2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/kdebug.h> /* oops_begin/end, ... */
8 #include <linux/module.h> /* search_exception_table */
9 #include <linux/bootmem.h> /* max_low_pfn */
10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
12 #include <linux/perf_event.h> /* perf_sw_event */
13 #include <linux/hugetlb.h> /* hstate_index_to_shift */
14 #include <linux/prefetch.h> /* prefetchw */
15 #include <linux/context_tracking.h> /* exception_enter(), ... */
16 #include <linux/uaccess.h> /* faulthandler_disabled() */
18 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
19 #include <asm/traps.h> /* dotraplinkage, ... */
20 #include <asm/pgalloc.h> /* pgd_*(), ... */
21 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
22 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
23 #include <asm/vsyscall.h> /* emulate_vsyscall */
24 #include <asm/vm86.h> /* struct vm86 */
25 #include <asm/mmu_context.h> /* vma_pkey() */
27 #define CREATE_TRACE_POINTS
28 #include <asm/trace/exceptions.h>
31 * Page fault error code bits:
33 * bit 0 == 0: no page found 1: protection fault
34 * bit 1 == 0: read access 1: write access
35 * bit 2 == 0: kernel-mode access 1: user-mode access
36 * bit 3 == 1: use of reserved bit detected
37 * bit 4 == 1: fault was an instruction fetch
38 * bit 5 == 1: protection keys block access
40 enum x86_pf_error_code
{
51 * Returns 0 if mmiotrace is disabled, or if the fault is not
52 * handled by mmiotrace:
54 static nokprobe_inline
int
55 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
57 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs
, addr
) == 1)
63 static nokprobe_inline
int kprobes_fault(struct pt_regs
*regs
)
67 /* kprobe_running() needs smp_processor_id() */
68 if (kprobes_built_in() && !user_mode(regs
)) {
70 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
83 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
84 * Check that here and ignore it.
88 * Sometimes the CPU reports invalid exceptions on prefetch.
89 * Check that here and ignore it.
91 * Opcode checker based on code by Richard Brunner.
94 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
95 unsigned char opcode
, int *prefetch
)
97 unsigned char instr_hi
= opcode
& 0xf0;
98 unsigned char instr_lo
= opcode
& 0x0f;
104 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
105 * In X86_64 long mode, the CPU will signal invalid
106 * opcode if some of these prefixes are present so
107 * X86_64 will never get here anyway
109 return ((instr_lo
& 7) == 0x6);
113 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
114 * Need to figure out under what instruction mode the
115 * instruction was issued. Could check the LDT for lm,
116 * but for now it's good enough to assume that long
117 * mode only uses well known segments or kernel.
119 return (!user_mode(regs
) || user_64bit_mode(regs
));
122 /* 0x64 thru 0x67 are valid prefixes in all modes. */
123 return (instr_lo
& 0xC) == 0x4;
125 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
126 return !instr_lo
|| (instr_lo
>>1) == 1;
128 /* Prefetch instruction is 0x0F0D or 0x0F18 */
129 if (probe_kernel_address(instr
, opcode
))
132 *prefetch
= (instr_lo
== 0xF) &&
133 (opcode
== 0x0D || opcode
== 0x18);
141 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
143 unsigned char *max_instr
;
144 unsigned char *instr
;
148 * If it was a exec (instruction fetch) fault on NX page, then
149 * do not ignore the fault:
151 if (error_code
& PF_INSTR
)
154 instr
= (void *)convert_ip_to_linear(current
, regs
);
155 max_instr
= instr
+ 15;
157 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE_MAX
)
160 while (instr
< max_instr
) {
161 unsigned char opcode
;
163 if (probe_kernel_address(instr
, opcode
))
168 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
175 * A protection key fault means that the PKRU value did not allow
176 * access to some PTE. Userspace can figure out what PKRU was
177 * from the XSAVE state, and this function fills out a field in
178 * siginfo so userspace can discover which protection key was set
181 * If we get here, we know that the hardware signaled a PF_PK
182 * fault and that there was a VMA once we got in the fault
183 * handler. It does *not* guarantee that the VMA we find here
184 * was the one that we faulted on.
186 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
187 * 2. T1 : set PKRU to deny access to pkey=4, touches page
189 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
190 * 5. T1 : enters fault handler, takes mmap_sem, etc...
