Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[linux/fpc-iii.git] / arch / x86 / mm / tlb.c
blob5643fd0b1a7d271da14dee848589d99437b25b49
1 #include <linux/init.h>
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8 #include <linux/cpu.h>
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
18 * Smarter SMP flushing macros.
19 * c/o Linus Torvalds.
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
26 * More scalable flush, from Andi Kleen
28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
31 #ifdef CONFIG_SMP
33 struct flush_tlb_info {
34 struct mm_struct *flush_mm;
35 unsigned long flush_start;
36 unsigned long flush_end;
40 * We cannot call mmdrop() because we are in interrupt context,
41 * instead update mm->cpu_vm_mask.
43 void leave_mm(int cpu)
45 struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
46 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47 BUG();
48 if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
49 cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
50 load_cr3(swapper_pg_dir);
52 * This gets called in the idle path where RCU
53 * functions differently. Tracing normally
54 * uses RCU, so we have to call the tracepoint
55 * specially here.
57 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
60 EXPORT_SYMBOL_GPL(leave_mm);
62 #endif /* CONFIG_SMP */
64 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
65 struct task_struct *tsk)
67 unsigned long flags;
69 local_irq_save(flags);
70 switch_mm_irqs_off(prev, next, tsk);
71 local_irq_restore(flags);
74 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
75 struct task_struct *tsk)
77 unsigned cpu = smp_processor_id();
79 if (likely(prev != next)) {
80 #ifdef CONFIG_SMP
81 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
82 this_cpu_write(cpu_tlbstate.active_mm, next);
83 #endif
84 cpumask_set_cpu(cpu, mm_cpumask(next));
87 * Re-load page tables.
89 * This logic has an ordering constraint:
91 * CPU 0: Write to a PTE for 'next'
92 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI.
93 * CPU 1: set bit 1 in next's mm_cpumask
94 * CPU 1: load from the PTE that CPU 0 writes (implicit)
96 * We need to prevent an outcome in which CPU 1 observes
97 * the new PTE value and CPU 0 observes bit 1 clear in
98 * mm_cpumask. (If that occurs, then the IPI will never
99 * be sent, and CPU 0's TLB will contain a stale entry.)
101 * The bad outcome can occur if either CPU's load is
102 * reordered before that CPU's store, so both CPUs must
103 * execute full barriers to prevent this from happening.
105 * Thus, switch_mm needs a full barrier between the
106 * store to mm_cpumask and any operation that could load
107 * from next->pgd. TLB fills are special and can happen
108 * due to instruction fetches or for no reason at all,
109 * and neither LOCK nor MFENCE orders them.
110 * Fortunately, load_cr3() is serializing and gives the
111 * ordering guarantee we need.
114 load_cr3(next->pgd);
116 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
118 /* Stop flush ipis for the previous mm */
119 cpumask_clear_cpu(cpu, mm_cpumask(prev));
121 /* Load per-mm CR4 state */
122 load_mm_cr4(next);
124 #ifdef CONFIG_MODIFY_LDT_SYSCALL
126 * Load the LDT, if the LDT is different.
128 * It's possible that prev->context.ldt doesn't match
129 * the LDT register. This can happen if leave_mm(prev)
130 * was called and then modify_ldt changed
131 * prev->context.ldt but suppressed an IPI to this CPU.
132 * In this case, prev->context.ldt != NULL, because we
133 * never set context.ldt to NULL while the mm still
134 * exists. That means that next->context.ldt !=
135 * prev->context.ldt, because mms never share an LDT.
137 if (unlikely(prev->context.ldt != next->context.ldt))
138 load_mm_ldt(next);
139 #endif
141 #ifdef CONFIG_SMP
142 else {
143 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
144 BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
146 if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
148 * On established mms, the mm_cpumask is only changed
149 * from irq context, from ptep_clear_flush() while in
150 * lazy tlb mode, and here. Irqs are blocked during
151 * schedule, protecting us from simultaneous changes.
