Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[linux/fpc-iii.git] / arch / x86 / mm / fault.c
blob5ce1ed02f7e80900ead34c8b8af2bfe223a9d3bd
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/kdebug.h> /* oops_begin/end, ... */
8 #include <linux/module.h> /* search_exception_table */
9 #include <linux/bootmem.h> /* max_low_pfn */
10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
12 #include <linux/perf_event.h> /* perf_sw_event */
13 #include <linux/hugetlb.h> /* hstate_index_to_shift */
14 #include <linux/prefetch.h> /* prefetchw */
15 #include <linux/context_tracking.h> /* exception_enter(), ... */
16 #include <linux/uaccess.h> /* faulthandler_disabled() */
18 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
19 #include <asm/traps.h> /* dotraplinkage, ... */
20 #include <asm/pgalloc.h> /* pgd_*(), ... */
21 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
22 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
23 #include <asm/vsyscall.h> /* emulate_vsyscall */
24 #include <asm/vm86.h> /* struct vm86 */
25 #include <asm/mmu_context.h> /* vma_pkey() */
27 #define CREATE_TRACE_POINTS
28 #include <asm/trace/exceptions.h>
31 * Page fault error code bits:
33 * bit 0 == 0: no page found 1: protection fault
34 * bit 1 == 0: read access 1: write access
35 * bit 2 == 0: kernel-mode access 1: user-mode access
36 * bit 3 == 1: use of reserved bit detected
37 * bit 4 == 1: fault was an instruction fetch
38 * bit 5 == 1: protection keys block access
40 enum x86_pf_error_code {
42 PF_PROT = 1 << 0,
43 PF_WRITE = 1 << 1,
44 PF_USER = 1 << 2,
45 PF_RSVD = 1 << 3,
46 PF_INSTR = 1 << 4,
47 PF_PK = 1 << 5,
51 * Returns 0 if mmiotrace is disabled, or if the fault is not
52 * handled by mmiotrace:
54 static nokprobe_inline int
55 kmmio_fault(struct pt_regs *regs, unsigned long addr)
57 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs, addr) == 1)
59 return -1;
60 return 0;
63 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
65 int ret = 0;
67 /* kprobe_running() needs smp_processor_id() */
68 if (kprobes_built_in() && !user_mode(regs)) {
69 preempt_disable();
70 if (kprobe_running() && kprobe_fault_handler(regs, 14))
71 ret = 1;
72 preempt_enable();
75 return ret;
79 * Prefetch quirks:
81 * 32-bit mode:
83 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
84 * Check that here and ignore it.
86 * 64-bit mode:
88 * Sometimes the CPU reports invalid exceptions on prefetch.
89 * Check that here and ignore it.
91 * Opcode checker based on code by Richard Brunner.
93 static inline int
94 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
95 unsigned char opcode, int *prefetch)
97 unsigned char instr_hi = opcode & 0xf0;
98 unsigned char instr_lo = opcode & 0x0f;
100 switch (instr_hi) {
101 case 0x20:
102 case 0x30:
104 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
105 * In X86_64 long mode, the CPU will signal invalid
106 * opcode if some of these prefixes are present so
107 * X86_64 will never get here anyway
109 return ((instr_lo & 7) == 0x6);
110 #ifdef CONFIG_X86_64
111 case 0x40:
113 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
114 * Need to figure out under what instruction mode the
115 * instruction was issued. Could check the LDT for lm,
116 * but for now it's good enough to assume that long
117 * mode only uses well known segments or kernel.
119 return (!user_mode(regs) || user_64bit_mode(regs));
120 #endif
121 case 0x60:
122 /* 0x64 thru 0x67 are valid prefixes in all modes. */
123 return (instr_lo & 0xC) == 0x4;
124 case 0xF0:
125 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
126 return !instr_lo || (instr_lo>>1) == 1;
127 case 0x00:
128 /* Prefetch instruction is 0x0F0D or 0x0F18 */
129 if (probe_kernel_address(instr, opcode))
130 return 0;
132 *prefetch = (instr_lo == 0xF) &&
133 (opcode == 0x0D || opcode == 0x18);
134 return 0;
135 default:
136 return 0;
140 static int
141 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
143 unsigned char *max_instr;
144 unsigned char *instr;
145 int prefetch = 0;
148 * If it was a exec (instruction fetch) fault on NX page, then
149 * do not ignore the fault:
151 if (error_code & PF_INSTR)
152 return 0;
154 instr = (void *)convert_ip_to_linear(current, regs);
155 max_instr = instr + 15;
157 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
158 return 0;
160 while (instr < max_instr) {
161 unsigned char opcode;
163 if (probe_kernel_address(instr, opcode))
164 break;
166 instr++;
168 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
169 break;
171 return prefetch;
175 * A protection key fault means that the PKRU value did not allow
176 * access to some PTE. Userspace can figure out what PKRU was
177 * from the XSAVE state, and this function fills out a field in
178 * siginfo so userspace can discover which protection key was set
179 * on the PTE.