191 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
192 * faulted on a pte with its pkey=4.
194 static void fill_sig_info_pkey(int si_code
, siginfo_t
*info
,
195 struct vm_area_struct
*vma
)
197 /* This is effectively an #ifdef */
198 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
201 /* Fault not from Protection Keys: nothing to do */
202 if (si_code
!= SEGV_PKUERR
)
205 * force_sig_info_fault() is called from a number of
206 * contexts, some of which have a VMA and some of which
207 * do not. The PF_PK handing happens after we have a
208 * valid VMA, so we should never reach this without a
212 WARN_ONCE(1, "PKU fault with no VMA passed in");
217 * si_pkey should be thought of as a strong hint, but not
218 * absolutely guranteed to be 100% accurate because of
219 * the race explained above.
221 info
->si_pkey
= vma_pkey(vma
);
225 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
226 struct task_struct
*tsk
, struct vm_area_struct
*vma
,
232 info
.si_signo
= si_signo
;
234 info
.si_code
= si_code
;
235 info
.si_addr
= (void __user
*)address
;
236 if (fault
& VM_FAULT_HWPOISON_LARGE
)
237 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
238 if (fault
& VM_FAULT_HWPOISON
)
240 info
.si_addr_lsb
= lsb
;
242 fill_sig_info_pkey(si_code
, &info
, vma
);
244 force_sig_info(si_signo
, &info
, tsk
);
247 DEFINE_SPINLOCK(pgd_lock
);
251 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
253 unsigned index
= pgd_index(address
);
259 pgd_k
= init_mm
.pgd
+ index
;
261 if (!pgd_present(*pgd_k
))
265 * set_pgd(pgd, *pgd_k); here would be useless on PAE
266 * and redundant with the set_pmd() on non-PAE. As would
269 pud
= pud_offset(pgd
, address
);
270 pud_k
= pud_offset(pgd_k
, address
);
271 if (!pud_present(*pud_k
))
274 pmd
= pmd_offset(pud
, address
);
275 pmd_k
= pmd_offset(pud_k
, address
);
276 if (!pmd_present(*pmd_k
))
279 if (!pmd_present(*pmd
))
280 set_pmd(pmd
, *pmd_k
);
282 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
287 void vmalloc_sync_all(void)
289 unsigned long address
;
291 if (SHARED_KERNEL_PMD
)
294 for (address
= VMALLOC_START
& PMD_MASK
;
295 address
>= TASK_SIZE
&& address
< FIXADDR_TOP
;
296 address
+= PMD_SIZE
) {
299 spin_lock(&pgd_lock
);
300 list_for_each_entry(page
, &pgd_list
, lru
) {
301 spinlock_t
*pgt_lock
;
304 /* the pgt_lock only for Xen */
305 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
308 ret
= vmalloc_sync_one(page_address(page
), address
);
309 spin_unlock(pgt_lock
);
314 spin_unlock(&pgd_lock
);
321 * Handle a fault on the vmalloc or module mapping area
323 static noinline
int vmalloc_fault(unsigned long address
)
325 unsigned long pgd_paddr
;
329 /* Make sure we are in vmalloc area: */
330 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
333 WARN_ON_ONCE(in_nmi());
336 * Synchronize this task's top level page-table
337 * with the 'reference' page table.
339 * Do _not_ use "current" here. We might be inside
340 * an interrupt in the middle of a task switch..
342 pgd_paddr
= read_cr3();
343 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
347 if (pmd_huge(*pmd_k
))
350 pte_k
= pte_offset_kernel(pmd_k
, address
);
351 if (!pte_present(*pte_k
))
356 NOKPROBE_SYMBOL(vmalloc_fault
);
359 * Did it hit the DOS screen memory VA from vm86 mode?
362 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
363 struct task_struct
*tsk
)
368 if (!v8086_mode(regs
) || !tsk
->thread
.vm86
)
371 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
373 tsk
->thread
.vm86
->screen_bitmap
|= 1 << bit
;
377 static bool low_pfn(unsigned long pfn
)
379 return pfn
< max_low_pfn
;
382 static void dump_pagetable(unsigned long address
)
384 pgd_t
*base
= __va(read_cr3());
385 pgd_t
*pgd
= &base
[pgd_index(address
)];
389 #ifdef CONFIG_X86_PAE
390 printk("*pdpt = %016Lx ", pgd_val(*pgd
));
391 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
394 pmd
= pmd_offset(pud_offset(pgd
, address
), address
);
395 printk(KERN_CONT
"*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
398 * We must not directly access the pte in the highpte
399 * case if the page table is located in highmem.
