv->phydev;
1732 int new_state = 0;
1734 spin_lock_irqsave(&priv->txlock, flags);
1735 if (phydev->link) {
1736 u32 tempval = gfar_read(&regs->maccfg2);
1737 u32 ecntrl = gfar_read(&regs->ecntrl);
1739 /* Now we make sure that we can be in full duplex mode.
1740 * If not, we operate in half-duplex mode. */
1741 if (phydev->duplex != priv->oldduplex) {
1742 new_state = 1;
1743 if (!(phydev->duplex))
1744 tempval &= ~(MACCFG2_FULL_DUPLEX);
1745 else
1746 tempval |= MACCFG2_FULL_DUPLEX;
1748 priv->oldduplex = phydev->duplex;
1751 if (phydev->speed != priv->oldspeed) {
1752 new_state = 1;
1753 switch (phydev->speed) {
1754 case 1000:
1755 tempval =
1756 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1757 break;
1758 case 100:
1759 case 10:
1760 tempval =
1761 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1763 /* Reduced mode distinguishes
1764 * between 10 and 100 */
1765 if (phydev->speed == SPEED_100)
1766 ecntrl |= ECNTRL_R100;
1767 else
1768 ecntrl &= ~(ECNTRL_R100);
1769 break;
1770 default:
1771 if (netif_msg_link(priv))
1772 printk(KERN_WARNING
1773 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1774 dev->name, phydev->speed);
1775 break;
1778 priv->oldspeed = phydev->speed;
1781 gfar_write(&regs->maccfg2, tempval);
1782 gfar_write(&regs->ecntrl, ecntrl);
1784 if (!priv->oldlink) {
1785 new_state = 1;
1786 priv->oldlink = 1;
1787 netif_schedule(dev);
1789 } else if (priv->oldlink) {
1790 new_state = 1;
1791 priv->oldlink = 0;
1792 priv->oldspeed = 0;
1793 priv->oldduplex = -1;
1796 if (new_state && netif_msg_link(priv))
1797 phy_print_status(phydev);
1799 spin_unlock_irqrestore(&priv->txlock, flags);
1802 /* Update the hash table based on the current list of multicast
1803 * addresses we subscribe to. Also, change the promiscuity of
1804 * the device based on the flags (this function is called
1805 * whenever dev->flags is changed */
1806 static void gfar_set_multi(struct net_device *dev)
1808 struct dev_mc_list *mc_ptr;
1809 struct gfar_private *priv = netdev_priv(dev);
1810 struct gfar __iomem *regs = priv->regs;
1811 u32 tempval;
1813 if(dev->flags & IFF_PROMISC) {
1814 /* Set RCTRL to PROM */
1815 tempval = gfar_read(&regs->rctrl);
1816 tempval |= RCTRL_PROM;
1817 gfar_write(&regs->rctrl, tempval);
1818 } else {
1819 /* Set RCTRL to not PROM */
1820 tempval = gfar_read(&regs->rctrl);
1821 tempval &= ~(RCTRL_PROM);
1822 gfar_write(&regs->rctrl, tempval);
1825 if(dev->flags & IFF_ALLMULTI) {
1826 /* Set the hash to rx all multicast frames */
1827 gfar_write(&regs->igaddr0, 0xffffffff);
1828 gfar_write(&regs->igaddr1, 0xffffffff);
1829 gfar_write(&regs->igaddr2, 0xffffffff);
1830 gfar_write(&regs->igaddr3, 0xffffffff);
1831 gfar_write(&regs->igaddr4, 0xffffffff);
1832 gfar_write(&regs->igaddr5, 0xffffffff);
1833 gfar_write(&regs->igaddr6, 0xffffffff);
1834 gfar_write(&regs->igaddr7, 0xffffffff);
1835 gfar_write(&regs->gaddr0, 0xffffffff);
1836 gfar_write(&regs->gaddr1, 0xffffffff);
1837 gfar_write(&regs->gaddr2, 0xffffffff);
1838 gfar_write(&regs->gaddr3, 0xffffffff);
1839 gfar_write(&regs->gaddr4, 0xffffffff);
1840 gfar_write(&regs->gaddr5, 0xffffffff);
1841 gfar_write(&regs->gaddr6, 0xffffffff);
1842 gfar_write(&regs->gaddr7, 0xffffffff);
1843 } else {
1844 int em_num;
1845 int idx;
1847 /* zero out the hash */
1848 gfar_write(&regs->igaddr0, 0x0);
1849 gfar_write(&regs->igaddr1, 0x0);
1850 gfar_write(&regs->igaddr2, 0x0);
1851 gfar_write(&regs->igaddr3, 0x0);
1852 gfar_write(&regs->igaddr4, 0x0);
1853 gfar_write(&regs->igaddr5, 0x0);
1854 gfar_write(&regs->igaddr6, 0x0);
1855 gfar_write(&regs->igaddr7, 0x0);
1856 gfar_write(&regs->gaddr0, 0x0);
1857 gfar_write(&regs->gaddr1, 0x0);
1858 gfar_write(&regs->gaddr2, 0x0);
1859 gfar_write(&regs->gaddr3, 0x0);
1860 gfar_write(&regs->gaddr4, 0x0);
1861 gfar_write(&regs->gaddr5, 0x0);
1862 gfar_write(&regs->gaddr6, 0x0);
1863 gfar_write(&regs->gaddr7, 0x0);
1865 /* If we have extended hash tables, we need to
1866 * clear the exact match registers to prepare for
1867 * setting them */
1868 if (priv->extended_hash) {
1869 em_num = GFAR_EM_NUM + 1;
1870 gfar_clear_exact_match(dev);
1871 idx = 1;
1872 } else {
1873 idx = 0;
1874 em_num = 0;
1877 if(dev->mc_count == 0)
1878 return;
1880 /* Parse the list, and set the appropriate bits */
1881 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1882 if (idx < em_num) {
1883 gfar_set_mac_for_addr(dev, idx,
1884 mc_ptr->dmi_addr);
1885 idx++;
1886 } else
1887 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1891 return;
1895 /* Clears each of the exact match registers to zero, so they
1896 * don't interfere with normal reception */
1897 static void gfar_clear_exact_match(struct net_device *dev)
1899 int idx;
1900 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1902 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1903 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1906 /* Set the appropriate hash bit for the given addr */
1907 /* The algorithm works like so:
1908 * 1) Take the Destination Address (ie the multicast address), and
1909 * do a CRC on it (little endian), and reverse the bits of the
1910 * result.