181 * If we get here, we know that the hardware signaled a PF_PK
182 * fault and that there was a VMA once we got in the fault
183 * handler. It does *not* guarantee that the VMA we find here
184 * was the one that we faulted on.
186 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
187 * 2. T1 : set PKRU to deny access to pkey=4, touches page
188 * 3. T1 : faults...
189 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
190 * 5. T1 : enters fault handler, takes mmap_sem, etc...
191 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
192 * faulted on a pte with its pkey=4.
194 static void fill_sig_info_pkey(int si_code, siginfo_t *info,
195 struct vm_area_struct *vma)
197 /* This is effectively an #ifdef */
198 if (!boot_cpu_has(X86_FEATURE_OSPKE))
199 return;
201 /* Fault not from Protection Keys: nothing to do */
202 if (si_code != SEGV_PKUERR)
203 return;
205 * force_sig_info_fault() is called from a number of
206 * contexts, some of which have a VMA and some of which
207 * do not. The PF_PK handing happens after we have a
208 * valid VMA, so we should never reach this without a
209 * valid VMA.
211 if (!vma) {
212 WARN_ONCE(1, "PKU fault with no VMA passed in");
213 info->si_pkey = 0;
214 return;
217 * si_pkey should be thought of as a strong hint, but not
218 * absolutely guranteed to be 100% accurate because of
219 * the race explained above.
221 info->si_pkey = vma_pkey(vma);
224 static void
225 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
226 struct task_struct *tsk, struct vm_area_struct *vma,
227 int fault)
229 unsigned lsb = 0;
230 siginfo_t info;
232 info.si_signo = si_signo;
233 info.si_errno = 0;
234 info.si_code = si_code;
235 info.si_addr = (void __user *)address;
236 if (fault & VM_FAULT_HWPOISON_LARGE)
237 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
238 if (fault & VM_FAULT_HWPOISON)
239 lsb = PAGE_SHIFT;
240 info.si_addr_lsb = lsb;
242 fill_sig_info_pkey(si_code, &info, vma);
244 force_sig_info(si_signo, &info, tsk);
247 DEFINE_SPINLOCK(pgd_lock);
248 LIST_HEAD(pgd_list);
250 #ifdef CONFIG_X86_32
251 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
253 unsigned index = pgd_index(address);
254 pgd_t *pgd_k;
255 pud_t *pud, *pud_k;
256 pmd_t *pmd, *pmd_k;
258 pgd += index;
259 pgd_k = init_mm.pgd + index;
261 if (!pgd_present(*pgd_k))
262 return NULL;
265 * set_pgd(pgd, *pgd_k); here would be useless on PAE
266 * and redundant with the set_pmd() on non-PAE. As would
267 * set_pud.
269 pud = pud_offset(pgd, address);
270 pud_k = pud_offset(pgd_k, address);
271 if (!pud_present(*pud_k))
272 return NULL;
274 pmd = pmd_offset(pud, address);
275 pmd_k = pmd_offset(pud_k, address);
276 if (!pmd_present(*pmd_k))
277 return NULL;
279 if (!pmd_present(*pmd))
280 set_pmd(pmd, *pmd_k);
281 else
282 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
284 return pmd_k;
287 void vmalloc_sync_all(void)
289 unsigned long address;
291 if (SHARED_KERNEL_PMD)
292 return;
294 for (address = VMALLOC_START & PMD_MASK;
295 address >= TASK_SIZE && address < FIXADDR_TOP;
296 address += PMD_SIZE) {
297 struct page *page;
299 spin_lock(&pgd_lock);
300 list_for_each_entry(page, &pgd_list, lru) {
301 spinlock_t *pgt_lock;
302 pmd_t *ret;
304 /* the pgt_lock only for Xen */
305 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
307 spin_lock(pgt_lock);
308 ret = vmalloc_sync_one(page_address(page), address);
309 spin_unlock(pgt_lock);
311 if (!ret)
312 break;
314 spin_unlock(&pgd_lock);
319 * 32-bit:
321 * Handle a fault on the vmalloc or module mapping area
323 static noinline int vmalloc_fault(unsigned long address)
325 unsigned long pgd_paddr;
326 pmd_t *pmd_k;
327 pte_t *pte_k;
329 /* Make sure we are in vmalloc area: */
330 if (!(address >= VMALLOC_START && address < VMALLOC_END))
331 return -1;
333 WARN_ON_ONCE(in_nmi());
336 * Synchronize this task's top level page-table
337 * with the 'reference' page table.
339 * Do _not_ use "current" here. We might be inside
340 * an interrupt in the middle of a task switch..