400 * And let's rather not kmap-atomic the pte, just in case
401 * it's allocated already:
403 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
406 pte
= pte_offset_kernel(pmd
, address
);
407 printk("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
412 #else /* CONFIG_X86_64: */
414 void vmalloc_sync_all(void)
416 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
, 0);
422 * Handle a fault on the vmalloc area
424 static noinline
int vmalloc_fault(unsigned long address
)
426 pgd_t
*pgd
, *pgd_ref
;
427 pud_t
*pud
, *pud_ref
;
428 pmd_t
*pmd
, *pmd_ref
;
429 pte_t
*pte
, *pte_ref
;
431 /* Make sure we are in vmalloc area: */
432 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
435 WARN_ON_ONCE(in_nmi());
438 * Copy kernel mappings over when needed. This can also
439 * happen within a race in page table update. In the later
442 pgd
= pgd_offset(current
->active_mm
, address
);
443 pgd_ref
= pgd_offset_k(address
);
444 if (pgd_none(*pgd_ref
))
447 if (pgd_none(*pgd
)) {
448 set_pgd(pgd
, *pgd_ref
);
449 arch_flush_lazy_mmu_mode();
451 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
455 * Below here mismatches are bugs because these lower tables
459 pud
= pud_offset(pgd
, address
);
460 pud_ref
= pud_offset(pgd_ref
, address
);
461 if (pud_none(*pud_ref
))
464 if (pud_none(*pud
) || pud_pfn(*pud
) != pud_pfn(*pud_ref
))
470 pmd
= pmd_offset(pud
, address
);
471 pmd_ref
= pmd_offset(pud_ref
, address
);
472 if (pmd_none(*pmd_ref
))
475 if (pmd_none(*pmd
) || pmd_pfn(*pmd
) != pmd_pfn(*pmd_ref
))
481 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
482 if (!pte_present(*pte_ref
))
485 pte
= pte_offset_kernel(pmd
, address
);
488 * Don't use pte_page here, because the mappings can point
489 * outside mem_map, and the NUMA hash lookup cannot handle
492 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
497 NOKPROBE_SYMBOL(vmalloc_fault
);
499 #ifdef CONFIG_CPU_SUP_AMD
500 static const char errata93_warning
[] =
502 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
503 "******* Working around it, but it may cause SEGVs or burn power.\n"
504 "******* Please consider a BIOS update.\n"
505 "******* Disabling USB legacy in the BIOS may also help.\n";
509 * No vm86 mode in 64-bit mode:
512 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
513 struct task_struct
*tsk
)
517 static int bad_address(void *p
)
521 return probe_kernel_address((unsigned long *)p
, dummy
);
524 static void dump_pagetable(unsigned long address
)
526 pgd_t
*base
= __va(read_cr3() & PHYSICAL_PAGE_MASK
);
527 pgd_t
*pgd
= base
+ pgd_index(address
);
532 if (bad_address(pgd
))
535 printk("PGD %lx ", pgd_val(*pgd
));
537 if (!pgd_present(*pgd
))
540 pud
= pud_offset(pgd
, address
);
541 if (bad_address(pud
))
544 printk("PUD %lx ", pud_val(*pud
));
545 if (!pud_present(*pud
) || pud_large(*pud
))
548 pmd
= pmd_offset(pud
, address
);
549 if (bad_address(pmd
))
552 printk("PMD %lx ", pmd_val(*pmd
));
553 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
556 pte
= pte_offset_kernel(pmd
, address
);
557 if (bad_address(pte
))
560 printk("PTE %lx", pte_val(*pte
));
568 #endif /* CONFIG_X86_64 */
571 * Workaround for K8 erratum #93 & buggy BIOS.
573 * BIOS SMM functions are required to use a specific workaround
574 * to avoid corruption of the 64bit RIP register on C stepping K8.
576 * A lot of BIOS that didn't get tested properly miss this.
578 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
579 * Try to work around it here.