153 cpumask_set_cpu(cpu, mm_cpumask(next));
156 * We were in lazy tlb mode and leave_mm disabled
157 * tlb flush IPI delivery. We must reload CR3
158 * to make sure to use no freed page tables.
160 * As above, load_cr3() is serializing and orders TLB
161 * fills with respect to the mm_cpumask write.
163 load_cr3(next->pgd);
164 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
165 load_mm_cr4(next);
166 load_mm_ldt(next);
169 #endif
172 #ifdef CONFIG_SMP
175 * The flush IPI assumes that a thread switch happens in this order:
176 * [cpu0: the cpu that switches]
177 * 1) switch_mm() either 1a) or 1b)
178 * 1a) thread switch to a different mm
179 * 1a1) set cpu_tlbstate to TLBSTATE_OK
180 * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
181 * if cpu0 was in lazy tlb mode.
182 * 1a2) update cpu active_mm
183 * Now cpu0 accepts tlb flushes for the new mm.
184 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
185 * Now the other cpus will send tlb flush ipis.
186 * 1a4) change cr3.
187 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
188 * Stop ipi delivery for the old mm. This is not synchronized with
189 * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
190 * mm, and in the worst case we perform a superfluous tlb flush.
191 * 1b) thread switch without mm change
192 * cpu active_mm is correct, cpu0 already handles flush ipis.
193 * 1b1) set cpu_tlbstate to TLBSTATE_OK
194 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
195 * Atomically set the bit [other cpus will start sending flush ipis],
196 * and test the bit.
197 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
198 * 2) switch %%esp, ie current
200 * The interrupt must handle 2 special cases:
201 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
202 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
203 * runs in kernel space, the cpu could load tlb entries for user space
204 * pages.
206 * The good news is that cpu_tlbstate is local to each cpu, no
207 * write/read ordering problems.
211 * TLB flush funcation:
212 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
213 * 2) Leave the mm if we are in the lazy tlb mode.
215 static void flush_tlb_func(void *info)
217 struct flush_tlb_info *f = info;
219 inc_irq_stat(irq_tlb_count);
221 if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
222 return;
224 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
225 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
226 if (f->flush_end == TLB_FLUSH_ALL) {
227 local_flush_tlb();
228 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
229 } else {
230 unsigned long addr;
231 unsigned long nr_pages =
232 (f->flush_end - f->flush_start) / PAGE_SIZE;
233 addr = f->flush_start;
234 while (addr < f->flush_end) {
235 __flush_tlb_single(addr);
236 addr += PAGE_SIZE;
238 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
240 } else
241 leave_mm(smp_processor_id());
245 void native_flush_tlb_others(const struct cpumask *cpumask,
246 struct mm_struct *mm, unsigned long start,
247 unsigned long end)
249 struct flush_tlb_info info;
251 if (end == 0)
252 end = start + PAGE_SIZE;
253 info.flush_mm = mm;
254 info.flush_start = start;
255 info.flush_end = end;
257 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
258 if (end == TLB_FLUSH_ALL)
259 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
260 else
261 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
262 (end - start) >> PAGE_SHIFT);
264 if (is_uv_system()) {
265 unsigned int cpu;
267 cpu = smp_processor_id();
268 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
269 if (cpumask)
270 smp_call_function_many(cpumask, flush_tlb_func,
271 &info, 1);
272 return;
274 smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
277 void flush_tlb_current_task(void)
279 struct mm_struct *mm = current->mm;
281 preempt_disable();
283 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
285 /* This is an implicit full barrier that synchronizes with switch_mm. */
286 local_flush_tlb();
288 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
289 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
290 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
291 preempt_enable();
295 * See Documentation/x86/tlb.txt for details. We choose 33
296 * because it is large enough to cover the vast majority (at
297 * least 95%) of allocations, and is small enough that we are
298 * confident it will not cause too much overhead. Each single
299 * flush is about 100 ns, so this caps the maximum overhead at
300 * _about_ 3,000 ns.