342 pgd_paddr = read_cr3();
343 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
344 if (!pmd_k)
345 return -1;
347 if (pmd_huge(*pmd_k))
348 return 0;
350 pte_k = pte_offset_kernel(pmd_k, address);
351 if (!pte_present(*pte_k))
352 return -1;
354 return 0;
356 NOKPROBE_SYMBOL(vmalloc_fault);
359 * Did it hit the DOS screen memory VA from vm86 mode?
361 static inline void
362 check_v8086_mode(struct pt_regs *regs, unsigned long address,
363 struct task_struct *tsk)
365 #ifdef CONFIG_VM86
366 unsigned long bit;
368 if (!v8086_mode(regs) || !tsk->thread.vm86)
369 return;
371 bit = (address - 0xA0000) >> PAGE_SHIFT;
372 if (bit < 32)
373 tsk->thread.vm86->screen_bitmap |= 1 << bit;
374 #endif
377 static bool low_pfn(unsigned long pfn)
379 return pfn < max_low_pfn;
382 static void dump_pagetable(unsigned long address)
384 pgd_t *base = __va(read_cr3());
385 pgd_t *pgd = &base[pgd_index(address)];
386 pmd_t *pmd;
387 pte_t *pte;
389 #ifdef CONFIG_X86_PAE
390 printk("*pdpt = %016Lx ", pgd_val(*pgd));
391 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
392 goto out;
393 #endif
394 pmd = pmd_offset(pud_offset(pgd, address), address);
395 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
398 * We must not directly access the pte in the highpte
399 * case if the page table is located in highmem.
400 * And let's rather not kmap-atomic the pte, just in case
401 * it's allocated already:
403 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
404 goto out;
406 pte = pte_offset_kernel(pmd, address);
407 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
408 out:
409 printk("\n");
412 #else /* CONFIG_X86_64: */
414 void vmalloc_sync_all(void)
416 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
420 * 64-bit:
422 * Handle a fault on the vmalloc area
424 static noinline int vmalloc_fault(unsigned long address)
426 pgd_t *pgd, *pgd_ref;
427 pud_t *pud, *pud_ref;
428 pmd_t *pmd, *pmd_ref;
429 pte_t *pte, *pte_ref;
431 /* Make sure we are in vmalloc area: */
432 if (!(address >= VMALLOC_START && address < VMALLOC_END))
433 return -1;
435 WARN_ON_ONCE(in_nmi());
438 * Copy kernel mappings over when needed. This can also
439 * happen within a race in page table update. In the later
440 * case just flush:
442 pgd = pgd_offset(current->active_mm, address);
443 pgd_ref = pgd_offset_k(address);
444 if (pgd_none(*pgd_ref))
445 return -1;
447 if (pgd_none(*pgd)) {
448 set_pgd(pgd, *pgd_ref);
449 arch_flush_lazy_mmu_mode();
450 } else {
451 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
455 * Below here mismatches are bugs because these lower tables
456 * are shared:
459 pud = pud_offset(pgd, address);
460 pud_ref = pud_offset(pgd_ref, address);
461 if (pud_none(*pud_ref))
462 return -1;
464 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
465 BUG();
467 if (pud_huge(*pud))
468 return 0;
470 pmd = pmd_offset(pud, address);
471 pmd_ref = pmd_offset(pud_ref, address);
472 if (pmd_none(*pmd_ref))
473 return -1;
475 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
476 BUG();
478 if (pmd_huge(*pmd))
479 return 0;
481 pte_ref = pte_offset_kernel(pmd_ref, address);
482 if (!pte_present(*pte_ref))
483 return -1;
485 pte = pte_offset_kernel(pmd, address);
488 * Don't use pte_page here, because the mappings can point
489 * outside mem_map, and the NUMA hash lookup cannot handle
490 * that:
492 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
493 BUG();
495 return 0;
497 NOKPROBE_SYMBOL(vmalloc_fault);
499 #ifdef CONFIG_CPU_SUP_AMD
500 static const char errata93_warning[] =
501 KERN_ERR
502 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
503 "******* Working around it, but it may cause SEGVs or burn power.\n"
504 "******* Please consider a BIOS update.\n"
505 "******* Disabling USB legacy in the BIOS may also help.\n";
506 #endif
509 * No vm86 mode in 64-bit mode:
511 static inline void
512 check_v8086_mode(struct pt_regs *regs, unsigned long address,
513 struct task_struct *tsk)
517 static int bad_address(void *p)
519 unsigned long dummy;
521 return probe_kernel_address((unsigned long *)p, dummy);
524 static void dump_pagetable(unsigned long address)
526 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
527 pgd_t *pgd = base + pgd_index(address);
528 pud_t *pud;
529 pmd_t *pmd;
530 pte_t *pte;
532 if (bad_address(pgd))
533 goto bad;
535 printk("PGD %lx ", pgd_val(*pgd));
537 if (!pgd_present(*pgd))
538 goto out;
540 pud = pud_offset(pgd, address);
541 if (bad_address(pud))
542 goto bad;
544 printk("PUD %lx ", pud_val(*pud));
545 if (!pud_present(*pud) || pud_large(*pud))
546 goto out;
548 pmd = pmd_offset(pud, address);
549 if (bad_address(pmd))
550 goto bad;
552 printk("PMD %lx ", pmd_val(*pmd));
553 if (!pmd_present(*pmd) || pmd_large(*pmd))
554 goto out;
556 pte = pte_offset_kernel(pmd, address);
557 if (bad_address(pte))
558 goto bad;
560 printk("PTE %lx", pte_val(*pte));
561 out:
562 printk("\n");
563 return;
564 bad:
565 printk("BAD\n");
568 #endif /* CONFIG_X86_64 */
571 * Workaround for K8 erratum #93 & buggy BIOS.