581 * Note we only handle faults in kernel here.
582 * Does nothing on 32-bit.
584 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
586 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
587 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
588 || boot_cpu_data
.x86
!= 0xf)
591 if (address
!= regs
->ip
)
594 if ((address
>> 32) != 0)
597 address
|= 0xffffffffUL
<< 32;
598 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
599 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
600 printk_once(errata93_warning
);
609 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
610 * to illegal addresses >4GB.
612 * We catch this in the page fault handler because these addresses
613 * are not reachable. Just detect this case and return. Any code
614 * segment in LDT is compatibility mode.
616 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
619 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
625 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
627 #ifdef CONFIG_X86_F00F_BUG
631 * Pentium F0 0F C7 C8 bug workaround:
633 if (boot_cpu_has_bug(X86_BUG_F00F
)) {
634 nr
= (address
- idt_descr
.address
) >> 3;
637 do_invalid_op(regs
, 0);
645 static const char nx_warning
[] = KERN_CRIT
646 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
647 static const char smep_warning
[] = KERN_CRIT
648 "unable to execute userspace code (SMEP?) (uid: %d)\n";
651 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
652 unsigned long address
)
654 if (!oops_may_print())
657 if (error_code
& PF_INSTR
) {
662 pgd
= __va(read_cr3() & PHYSICAL_PAGE_MASK
);
663 pgd
+= pgd_index(address
);
665 pte
= lookup_address_in_pgd(pgd
, address
, &level
);
667 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
668 printk(nx_warning
, from_kuid(&init_user_ns
, current_uid()));
669 if (pte
&& pte_present(*pte
) && pte_exec(*pte
) &&
670 (pgd_flags(*pgd
) & _PAGE_USER
) &&
671 (__read_cr4() & X86_CR4_SMEP
))
672 printk(smep_warning
, from_kuid(&init_user_ns
, current_uid()));
675 printk(KERN_ALERT
"BUG: unable to handle kernel ");
676 if (address
< PAGE_SIZE
)
677 printk(KERN_CONT
"NULL pointer dereference");
679 printk(KERN_CONT
"paging request");
681 printk(KERN_CONT
" at %p\n", (void *) address
);
682 printk(KERN_ALERT
"IP:");
683 printk_address(regs
->ip
);
685 dump_pagetable(address
);
689 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
690 unsigned long address
)
692 struct task_struct
*tsk
;
696 flags
= oops_begin();
700 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
702 dump_pagetable(address
);
704 tsk
->thread
.cr2
= address
;
705 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
706 tsk
->thread
.error_code
= error_code
;
708 if (__die("Bad pagetable", regs
, error_code
))
711 oops_end(flags
, regs
, sig
);
715 no_context(struct pt_regs
*regs
, unsigned long error_code
,
716 unsigned long address
, int signal
, int si_code
)
718 struct task_struct
*tsk
= current
;
721 /* No context means no VMA to pass down */
722 struct vm_area_struct
*vma
= NULL
;
724 /* Are we prepared to handle this kernel fault? */
725 if (fixup_exception(regs
, X86_TRAP_PF
)) {
727 * Any interrupt that takes a fault gets the fixup. This makes
728 * the below recursive fault logic only apply to a faults from
735 * Per the above we're !in_interrupt(), aka. task context.
737 * In this case we need to make sure we're not recursively
738 * faulting through the emulate_vsyscall() logic.
740 if (current_thread_info()->sig_on_uaccess_error
&& signal
) {
741 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
742 tsk
->thread
.error_code
= error_code
| PF_USER
;
743 tsk
->thread
.cr2
= address
;
745 /* XXX: hwpoison faults will set the wrong code. */
746 force_sig_info_fault(signal
, si_code
, address
,
751 * Barring that, we can do the fixup and be happy.
759 * Valid to do another page fault here, because if this fault
760 * had been triggered by is_prefetch fixup_exception would have
765 * Hall of shame of CPU/BIOS bugs.
