2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 int selinux_policycap_netpeer
;
74 int selinux_policycap_openperm
;
75 int selinux_policycap_alwaysnetwork
;
77 static DEFINE_RWLOCK(policy_rwlock
);
79 static struct sidtab sidtab
;
80 struct policydb policydb
;
84 * The largest sequence number that has been used when
85 * providing an access decision to the access vector cache.
86 * The sequence number only changes when a policy change
89 static u32 latest_granting
;
91 /* Forward declaration. */
92 static int context_struct_to_string(struct context
*context
, char **scontext
,
95 static void context_struct_compute_av(struct context
*scontext
,
96 struct context
*tcontext
,
98 struct av_decision
*avd
,
99 struct extended_perms
*xperms
);
101 struct selinux_mapping
{
102 u16 value
; /* policy value */
104 u32 perms
[sizeof(u32
) * 8];
107 static struct selinux_mapping
*current_mapping
;
108 static u16 current_mapping_size
;
110 static int selinux_set_mapping(struct policydb
*pol
,
111 struct security_class_mapping
*map
,
112 struct selinux_mapping
**out_map_p
,
115 struct selinux_mapping
*out_map
= NULL
;
116 size_t size
= sizeof(struct selinux_mapping
);
119 bool print_unknown_handle
= false;
121 /* Find number of classes in the input mapping */
128 /* Allocate space for the class records, plus one for class zero */
129 out_map
= kcalloc(++i
, size
, GFP_ATOMIC
);
133 /* Store the raw class and permission values */
135 while (map
[j
].name
) {
136 struct security_class_mapping
*p_in
= map
+ (j
++);
137 struct selinux_mapping
*p_out
= out_map
+ j
;
139 /* An empty class string skips ahead */
140 if (!strcmp(p_in
->name
, "")) {
141 p_out
->num_perms
= 0;
145 p_out
->value
= string_to_security_class(pol
, p_in
->name
);
148 "SELinux: Class %s not defined in policy.\n",
150 if (pol
->reject_unknown
)
152 p_out
->num_perms
= 0;
153 print_unknown_handle
= true;
158 while (p_in
->perms
&& p_in
->perms
[k
]) {
159 /* An empty permission string skips ahead */
160 if (!*p_in
->perms
[k
]) {
164 p_out
->perms
[k
] = string_to_av_perm(pol
, p_out
->value
,
166 if (!p_out
->perms
[k
]) {
168 "SELinux: Permission %s in class %s not defined in policy.\n",
169 p_in
->perms
[k
], p_in
->name
);
170 if (pol
->reject_unknown
)
172 print_unknown_handle
= true;
177 p_out
->num_perms
= k
;
180 if (print_unknown_handle
)
181 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
182 pol
->allow_unknown
? "allowed" : "denied");
184 *out_map_p
= out_map
;
193 * Get real, policy values from mapped values
196 static u16
unmap_class(u16 tclass
)
198 if (tclass
< current_mapping_size
)
199 return current_mapping
[tclass
].value
;
205 * Get kernel value for class from its policy value
207 static u16
map_class(u16 pol_value
)
211 for (i
= 1; i
< current_mapping_size
; i
++) {
212 if (current_mapping
[i
].value
== pol_value
)
216 return SECCLASS_NULL
;
219 static void map_decision(u16 tclass
, struct av_decision
*avd
,
222 if (tclass
< current_mapping_size
) {
223 unsigned i
, n
= current_mapping
[tclass
].num_perms
;
226 for (i
= 0, result
= 0; i
< n
; i
++) {
227 if (avd
->allowed
& current_mapping
[tclass
].perms
[i
])
229 if (allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
232 avd
->allowed
= result
;
234 for (i
= 0, result
= 0; i
< n
; i
++)
235 if (avd
->auditallow
& current_mapping
[tclass
].perms
[i
])
237 avd
->auditallow
= result
;
239 for (i
= 0, result
= 0; i
< n
; i
++) {
240 if (avd
->auditdeny
& current_mapping
[tclass
].perms
[i
])
242 if (!allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
246 * In case the kernel has a bug and requests a permission
247 * between num_perms and the maximum permission number, we
248 * should audit that denial
250 for (; i
< (sizeof(u32
)*8); i
++)
252 avd
->auditdeny
= result
;
256 int security_mls_enabled(void)
258 return policydb
.mls_enabled
;
262 * Return the boolean value of a constraint expression
263 * when it is applied to the specified source and target
266 * xcontext is a special beast... It is used by the validatetrans rules
267 * only. For these rules, scontext is the context before the transition,
268 * tcontext is the context after the transition, and xcontext is the context
269 * of the process performing the transition. All other callers of
270 * constraint_expr_eval should pass in NULL for xcontext.