302 * This is in units of pages.
304 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
306 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
307 unsigned long end, unsigned long vmflag)
309 unsigned long addr;
310 /* do a global flush by default */
311 unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
313 preempt_disable();
314 if (current->active_mm != mm) {
315 /* Synchronize with switch_mm. */
316 smp_mb();
318 goto out;
321 if (!current->mm) {
322 leave_mm(smp_processor_id());
324 /* Synchronize with switch_mm. */
325 smp_mb();
327 goto out;
330 if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
331 base_pages_to_flush = (end - start) >> PAGE_SHIFT;
334 * Both branches below are implicit full barriers (MOV to CR or
335 * INVLPG) that synchronize with switch_mm.
337 if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
338 base_pages_to_flush = TLB_FLUSH_ALL;
339 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
340 local_flush_tlb();
341 } else {
342 /* flush range by one by one 'invlpg' */
343 for (addr = start; addr < end; addr += PAGE_SIZE) {
344 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
345 __flush_tlb_single(addr);
348 trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
349 out:
350 if (base_pages_to_flush == TLB_FLUSH_ALL) {
351 start = 0UL;
352 end = TLB_FLUSH_ALL;
354 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
355 flush_tlb_others(mm_cpumask(mm), mm, start, end);
356 preempt_enable();
359 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
361 struct mm_struct *mm = vma->vm_mm;
363 preempt_disable();
365 if (current->active_mm == mm) {
366 if (current->mm) {
368 * Implicit full barrier (INVLPG) that synchronizes
369 * with switch_mm.
371 __flush_tlb_one(start);
372 } else {
373 leave_mm(smp_processor_id());
375 /* Synchronize with switch_mm. */
376 smp_mb();
380 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
381 flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
383 preempt_enable();
386 static void do_flush_tlb_all(void *info)
388 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
389 __flush_tlb_all();
390 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
391 leave_mm(smp_processor_id());
394 void flush_tlb_all(void)
396 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
397 on_each_cpu(do_flush_tlb_all, NULL, 1);
400 static void do_kernel_range_flush(void *info)
402 struct flush_tlb_info *f = info;
403 unsigned long addr;
405 /* flush range by one by one 'invlpg' */
406 for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
407 __flush_tlb_single(addr);
410 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
413 /* Balance as user space task's flush, a bit conservative */
414 if (end == TLB_FLUSH_ALL ||
415 (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
416 on_each_cpu(do_flush_tlb_all, NULL, 1);
417 } else {
418 struct flush_tlb_info info;
419 info.flush_start = start;
420 info.flush_end = end;
421 on_each_cpu(do_kernel_range_flush, &info, 1);
425 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
426 size_t count, loff_t *ppos)
428 char buf[32];
429 unsigned int len;
431 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
432 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
435 static ssize_t tlbflush_write_file(struct file *file,
436 const char __user *user_buf, size_t count, loff_t *ppos)
438 char buf[32];
439 ssize_t len;
440 int ceiling;
442 len = min(count, sizeof(buf) - 1);
443 if (copy_from_user(buf, user_buf, len))
444 return -EFAULT;
446 buf[len] = '\0';
447 if (kstrtoint(buf, 0, &ceiling))
448 return -EINVAL;
450 if (ceiling < 0)
451 return -EINVAL;
453 tlb_single_page_flush_ceiling = ceiling;
454 return count;
457 static const struct file_operations fops_tlbflush = {
458 .read = tlbflush_read_file,
459 .write = tlbflush_write_file,
460 .llseek = default_llseek,
463 static int __init create_tlb_single_page_flush_ceiling(void)
465 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
466 arch_debugfs_dir, NULL, &fops_tlbflush);
467 return 0;
469 late_initcall(create_tlb_single_page_flush_ceiling);
471 #endif /* CONFIG_SMP */