767 if (is_prefetch(regs
, error_code
, address
))
770 if (is_errata93(regs
, address
))
774 * Oops. The kernel tried to access some bad page. We'll have to
775 * terminate things with extreme prejudice:
777 flags
= oops_begin();
779 show_fault_oops(regs
, error_code
, address
);
781 if (task_stack_end_corrupted(tsk
))
782 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
784 tsk
->thread
.cr2
= address
;
785 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
786 tsk
->thread
.error_code
= error_code
;
789 if (__die("Oops", regs
, error_code
))
792 /* Executive summary in case the body of the oops scrolled away */
793 printk(KERN_DEFAULT
"CR2: %016lx\n", address
);
795 oops_end(flags
, regs
, sig
);
799 * Print out info about fatal segfaults, if the show_unhandled_signals
803 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
804 unsigned long address
, struct task_struct
*tsk
)
806 if (!unhandled_signal(tsk
, SIGSEGV
))
809 if (!printk_ratelimit())
812 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
813 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
814 tsk
->comm
, task_pid_nr(tsk
), address
,
815 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
817 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
819 printk(KERN_CONT
"\n");
823 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
824 unsigned long address
, struct vm_area_struct
*vma
,
827 struct task_struct
*tsk
= current
;
829 /* User mode accesses just cause a SIGSEGV */
830 if (error_code
& PF_USER
) {
832 * It's possible to have interrupts off here:
837 * Valid to do another page fault here because this one came
840 if (is_prefetch(regs
, error_code
, address
))
843 if (is_errata100(regs
, address
))
848 * Instruction fetch faults in the vsyscall page might need
851 if (unlikely((error_code
& PF_INSTR
) &&
852 ((address
& ~0xfff) == VSYSCALL_ADDR
))) {
853 if (emulate_vsyscall(regs
, address
))
857 /* Kernel addresses are always protection faults: */
858 if (address
>= TASK_SIZE
)
859 error_code
|= PF_PROT
;
861 if (likely(show_unhandled_signals
))
862 show_signal_msg(regs
, error_code
, address
, tsk
);
864 tsk
->thread
.cr2
= address
;
865 tsk
->thread
.error_code
= error_code
;
866 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
868 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
, vma
, 0);
873 if (is_f00f_bug(regs
, address
))
876 no_context(regs
, error_code
, address
, SIGSEGV
, si_code
);
880 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
881 unsigned long address
, struct vm_area_struct
*vma
)
883 __bad_area_nosemaphore(regs
, error_code
, address
, vma
, SEGV_MAPERR
);
887 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
888 unsigned long address
, struct vm_area_struct
*vma
, int si_code
)
890 struct mm_struct
*mm
= current
->mm
;
893 * Something tried to access memory that isn't in our memory map..
894 * Fix it, but check if it's kernel or user first..
896 up_read(&mm
->mmap_sem
);
898 __bad_area_nosemaphore(regs
, error_code
, address
, vma
, si_code
);
902 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
904 __bad_area(regs
, error_code
, address
, NULL
, SEGV_MAPERR
);
907 static inline bool bad_area_access_from_pkeys(unsigned long error_code
,
908 struct vm_area_struct
*vma
)
910 /* This code is always called on the current mm */
911 bool foreign
= false;
913 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
915 if (error_code
& PF_PK
)
917 /* this checks permission keys on the VMA: */
918 if (!arch_vma_access_permitted(vma
, (error_code
& PF_WRITE
),
919 (error_code
& PF_INSTR
), foreign
))
925 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
926 unsigned long address
, struct vm_area_struct
*vma
)
929 * This OSPKE check is not strictly necessary at runtime.
930 * But, doing it this way allows compiler optimizations
931 * if pkeys are compiled out.