573 * BIOS SMM functions are required to use a specific workaround
574 * to avoid corruption of the 64bit RIP register on C stepping K8.
576 * A lot of BIOS that didn't get tested properly miss this.
578 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
579 * Try to work around it here.
581 * Note we only handle faults in kernel here.
582 * Does nothing on 32-bit.
584 static int is_errata93(struct pt_regs *regs, unsigned long address)
586 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
587 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
588 || boot_cpu_data.x86 != 0xf)
589 return 0;
591 if (address != regs->ip)
592 return 0;
594 if ((address >> 32) != 0)
595 return 0;
597 address |= 0xffffffffUL << 32;
598 if ((address >= (u64)_stext && address <= (u64)_etext) ||
599 (address >= MODULES_VADDR && address <= MODULES_END)) {
600 printk_once(errata93_warning);
601 regs->ip = address;
602 return 1;
604 #endif
605 return 0;
609 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
610 * to illegal addresses >4GB.
612 * We catch this in the page fault handler because these addresses
613 * are not reachable. Just detect this case and return. Any code
614 * segment in LDT is compatibility mode.
616 static int is_errata100(struct pt_regs *regs, unsigned long address)
618 #ifdef CONFIG_X86_64
619 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
620 return 1;
621 #endif
622 return 0;
625 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
627 #ifdef CONFIG_X86_F00F_BUG
628 unsigned long nr;
631 * Pentium F0 0F C7 C8 bug workaround:
633 if (boot_cpu_has_bug(X86_BUG_F00F)) {
634 nr = (address - idt_descr.address) >> 3;
636 if (nr == 6) {
637 do_invalid_op(regs, 0);
638 return 1;
641 #endif
642 return 0;
645 static const char nx_warning[] = KERN_CRIT
646 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
647 static const char smep_warning[] = KERN_CRIT
648 "unable to execute userspace code (SMEP?) (uid: %d)\n";
650 static void
651 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
652 unsigned long address)
654 if (!oops_may_print())
655 return;
657 if (error_code & PF_INSTR) {
658 unsigned int level;
659 pgd_t *pgd;
660 pte_t *pte;
662 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
663 pgd += pgd_index(address);
665 pte = lookup_address_in_pgd(pgd, address, &level);
667 if (pte && pte_present(*pte) && !pte_exec(*pte))
668 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
669 if (pte && pte_present(*pte) && pte_exec(*pte) &&
670 (pgd_flags(*pgd) & _PAGE_USER) &&
671 (__read_cr4() & X86_CR4_SMEP))
672 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
675 printk(KERN_ALERT "BUG: unable to handle kernel ");
676 if (address < PAGE_SIZE)
677 printk(KERN_CONT "NULL pointer dereference");
678 else
679 printk(KERN_CONT "paging request");
681 printk(KERN_CONT " at %p\n", (void *) address);
682 printk(KERN_ALERT "IP:");
683 printk_address(regs->ip);
685 dump_pagetable(address);
688 static noinline void
689 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
690 unsigned long address)
692 struct task_struct *tsk;
693 unsigned long flags;
694 int sig;
696 flags = oops_begin();
697 tsk = current;
698 sig = SIGKILL;
700 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
701 tsk->comm, address);
702 dump_pagetable(address);
704 tsk->thread.cr2 = address;
705 tsk->thread.trap_nr = X86_TRAP_PF;
706 tsk->thread.error_code = error_code;
708 if (__die("Bad pagetable", regs, error_code))
709 sig = 0;
711 oops_end(flags, regs, sig);
714 static noinline void
715 no_context(struct pt_regs *regs, unsigned long error_code,
716 unsigned long address, int signal, int si_code)
718 struct task_struct *tsk = current;
719 unsigned long flags;
720 int sig;
721 /* No context means no VMA to pass down */
722 struct vm_area_struct *vma = NULL;
724 /* Are we prepared to handle this kernel fault? */
725 if (fixup_exception(regs, X86_TRAP_PF)) {
727 * Any interrupt that takes a fault gets the fixup. This makes
728 * the below recursive fault logic only apply to a faults from
729 * task context.
