2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally described in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <net/net_namespace.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
82 #include <net/ip_fib.h>
83 #include <net/switchdev.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
87 #define MAX_STAT_DEPTH 32
89 #define KEYLENGTH (8*sizeof(t_key))
90 #define KEY_MAX ((t_key)~0)
92 typedef unsigned int t_key
;
94 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
95 #define IS_TNODE(n) ((n)->bits)
96 #define IS_LEAF(n) (!(n)->bits)
100 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
101 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
104 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
105 struct hlist_head leaf
;
106 /* This array is valid if (pos | bits) > 0 (TNODE) */
107 struct key_vector __rcu
*tnode
[0];
113 t_key empty_children
; /* KEYLENGTH bits needed */
114 t_key full_children
; /* KEYLENGTH bits needed */
115 struct key_vector __rcu
*parent
;
116 struct key_vector kv
[1];
117 #define tn_bits kv[0].bits
120 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
121 #define LEAF_SIZE TNODE_SIZE(1)
123 #ifdef CONFIG_IP_FIB_TRIE_STATS
124 struct trie_use_stats
{
126 unsigned int backtrack
;
127 unsigned int semantic_match_passed
;
128 unsigned int semantic_match_miss
;
129 unsigned int null_node_hit
;
130 unsigned int resize_node_skipped
;
135 unsigned int totdepth
;
136 unsigned int maxdepth
;
139 unsigned int nullpointers
;
140 unsigned int prefixes
;
141 unsigned int nodesizes
[MAX_STAT_DEPTH
];
145 struct key_vector kv
[1];
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147 struct trie_use_stats __percpu
*stats
;
151 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
152 static size_t tnode_free_size
;
155 * synchronize_rcu after call_rcu for that many pages; it should be especially
156 * useful before resizing the root node with PREEMPT_NONE configs; the value was
157 * obtained experimentally, aiming to avoid visible slowdown.
159 static const int sync_pages
= 128;
161 static struct kmem_cache
*fn_alias_kmem __read_mostly
;
162 static struct kmem_cache
*trie_leaf_kmem __read_mostly
;
164 static inline struct tnode
*tn_info(struct key_vector
*kv
)
166 return container_of(kv
, struct tnode
, kv
[0]);
169 /* caller must hold RTNL */
170 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
171 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
173 /* caller must hold RCU read lock or RTNL */
174 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
175 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
177 /* wrapper for rcu_assign_pointer */
178 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
181 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
184 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
186 /* This provides us with the number of children in this node, in the case of a
187 * leaf this will return 0 meaning none of the children are accessible.
189 static inline unsigned long child_length(const struct key_vector
*tn
)
191 return (1ul << tn
->bits
) & ~(1ul);
194 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
196 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
198 unsigned long index
= key
^ kv
->key
;
200 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
203 return index
>> kv
->pos
;
206 /* To understand this stuff, an understanding of keys and all their bits is
207 * necessary. Every node in the trie has a key associated with it, but not
208 * all of the bits in that key are significant.
210 * Consider a node 'n' and its parent 'tp'.
212 * If n is a leaf, every bit in its key is significant. Its presence is
213 * necessitated by path compression, since during a tree traversal (when
214 * searching for a leaf - unless we are doing an insertion) we will completely
215 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
216 * a potentially successful search, that we have indeed been walking the
219 * Note that we can never "miss" the correct key in the tree if present by
220 * following the wrong path. Path compression ensures that segments of the key
221 * that are the same for all keys with a given prefix are skipped, but the
222 * skipped part *is* identical for each node in the subtrie below the skipped
223 * bit! trie_insert() in this implementation takes care of that.
225 * if n is an internal node - a 'tnode' here, the various parts of its key
226 * have many different meanings.
229 * _________________________________________________________________
230 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
231 * -----------------------------------------------------------------
232 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
234 * _________________________________________________________________
235 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
236 * -----------------------------------------------------------------
237 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
244 * First, let's just ignore the bits that come before the parent tp, that is
245 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
246 * point we do not use them for anything.
248 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
249 * index into the parent's child array. That is, they will be used to find
250 * 'n' among tp's children.
252 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
255 * All the bits we have seen so far are significant to the node n. The rest
256 * of the bits are really not needed or indeed known in n->key.
258 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
259 * n's child array, and will of course be different for each child.
261 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
265 static const int halve_threshold
= 25;
266 static const int inflate_threshold
= 50;
267 static const int halve_threshold_root
= 15;
268 static const int inflate_threshold_root
= 30;
270 static void __alias_free_mem(struct rcu_head
*head
)
272 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
273 kmem_cache_free(fn_alias_kmem
, fa
);
276 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
278 call_rcu(&fa
->rcu
, __alias_free_mem
);
281 #define TNODE_KMALLOC_MAX \
282 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283 #define TNODE_VMALLOC_MAX \
284 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
286 static void __node_free_rcu(struct rcu_head
*head
)
288 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
291 kmem_cache_free(trie_leaf_kmem
, n
);
296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
298 static struct tnode
*tnode_alloc(int bits
)
302 /* verify bits is within bounds */
303 if (bits
> TNODE_VMALLOC_MAX
)
306 /* determine size and verify it is non-zero and didn't overflow */
307 size
= TNODE_SIZE(1ul << bits
);
309 if (size
<= PAGE_SIZE
)
310 return kzalloc(size
, GFP_KERNEL
);
312 return vzalloc(size
);
315 static inline void empty_child_inc(struct key_vector
*n
)
317 ++tn_info(n
)->empty_children
? : ++tn_info(n
)->full_children
;
320 static inline void empty_child_dec(struct key_vector
*n
)
322 tn_info(n
)->empty_children
-- ? : tn_info(n
)->full_children
--;
325 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
327 struct key_vector
*l
;
330 kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
334 /* initialize key vector */
339 l
->slen
= fa
->fa_slen
;
341 /* link leaf to fib alias */
342 INIT_HLIST_HEAD(&l
->leaf
);
343 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
348 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
350 unsigned int shift
= pos
+ bits
;
351 struct key_vector
*tn
;
354 /* verify bits and pos their msb bits clear and values are valid */
355 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
357 tnode
= tnode_alloc(bits
);
361 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
362 sizeof(struct key_vector
*) << bits
);
364 if (bits
== KEYLENGTH
)
365 tnode
->full_children
= 1;
367 tnode
->empty_children
= 1ul << bits
;
370 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
378 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
379 * and no bits are skipped. See discussion in dyntree paper p. 6
381 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
383 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
386 /* Add a child at position i overwriting the old value.
387 * Update the value of full_children and empty_children.
389 static void put_child(struct key_vector
*tn
, unsigned long i
,
390 struct key_vector
*n
)
392 struct key_vector
*chi
= get_child(tn
, i
);
395 BUG_ON(i
>= child_length(tn
));
397 /* update emptyChildren, overflow into fullChildren */
403 /* update fullChildren */
404 wasfull
= tnode_full(tn
, chi
);
405 isfull
= tnode_full(tn
, n
);
407 if (wasfull
&& !isfull
)
408 tn_info(tn
)->full_children
--;
409 else if (!wasfull
&& isfull
)
410 tn_info(tn
)->full_children
++;
412 if (n
&& (tn
->slen
< n
->slen
))
415 rcu_assign_pointer(tn
->tnode
[i
], n
);
418 static void update_children(struct key_vector
*tn
)
422 /* update all of the child parent pointers */
423 for (i
= child_length(tn
); i
;) {
424 struct key_vector
*inode
= get_child(tn
, --i
);
429 /* Either update the children of a tnode that
430 * already belongs to us or update the child
431 * to point to ourselves.
