Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[linux/fpc-iii.git] / arch / x86 / crypto / sha-mb / sha1_mb.c
blob9c5af331a956f67bf868a717c9e7a82389c0cda6
1 /*
2 * Multi buffer SHA1 algorithm Glue Code
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * Copyright(c) 2014 Intel Corporation.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * Contact Information:
21 * Tim Chen <tim.c.chen@linux.intel.com>
23 * BSD LICENSE
25 * Copyright(c) 2014 Intel Corporation.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
31 * * Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * * Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in
35 * the documentation and/or other materials provided with the
36 * distribution.
37 * * Neither the name of Intel Corporation nor the names of its
38 * contributors may be used to endorse or promote products derived
39 * from this software without specific prior written permission.
41 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 #include <crypto/internal/hash.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/mm.h>
60 #include <linux/cryptohash.h>
61 #include <linux/types.h>
62 #include <linux/list.h>
63 #include <crypto/scatterwalk.h>
64 #include <crypto/sha.h>
65 #include <crypto/mcryptd.h>
66 #include <crypto/crypto_wq.h>
67 #include <asm/byteorder.h>
68 #include <linux/hardirq.h>
69 #include <asm/fpu/api.h>
70 #include "sha_mb_ctx.h"
72 #define FLUSH_INTERVAL 1000 /* in usec */
74 static struct mcryptd_alg_state sha1_mb_alg_state;
76 struct sha1_mb_ctx {
77 struct mcryptd_ahash *mcryptd_tfm;
80 static inline struct mcryptd_hash_request_ctx *cast_hash_to_mcryptd_ctx(struct sha1_hash_ctx *hash_ctx)
82 struct shash_desc *desc;
84 desc = container_of((void *) hash_ctx, struct shash_desc, __ctx);
85 return container_of(desc, struct mcryptd_hash_request_ctx, desc);
88 static inline struct ahash_request *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx)
90 return container_of((void *) ctx, struct ahash_request, __ctx);
93 static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx,
94 struct shash_desc *desc)
96 rctx->flag = HASH_UPDATE;
99 static asmlinkage void (*sha1_job_mgr_init)(struct sha1_mb_mgr *state);
100 static asmlinkage struct job_sha1* (*sha1_job_mgr_submit)(struct sha1_mb_mgr *state,
101 struct job_sha1 *job);
102 static asmlinkage struct job_sha1* (*sha1_job_mgr_flush)(struct sha1_mb_mgr *state);
103 static asmlinkage struct job_sha1* (*sha1_job_mgr_get_comp_job)(struct sha1_mb_mgr *state);
105 static inline void sha1_init_digest(uint32_t *digest)
107 static const uint32_t initial_digest[SHA1_DIGEST_LENGTH] = {SHA1_H0,
108 SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 };
109 memcpy(digest, initial_digest, sizeof(initial_digest));
112 static inline uint32_t sha1_pad(uint8_t padblock[SHA1_BLOCK_SIZE * 2],
113 uint32_t total_len)
115 uint32_t i = total_len & (SHA1_BLOCK_SIZE - 1);
117 memset(&padblock[i], 0, SHA1_BLOCK_SIZE);
118 padblock[i] = 0x80;
120 i += ((SHA1_BLOCK_SIZE - 1) &
121 (0 - (total_len + SHA1_PADLENGTHFIELD_SIZE + 1)))
122 + 1 + SHA1_PADLENGTHFIELD_SIZE;
124 #if SHA1_PADLENGTHFIELD_SIZE == 16
125 *((uint64_t *) &padblock[i - 16]) = 0;
126 #endif
128 *((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3);
130 /* Number of extra blocks to hash */
131 return i >> SHA1_LOG2_BLOCK_SIZE;
134 static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr, struct sha1_hash_ctx *ctx)
136 while (ctx) {
137 if (ctx->status & HASH_CTX_STS_COMPLETE) {
138 /* Clear PROCESSING bit */
139 ctx->status = HASH_CTX_STS_COMPLETE;
140 return ctx;
144 * If the extra blocks are empty, begin hashing what remains
145 * in the user's buffer.