933 if (bad_area_access_from_pkeys(error_code
, vma
))
934 __bad_area(regs
, error_code
, address
, vma
, SEGV_PKUERR
);
936 __bad_area(regs
, error_code
, address
, vma
, SEGV_ACCERR
);
940 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
941 struct vm_area_struct
*vma
, unsigned int fault
)
943 struct task_struct
*tsk
= current
;
944 int code
= BUS_ADRERR
;
946 /* Kernel mode? Handle exceptions or die: */
947 if (!(error_code
& PF_USER
)) {
948 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
952 /* User-space => ok to do another page fault: */
953 if (is_prefetch(regs
, error_code
, address
))
956 tsk
->thread
.cr2
= address
;
957 tsk
->thread
.error_code
= error_code
;
958 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
960 #ifdef CONFIG_MEMORY_FAILURE
961 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
963 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
964 tsk
->comm
, tsk
->pid
, address
);
965 code
= BUS_MCEERR_AR
;
968 force_sig_info_fault(SIGBUS
, code
, address
, tsk
, vma
, fault
);
972 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
973 unsigned long address
, struct vm_area_struct
*vma
,
976 if (fatal_signal_pending(current
) && !(error_code
& PF_USER
)) {
977 no_context(regs
, error_code
, address
, 0, 0);
981 if (fault
& VM_FAULT_OOM
) {
982 /* Kernel mode? Handle exceptions or die: */
983 if (!(error_code
& PF_USER
)) {
984 no_context(regs
, error_code
, address
,
985 SIGSEGV
, SEGV_MAPERR
);
990 * We ran out of memory, call the OOM killer, and return the
991 * userspace (which will retry the fault, or kill us if we got
994 pagefault_out_of_memory();
996 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
997 VM_FAULT_HWPOISON_LARGE
))
998 do_sigbus(regs
, error_code
, address
, vma
, fault
);
999 else if (fault
& VM_FAULT_SIGSEGV
)
1000 bad_area_nosemaphore(regs
, error_code
, address
, vma
);
1006 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
1008 if ((error_code
& PF_WRITE
) && !pte_write(*pte
))
1011 if ((error_code
& PF_INSTR
) && !pte_exec(*pte
))
1014 * Note: We do not do lazy flushing on protection key
1015 * changes, so no spurious fault will ever set PF_PK.
1017 if ((error_code
& PF_PK
))
1024 * Handle a spurious fault caused by a stale TLB entry.
1026 * This allows us to lazily refresh the TLB when increasing the
1027 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1028 * eagerly is very expensive since that implies doing a full
1029 * cross-processor TLB flush, even if no stale TLB entries exist
1030 * on other processors.
1032 * Spurious faults may only occur if the TLB contains an entry with
1033 * fewer permission than the page table entry. Non-present (P = 0)
1034 * and reserved bit (R = 1) faults are never spurious.
1036 * There are no security implications to leaving a stale TLB when
1037 * increasing the permissions on a page.
1039 * Returns non-zero if a spurious fault was handled, zero otherwise.
1041 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1042 * (Optional Invalidation).
1045 spurious_fault(unsigned long error_code
, unsigned long address
)
1054 * Only writes to RO or instruction fetches from NX may cause
1057 * These could be from user or supervisor accesses but the TLB
1058 * is only lazily flushed after a kernel mapping protection
1059 * change, so user accesses are not expected to cause spurious
1062 if (error_code
!= (PF_WRITE
| PF_PROT
)
1063 && error_code
!= (PF_INSTR
| PF_PROT
))
1066 pgd
= init_mm
.pgd
+ pgd_index(address
);
1067 if (!pgd_present(*pgd
))
1070 pud
= pud_offset(pgd
, address
);
1071 if (!pud_present(*pud
))
1074 if (pud_large(*pud
))
1075 return spurious_fault_check(error_code
, (pte_t
*) pud
);
1077 pmd
= pmd_offset(pud
, address
);
1078 if (!pmd_present(*pmd
))
1081 if (pmd_large(*pmd
))
1082 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
1084 pte
= pte_offset_kernel(pmd
, address
);
1085 if (!pte_present(*pte
))
1088 ret
= spurious_fault_check(error_code
, pte
);
1093 * Make sure we have permissions in PMD.
1094 * If not, then there's a bug in the page tables:
1096 ret
= spurious_fault_check(error_code
, (pte_t
*) pmd
);
1097 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
1101 NOKPROBE_SYMBOL(spurious_fault
);
1103 int show_unhandled_signals
= 1;
1106 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
1108 /* This is only called for the current mm, so: */
1109 bool foreign
= false;
1111 * Make sure to check the VMA so that we do not perform
1112 * faults just to hit a PF_PK as soon as we fill in a
1115 if (!arch_vma_access_permitted(vma
, (error_code
& PF_WRITE
),
1116 (error_code
& PF_INSTR
), foreign
))
1119 if (error_code
& PF_WRITE
) {
1120 /* write, present and write, not present: */
1121 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
1126 /* read, present: */
1127 if (unlikely(error_code
& PF_PROT
))
1130 /* read, not present: */
1131 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
1137 static int fault_in_kernel_space(unsigned long address
)
1139 return address
>= TASK_SIZE_MAX
;
1142 static inline bool smap_violation(int error_code
, struct pt_regs
*regs
)
1144 if (!IS_ENABLED(CONFIG_X86_SMAP
))
1147 if (!static_cpu_has(X86_FEATURE_SMAP
))
1150 if (error_code
& PF_USER
)
1153 if (!user_mode(regs
) && (regs
->flags
& X86_EFLAGS_AC
))
1160 * This routine handles page faults. It determines the address,
1161 * and the problem, and then passes it off to one of the appropriate
1164 * This function must have noinline because both callers
1165 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1166 * guarantees there's a function trace entry.