272 static int constraint_expr_eval(struct context
*scontext
,
273 struct context
*tcontext
,
274 struct context
*xcontext
,
275 struct constraint_expr
*cexpr
)
279 struct role_datum
*r1
, *r2
;
280 struct mls_level
*l1
, *l2
;
281 struct constraint_expr
*e
;
282 int s
[CEXPR_MAXDEPTH
];
285 for (e
= cexpr
; e
; e
= e
->next
) {
286 switch (e
->expr_type
) {
302 if (sp
== (CEXPR_MAXDEPTH
- 1))
306 val1
= scontext
->user
;
307 val2
= tcontext
->user
;
310 val1
= scontext
->type
;
311 val2
= tcontext
->type
;
314 val1
= scontext
->role
;
315 val2
= tcontext
->role
;
316 r1
= policydb
.role_val_to_struct
[val1
- 1];
317 r2
= policydb
.role_val_to_struct
[val2
- 1];
320 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
324 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
328 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
330 !ebitmap_get_bit(&r2
->dominates
,
338 l1
= &(scontext
->range
.level
[0]);
339 l2
= &(tcontext
->range
.level
[0]);
342 l1
= &(scontext
->range
.level
[0]);
343 l2
= &(tcontext
->range
.level
[1]);
346 l1
= &(scontext
->range
.level
[1]);
347 l2
= &(tcontext
->range
.level
[0]);
350 l1
= &(scontext
->range
.level
[1]);
351 l2
= &(tcontext
->range
.level
[1]);
354 l1
= &(scontext
->range
.level
[0]);
355 l2
= &(scontext
->range
.level
[1]);
358 l1
= &(tcontext
->range
.level
[0]);
359 l2
= &(tcontext
->range
.level
[1]);
364 s
[++sp
] = mls_level_eq(l1
, l2
);
367 s
[++sp
] = !mls_level_eq(l1
, l2
);
370 s
[++sp
] = mls_level_dom(l1
, l2
);
373 s
[++sp
] = mls_level_dom(l2
, l1
);
376 s
[++sp
] = mls_level_incomp(l2
, l1
);
390 s
[++sp
] = (val1
== val2
);
393 s
[++sp
] = (val1
!= val2
);
401 if (sp
== (CEXPR_MAXDEPTH
-1))
404 if (e
->attr
& CEXPR_TARGET
)
406 else if (e
->attr
& CEXPR_XTARGET
) {
413 if (e
->attr
& CEXPR_USER
)
415 else if (e
->attr
& CEXPR_ROLE
)
417 else if (e
->attr
& CEXPR_TYPE
)
426 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
429 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
447 * security_dump_masked_av - dumps masked permissions during
448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
450 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
452 struct perm_datum
*pdatum
= d
;
453 char **permission_names
= args
;
455 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
457 permission_names
[pdatum
->value
- 1] = (char *)k
;
462 static void security_dump_masked_av(struct context
*scontext
,
463 struct context
*tcontext
,
468 struct common_datum
*common_dat
;
469 struct class_datum
*tclass_dat
;
470 struct audit_buffer
*ab
;
472 char *scontext_name
= NULL
;
473 char *tcontext_name
= NULL
;
474 char *permission_names
[32];
477 bool need_comma
= false;
482 tclass_name
= sym_name(&policydb
, SYM_CLASSES
, tclass
- 1);
483 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
484 common_dat
= tclass_dat
->comdatum
;
486 /* init permission_names */
488 hashtab_map(common_dat
->permissions
.table
,
489 dump_masked_av_helper
, permission_names
) < 0)
492 if (hashtab_map(tclass_dat
->permissions
.table
,
493 dump_masked_av_helper
, permission_names
) < 0)
496 /* get scontext/tcontext in text form */
497 if (context_struct_to_string(scontext
,
498 &scontext_name
, &length
) < 0)
501 if (context_struct_to_string(tcontext
,
502 &tcontext_name
, &length
) < 0)
505 /* audit a message */
506 ab
= audit_log_start(current
->audit_context
,
507 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
511 audit_log_format(ab
, "op=security_compute_av reason=%s "
512 "scontext=%s tcontext=%s tclass=%s perms=",
513 reason
, scontext_name
, tcontext_name
, tclass_name
);
515 for (index
= 0; index
< 32; index
++) {
516 u32 mask
= (1 << index
);
518 if ((mask
& permissions
) == 0)
521 audit_log_format(ab
, "%s%s",
522 need_comma
? "," : "",
523 permission_names
[index
]
524 ? permission_names
[index
] : "????");
529 /* release scontext/tcontext */
530 kfree(tcontext_name
);
531 kfree(scontext_name
);
537 * security_boundary_permission - drops violated permissions
538 * on boundary constraint.