731 if (in_interrupt())
732 return;
735 * Per the above we're !in_interrupt(), aka. task context.
737 * In this case we need to make sure we're not recursively
738 * faulting through the emulate_vsyscall() logic.
740 if (current_thread_info()->sig_on_uaccess_error && signal) {
741 tsk->thread.trap_nr = X86_TRAP_PF;
742 tsk->thread.error_code = error_code | PF_USER;
743 tsk->thread.cr2 = address;
745 /* XXX: hwpoison faults will set the wrong code. */
746 force_sig_info_fault(signal, si_code, address,
747 tsk, vma, 0);
751 * Barring that, we can do the fixup and be happy.
753 return;
757 * 32-bit:
759 * Valid to do another page fault here, because if this fault
760 * had been triggered by is_prefetch fixup_exception would have
761 * handled it.
763 * 64-bit:
765 * Hall of shame of CPU/BIOS bugs.
767 if (is_prefetch(regs, error_code, address))
768 return;
770 if (is_errata93(regs, address))
771 return;
774 * Oops. The kernel tried to access some bad page. We'll have to
775 * terminate things with extreme prejudice:
777 flags = oops_begin();
779 show_fault_oops(regs, error_code, address);
781 if (task_stack_end_corrupted(tsk))
782 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
784 tsk->thread.cr2 = address;
785 tsk->thread.trap_nr = X86_TRAP_PF;
786 tsk->thread.error_code = error_code;
788 sig = SIGKILL;
789 if (__die("Oops", regs, error_code))
790 sig = 0;
792 /* Executive summary in case the body of the oops scrolled away */
793 printk(KERN_DEFAULT "CR2: %016lx\n", address);
795 oops_end(flags, regs, sig);
799 * Print out info about fatal segfaults, if the show_unhandled_signals
800 * sysctl is set:
802 static inline void
803 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
804 unsigned long address, struct task_struct *tsk)
806 if (!unhandled_signal(tsk, SIGSEGV))
807 return;
809 if (!printk_ratelimit())
810 return;
812 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
813 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
814 tsk->comm, task_pid_nr(tsk), address,
815 (void *)regs->ip, (void *)regs->sp, error_code);
817 print_vma_addr(KERN_CONT " in ", regs->ip);
819 printk(KERN_CONT "\n");
822 static void
823 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
824 unsigned long address, struct vm_area_struct *vma,
825 int si_code)
827 struct task_struct *tsk = current;
829 /* User mode accesses just cause a SIGSEGV */
830 if (error_code & PF_USER) {
832 * It's possible to have interrupts off here:
834 local_irq_enable();
837 * Valid to do another page fault here because this one came
838 * from user space:
840 if (is_prefetch(regs, error_code, address))
841 return;
843 if (is_errata100(regs, address))
844 return;
846 #ifdef CONFIG_X86_64
848 * Instruction fetch faults in the vsyscall page might need
849 * emulation.
851 if (unlikely((error_code & PF_INSTR) &&
852 ((address & ~0xfff) == VSYSCALL_ADDR))) {
853 if (emulate_vsyscall(regs, address))
854 return;
856 #endif
857 /* Kernel addresses are always protection faults: */
858 if (address >= TASK_SIZE)
859 error_code |= PF_PROT;
861 if (likely(show_unhandled_signals))
862 show_signal_msg(regs, error_code, address, tsk);
864 tsk->thread.cr2 = address;
865 tsk->thread.error_code = error_code;
866 tsk->thread.trap_nr = X86_TRAP_PF;
868 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
870 return;
873 if (is_f00f_bug(regs, address))
874 return;
876 no_context(regs, error_code, address, SIGSEGV, si_code);
879 static noinline void
880 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
881 unsigned long address, struct vm_area_struct *vma)
883 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
886 static void
887 __bad_area(struct pt_regs *regs, unsigned long error_code,
888 unsigned long address, struct vm_area_struct *vma, int si_code)
890 struct mm_struct *mm = current->mm;
893 * Something tried to access memory that isn't in our memory map..
894 * Fix it, but check if it's kernel or user first..
896 up_read(&mm->mmap_sem);
898 __bad_area_nosemaphore(regs, error_code, address, vma, si_code);
901 static noinline void
902 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
904 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
907 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
908 struct vm_area_struct *vma)
910 /* This code is always called on the current mm */
911 bool foreign = false;
913 if (!boot_cpu_has(X86_FEATURE_OSPKE))
914 return false;
915 if (error_code & PF_PK)
916 return true;
917 /* this checks permission keys on the VMA: */
918 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
919 (error_code & PF_INSTR), foreign))
920 return true;
921 return false;
924 static noinline void
925 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
926 unsigned long address, struct vm_area_struct *vma)
929 * This OSPKE check is not strictly necessary at runtime.