1168 static noinline
void
1169 __do_page_fault(struct pt_regs
*regs
, unsigned long error_code
,
1170 unsigned long address
)
1172 struct vm_area_struct
*vma
;
1173 struct task_struct
*tsk
;
1174 struct mm_struct
*mm
;
1175 int fault
, major
= 0;
1176 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1182 * Detect and handle instructions that would cause a page fault for
1183 * both a tracked kernel page and a userspace page.
1185 if (kmemcheck_active(regs
))
1186 kmemcheck_hide(regs
);
1187 prefetchw(&mm
->mmap_sem
);
1189 if (unlikely(kmmio_fault(regs
, address
)))
1193 * We fault-in kernel-space virtual memory on-demand. The
1194 * 'reference' page table is init_mm.pgd.
1196 * NOTE! We MUST NOT take any locks for this case. We may
1197 * be in an interrupt or a critical region, and should
1198 * only copy the information from the master page table,
1201 * This verifies that the fault happens in kernel space
1202 * (error_code & 4) == 0, and that the fault was not a
1203 * protection error (error_code & 9) == 0.
1205 if (unlikely(fault_in_kernel_space(address
))) {
1206 if (!(error_code
& (PF_RSVD
| PF_USER
| PF_PROT
))) {
1207 if (vmalloc_fault(address
) >= 0)
1210 if (kmemcheck_fault(regs
, address
, error_code
))
1214 /* Can handle a stale RO->RW TLB: */
1215 if (spurious_fault(error_code
, address
))
1218 /* kprobes don't want to hook the spurious faults: */
1219 if (kprobes_fault(regs
))
1222 * Don't take the mm semaphore here. If we fixup a prefetch
1223 * fault we could otherwise deadlock:
1225 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1230 /* kprobes don't want to hook the spurious faults: */
1231 if (unlikely(kprobes_fault(regs
)))
1234 if (unlikely(error_code
& PF_RSVD
))
1235 pgtable_bad(regs
, error_code
, address
);
1237 if (unlikely(smap_violation(error_code
, regs
))) {
1238 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1243 * If we're in an interrupt, have no user context or are running
1244 * in a region with pagefaults disabled then we must not take the fault
1246 if (unlikely(faulthandler_disabled() || !mm
)) {
1247 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1252 * It's safe to allow irq's after cr2 has been saved and the
1253 * vmalloc fault has been handled.
1255 * User-mode registers count as a user access even for any
1256 * potential system fault or CPU buglet:
1258 if (user_mode(regs
)) {
1260 error_code
|= PF_USER
;
1261 flags
|= FAULT_FLAG_USER
;
1263 if (regs
->flags
& X86_EFLAGS_IF
)
1267 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
1269 if (error_code
& PF_WRITE
)
1270 flags
|= FAULT_FLAG_WRITE
;
1271 if (error_code
& PF_INSTR
)
1272 flags
|= FAULT_FLAG_INSTRUCTION
;
1275 * When running in the kernel we expect faults to occur only to
1276 * addresses in user space. All other faults represent errors in
1277 * the kernel and should generate an OOPS. Unfortunately, in the
1278 * case of an erroneous fault occurring in a code path which already
1279 * holds mmap_sem we will deadlock attempting to validate the fault
1280 * against the address space. Luckily the kernel only validly
1281 * references user space from well defined areas of code, which are
1282 * listed in the exceptions table.