433 if (node_parent(inode
) == tn
)
434 update_children(inode
);
436 node_set_parent(inode
, tn
);
440 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
441 struct key_vector
*n
)
444 rcu_assign_pointer(tp
->tnode
[0], n
);
446 put_child(tp
, get_index(key
, tp
), n
);
449 static inline void tnode_free_init(struct key_vector
*tn
)
451 tn_info(tn
)->rcu
.next
= NULL
;
454 static inline void tnode_free_append(struct key_vector
*tn
,
455 struct key_vector
*n
)
457 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
458 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
461 static void tnode_free(struct key_vector
*tn
)
463 struct callback_head
*head
= &tn_info(tn
)->rcu
;
467 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
470 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
473 if (tnode_free_size
>= PAGE_SIZE
* sync_pages
) {
479 static struct key_vector
*replace(struct trie
*t
,
480 struct key_vector
*oldtnode
,
481 struct key_vector
*tn
)
483 struct key_vector
*tp
= node_parent(oldtnode
);
486 /* setup the parent pointer out of and back into this node */
487 NODE_INIT_PARENT(tn
, tp
);
488 put_child_root(tp
, tn
->key
, tn
);
490 /* update all of the child parent pointers */
493 /* all pointers should be clean so we are done */
494 tnode_free(oldtnode
);
496 /* resize children now that oldtnode is freed */
497 for (i
= child_length(tn
); i
;) {
498 struct key_vector
*inode
= get_child(tn
, --i
);
500 /* resize child node */
501 if (tnode_full(tn
, inode
))
502 tn
= resize(t
, inode
);
508 static struct key_vector
*inflate(struct trie
*t
,
509 struct key_vector
*oldtnode
)
511 struct key_vector
*tn
;
515 pr_debug("In inflate\n");
517 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
521 /* prepare oldtnode to be freed */
522 tnode_free_init(oldtnode
);
524 /* Assemble all of the pointers in our cluster, in this case that
525 * represents all of the pointers out of our allocated nodes that
526 * point to existing tnodes and the links between our allocated
529 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
530 struct key_vector
*inode
= get_child(oldtnode
, --i
);
531 struct key_vector
*node0
, *node1
;
538 /* A leaf or an internal node with skipped bits */
539 if (!tnode_full(oldtnode
, inode
)) {
540 put_child(tn
, get_index(inode
->key
, tn
), inode
);
544 /* drop the node in the old tnode free list */
545 tnode_free_append(oldtnode
, inode
);
547 /* An internal node with two children */
548 if (inode
->bits
== 1) {
549 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
550 put_child(tn
, 2 * i
, get_child(inode
, 0));
554 /* We will replace this node 'inode' with two new
555 * ones, 'node0' and 'node1', each with half of the
556 * original children. The two new nodes will have
557 * a position one bit further down the key and this
558 * means that the "significant" part of their keys
559 * (see the discussion near the top of this file)
560 * will differ by one bit, which will be "0" in
561 * node0's key and "1" in node1's key. Since we are
562 * moving the key position by one step, the bit that
563 * we are moving away from - the bit at position
564 * (tn->pos) - is the one that will differ between
565 * node0 and node1. So... we synthesize that bit in the
568 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
571 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
573 tnode_free_append(tn
, node1
);
576 tnode_free_append(tn
, node0
);
578 /* populate child pointers in new nodes */
579 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
580 put_child(node1
, --j
, get_child(inode
, --k
));
581 put_child(node0
, j
, get_child(inode
, j
));
582 put_child(node1
, --j
, get_child(inode
, --k
));
583 put_child(node0
, j
, get_child(inode
, j
));
586 /* link new nodes to parent */
587 NODE_INIT_PARENT(node1
, tn
);
588 NODE_INIT_PARENT(node0
, tn
);
590 /* link parent to nodes */
591 put_child(tn
, 2 * i
+ 1, node1
);
592 put_child(tn
, 2 * i
, node0
);
595 /* setup the parent pointers into and out of this node */
596 return replace(t
, oldtnode
, tn
);
598 /* all pointers should be clean so we are done */
604 static struct key_vector
*halve(struct trie
*t
,
605 struct key_vector
*oldtnode
)
607 struct key_vector
*tn
;
610 pr_debug("In halve\n");
612 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
616 /* prepare oldtnode to be freed */
617 tnode_free_init(oldtnode
);
619 /* Assemble all of the pointers in our cluster, in this case that
620 * represents all of the pointers out of our allocated nodes that
621 * point to existing tnodes and the links between our allocated
624 for (i
= child_length(oldtnode
); i
;) {
625 struct key_vector
*node1
= get_child(oldtnode
, --i
);
626 struct key_vector
*node0
= get_child(oldtnode
, --i
);
627 struct key_vector
*inode
;
629 /* At least one of the children is empty */
630 if (!node1
|| !node0
) {
631 put_child(tn
, i
/ 2, node1
? : node0
);
635 /* Two nonempty children */
636 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
639 tnode_free_append(tn
, inode
);
641 /* initialize pointers out of node */
642 put_child(inode
, 1, node1
);
643 put_child(inode
, 0, node0
);
644 NODE_INIT_PARENT(inode
, tn
);
646 /* link parent to node */
647 put_child(tn
, i
/ 2, inode
);
650 /* setup the parent pointers into and out of this node */
651 return replace(t
, oldtnode
, tn
);
653 /* all pointers should be clean so we are done */
659 static struct key_vector
*collapse(struct trie
*t
,
660 struct key_vector
*oldtnode
)
662 struct key_vector
*n
, *tp
;
665 /* scan the tnode looking for that one child that might still exist */
666 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
667 n
= get_child(oldtnode
, --i
);
669 /* compress one level */
670 tp
= node_parent(oldtnode
);
671 put_child_root(tp
, oldtnode
->key
, n
);
672 node_set_parent(n
, tp
);
680 static unsigned char update_suffix(struct key_vector
*tn
)
682 unsigned char slen
= tn
->pos
;
683 unsigned long stride
, i
;
685 /* search though the list of children looking for nodes that might
686 * have a suffix greater than the one we currently have. This is
687 * why we start with a stride of 2 since a stride of 1 would
688 * represent the nodes with suffix length equal to tn->pos
690 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
691 struct key_vector
*n
= get_child(tn
, i
);
693 if (!n
|| (n
->slen
<= slen
))
696 /* update stride and slen based on new value */
697 stride
<<= (n
->slen
- slen
);
701 /* if slen covers all but the last bit we can stop here
702 * there will be nothing longer than that since only node
703 * 0 and 1 << (bits - 1) could have that as their suffix
706 if ((slen
+ 1) >= (tn
->pos
+ tn
->bits
))
715 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
716 * the Helsinki University of Technology and Matti Tikkanen of Nokia
717 * Telecommunications, page 6:
718 * "A node is doubled if the ratio of non-empty children to all
719 * children in the *doubled* node is at least 'high'."