147 if (ctx->partial_block_buffer_length == 0 &&
148 ctx->incoming_buffer_length) {
150 const void *buffer = ctx->incoming_buffer;
151 uint32_t len = ctx->incoming_buffer_length;
152 uint32_t copy_len;
155 * Only entire blocks can be hashed.
156 * Copy remainder to extra blocks buffer.
158 copy_len = len & (SHA1_BLOCK_SIZE-1);
160 if (copy_len) {
161 len -= copy_len;
162 memcpy(ctx->partial_block_buffer,
163 ((const char *) buffer + len),
164 copy_len);
165 ctx->partial_block_buffer_length = copy_len;
168 ctx->incoming_buffer_length = 0;
170 /* len should be a multiple of the block size now */
171 assert((len % SHA1_BLOCK_SIZE) == 0);
173 /* Set len to the number of blocks to be hashed */
174 len >>= SHA1_LOG2_BLOCK_SIZE;
176 if (len) {
178 ctx->job.buffer = (uint8_t *) buffer;
179 ctx->job.len = len;
180 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr,
181 &ctx->job);
182 continue;
187 * If the extra blocks are not empty, then we are
188 * either on the last block(s) or we need more
189 * user input before continuing.
191 if (ctx->status & HASH_CTX_STS_LAST) {
193 uint8_t *buf = ctx->partial_block_buffer;
194 uint32_t n_extra_blocks = sha1_pad(buf, ctx->total_length);
196 ctx->status = (HASH_CTX_STS_PROCESSING |
197 HASH_CTX_STS_COMPLETE);
198 ctx->job.buffer = buf;
199 ctx->job.len = (uint32_t) n_extra_blocks;
200 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
201 continue;
204 ctx->status = HASH_CTX_STS_IDLE;
205 return ctx;
208 return NULL;
211 static struct sha1_hash_ctx *sha1_ctx_mgr_get_comp_ctx(struct sha1_ctx_mgr *mgr)
214 * If get_comp_job returns NULL, there are no jobs complete.
215 * If get_comp_job returns a job, verify that it is safe to return to the user.
216 * If it is not ready, resubmit the job to finish processing.
217 * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
218 * Otherwise, all jobs currently being managed by the hash_ctx_mgr still need processing.
220 struct sha1_hash_ctx *ctx;
222 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_get_comp_job(&mgr->mgr);
223 return sha1_ctx_mgr_resubmit(mgr, ctx);
226 static void sha1_ctx_mgr_init(struct sha1_ctx_mgr *mgr)
228 sha1_job_mgr_init(&mgr->mgr);
231 static struct sha1_hash_ctx *sha1_ctx_mgr_submit(struct sha1_ctx_mgr *mgr,
232 struct sha1_hash_ctx *ctx,
233 const void *buffer,
234 uint32_t len,
235 int flags)
237 if (flags & (~HASH_ENTIRE)) {
238 /* User should not pass anything other than FIRST, UPDATE, or LAST */
239 ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
240 return ctx;
243 if (ctx->status & HASH_CTX_STS_PROCESSING) {
244 /* Cannot submit to a currently processing job. */
245 ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
246 return ctx;
249 if ((ctx->status & HASH_CTX_STS_COMPLETE) && !(flags & HASH_FIRST)) {
250 /* Cannot update a finished job. */
251 ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
252 return ctx;
256 if (flags & HASH_FIRST) {
257 /* Init digest */
258 sha1_init_digest(ctx->job.result_digest);
260 /* Reset byte counter */
261 ctx->total_length = 0;
263 /* Clear extra blocks */
264 ctx->partial_block_buffer_length = 0;
267 /* If we made it here, there were no errors during this call to submit */
268 ctx->error = HASH_CTX_ERROR_NONE;
270 /* Store buffer ptr info from user */
271 ctx->incoming_buffer = buffer;
272 ctx->incoming_buffer_length = len;
274 /* Store the user's request flags and mark this ctx as currently being processed. */
275 ctx->status = (flags & HASH_LAST) ?
276 (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
277 HASH_CTX_STS_PROCESSING;
279 /* Advance byte counter */
280 ctx->total_length += len;
283 * If there is anything currently buffered in the extra blocks,
284 * append to it until it contains a whole block.
285 * Or if the user's buffer contains less than a whole block,
286 * append as much as possible to the extra block.