1284 * As the vast majority of faults will be valid we will only perform
1285 * the source reference check when there is a possibility of a
1286 * deadlock. Attempt to lock the address space, if we cannot we then
1287 * validate the source. If this is invalid we can skip the address
1288 * space check, thus avoiding the deadlock:
1290 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1291 if ((error_code
& PF_USER
) == 0 &&
1292 !search_exception_tables(regs
->ip
)) {
1293 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1297 down_read(&mm
->mmap_sem
);
1300 * The above down_read_trylock() might have succeeded in
1301 * which case we'll have missed the might_sleep() from
1307 vma
= find_vma(mm
, address
);
1308 if (unlikely(!vma
)) {
1309 bad_area(regs
, error_code
, address
);
1312 if (likely(vma
->vm_start
<= address
))
1314 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1315 bad_area(regs
, error_code
, address
);
1318 if (error_code
& PF_USER
) {
1320 * Accessing the stack below %sp is always a bug.
1321 * The large cushion allows instructions like enter
1322 * and pusha to work. ("enter $65535, $31" pushes
1323 * 32 pointers and then decrements %sp by 65535.)
1325 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1326 bad_area(regs
, error_code
, address
);
1330 if (unlikely(expand_stack(vma
, address
))) {
1331 bad_area(regs
, error_code
, address
);
1336 * Ok, we have a good vm_area for this memory access, so
1337 * we can handle it..
1340 if (unlikely(access_error(error_code
, vma
))) {
1341 bad_area_access_error(regs
, error_code
, address
, vma
);
1346 * If for any reason at all we couldn't handle the fault,
1347 * make sure we exit gracefully rather than endlessly redo
1348 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1349 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1351 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
1352 major
|= fault
& VM_FAULT_MAJOR
;
1355 * If we need to retry the mmap_sem has already been released,
1356 * and if there is a fatal signal pending there is no guarantee
1357 * that we made any progress. Handle this case first.
1359 if (unlikely(fault
& VM_FAULT_RETRY
)) {
1360 /* Retry at most once */
1361 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1362 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1363 flags
|= FAULT_FLAG_TRIED
;
1364 if (!fatal_signal_pending(tsk
))
1368 /* User mode? Just return to handle the fatal exception */
1369 if (flags
& FAULT_FLAG_USER
)
1372 /* Not returning to user mode? Handle exceptions or die: */
1373 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
1377 up_read(&mm
->mmap_sem
);
1378 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1379 mm_fault_error(regs
, error_code
, address
, vma
, fault
);
1384 * Major/minor page fault accounting. If any of the events
1385 * returned VM_FAULT_MAJOR, we account it as a major fault.
1389 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
1392 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
1395 check_v8086_mode(regs
, address
, tsk
);
1397 NOKPROBE_SYMBOL(__do_page_fault
);
1399 dotraplinkage
void notrace
1400 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
1402 unsigned long address
= read_cr2(); /* Get the faulting address */
1403 enum ctx_state prev_state
;
1406 * We must have this function tagged with __kprobes, notrace and call
1407 * read_cr2() before calling anything else. To avoid calling any kind
1408 * of tracing machinery before we've observed the CR2 value.
1410 * exception_{enter,exit}() contain all sorts of tracepoints.
1413 prev_state
= exception_enter();
1414 __do_page_fault(regs
, error_code
, address
);
1415 exception_exit(prev_state
);
1417 NOKPROBE_SYMBOL(do_page_fault
);
1419 #ifdef CONFIG_TRACING
1420 static nokprobe_inline
void
1421 trace_page_fault_entries(unsigned long address
, struct pt_regs
*regs
,
1422 unsigned long error_code
)
1424 if (user_mode(regs
))
1425 trace_page_fault_user(address
, regs
, error_code
);
1427 trace_page_fault_kernel(address
, regs
, error_code
);
1430 dotraplinkage
void notrace
1431 trace_do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
1434 * The exception_enter and tracepoint processing could
1435 * trigger another page faults (user space callchain
1436 * reading) and destroy the original cr2 value, so read
1437 * the faulting address now.
1439 unsigned long address
= read_cr2();
1440 enum ctx_state prev_state
;
1442 prev_state
= exception_enter();
1443 trace_page_fault_entries(address
, regs
, error_code
);
1444 __do_page_fault(regs
, error_code
, address
);
1445 exception_exit(prev_state
);
1447 NOKPROBE_SYMBOL(trace_do_page_fault
);
1448 #endif /* CONFIG_TRACING */