721 * 'high' in this instance is the variable 'inflate_threshold'. It
722 * is expressed as a percentage, so we multiply it with
723 * child_length() and instead of multiplying by 2 (since the
724 * child array will be doubled by inflate()) and multiplying
725 * the left-hand side by 100 (to handle the percentage thing) we
726 * multiply the left-hand side by 50.
728 * The left-hand side may look a bit weird: child_length(tn)
729 * - tn->empty_children is of course the number of non-null children
730 * in the current node. tn->full_children is the number of "full"
731 * children, that is non-null tnodes with a skip value of 0.
732 * All of those will be doubled in the resulting inflated tnode, so
733 * we just count them one extra time here.
735 * A clearer way to write this would be:
737 * to_be_doubled = tn->full_children;
738 * not_to_be_doubled = child_length(tn) - tn->empty_children -
741 * new_child_length = child_length(tn) * 2;
743 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
745 * if (new_fill_factor >= inflate_threshold)
747 * ...and so on, tho it would mess up the while () loop.
750 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
754 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
755 * inflate_threshold * new_child_length
757 * expand not_to_be_doubled and to_be_doubled, and shorten:
758 * 100 * (child_length(tn) - tn->empty_children +
759 * tn->full_children) >= inflate_threshold * new_child_length
761 * expand new_child_length:
762 * 100 * (child_length(tn) - tn->empty_children +
763 * tn->full_children) >=
764 * inflate_threshold * child_length(tn) * 2
767 * 50 * (tn->full_children + child_length(tn) -
768 * tn->empty_children) >= inflate_threshold *
772 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
774 unsigned long used
= child_length(tn
);
775 unsigned long threshold
= used
;
777 /* Keep root node larger */
778 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
779 used
-= tn_info(tn
)->empty_children
;
780 used
+= tn_info(tn
)->full_children
;
782 /* if bits == KEYLENGTH then pos = 0, and will fail below */
784 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
787 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
789 unsigned long used
= child_length(tn
);
790 unsigned long threshold
= used
;
792 /* Keep root node larger */
793 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
794 used
-= tn_info(tn
)->empty_children
;
796 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
798 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
801 static inline bool should_collapse(struct key_vector
*tn
)
803 unsigned long used
= child_length(tn
);
805 used
-= tn_info(tn
)->empty_children
;
807 /* account for bits == KEYLENGTH case */
808 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
811 /* One child or none, time to drop us from the trie */
816 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
818 #ifdef CONFIG_IP_FIB_TRIE_STATS
819 struct trie_use_stats __percpu
*stats
= t
->stats
;
821 struct key_vector
*tp
= node_parent(tn
);
822 unsigned long cindex
= get_index(tn
->key
, tp
);
823 int max_work
= MAX_WORK
;
825 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
826 tn
, inflate_threshold
, halve_threshold
);
828 /* track the tnode via the pointer from the parent instead of
829 * doing it ourselves. This way we can let RCU fully do its
830 * thing without us interfering
832 BUG_ON(tn
!= get_child(tp
, cindex
));
834 /* Double as long as the resulting node has a number of
835 * nonempty nodes that are above the threshold.
837 while (should_inflate(tp
, tn
) && max_work
) {
840 #ifdef CONFIG_IP_FIB_TRIE_STATS
841 this_cpu_inc(stats
->resize_node_skipped
);
847 tn
= get_child(tp
, cindex
);
850 /* update parent in case inflate failed */
851 tp
= node_parent(tn
);
853 /* Return if at least one inflate is run */
854 if (max_work
!= MAX_WORK
)
857 /* Halve as long as the number of empty children in this
858 * node is above threshold.
860 while (should_halve(tp
, tn
) && max_work
) {
863 #ifdef CONFIG_IP_FIB_TRIE_STATS
864 this_cpu_inc(stats
->resize_node_skipped
);
870 tn
= get_child(tp
, cindex
);
873 /* Only one child remains */
874 if (should_collapse(tn
))
875 return collapse(t
, tn
);
877 /* update parent in case halve failed */
878 tp
= node_parent(tn
);
880 /* Return if at least one deflate was run */
881 if (max_work
!= MAX_WORK
)
884 /* push the suffix length to the parent node */
885 if (tn
->slen
> tn
->pos
) {
886 unsigned char slen
= update_suffix(tn
);
895 static void leaf_pull_suffix(struct key_vector
*tp
, struct key_vector
*l
)
897 while ((tp
->slen
> tp
->pos
) && (tp
->slen
> l
->slen
)) {
898 if (update_suffix(tp
) > l
->slen
)
900 tp
= node_parent(tp
);
904 static void leaf_push_suffix(struct key_vector
*tn
, struct key_vector
*l
)
906 /* if this is a new leaf then tn will be NULL and we can sort
907 * out parent suffix lengths as a part of trie_rebalance
909 while (tn
->slen
< l
->slen
) {
911 tn
= node_parent(tn
);
915 /* rcu_read_lock needs to be hold by caller from readside */
916 static struct key_vector
*fib_find_node(struct trie
*t
,
917 struct key_vector
**tp
, u32 key
)
919 struct key_vector
*pn
, *n
= t
->kv
;
920 unsigned long index
= 0;
924 n
= get_child_rcu(n
, index
);
929 index
= get_cindex(key
, n
);
931 /* This bit of code is a bit tricky but it combines multiple
932 * checks into a single check. The prefix consists of the
933 * prefix plus zeros for the bits in the cindex. The index
934 * is the difference between the key and this value. From
935 * this we can actually derive several pieces of data.
936 * if (index >= (1ul << bits))
937 * we have a mismatch in skip bits and failed
939 * we know the value is cindex
941 * This check is safe even if bits == KEYLENGTH due to the
942 * fact that we can only allocate a node with 32 bits if a
943 * long is greater than 32 bits.
945 if (index
>= (1ul << n
->bits
)) {
950 /* keep searching until we find a perfect match leaf or NULL */
951 } while (IS_TNODE(n
));
958 /* Return the first fib alias matching TOS with
959 * priority less than or equal to PRIO.