288 if ((ctx->partial_block_buffer_length) | (len < SHA1_BLOCK_SIZE)) {
289 /* Compute how many bytes to copy from user buffer into extra block */
290 uint32_t copy_len = SHA1_BLOCK_SIZE - ctx->partial_block_buffer_length;
291 if (len < copy_len)
292 copy_len = len;
294 if (copy_len) {
295 /* Copy and update relevant pointers and counters */
296 memcpy(&ctx->partial_block_buffer[ctx->partial_block_buffer_length],
297 buffer, copy_len);
299 ctx->partial_block_buffer_length += copy_len;
300 ctx->incoming_buffer = (const void *)((const char *)buffer + copy_len);
301 ctx->incoming_buffer_length = len - copy_len;
304 /* The extra block should never contain more than 1 block here */
305 assert(ctx->partial_block_buffer_length <= SHA1_BLOCK_SIZE);
307 /* If the extra block buffer contains exactly 1 block, it can be hashed. */
308 if (ctx->partial_block_buffer_length >= SHA1_BLOCK_SIZE) {
309 ctx->partial_block_buffer_length = 0;
311 ctx->job.buffer = ctx->partial_block_buffer;
312 ctx->job.len = 1;
313 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
317 return sha1_ctx_mgr_resubmit(mgr, ctx);
320 static struct sha1_hash_ctx *sha1_ctx_mgr_flush(struct sha1_ctx_mgr *mgr)
322 struct sha1_hash_ctx *ctx;
324 while (1) {
325 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_flush(&mgr->mgr);
327 /* If flush returned 0, there are no more jobs in flight. */
328 if (!ctx)
329 return NULL;
332 * If flush returned a job, resubmit the job to finish processing.
334 ctx = sha1_ctx_mgr_resubmit(mgr, ctx);
337 * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
338 * Otherwise, all jobs currently being managed by the sha1_ctx_mgr
339 * still need processing. Loop.
341 if (ctx)
342 return ctx;
346 static int sha1_mb_init(struct shash_desc *desc)
348 struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
350 hash_ctx_init(sctx);
351 sctx->job.result_digest[0] = SHA1_H0;
352 sctx->job.result_digest[1] = SHA1_H1;
353 sctx->job.result_digest[2] = SHA1_H2;
354 sctx->job.result_digest[3] = SHA1_H3;
355 sctx->job.result_digest[4] = SHA1_H4;
356 sctx->total_length = 0;
357 sctx->partial_block_buffer_length = 0;
358 sctx->status = HASH_CTX_STS_IDLE;
360 return 0;
363 static int sha1_mb_set_results(struct mcryptd_hash_request_ctx *rctx)
365 int i;
366 struct sha1_hash_ctx *sctx = shash_desc_ctx(&rctx->desc);
367 __be32 *dst = (__be32 *) rctx->out;
369 for (i = 0; i < 5; ++i)
370 dst[i] = cpu_to_be32(sctx->job.result_digest[i]);
372 return 0;
375 static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx,
376 struct mcryptd_alg_cstate *cstate, bool flush)
378 int flag = HASH_UPDATE;
379 int nbytes, err = 0;
380 struct mcryptd_hash_request_ctx *rctx = *ret_rctx;
381 struct sha1_hash_ctx *sha_ctx;
383 /* more work ? */
384 while (!(rctx->flag & HASH_DONE)) {
385 nbytes = crypto_ahash_walk_done(&rctx->walk, 0);
386 if (nbytes < 0) {
387 err = nbytes;
388 goto out;
390 /* check if the walk is done */
391 if (crypto_ahash_walk_last(&rctx->walk)) {
392 rctx->flag |= HASH_DONE;
393 if (rctx->flag & HASH_FINAL)
394 flag |= HASH_LAST;
397 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(&rctx->desc);
398 kernel_fpu_begin();
399 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag);
400 if (!sha_ctx) {
401 if (flush)
402 sha_ctx = sha1_ctx_mgr_flush(cstate->mgr);
404 kernel_fpu_end();
405 if (sha_ctx)
406 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
407 else {
408 rctx = NULL;
409 goto out;
413 /* copy the results */
414 if (rctx->flag & HASH_FINAL)
415 sha1_mb_set_results(rctx);
417 out:
418 *ret_rctx = rctx;
419 return err;
422 static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx,
423 struct mcryptd_alg_cstate *cstate,
424 int err)
426 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
427 struct sha1_hash_ctx *sha_ctx;
428 struct mcryptd_hash_request_ctx *req_ctx;