930 * But, doing it this way allows compiler optimizations
931 * if pkeys are compiled out.
933 if (bad_area_access_from_pkeys(error_code, vma))
934 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
935 else
936 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
939 static void
940 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
941 struct vm_area_struct *vma, unsigned int fault)
943 struct task_struct *tsk = current;
944 int code = BUS_ADRERR;
946 /* Kernel mode? Handle exceptions or die: */
947 if (!(error_code & PF_USER)) {
948 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
949 return;
952 /* User-space => ok to do another page fault: */
953 if (is_prefetch(regs, error_code, address))
954 return;
956 tsk->thread.cr2 = address;
957 tsk->thread.error_code = error_code;
958 tsk->thread.trap_nr = X86_TRAP_PF;
960 #ifdef CONFIG_MEMORY_FAILURE
961 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
962 printk(KERN_ERR
963 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
964 tsk->comm, tsk->pid, address);
965 code = BUS_MCEERR_AR;
967 #endif
968 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
971 static noinline void
972 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
973 unsigned long address, struct vm_area_struct *vma,
974 unsigned int fault)
976 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
977 no_context(regs, error_code, address, 0, 0);
978 return;
981 if (fault & VM_FAULT_OOM) {
982 /* Kernel mode? Handle exceptions or die: */
983 if (!(error_code & PF_USER)) {
984 no_context(regs, error_code, address,
985 SIGSEGV, SEGV_MAPERR);
986 return;
990 * We ran out of memory, call the OOM killer, and return the
991 * userspace (which will retry the fault, or kill us if we got
992 * oom-killed):
994 pagefault_out_of_memory();
995 } else {
996 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
997 VM_FAULT_HWPOISON_LARGE))
998 do_sigbus(regs, error_code, address, vma, fault);
999 else if (fault & VM_FAULT_SIGSEGV)
1000 bad_area_nosemaphore(regs, error_code, address, vma);
1001 else
1002 BUG();
1006 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1008 if ((error_code & PF_WRITE) && !pte_write(*pte))
1009 return 0;
1011 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1012 return 0;
1014 * Note: We do not do lazy flushing on protection key
1015 * changes, so no spurious fault will ever set PF_PK.
1017 if ((error_code & PF_PK))
1018 return 1;
1020 return 1;
1024 * Handle a spurious fault caused by a stale TLB entry.
1026 * This allows us to lazily refresh the TLB when increasing the
1027 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1028 * eagerly is very expensive since that implies doing a full
1029 * cross-processor TLB flush, even if no stale TLB entries exist
1030 * on other processors.
1032 * Spurious faults may only occur if the TLB contains an entry with
1033 * fewer permission than the page table entry. Non-present (P = 0)
1034 * and reserved bit (R = 1) faults are never spurious.
1036 * There are no security implications to leaving a stale TLB when
1037 * increasing the permissions on a page.
1039 * Returns non-zero if a spurious fault was handled, zero otherwise.
1041 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1042 * (Optional Invalidation).
1044 static noinline int
1045 spurious_fault(unsigned long error_code, unsigned long address)
1047 pgd_t *pgd;
1048 pud_t *pud;
1049 pmd_t *pmd;
1050 pte_t *pte;
1051 int ret;
1054 * Only writes to RO or instruction fetches from NX may cause
1055 * spurious faults.
1057 * These could be from user or supervisor accesses but the TLB
1058 * is only lazily flushed after a kernel mapping protection
1059 * change, so user accesses are not expected to cause spurious
1060 * faults.
1062 if (error_code != (PF_WRITE | PF_PROT)
1063 && error_code != (PF_INSTR | PF_PROT))
1064 return 0;
1066 pgd = init_mm.pgd + pgd_index(address);
1067 if (!pgd_present(*pgd))
1068 return 0;
1070 pud = pud_offset(pgd, address);
1071 if (!pud_present(*pud))
1072 return 0;
1074 if (pud_large(*pud))
1075 return spurious_fault_check(error_code, (pte_t *) pud);
1077 pmd = pmd_offset(pud, address);
1078 if (!pmd_present(*pmd))
1079 return 0;
1081 if (pmd_large(*pmd))
1082 return spurious_fault_check(error_code, (pte_t *) pmd);
1084 pte = pte_offset_kernel(pmd, address);
1085 if (!pte_present(*pte))
1086 return 0;
1088 ret = spurious_fault_check(error_code, pte);
1089 if (!ret)
1090 return 0;
1093 * Make sure we have permissions in PMD.