961 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
962 u8 tos
, u32 prio
, u32 tb_id
)
964 struct fib_alias
*fa
;
969 hlist_for_each_entry(fa
, fah
, fa_list
) {
970 if (fa
->fa_slen
< slen
)
972 if (fa
->fa_slen
!= slen
)
974 if (fa
->tb_id
> tb_id
)
976 if (fa
->tb_id
!= tb_id
)
978 if (fa
->fa_tos
> tos
)
980 if (fa
->fa_info
->fib_priority
>= prio
|| fa
->fa_tos
< tos
)
987 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
993 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
994 struct fib_alias
*new, t_key key
)
996 struct key_vector
*n
, *l
;
998 l
= leaf_new(key
, new);
1002 /* retrieve child from parent node */
1003 n
= get_child(tp
, get_index(key
, tp
));
1005 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1007 * Add a new tnode here
1008 * first tnode need some special handling
1009 * leaves us in position for handling as case 3
1012 struct key_vector
*tn
;
1014 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1018 /* initialize routes out of node */
1019 NODE_INIT_PARENT(tn
, tp
);
1020 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1022 /* start adding routes into the node */
1023 put_child_root(tp
, key
, tn
);
1024 node_set_parent(n
, tn
);
1026 /* parent now has a NULL spot where the leaf can go */
1030 /* Case 3: n is NULL, and will just insert a new leaf */
1031 NODE_INIT_PARENT(l
, tp
);
1032 put_child_root(tp
, key
, l
);
1033 trie_rebalance(t
, tp
);
1042 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1043 struct key_vector
*l
, struct fib_alias
*new,
1044 struct fib_alias
*fa
, t_key key
)
1047 return fib_insert_node(t
, tp
, new, key
);
1050 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1052 struct fib_alias
*last
;
1054 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1055 if (new->fa_slen
< last
->fa_slen
)
1057 if ((new->fa_slen
== last
->fa_slen
) &&
1058 (new->tb_id
> last
->tb_id
))
1064 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1066 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1069 /* if we added to the tail node then we need to update slen */
1070 if (l
->slen
< new->fa_slen
) {
1071 l
->slen
= new->fa_slen
;
1072 leaf_push_suffix(tp
, l
);
1078 /* Caller must hold RTNL. */
1079 int fib_table_insert(struct fib_table
*tb
, struct fib_config
*cfg
)
1081 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1082 struct fib_alias
*fa
, *new_fa
;
1083 struct key_vector
*l
, *tp
;
1084 unsigned int nlflags
= 0;
1085 struct fib_info
*fi
;
1086 u8 plen
= cfg
->fc_dst_len
;
1087 u8 slen
= KEYLENGTH
- plen
;
1088 u8 tos
= cfg
->fc_tos
;
1092 if (plen
> KEYLENGTH
)
1095 key
= ntohl(cfg
->fc_dst
);
1097 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1099 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1102 fi
= fib_create_info(cfg
);
1108 l
= fib_find_node(t
, &tp
, key
);
1109 fa
= l
? fib_find_alias(&l
->leaf
, slen
, tos
, fi
->fib_priority
,
1112 /* Now fa, if non-NULL, points to the first fib alias
1113 * with the same keys [prefix,tos,priority], if such key already
1114 * exists or to the node before which we will insert new one.
1116 * If fa is NULL, we will need to allocate a new one and
1117 * insert to the tail of the section matching the suffix length
1121 if (fa
&& fa
->fa_tos
== tos
&&
1122 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1123 struct fib_alias
*fa_first
, *fa_match
;
1126 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1130 * 1. Find exact match for type, scope, fib_info to avoid
1132 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1136 hlist_for_each_entry_from(fa
, fa_list
) {
1137 if ((fa
->fa_slen
!= slen
) ||
1138 (fa
->tb_id
!= tb
->tb_id
) ||
1139 (fa
->fa_tos
!= tos
))
1141 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1143 if (fa
->fa_type
== cfg
->fc_type
&&
1144 fa
->fa_info
== fi
) {
1150 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1151 struct fib_info
*fi_drop
;
1161 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1165 fi_drop
= fa
->fa_info
;
1166 new_fa
->fa_tos
= fa
->fa_tos
;
1167 new_fa
->fa_info
= fi
;
1168 new_fa
->fa_type
= cfg
->fc_type
;
1169 state
= fa
->fa_state
;
1170 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1171 new_fa
->fa_slen
= fa
->fa_slen
;
1172 new_fa
->tb_id
= tb
->tb_id
;
1173 new_fa
->fa_default
= -1;
1175 err
= switchdev_fib_ipv4_add(key
, plen
, fi
,
1181 switchdev_fib_ipv4_abort(fi
);
1182 kmem_cache_free(fn_alias_kmem
, new_fa
);
1186 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1188 alias_free_mem_rcu(fa
);
1190 fib_release_info(fi_drop
);
1191 if (state
& FA_S_ACCESSED
)
1192 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1193 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1194 tb
->tb_id
, &cfg
->fc_nlinfo
, NLM_F_REPLACE
);
1198 /* Error if we find a perfect match which
1199 * uses the same scope, type, and nexthop
1205 if (cfg
->fc_nlflags
& NLM_F_APPEND
)
1206 nlflags
= NLM_F_APPEND
;
1211 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1215 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1219 new_fa
->fa_info
= fi
;
1220 new_fa
->fa_tos
= tos
;
1221 new_fa
->fa_type
= cfg
->fc_type
;
1222 new_fa
->fa_state
= 0;
1223 new_fa
->fa_slen
= slen
;
1224 new_fa
->tb_id
= tb
->tb_id
;
1225 new_fa
->fa_default
= -1;
1227 /* (Optionally) offload fib entry to switch hardware. */
1228 err
= switchdev_fib_ipv4_add(key
, plen
, fi
, tos
, cfg
->fc_type
,
1229 cfg
->fc_nlflags
, tb
->tb_id
);
1231 switchdev_fib_ipv4_abort(fi
);
1232 goto out_free_new_fa
;
1235 /* Insert new entry to the list. */
1236 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1238 goto out_sw_fib_del
;
1241 tb
->tb_num_default
++;
1243 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1244 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1245 &cfg
->fc_nlinfo
, nlflags
);
1250 switchdev_fib_ipv4_del(key
, plen
, fi
, tos
, cfg
->fc_type
, tb
->tb_id
);
1252 kmem_cache_free(fn_alias_kmem
, new_fa
);
1254 fib_release_info(fi
);
1259 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1261 t_key prefix
= n
->key
;
1263 return (key
^ prefix
) & (prefix
| -prefix
);
1266 /* should be called with rcu_read_lock */
1267 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1268 struct fib_result
*res
, int fib_flags
)
1270 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1271 #ifdef CONFIG_IP_FIB_TRIE_STATS
1272 struct trie_use_stats __percpu
*stats
= t
->stats
;
1274 const t_key key
= ntohl(flp
->daddr
);
1275 struct key_vector
*n
, *pn
;
1276 struct fib_alias
*fa
;
1277 unsigned long index
;
1280 trace_fib_table_lookup(tb
->tb_id
, flp
);
1285 n
= get_child_rcu(pn
, cindex
);
1289 #ifdef CONFIG_IP_FIB_TRIE_STATS
1290 this_cpu_inc(stats
->gets
);
1293 /* Step 1: Travel to the longest prefix match in the trie */
1295 index
= get_cindex(key
, n
);
1297 /* This bit of code is a bit tricky but it combines multiple
1298 * checks into a single check. The prefix consists of the
1299 * prefix plus zeros for the "bits" in the prefix. The index
1300 * is the difference between the key and this value. From
1301 * this we can actually derive several pieces of data.
1302 * if (index >= (1ul << bits))
1303 * we have a mismatch in skip bits and failed
1305 * we know the value is cindex
1307 * This check is safe even if bits == KEYLENGTH due to the
1308 * fact that we can only allocate a node with 32 bits if a
1309 * long is greater than 32 bits.
1311 if (index
>= (1ul << n
->bits
))
1314 /* we have found a leaf. Prefixes have already been compared */
1318 /* only record pn and cindex if we are going to be chopping
1319 * bits later. Otherwise we are just wasting cycles.