429 int ret;
431 /* remove from work list */
432 spin_lock(&cstate->work_lock);
433 list_del(&rctx->waiter);
434 spin_unlock(&cstate->work_lock);
436 if (irqs_disabled())
437 rctx->complete(&req->base, err);
438 else {
439 local_bh_disable();
440 rctx->complete(&req->base, err);
441 local_bh_enable();
444 /* check to see if there are other jobs that are done */
445 sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
446 while (sha_ctx) {
447 req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx);
448 ret = sha_finish_walk(&req_ctx, cstate, false);
449 if (req_ctx) {
450 spin_lock(&cstate->work_lock);
451 list_del(&req_ctx->waiter);
452 spin_unlock(&cstate->work_lock);
454 req = cast_mcryptd_ctx_to_req(req_ctx);
455 if (irqs_disabled())
456 req_ctx->complete(&req->base, ret);
457 else {
458 local_bh_disable();
459 req_ctx->complete(&req->base, ret);
460 local_bh_enable();
463 sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
466 return 0;
469 static void sha1_mb_add_list(struct mcryptd_hash_request_ctx *rctx,
470 struct mcryptd_alg_cstate *cstate)
472 unsigned long next_flush;
473 unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL);
475 /* initialize tag */
476 rctx->tag.arrival = jiffies; /* tag the arrival time */
477 rctx->tag.seq_num = cstate->next_seq_num++;
478 next_flush = rctx->tag.arrival + delay;
479 rctx->tag.expire = next_flush;
481 spin_lock(&cstate->work_lock);
482 list_add_tail(&rctx->waiter, &cstate->work_list);
483 spin_unlock(&cstate->work_lock);
485 mcryptd_arm_flusher(cstate, delay);
488 static int sha1_mb_update(struct shash_desc *desc, const u8 *data,
489 unsigned int len)
491 struct mcryptd_hash_request_ctx *rctx =
492 container_of(desc, struct mcryptd_hash_request_ctx, desc);
493 struct mcryptd_alg_cstate *cstate =
494 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
496 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
497 struct sha1_hash_ctx *sha_ctx;
498 int ret = 0, nbytes;
501 /* sanity check */
502 if (rctx->tag.cpu != smp_processor_id()) {
503 pr_err("mcryptd error: cpu clash\n");
504 goto done;
507 /* need to init context */
508 req_ctx_init(rctx, desc);
510 nbytes = crypto_ahash_walk_first(req, &rctx->walk);
512 if (nbytes < 0) {
513 ret = nbytes;
514 goto done;
517 if (crypto_ahash_walk_last(&rctx->walk))
518 rctx->flag |= HASH_DONE;
520 /* submit */
521 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
522 sha1_mb_add_list(rctx, cstate);
523 kernel_fpu_begin();
524 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, HASH_UPDATE);
525 kernel_fpu_end();
527 /* check if anything is returned */
528 if (!sha_ctx)
529 return -EINPROGRESS;
531 if (sha_ctx->error) {
532 ret = sha_ctx->error;
533 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
534 goto done;
537 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
538 ret = sha_finish_walk(&rctx, cstate, false);
540 if (!rctx)
541 return -EINPROGRESS;
542 done:
543 sha_complete_job(rctx, cstate, ret);
544 return ret;
547 static int sha1_mb_finup(struct shash_desc *desc, const u8 *data,
548 unsigned int len, u8 *out)
550 struct mcryptd_hash_request_ctx *rctx =
551 container_of(desc, struct mcryptd_hash_request_ctx, desc);
552 struct mcryptd_alg_cstate *cstate =
553 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
555 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
556 struct sha1_hash_ctx *sha_ctx;
557 int ret = 0, flag = HASH_UPDATE, nbytes;
559 /* sanity check */
560 if (rctx->tag.cpu != smp_processor_id()) {
561 pr_err("mcryptd error: cpu clash\n");
562 goto done;
565 /* need to init context */
566 req_ctx_init(rctx, desc);
568 nbytes = crypto_ahash_walk_first(req, &rctx->walk);
570 if (nbytes < 0) {
571 ret = nbytes;
572 goto done;
575 if (crypto_ahash_walk_last(&rctx->walk)) {
576 rctx->flag |= HASH_DONE;
577 flag = HASH_LAST;
579 rctx->out = out;