1911 * 2) Use the 8 most significant bits as a hash into a 256-entry
1912 * table. The table is controlled through 8 32-bit registers:
1913 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1914 * gaddr7. This means that the 3 most significant bits in the
1915 * hash index which gaddr register to use, and the 5 other bits
1916 * indicate which bit (assuming an IBM numbering scheme, which
1917 * for PowerPC (tm) is usually the case) in the register holds
1918 * the entry. */
1919 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1921 u32 tempval;
1922 struct gfar_private *priv = netdev_priv(dev);
1923 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1924 int width = priv->hash_width;
1925 u8 whichbit = (result >> (32 - width)) & 0x1f;
1926 u8 whichreg = result >> (32 - width + 5);
1927 u32 value = (1 << (31-whichbit));
1929 tempval = gfar_read(priv->hash_regs[whichreg]);
1930 tempval |= value;
1931 gfar_write(priv->hash_regs[whichreg], tempval);
1933 return;
1937 /* There are multiple MAC Address register pairs on some controllers
1938 * This function sets the numth pair to a given address
1940 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1942 struct gfar_private *priv = netdev_priv(dev);
1943 int idx;
1944 char tmpbuf[MAC_ADDR_LEN];
1945 u32 tempval;
1946 u32 __iomem *macptr = &priv->regs->macstnaddr1;
1948 macptr += num*2;
1950 /* Now copy it into the mac registers backwards, cuz */
1951 /* little endian is silly */
1952 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1953 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1955 gfar_write(macptr, *((u32 *) (tmpbuf)));
1957 tempval = *((u32 *) (tmpbuf + 4));
1959 gfar_write(macptr+1, tempval);
1962 /* GFAR error interrupt handler */
1963 static irqreturn_t gfar_error(int irq, void *dev_id)
1965 struct net_device *dev = dev_id;
1966 struct gfar_private *priv = netdev_priv(dev);
1968 /* Save ievent for future reference */
1969 u32 events = gfar_read(&priv->regs->ievent);
1971 /* Clear IEVENT */
1972 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1974 /* Hmm... */
1975 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1976 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1977 dev->name, events, gfar_read(&priv->regs->imask));
1979 /* Update the error counters */
1980 if (events & IEVENT_TXE) {
1981 dev->stats.tx_errors++;
1983 if (events & IEVENT_LC)
1984 dev->stats.tx_window_errors++;
1985 if (events & IEVENT_CRL)
1986 dev->stats.tx_aborted_errors++;
1987 if (events & IEVENT_XFUN) {
1988 if (netif_msg_tx_err(priv))
1989 printk(KERN_DEBUG "%s: TX FIFO underrun, "
1990 "packet dropped.\n", dev->name);
1991 dev->stats.tx_dropped++;
1992 priv->extra_stats.tx_underrun++;
1994 /* Reactivate the Tx Queues */
1995 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1997 if (netif_msg_tx_err(priv))
1998 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2000 if (events & IEVENT_BSY) {
2001 dev->stats.rx_errors++;
2002 priv->extra_stats.rx_bsy++;
2004 gfar_receive(irq, dev_id);
2006 #ifndef CONFIG_GFAR_NAPI
2007 /* Clear the halt bit in RSTAT */
2008 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
2009 #endif
2011 if (netif_msg_rx_err(priv))
2012 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2013 dev->name, gfar_read(&priv->regs->rstat));
2015 if (events & IEVENT_BABR) {
2016 dev->stats.rx_errors++;
2017 priv->extra_stats.rx_babr++;
2019 if (netif_msg_rx_err(priv))
2020 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2022 if (events & IEVENT_EBERR) {
2023 priv->extra_stats.eberr++;
2024 if (netif_msg_rx_err(priv))
2025 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2027 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2028 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2030 if (events & IEVENT_BABT) {
2031 priv->extra_stats.tx_babt++;
2032 if (netif_msg_tx_err(priv))
2033 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2035 return IRQ_HANDLED;
2038 /* work with hotplug and coldplug */
2039 MODULE_ALIAS("platform:fsl-gianfar");
2041 /* Structure for a device driver */
2042 static struct platform_driver gfar_driver = {
2043 .probe = gfar_probe,
2044 .remove = gfar_remove,
2045 .driver = {
2046 .name = "fsl-gianfar",
2047 .owner = THIS_MODULE,
2051 static int __init gfar_init(void)
2053 int err = gfar_mdio_init();
2055 if (err)
2056 return err;
2058 err = platform_driver_register(&gfar_driver);
2060 if (err)
2061 gfar_mdio_exit();
2063 return err;
2066 static void __exit gfar_exit(void)
2068 platform_driver_unregister(&gfar_driver);
2069 gfar_mdio_exit();
2072 module_init(gfar_init);
2073 module_exit(gfar_exit);