1321 if (n
->slen
> n
->pos
) {
1326 n
= get_child_rcu(n
, index
);
1331 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1333 /* record the pointer where our next node pointer is stored */
1334 struct key_vector __rcu
**cptr
= n
->tnode
;
1336 /* This test verifies that none of the bits that differ
1337 * between the key and the prefix exist in the region of
1338 * the lsb and higher in the prefix.
1340 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1343 /* exit out and process leaf */
1344 if (unlikely(IS_LEAF(n
)))
1347 /* Don't bother recording parent info. Since we are in
1348 * prefix match mode we will have to come back to wherever
1349 * we started this traversal anyway
1352 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1354 #ifdef CONFIG_IP_FIB_TRIE_STATS
1356 this_cpu_inc(stats
->null_node_hit
);
1358 /* If we are at cindex 0 there are no more bits for
1359 * us to strip at this level so we must ascend back
1360 * up one level to see if there are any more bits to
1361 * be stripped there.
1364 t_key pkey
= pn
->key
;
1366 /* If we don't have a parent then there is
1367 * nothing for us to do as we do not have any
1368 * further nodes to parse.
1372 #ifdef CONFIG_IP_FIB_TRIE_STATS
1373 this_cpu_inc(stats
->backtrack
);
1375 /* Get Child's index */
1376 pn
= node_parent_rcu(pn
);
1377 cindex
= get_index(pkey
, pn
);
1380 /* strip the least significant bit from the cindex */
1381 cindex
&= cindex
- 1;
1383 /* grab pointer for next child node */
1384 cptr
= &pn
->tnode
[cindex
];
1389 /* this line carries forward the xor from earlier in the function */
1390 index
= key
^ n
->key
;
1392 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1393 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1394 struct fib_info
*fi
= fa
->fa_info
;
1397 if ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
< KEYLENGTH
)) {
1398 if (index
>= (1ul << fa
->fa_slen
))
1401 if (fa
->fa_tos
&& fa
->fa_tos
!= flp
->flowi4_tos
)
1405 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1407 fib_alias_accessed(fa
);
1408 err
= fib_props
[fa
->fa_type
].error
;
1409 if (unlikely(err
< 0)) {
1410 #ifdef CONFIG_IP_FIB_TRIE_STATS
1411 this_cpu_inc(stats
->semantic_match_passed
);
1415 if (fi
->fib_flags
& RTNH_F_DEAD
)
1417 for (nhsel
= 0; nhsel
< fi
->fib_nhs
; nhsel
++) {
1418 const struct fib_nh
*nh
= &fi
->fib_nh
[nhsel
];
1419 struct in_device
*in_dev
= __in_dev_get_rcu(nh
->nh_dev
);
1421 if (nh
->nh_flags
& RTNH_F_DEAD
)
1424 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev
) &&
1425 nh
->nh_flags
& RTNH_F_LINKDOWN
&&
1426 !(fib_flags
& FIB_LOOKUP_IGNORE_LINKSTATE
))
1428 if (!(flp
->flowi4_flags
& FLOWI_FLAG_SKIP_NH_OIF
)) {
1429 if (flp
->flowi4_oif
&&
1430 flp
->flowi4_oif
!= nh
->nh_oif
)
1434 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1435 atomic_inc(&fi
->fib_clntref
);
1437 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1438 res
->nh_sel
= nhsel
;
1439 res
->type
= fa
->fa_type
;
1440 res
->scope
= fi
->fib_scope
;
1443 res
->fa_head
= &n
->leaf
;
1444 #ifdef CONFIG_IP_FIB_TRIE_STATS
1445 this_cpu_inc(stats
->semantic_match_passed
);
1447 trace_fib_table_lookup_nh(nh
);
1452 #ifdef CONFIG_IP_FIB_TRIE_STATS
1453 this_cpu_inc(stats
->semantic_match_miss
);
1457 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1459 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1460 struct key_vector
*l
, struct fib_alias
*old
)
1462 /* record the location of the previous list_info entry */
1463 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1464 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1466 /* remove the fib_alias from the list */
1467 hlist_del_rcu(&old
->fa_list
);
1469 /* if we emptied the list this leaf will be freed and we can sort
1470 * out parent suffix lengths as a part of trie_rebalance
1472 if (hlist_empty(&l
->leaf
)) {
1473 put_child_root(tp
, l
->key
, NULL
);
1475 trie_rebalance(t
, tp
);
1479 /* only access fa if it is pointing at the last valid hlist_node */
1483 /* update the trie with the latest suffix length */
1484 l
->slen
= fa
->fa_slen
;
1485 leaf_pull_suffix(tp
, l
);
1488 /* Caller must hold RTNL. */
1489 int fib_table_delete(struct fib_table
*tb
, struct fib_config
*cfg
)
1491 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1492 struct fib_alias
*fa
, *fa_to_delete
;
1493 struct key_vector
*l
, *tp
;
1494 u8 plen
= cfg
->fc_dst_len
;
1495 u8 slen
= KEYLENGTH
- plen
;
1496 u8 tos
= cfg
->fc_tos
;
1499 if (plen
> KEYLENGTH
)
1502 key
= ntohl(cfg
->fc_dst
);
1504 if ((plen
< KEYLENGTH
) && (key
<< plen
))
1507 l
= fib_find_node(t
, &tp
, key
);
1511 fa
= fib_find_alias(&l
->leaf
, slen
, tos
, 0, tb
->tb_id
);
1515 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1517 fa_to_delete
= NULL
;
1518 hlist_for_each_entry_from(fa
, fa_list
) {
1519 struct fib_info
*fi
= fa
->fa_info
;
1521 if ((fa
->fa_slen
!= slen
) ||
1522 (fa
->tb_id
!= tb
->tb_id
) ||
1523 (fa
->fa_tos
!= tos
))
1526 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1527 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1528 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1529 (!cfg
->fc_prefsrc
||
1530 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1531 (!cfg
->fc_protocol
||
1532 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1533 fib_nh_match(cfg
, fi
) == 0) {
1542 switchdev_fib_ipv4_del(key
, plen
, fa_to_delete
->fa_info
, tos
,
1543 cfg
->fc_type
, tb
->tb_id
);
1545 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1546 &cfg
->fc_nlinfo
, 0);
1549 tb
->tb_num_default
--;
1551 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1553 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1554 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1556 fib_release_info(fa_to_delete
->fa_info
);
1557 alias_free_mem_rcu(fa_to_delete
);
1561 /* Scan for the next leaf starting at the provided key value */
1562 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1564 struct key_vector
*pn
, *n
= *tn
;
1565 unsigned long cindex
;
1567 /* this loop is meant to try and find the key in the trie */
1569 /* record parent and next child index */
1571 cindex
= (key
> pn
->key
) ? get_index(key
, pn
) : 0;
1573 if (cindex
>> pn
->bits
)
1576 /* descend into the next child */
1577 n
= get_child_rcu(pn