581 /* submit */
582 rctx->flag |= HASH_FINAL;
583 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
584 sha1_mb_add_list(rctx, cstate);
586 kernel_fpu_begin();
587 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag);
588 kernel_fpu_end();
590 /* check if anything is returned */
591 if (!sha_ctx)
592 return -EINPROGRESS;
594 if (sha_ctx->error) {
595 ret = sha_ctx->error;
596 goto done;
599 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
600 ret = sha_finish_walk(&rctx, cstate, false);
601 if (!rctx)
602 return -EINPROGRESS;
603 done:
604 sha_complete_job(rctx, cstate, ret);
605 return ret;
608 static int sha1_mb_final(struct shash_desc *desc, u8 *out)
610 struct mcryptd_hash_request_ctx *rctx =
611 container_of(desc, struct mcryptd_hash_request_ctx, desc);
612 struct mcryptd_alg_cstate *cstate =
613 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
615 struct sha1_hash_ctx *sha_ctx;
616 int ret = 0;
617 u8 data;
619 /* sanity check */
620 if (rctx->tag.cpu != smp_processor_id()) {
621 pr_err("mcryptd error: cpu clash\n");
622 goto done;
625 /* need to init context */
626 req_ctx_init(rctx, desc);
628 rctx->out = out;
629 rctx->flag |= HASH_DONE | HASH_FINAL;
631 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
632 /* flag HASH_FINAL and 0 data size */
633 sha1_mb_add_list(rctx, cstate);
634 kernel_fpu_begin();
635 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0, HASH_LAST);
636 kernel_fpu_end();
638 /* check if anything is returned */
639 if (!sha_ctx)
640 return -EINPROGRESS;
642 if (sha_ctx->error) {
643 ret = sha_ctx->error;
644 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
645 goto done;
648 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
649 ret = sha_finish_walk(&rctx, cstate, false);
650 if (!rctx)
651 return -EINPROGRESS;
652 done:
653 sha_complete_job(rctx, cstate, ret);
654 return ret;
657 static int sha1_mb_export(struct shash_desc *desc, void *out)
659 struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
661 memcpy(out, sctx, sizeof(*sctx));
663 return 0;
666 static int sha1_mb_import(struct shash_desc *desc, const void *in)
668 struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
670 memcpy(sctx, in, sizeof(*sctx));
672 return 0;
676 static struct shash_alg sha1_mb_shash_alg = {
677 .digestsize = SHA1_DIGEST_SIZE,
678 .init = sha1_mb_init,
679 .update = sha1_mb_update,
680 .final = sha1_mb_final,
681 .finup = sha1_mb_finup,
682 .export = sha1_mb_export,
683 .import = sha1_mb_import,
684 .descsize = sizeof(struct sha1_hash_ctx),
685 .statesize = sizeof(struct sha1_hash_ctx),
686 .base = {
687 .cra_name = "__sha1-mb",
688 .cra_driver_name = "__intel_sha1-mb",
689 .cra_priority = 100,
691 * use ASYNC flag as some buffers in multi-buffer
692 * algo may not have completed before hashing thread sleep
694 .cra_flags = CRYPTO_ALG_TYPE_SHASH | CRYPTO_ALG_ASYNC |
695 CRYPTO_ALG_INTERNAL,
696 .cra_blocksize = SHA1_BLOCK_SIZE,
697 .cra_module = THIS_MODULE,
698 .cra_list = LIST_HEAD_INIT(sha1_mb_shash_alg.base.cra_list),
702 static int sha1_mb_async_init(struct ahash_request *req)
704 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
705 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
706 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
707 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
709 memcpy(mcryptd_req, req, sizeof(*req));
710 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
711 return crypto_ahash_init(mcryptd_req);
714 static int sha1_mb_async_update(struct ahash_request *req)
716 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
718 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
719 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
720 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
722 memcpy(mcryptd_req, req, sizeof(*req));