1094 * If not, then there's a bug in the page tables:
1096 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1097 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1099 return ret;
1101 NOKPROBE_SYMBOL(spurious_fault);
1103 int show_unhandled_signals = 1;
1105 static inline int
1106 access_error(unsigned long error_code, struct vm_area_struct *vma)
1108 /* This is only called for the current mm, so: */
1109 bool foreign = false;
1111 * Make sure to check the VMA so that we do not perform
1112 * faults just to hit a PF_PK as soon as we fill in a
1113 * page.
1115 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1116 (error_code & PF_INSTR), foreign))
1117 return 1;
1119 if (error_code & PF_WRITE) {
1120 /* write, present and write, not present: */
1121 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1122 return 1;
1123 return 0;
1126 /* read, present: */
1127 if (unlikely(error_code & PF_PROT))
1128 return 1;
1130 /* read, not present: */
1131 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1132 return 1;
1134 return 0;
1137 static int fault_in_kernel_space(unsigned long address)
1139 return address >= TASK_SIZE_MAX;
1142 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1144 if (!IS_ENABLED(CONFIG_X86_SMAP))
1145 return false;
1147 if (!static_cpu_has(X86_FEATURE_SMAP))
1148 return false;
1150 if (error_code & PF_USER)
1151 return false;
1153 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1154 return false;
1156 return true;
1160 * This routine handles page faults. It determines the address,
1161 * and the problem, and then passes it off to one of the appropriate
1162 * routines.
1164 * This function must have noinline because both callers
1165 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1166 * guarantees there's a function trace entry.
1168 static noinline void
1169 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1170 unsigned long address)
1172 struct vm_area_struct *vma;
1173 struct task_struct *tsk;
1174 struct mm_struct *mm;
1175 int fault, major = 0;
1176 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1178 tsk = current;
1179 mm = tsk->mm;
1182 * Detect and handle instructions that would cause a page fault for
1183 * both a tracked kernel page and a userspace page.
1185 if (kmemcheck_active(regs))
1186 kmemcheck_hide(regs);
1187 prefetchw(&mm->mmap_sem);
1189 if (unlikely(kmmio_fault(regs, address)))
1190 return;
1193 * We fault-in kernel-space virtual memory on-demand. The
1194 * 'reference' page table is init_mm.pgd.
1196 * NOTE! We MUST NOT take any locks for this case. We may
1197 * be in an interrupt or a critical region, and should
1198 * only copy the information from the master page table,
1199 * nothing more.
1201 * This verifies that the fault happens in kernel space
1202 * (error_code & 4) == 0, and that the fault was not a
1203 * protection error (error_code & 9) == 0.
1205 if (unlikely(fault_in_kernel_space(address))) {
1206 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1207 if (vmalloc_fault(address) >= 0)
1208 return;
1210 if (kmemcheck_fault(regs, address, error_code))
1211 return;
1214 /* Can handle a stale RO->RW TLB: */
1215 if (spurious_fault(error_code, address))
1216 return;
1218 /* kprobes don't want to hook the spurious faults: */
1219 if (kprobes_fault(regs))
1220 return;
1222 * Don't take the mm semaphore here. If we fixup a prefetch
1223 * fault we could otherwise deadlock:
1225 bad_area_nosemaphore(regs, error_code, address, NULL);
1227 return;
1230 /* kprobes don't want to hook the spurious faults: */
1231 if (unlikely(kprobes_fault(regs)))
1232 return;
1234 if (unlikely(error_code & PF_RSVD))
1235 pgtable_bad(regs, error_code, address);
1237 if (unlikely(smap_violation(error_code, regs))) {
1238 bad_area_nosemaphore(regs, error_code, address, NULL);
1239 return;
1243 * If we're in an interrupt, have no user context or are running
1244 * in a region with pagefaults disabled then we must not take the fault
1246 if (unlikely(faulthandler_disabled() || !mm)) {
1247 bad_area_nosemaphore(regs, error_code, address, NULL);
1248 return;
1252 * It's safe to allow irq's after cr2 has been saved and the
1253 * vmalloc fault has been handled.
1255 * User-mode registers count as a user access even for any
1256 * potential system fault or CPU buglet:
1258 if (user_mode(regs)) {
1259 local_irq_enable();
1260 error_code |= PF_USER;
1261 flags |= FAULT_FLAG_USER;
1262 } else {
1263 if (regs->flags & X86_EFLAGS_IF)
1264 local_irq_enable();
1267 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1269 if (error_code & PF_WRITE)
1270 flags |= FAULT_FLAG_WRITE;
1271 if (error_code & PF_INSTR)
1272 flags |= FAULT_FLAG_INSTRUCTION;
1275 * When running in the kernel we expect faults to occur only to
1276 * addresses in user space. All other faults represent errors in
1277 * the kernel and should generate an OOPS. Unfortunately, in the
1278 * case of an erroneous fault occurring in a code path which already
1279 * holds mmap_sem we will deadlock attempting to validate the fault
1280 * against the address space. Luckily the kernel only validly
1281 * references user space from well defined areas of code, which are
1282 * listed in the exceptions table.