, cindex
++);
1581 /* guarantee forward progress on the keys */
1582 if (IS_LEAF(n
) && (n
->key
>= key
))
1584 } while (IS_TNODE(n
));
1586 /* this loop will search for the next leaf with a greater key */
1587 while (!IS_TRIE(pn
)) {
1588 /* if we exhausted the parent node we will need to climb */
1589 if (cindex
>= (1ul << pn
->bits
)) {
1590 t_key pkey
= pn
->key
;
1592 pn
= node_parent_rcu(pn
);
1593 cindex
= get_index(pkey
, pn
) + 1;
1597 /* grab the next available node */
1598 n
= get_child_rcu(pn
, cindex
++);
1602 /* no need to compare keys since we bumped the index */
1606 /* Rescan start scanning in new node */
1612 return NULL
; /* Root of trie */
1614 /* if we are at the limit for keys just return NULL for the tnode */
1619 static void fib_trie_free(struct fib_table
*tb
)
1621 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1622 struct key_vector
*pn
= t
->kv
;
1623 unsigned long cindex
= 1;
1624 struct hlist_node
*tmp
;
1625 struct fib_alias
*fa
;
1627 /* walk trie in reverse order and free everything */
1629 struct key_vector
*n
;
1632 t_key pkey
= pn
->key
;
1638 pn
= node_parent(pn
);
1640 /* drop emptied tnode */
1641 put_child_root(pn
, n
->key
, NULL
);
1644 cindex
= get_index(pkey
, pn
);
1649 /* grab the next available node */
1650 n
= get_child(pn
, cindex
);
1655 /* record pn and cindex for leaf walking */
1657 cindex
= 1ul << n
->bits
;
1662 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1663 hlist_del_rcu(&fa
->fa_list
);
1664 alias_free_mem_rcu(fa
);
1667 put_child_root(pn
, n
->key
, NULL
);
1671 #ifdef CONFIG_IP_FIB_TRIE_STATS
1672 free_percpu(t
->stats
);
1677 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1679 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1680 struct key_vector
*l
, *tp
= ot
->kv
;
1681 struct fib_table
*local_tb
;
1682 struct fib_alias
*fa
;
1686 if (oldtb
->tb_data
== oldtb
->__data
)
1689 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1693 lt
= (struct trie
*)local_tb
->tb_data
;
1695 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1696 struct key_vector
*local_l
= NULL
, *local_tp
;
1698 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1699 struct fib_alias
*new_fa
;
1701 if (local_tb
->tb_id
!= fa
->tb_id
)
1704 /* clone fa for new local table */
1705 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1709 memcpy(new_fa
, fa
, sizeof(*fa
));
1711 /* insert clone into table */
1713 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1715 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1720 /* stop loop if key wrapped back to 0 */
1728 fib_trie_free(local_tb
);
1733 /* Caller must hold RTNL */
1734 void fib_table_flush_external(struct fib_table
*tb
)
1736 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1737 struct key_vector
*pn
= t
->kv
;
1738 unsigned long cindex
= 1;
1739 struct hlist_node
*tmp
;
1740 struct fib_alias
*fa
;
1742 /* walk trie in reverse order */
1744 unsigned char slen
= 0;
1745 struct key_vector
*n
;
1748 t_key pkey
= pn
->key
;
1750 /* cannot resize the trie vector */
1754 /* resize completed node */
1756 cindex
= get_index(pkey
, pn
);
1761 /* grab the next available node */
1762 n
= get_child(pn
, cindex
);
1767 /* record pn and cindex for leaf walking */
1769 cindex
= 1ul << n
->bits
;
1774 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1775 struct fib_info
*fi
= fa
->fa_info
;
1777 /* if alias was cloned to local then we just
1778 * need to remove the local copy from main
1780 if (tb
->tb_id
!= fa
->tb_id
) {
1781 hlist_del_rcu(&fa
->fa_list
);
1782 alias_free_mem_rcu(fa
);
1786 /* record local slen */
1789 if (!fi
|| !(fi
->fib_flags
& RTNH_F_OFFLOAD
))
1792 switchdev_fib_ipv4_del(n
->key
, KEYLENGTH
- fa
->fa_slen
,
1793 fi
, fa
->fa_tos
, fa
->fa_type
,
1797 /* update leaf slen */
1800 if (hlist_empty(&n
->leaf
)) {
1801 put_child_root(pn
, n
->key
, NULL
);
1807 /* Caller must hold RTNL. */
1808 int fib_table_flush(struct fib_table
*tb
)
1810 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1811 struct key_vector
*pn
= t
->kv
;
1812 unsigned long cindex
= 1;
1813 struct hlist_node
*tmp
;
1814 struct fib_alias
*fa
;
1817 /* walk trie in reverse order */
1819 unsigned char slen
= 0;
1820 struct key_vector
*n
;
1823 t_key pkey
= pn
->key
;
1825 /* cannot resize the trie vector */
1829 /* resize completed node */
1831 cindex
= get_index(pkey
, pn
);
1836 /* grab the next available node */
1837 n
= get_child(pn
, cindex
);
1842 /* record pn and cindex for leaf walking */
1844 cindex
= 1ul << n
->bits
;
1849 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1850 struct fib_info
*fi
= fa
->fa_info
;
1852 if (!fi
|| !(fi
->fib_flags
& RTNH_F_DEAD
)) {
1857 switchdev_fib_ipv4_del(n
->key
, KEYLENGTH
- fa
->fa_slen
,
1858 fi
, fa
->fa_tos
, fa
->fa_type
,
1860 hlist_del_rcu(&fa
->fa_list
);
1861 fib_release_info(fa
->fa_info
);
1862 alias_free_mem_rcu(fa
);
1866 /* update leaf slen */
1869 if (hlist_empty(&n
->leaf
)) {
1870 put_child_root(pn
, n
->key
, NULL
);
1875 pr_debug("trie_flush found=%d\n", found
);
1879 static void __trie_free_rcu(struct rcu_head
*head
)
1881 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
1882 #ifdef CONFIG_IP_FIB_TRIE_STATS
1883 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1885 if (tb
->tb_data
== tb
->__data
)
1886 free_percpu(t
->stats
);
1887 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1891 void fib_free_table(struct fib_table
*tb
)
1893 call_rcu(&tb
->rcu
, __trie_free_rcu
);
1896 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
1897 struct sk_buff
*skb
, struct netlink_callback
*cb
)
1899 __be32 xkey
= htonl(l
->key
);
1900 struct fib_alias
*fa
;
1906 /* rcu_read_lock is hold by caller */
1907 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1913 if (tb
->tb_id
!= fa
->tb_id
) {
1918 if (fib_dump_info(skb
, NETLINK_CB(cb
->skb
).portid
,
1924 KEYLENGTH
- fa
->fa_slen
,
1926 fa
->fa_info
, NLM_F_MULTI
) < 0) {
1937 /* rcu_read_lock needs to be hold by caller from readside */
1938 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
1939 struct netlink_callback
*cb
)
1941 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1942 struct key_vector
*l
, *tp
= t
->kv
;
1943 /* Dump starting at last key.
1944 * Note: 0.0.0.0/0 (ie default) is first key.