723 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
724 return crypto_ahash_update(mcryptd_req);
727 static int sha1_mb_async_finup(struct ahash_request *req)
729 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
731 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
732 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
733 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
735 memcpy(mcryptd_req, req, sizeof(*req));
736 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
737 return crypto_ahash_finup(mcryptd_req);
740 static int sha1_mb_async_final(struct ahash_request *req)
742 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
744 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
745 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
746 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
748 memcpy(mcryptd_req, req, sizeof(*req));
749 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
750 return crypto_ahash_final(mcryptd_req);
753 static int sha1_mb_async_digest(struct ahash_request *req)
755 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
756 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
757 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
758 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
760 memcpy(mcryptd_req, req, sizeof(*req));
761 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
762 return crypto_ahash_digest(mcryptd_req);
765 static int sha1_mb_async_export(struct ahash_request *req, void *out)
767 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
768 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
769 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
770 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
772 memcpy(mcryptd_req, req, sizeof(*req));
773 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
774 return crypto_ahash_export(mcryptd_req, out);
777 static int sha1_mb_async_import(struct ahash_request *req, const void *in)
779 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
780 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
781 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
782 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
783 struct crypto_shash *child = mcryptd_ahash_child(mcryptd_tfm);
784 struct mcryptd_hash_request_ctx *rctx;
785 struct shash_desc *desc;
787 memcpy(mcryptd_req, req, sizeof(*req));
788 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
789 rctx = ahash_request_ctx(mcryptd_req);
790 desc = &rctx->desc;
791 desc->tfm = child;
792 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
794 return crypto_ahash_import(mcryptd_req, in);
797 static int sha1_mb_async_init_tfm(struct crypto_tfm *tfm)
799 struct mcryptd_ahash *mcryptd_tfm;
800 struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
801 struct mcryptd_hash_ctx *mctx;
803 mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha1-mb",
804 CRYPTO_ALG_INTERNAL,
805 CRYPTO_ALG_INTERNAL);
806 if (IS_ERR(mcryptd_tfm))
807 return PTR_ERR(mcryptd_tfm);
808 mctx = crypto_ahash_ctx(&mcryptd_tfm->base);
809 mctx->alg_state = &sha1_mb_alg_state;
810 ctx->mcryptd_tfm = mcryptd_tfm;
811 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
812 sizeof(struct ahash_request) +
813 crypto_ahash_reqsize(&mcryptd_tfm->base));
815 return 0;
818 static void sha1_mb_async_exit_tfm(struct crypto_tfm *tfm)
820 struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
822 mcryptd_free_ahash(ctx->mcryptd_tfm);
825 static struct ahash_alg sha1_mb_async_alg = {
826 .init = sha1_mb_async_init,
827 .update = sha1_mb_async_update,
828 .final = sha1_mb_async_final,
829 .finup = sha1_mb_async_finup,
830 .digest = sha1_mb_async_digest,
831 .export = sha1_mb_async_export,
832 .import = sha1_mb_async_import,
833 .halg = {
834 .digestsize = SHA1_DIGEST_SIZE,
835 .statesize = sizeof(struct sha1_hash_ctx),
836 .base = {