1284 * As the vast majority of faults will be valid we will only perform
1285 * the source reference check when there is a possibility of a
1286 * deadlock. Attempt to lock the address space, if we cannot we then
1287 * validate the source. If this is invalid we can skip the address
1288 * space check, thus avoiding the deadlock:
1290 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1291 if ((error_code & PF_USER) == 0 &&
1292 !search_exception_tables(regs->ip)) {
1293 bad_area_nosemaphore(regs, error_code, address, NULL);
1294 return;
1296 retry:
1297 down_read(&mm->mmap_sem);
1298 } else {
1300 * The above down_read_trylock() might have succeeded in
1301 * which case we'll have missed the might_sleep() from
1302 * down_read():
1304 might_sleep();
1307 vma = find_vma(mm, address);
1308 if (unlikely(!vma)) {
1309 bad_area(regs, error_code, address);
1310 return;
1312 if (likely(vma->vm_start <= address))
1313 goto good_area;
1314 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1315 bad_area(regs, error_code, address);
1316 return;
1318 if (error_code & PF_USER) {
1320 * Accessing the stack below %sp is always a bug.
1321 * The large cushion allows instructions like enter
1322 * and pusha to work. ("enter $65535, $31" pushes
1323 * 32 pointers and then decrements %sp by 65535.)
1325 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1326 bad_area(regs, error_code, address);
1327 return;
1330 if (unlikely(expand_stack(vma, address))) {
1331 bad_area(regs, error_code, address);
1332 return;
1336 * Ok, we have a good vm_area for this memory access, so
1337 * we can handle it..
1339 good_area:
1340 if (unlikely(access_error(error_code, vma))) {
1341 bad_area_access_error(regs, error_code, address, vma);
1342 return;
1346 * If for any reason at all we couldn't handle the fault,
1347 * make sure we exit gracefully rather than endlessly redo
1348 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1349 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1351 fault = handle_mm_fault(mm, vma, address, flags);
1352 major |= fault & VM_FAULT_MAJOR;
1355 * If we need to retry the mmap_sem has already been released,
1356 * and if there is a fatal signal pending there is no guarantee
1357 * that we made any progress. Handle this case first.
1359 if (unlikely(fault & VM_FAULT_RETRY)) {
1360 /* Retry at most once */
1361 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1362 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1363 flags |= FAULT_FLAG_TRIED;
1364 if (!fatal_signal_pending(tsk))
1365 goto retry;
1368 /* User mode? Just return to handle the fatal exception */
1369 if (flags & FAULT_FLAG_USER)
1370 return;
1372 /* Not returning to user mode? Handle exceptions or die: */
1373 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1374 return;
1377 up_read(&mm->mmap_sem);
1378 if (unlikely(fault & VM_FAULT_ERROR)) {
1379 mm_fault_error(regs, error_code, address, vma, fault);
1380 return;
1384 * Major/minor page fault accounting. If any of the events
1385 * returned VM_FAULT_MAJOR, we account it as a major fault.
1387 if (major) {
1388 tsk->maj_flt++;
1389 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1390 } else {
1391 tsk->min_flt++;
1392 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1395 check_v8086_mode(regs, address, tsk);
1397 NOKPROBE_SYMBOL(__do_page_fault);
1399 dotraplinkage void notrace
1400 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1402 unsigned long address = read_cr2(); /* Get the faulting address */
1403 enum ctx_state prev_state;
1406 * We must have this function tagged with __kprobes, notrace and call
1407 * read_cr2() before calling anything else. To avoid calling any kind
1408 * of tracing machinery before we've observed the CR2 value.
1410 * exception_{enter,exit}() contain all sorts of tracepoints.
1413 prev_state = exception_enter();
1414 __do_page_fault(regs, error_code, address);
1415 exception_exit(prev_state);
1417 NOKPROBE_SYMBOL(do_page_fault);
1419 #ifdef CONFIG_TRACING
1420 static nokprobe_inline void
1421 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1422 unsigned long error_code)
1424 if (user_mode(regs))
1425 trace_page_fault_user(address, regs, error_code);
1426 else
1427 trace_page_fault_kernel(address, regs, error_code);
1430 dotraplinkage void notrace
1431 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1434 * The exception_enter and tracepoint processing could
1435 * trigger another page faults (user space callchain
1436 * reading) and destroy the original cr2 value, so read
1437 * the faulting address now.
1439 unsigned long address = read_cr2();
1440 enum ctx_state prev_state;
1442 prev_state = exception_enter();
1443 trace_page_fault_entries(address, regs, error_code);
1444 __do_page_fault(regs, error_code, address);
1445 exception_exit(prev_state);
1447 NOKPROBE_SYMBOL(trace_do_page_fault);
1448 #endif /* CONFIG_TRACING */