1946 int count
= cb
->args
[2];
1947 t_key key
= cb
->args
[3];
1949 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1950 if (fn_trie_dump_leaf(l
, tb
, skb
, cb
) < 0) {
1952 cb
->args
[2] = count
;
1959 memset(&cb
->args
[4], 0,
1960 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
1962 /* stop loop if key wrapped back to 0 */
1968 cb
->args
[2] = count
;
1973 void __init
fib_trie_init(void)
1975 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
1976 sizeof(struct fib_alias
),
1977 0, SLAB_PANIC
, NULL
);
1979 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
1981 0, SLAB_PANIC
, NULL
);
1984 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
1986 struct fib_table
*tb
;
1988 size_t sz
= sizeof(*tb
);
1991 sz
+= sizeof(struct trie
);
1993 tb
= kzalloc(sz
, GFP_KERNEL
);
1998 tb
->tb_num_default
= 0;
1999 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
2004 t
= (struct trie
*) tb
->tb_data
;
2005 t
->kv
[0].pos
= KEYLENGTH
;
2006 t
->kv
[0].slen
= KEYLENGTH
;
2007 #ifdef CONFIG_IP_FIB_TRIE_STATS
2008 t
->stats
= alloc_percpu(struct trie_use_stats
);
2018 #ifdef CONFIG_PROC_FS
2019 /* Depth first Trie walk iterator */
2020 struct fib_trie_iter
{
2021 struct seq_net_private p
;
2022 struct fib_table
*tb
;
2023 struct key_vector
*tnode
;
2028 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2030 unsigned long cindex
= iter
->index
;
2031 struct key_vector
*pn
= iter
->tnode
;
2034 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2035 iter
->tnode
, iter
->index
, iter
->depth
);
2037 while (!IS_TRIE(pn
)) {
2038 while (cindex
< child_length(pn
)) {
2039 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2046 iter
->index
= cindex
;
2048 /* push down one level */
2057 /* Current node exhausted, pop back up */
2059 pn
= node_parent_rcu(pn
);
2060 cindex
= get_index(pkey
, pn
) + 1;
2064 /* record root node so further searches know we are done */
2071 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2074 struct key_vector
*n
, *pn
;
2080 n
= rcu_dereference(pn
->tnode
[0]);
2097 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2099 struct key_vector
*n
;
2100 struct fib_trie_iter iter
;
2102 memset(s
, 0, sizeof(*s
));
2105 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2107 struct fib_alias
*fa
;
2110 s
->totdepth
+= iter
.depth
;
2111 if (iter
.depth
> s
->maxdepth
)
2112 s
->maxdepth
= iter
.depth
;
2114 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2118 if (n
->bits
< MAX_STAT_DEPTH
)
2119 s
->nodesizes
[n
->bits
]++;
2120 s
->nullpointers
+= tn_info(n
)->empty_children
;
2127 * This outputs /proc/net/fib_triestats
2129 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2131 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2134 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2138 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2139 avdepth
/ 100, avdepth
% 100);
2140 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2142 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2143 bytes
= LEAF_SIZE
* stat
->leaves
;
2145 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2146 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2148 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2149 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2151 max
= MAX_STAT_DEPTH
;
2152 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2156 for (i
= 1; i
< max
; i
++)
2157 if (stat
->nodesizes
[i
] != 0) {
2158 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2159 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2161 seq_putc(seq
, '\n');
2162 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2164 bytes
+= sizeof(struct key_vector
*) * pointers
;
2165 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2166 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2169 #ifdef CONFIG_IP_FIB_TRIE_STATS
2170 static void trie_show_usage(struct seq_file
*seq
,
2171 const struct trie_use_stats __percpu
*stats
)
2173 struct trie_use_stats s
= { 0 };
2176 /* loop through all of the CPUs and gather up the stats */
2177 for_each_possible_cpu(cpu
) {
2178 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2180 s
.gets
+= pcpu
->gets
;
2181 s
.backtrack
+= pcpu
->backtrack
;
2182 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2183 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2184 s
.null_node_hit
+= pcpu
->null_node_hit
;
2185 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2188 seq_printf(seq
, "\nCounters:\n---------\n");
2189 seq_printf(seq
, "gets = %u\n", s
.gets
);
2190 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2191 seq_printf(seq
, "semantic match passed = %u\n",
2192 s
.semantic_match_passed
);
2193 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2194 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2195 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2197 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2199 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2201 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2202 seq_puts(seq
, "Local:\n");
2203 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2204 seq_puts(seq
, "Main:\n");
2206 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2210 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2212 struct net
*net
= (struct net
*)seq
->private;
2216 "Basic info: size of leaf:"
2217 " %Zd bytes, size of tnode: %Zd bytes.\n",
2218 LEAF_SIZE
, TNODE_SIZE(0));
2220 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2221 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2222 struct fib_table
*tb
;
2224 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2225 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2226 struct trie_stat stat
;
2231 fib_table_print(seq
, tb
);
2233 trie_collect_stats(t
, &stat
);
2234 trie_show_stats(seq
, &stat
);
2235 #ifdef CONFIG_IP_FIB_TRIE_STATS
2236 trie_show_usage(seq
, t
->stats
);
2244 static int fib_triestat_seq_open(struct inode
*inode
, struct file
*file
)
2246 return single_open_net(inode
, file
, fib_triestat_seq_show
);
2249 static const struct file_operations fib_triestat_fops
= {
2250 .owner
= THIS_MODULE
,
2251 .open
= fib_triestat_seq_open
,
2253 .llseek
= seq_lseek
,
2254 .release
= single_release_net
,
2257 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2259 struct fib_trie_iter
*iter
= seq
->private;
2260 struct net
*net
= seq_file_net(seq
);
2264 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2265 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2266 struct fib_table
*tb
;
2268 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2269 struct key_vector
*n
;
2271 for (n
= fib_trie_get_first(iter
,
2272 (struct trie
*) tb
->tb_data
);
2273 n
; n
= fib_trie_get_next(iter
))
2284 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2288 return fib_trie_get_idx(seq
, *pos
);
2291 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2293 struct fib_trie_iter
*iter
= seq
->private;
2294 struct net
*net
= seq_file_net(seq
);
2295 struct fib_table
*tb
= iter
->tb
;
2296 struct hlist_node
*tb_node
;
2298 struct key_vector
*n
;
2301 /* next node in same table */
2302 n
= fib_trie_get_next(iter
);
2306 /* walk rest of this hash chain */