837 .cra_name = "sha1",
838 .cra_driver_name = "sha1_mb",
839 .cra_priority = 200,
840 .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC,
841 .cra_blocksize = SHA1_BLOCK_SIZE,
842 .cra_type = &crypto_ahash_type,
843 .cra_module = THIS_MODULE,
844 .cra_list = LIST_HEAD_INIT(sha1_mb_async_alg.halg.base.cra_list),
845 .cra_init = sha1_mb_async_init_tfm,
846 .cra_exit = sha1_mb_async_exit_tfm,
847 .cra_ctxsize = sizeof(struct sha1_mb_ctx),
848 .cra_alignmask = 0,
853 static unsigned long sha1_mb_flusher(struct mcryptd_alg_cstate *cstate)
855 struct mcryptd_hash_request_ctx *rctx;
856 unsigned long cur_time;
857 unsigned long next_flush = 0;
858 struct sha1_hash_ctx *sha_ctx;
861 cur_time = jiffies;
863 while (!list_empty(&cstate->work_list)) {
864 rctx = list_entry(cstate->work_list.next,
865 struct mcryptd_hash_request_ctx, waiter);
866 if (time_before(cur_time, rctx->tag.expire))
867 break;
868 kernel_fpu_begin();
869 sha_ctx = (struct sha1_hash_ctx *) sha1_ctx_mgr_flush(cstate->mgr);
870 kernel_fpu_end();
871 if (!sha_ctx) {
872 pr_err("sha1_mb error: nothing got flushed for non-empty list\n");
873 break;
875 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
876 sha_finish_walk(&rctx, cstate, true);
877 sha_complete_job(rctx, cstate, 0);
880 if (!list_empty(&cstate->work_list)) {
881 rctx = list_entry(cstate->work_list.next,
882 struct mcryptd_hash_request_ctx, waiter);
883 /* get the hash context and then flush time */
884 next_flush = rctx->tag.expire;
885 mcryptd_arm_flusher(cstate, get_delay(next_flush));
887 return next_flush;
890 static int __init sha1_mb_mod_init(void)
893 int cpu;
894 int err;
895 struct mcryptd_alg_cstate *cpu_state;
897 /* check for dependent cpu features */
898 if (!boot_cpu_has(X86_FEATURE_AVX2) ||
899 !boot_cpu_has(X86_FEATURE_BMI2))
900 return -ENODEV;
902 /* initialize multibuffer structures */
903 sha1_mb_alg_state.alg_cstate = alloc_percpu(struct mcryptd_alg_cstate);
905 sha1_job_mgr_init = sha1_mb_mgr_init_avx2;
906 sha1_job_mgr_submit = sha1_mb_mgr_submit_avx2;
907 sha1_job_mgr_flush = sha1_mb_mgr_flush_avx2;
908 sha1_job_mgr_get_comp_job = sha1_mb_mgr_get_comp_job_avx2;
910 if (!sha1_mb_alg_state.alg_cstate)
911 return -ENOMEM;
912 for_each_possible_cpu(cpu) {
913 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
914 cpu_state->next_flush = 0;
915 cpu_state->next_seq_num = 0;
916 cpu_state->flusher_engaged = false;
917 INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher);
918 cpu_state->cpu = cpu;
919 cpu_state->alg_state = &sha1_mb_alg_state;
920 cpu_state->mgr = kzalloc(sizeof(struct sha1_ctx_mgr),
921 GFP_KERNEL);
922 if (!cpu_state->mgr)
923 goto err2;
924 sha1_ctx_mgr_init(cpu_state->mgr);
925 INIT_LIST_HEAD(&cpu_state->work_list);
926 spin_lock_init(&cpu_state->work_lock);
928 sha1_mb_alg_state.flusher = &sha1_mb_flusher;
930 err = crypto_register_shash(&sha1_mb_shash_alg);
931 if (err)
932 goto err2;
933 err = crypto_register_ahash(&sha1_mb_async_alg);
934 if (err)
935 goto err1;
938 return 0;
939 err1:
940 crypto_unregister_shash(&sha1_mb_shash_alg);
941 err2:
942 for_each_possible_cpu(cpu) {
943 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
944 kfree(cpu_state->mgr);
946 free_percpu(sha1_mb_alg_state.alg_cstate);
947 return -ENODEV;
950 static void __exit sha1_mb_mod_fini(void)
952 int cpu;
953 struct mcryptd_alg_cstate *cpu_state;
955 crypto_unregister_ahash(&sha1_mb_async_alg);
956 crypto_unregister_shash(&sha1_mb_shash_alg);
957 for_each_possible_cpu(cpu) {
958 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
959 kfree(cpu_state->mgr);
961 free_percpu(sha1_mb_alg_state.alg_cstate);
964 module_init(sha1_mb_mod_init);
965 module_exit(sha1_mb_mod_fini);
967 MODULE_LICENSE("GPL");
968 MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, multi buffer accelerated");
970 MODULE_ALIAS_CRYPTO("sha1");