2307 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2308 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2309 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2310 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2315 /* new hash chain */
2316 while (++h
< FIB_TABLE_HASHSZ
) {
2317 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2318 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2319 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2331 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2337 static void seq_indent(struct seq_file
*seq
, int n
)
2343 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2346 case RT_SCOPE_UNIVERSE
: return "universe";
2347 case RT_SCOPE_SITE
: return "site";
2348 case RT_SCOPE_LINK
: return "link";
2349 case RT_SCOPE_HOST
: return "host";
2350 case RT_SCOPE_NOWHERE
: return "nowhere";
2352 snprintf(buf
, len
, "scope=%d", s
);
2357 static const char *const rtn_type_names
[__RTN_MAX
] = {
2358 [RTN_UNSPEC
] = "UNSPEC",
2359 [RTN_UNICAST
] = "UNICAST",
2360 [RTN_LOCAL
] = "LOCAL",
2361 [RTN_BROADCAST
] = "BROADCAST",
2362 [RTN_ANYCAST
] = "ANYCAST",
2363 [RTN_MULTICAST
] = "MULTICAST",
2364 [RTN_BLACKHOLE
] = "BLACKHOLE",
2365 [RTN_UNREACHABLE
] = "UNREACHABLE",
2366 [RTN_PROHIBIT
] = "PROHIBIT",
2367 [RTN_THROW
] = "THROW",
2369 [RTN_XRESOLVE
] = "XRESOLVE",
2372 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2374 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2375 return rtn_type_names
[t
];
2376 snprintf(buf
, len
, "type %u", t
);
2380 /* Pretty print the trie */
2381 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2383 const struct fib_trie_iter
*iter
= seq
->private;
2384 struct key_vector
*n
= v
;
2386 if (IS_TRIE(node_parent_rcu(n
)))
2387 fib_table_print(seq
, iter
->tb
);
2390 __be32 prf
= htonl(n
->key
);
2392 seq_indent(seq
, iter
->depth
-1);
2393 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2394 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2395 tn_info(n
)->full_children
,
2396 tn_info(n
)->empty_children
);
2398 __be32 val
= htonl(n
->key
);
2399 struct fib_alias
*fa
;
2401 seq_indent(seq
, iter
->depth
);
2402 seq_printf(seq
, " |-- %pI4\n", &val
);
2404 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2405 char buf1
[32], buf2
[32];
2407 seq_indent(seq
, iter
->depth
+ 1);
2408 seq_printf(seq
, " /%zu %s %s",
2409 KEYLENGTH
- fa
->fa_slen
,
2410 rtn_scope(buf1
, sizeof(buf1
),
2411 fa
->fa_info
->fib_scope
),
2412 rtn_type(buf2
, sizeof(buf2
),
2415 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2416 seq_putc(seq
, '\n');
2423 static const struct seq_operations fib_trie_seq_ops
= {
2424 .start
= fib_trie_seq_start
,
2425 .next
= fib_trie_seq_next
,
2426 .stop
= fib_trie_seq_stop
,
2427 .show
= fib_trie_seq_show
,
2430 static int fib_trie_seq_open(struct inode
*inode
, struct file
*file
)
2432 return seq_open_net(inode
, file
, &fib_trie_seq_ops
,
2433 sizeof(struct fib_trie_iter
));
2436 static const struct file_operations fib_trie_fops
= {
2437 .owner
= THIS_MODULE
,
2438 .open
= fib_trie_seq_open
,
2440 .llseek
= seq_lseek
,
2441 .release
= seq_release_net
,
2444 struct fib_route_iter
{
2445 struct seq_net_private p
;
2446 struct fib_table
*main_tb
;
2447 struct key_vector
*tnode
;
2452 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2455 struct fib_table
*tb
= iter
->main_tb
;
2456 struct key_vector
*l
, **tp
= &iter
->tnode
;
2460 /* use cache location of next-to-find key */
2461 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2465 t
= (struct trie
*)tb
->tb_data
;
2466 iter
->tnode
= t
->kv
;
2471 while ((l
= leaf_walk_rcu(tp
, key
)) != NULL
) {
2480 /* handle unlikely case of a key wrap */
2486 iter
->key
= key
; /* remember it */
2488 iter
->pos
= 0; /* forget it */
2493 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2496 struct fib_route_iter
*iter
= seq
->private;
2497 struct fib_table
*tb
;
2502 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2509 return fib_route_get_idx(iter
, *pos
);
2511 t
= (struct trie
*)tb
->tb_data
;
2512 iter
->tnode
= t
->kv
;
2516 return SEQ_START_TOKEN
;
2519 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2521 struct fib_route_iter
*iter
= seq
->private;
2522 struct key_vector
*l
= NULL
;
2523 t_key key
= iter
->key
;
2527 /* only allow key of 0 for start of sequence */
2528 if ((v
== SEQ_START_TOKEN
) || key
)
2529 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2532 iter
->key
= l
->key
+ 1;
2541 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2547 static unsigned int fib_flag_trans(int type
, __be32 mask
, const struct fib_info
*fi
)
2549 unsigned int flags
= 0;
2551 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2553 if (fi
&& fi
->fib_nh
->nh_gw
)
2554 flags
|= RTF_GATEWAY
;
2555 if (mask
== htonl(0xFFFFFFFF))
2562 * This outputs /proc/net/route.
2563 * The format of the file is not supposed to be changed
2564 * and needs to be same as fib_hash output to avoid breaking
2567 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2569 struct fib_route_iter
*iter
= seq
->private;
2570 struct fib_table
*tb
= iter
->main_tb
;
2571 struct fib_alias
*fa
;
2572 struct key_vector
*l
= v
;
2575 if (v
== SEQ_START_TOKEN
) {
2576 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2577 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2582 prefix
= htonl(l
->key
);
2584 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2585 const struct fib_info
*fi
= fa
->fa_info
;
2586 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2587 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2589 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2590 (fa
->fa_type
== RTN_MULTICAST
))
2593 if (fa
->tb_id
!= tb
->tb_id
)
2596 seq_setwidth(seq
, 127);
2600 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2601 "%d\t%08X\t%d\t%u\t%u",
2602 fi
->fib_dev
? fi
->fib_dev
->name
: "*",
2604 fi
->fib_nh
->nh_gw
, flags
, 0, 0,
2608 fi
->fib_advmss
+ 40 : 0),
2613 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2614 "%d\t%08X\t%d\t%u\t%u",
2615 prefix
, 0, flags
, 0, 0, 0,
2624 static const struct seq_operations fib_route_seq_ops
= {
2625 .start
= fib_route_seq_start
,
2626 .next
= fib_route_seq_next
,
2627 .stop
= fib_route_seq_stop
,
2628 .show
= fib_route_seq_show
,
2631 static int fib_route_seq_open(struct inode
*inode
, struct file
*file
)
2633 return seq_open_net(inode
, file
, &fib_route_seq_ops
,
2634 sizeof(struct fib_route_iter
));
2637 static const struct file_operations fib_route_fops
= {
2638 .owner
= THIS_MODULE
,
2639 .open
= fib_route_seq_open
,
2641 .llseek
= seq_lseek
,
2642 .release
= seq_release_net
,
2645 int __net_init
fib_proc_init(struct net
*net
)
2647 if (!proc_create("fib_trie", S_IRUGO
, net
->proc_net
, &fib_trie_fops
))
2650 if (!proc_create("fib_triestat", S_IRUGO
, net
->proc_net
,
2651 &fib_triestat_fops
))
2654 if (!proc_create("route", S_IRUGO
, net
->proc_net
, &fib_route_fops
))
2660 remove_proc_entry("fib_triestat", net
->proc_net
);
2662 remove_proc_entry("fib_trie", net
->proc_net
);
2667 void __net_exit
fib_proc_exit(struct net
*net
)
2669 remove_proc_entry("fib_trie", net
->proc_net
);
2670 remove_proc_entry("fib_triestat", net
->proc_net
);
2671 remove_proc_entry("route", net
->proc_net
);
2674 #endif /* CONFIG_PROC_FS */