540 static void type_attribute_bounds_av(struct context
*scontext
,
541 struct context
*tcontext
,
543 struct av_decision
*avd
)
545 struct context lo_scontext
;
546 struct context lo_tcontext
;
547 struct av_decision lo_avd
;
548 struct type_datum
*source
;
549 struct type_datum
*target
;
552 source
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
556 target
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
560 if (source
->bounds
) {
561 memset(&lo_avd
, 0, sizeof(lo_avd
));
563 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
564 lo_scontext
.type
= source
->bounds
;
566 context_struct_compute_av(&lo_scontext
,
571 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
572 return; /* no masked permission */
573 masked
= ~lo_avd
.allowed
& avd
->allowed
;
576 if (target
->bounds
) {
577 memset(&lo_avd
, 0, sizeof(lo_avd
));
579 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
580 lo_tcontext
.type
= target
->bounds
;
582 context_struct_compute_av(scontext
,
587 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
588 return; /* no masked permission */
589 masked
= ~lo_avd
.allowed
& avd
->allowed
;
592 if (source
->bounds
&& target
->bounds
) {
593 memset(&lo_avd
, 0, sizeof(lo_avd
));
595 * lo_scontext and lo_tcontext are already
599 context_struct_compute_av(&lo_scontext
,
604 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
605 return; /* no masked permission */
606 masked
= ~lo_avd
.allowed
& avd
->allowed
;
610 /* mask violated permissions */
611 avd
->allowed
&= ~masked
;
613 /* audit masked permissions */
614 security_dump_masked_av(scontext
, tcontext
,
615 tclass
, masked
, "bounds");
620 * flag which drivers have permissions
621 * only looking for ioctl based extended permssions
623 void services_compute_xperms_drivers(
624 struct extended_perms
*xperms
,
625 struct avtab_node
*node
)
629 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
630 /* if one or more driver has all permissions allowed */
631 for (i
= 0; i
< ARRAY_SIZE(xperms
->drivers
.p
); i
++)
632 xperms
->drivers
.p
[i
] |= node
->datum
.u
.xperms
->perms
.p
[i
];
633 } else if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
634 /* if allowing permissions within a driver */
635 security_xperm_set(xperms
->drivers
.p
,
636 node
->datum
.u
.xperms
->driver
);
639 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
640 if (node
->key
.specified
& AVTAB_XPERMS_ALLOWED
)
645 * Compute access vectors and extended permissions based on a context
646 * structure pair for the permissions in a particular class.
648 static void context_struct_compute_av(struct context
*scontext
,
649 struct context
*tcontext
,
651 struct av_decision
*avd
,
652 struct extended_perms
*xperms
)
654 struct constraint_node
*constraint
;
655 struct role_allow
*ra
;
656 struct avtab_key avkey
;
657 struct avtab_node
*node
;
658 struct class_datum
*tclass_datum
;
659 struct ebitmap
*sattr
, *tattr
;
660 struct ebitmap_node
*snode
, *tnode
;
665 avd
->auditdeny
= 0xffffffff;
667 memset(&xperms
->drivers
, 0, sizeof(xperms
->drivers
));
671 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
672 if (printk_ratelimit())
673 printk(KERN_WARNING
"SELinux: Invalid class %hu\n", tclass
);
677 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
680 * If a specific type enforcement rule was defined for
681 * this permission check, then use it.
683 avkey
.target_class
= tclass
;
684 avkey
.specified
= AVTAB_AV
| AVTAB_XPERMS
;
685 sattr
= flex_array_get(policydb
.type_attr_map_array
, scontext
->type
- 1);
687 tattr
= flex_array_get(policydb
.type_attr_map_array
, tcontext
->type
- 1);
689 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
690 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
691 avkey
.source_type
= i
+ 1;
692 avkey
.target_type
= j
+ 1;
693 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
695 node
= avtab_search_node_next(node
, avkey
.specified
)) {
696 if (node
->key
.specified
== AVTAB_ALLOWED
)
697 avd
->allowed
|= node
->datum
.u
.data
;
698 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
699 avd
->auditallow
|= node
->datum
.u
.data
;
700 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
701 avd
->auditdeny
&= node
->datum
.u
.data
;
702 else if (xperms
&& (node
->key
.specified
& AVTAB_XPERMS
))
703 services_compute_xperms_drivers(xperms
, node
);
706 /* Check conditional av table for additional permissions */
707 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
,
714 * Remove any permissions prohibited by a constraint (this includes
717 constraint
= tclass_datum
->constraints
;
719 if ((constraint
->permissions
& (avd
->allowed
)) &&
720 !constraint_expr_eval(scontext
, tcontext
, NULL
,
722 avd
->allowed
&= ~(constraint
->permissions
);
724 constraint
= constraint
->next
;
728 * If checking process transition permission and the
729 * role is changing, then check the (current_role, new_role)
732 if (tclass
== policydb
.process_class
&&
733 (avd
->allowed
& policydb
.process_trans_perms
) &&
734 scontext
->role
!= tcontext
->role
) {
735 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
736 if (scontext
->role
== ra
->role
&&
737 tcontext
->role
== ra
->new_role
)
741 avd
->allowed
&= ~policydb
.process_trans_perms
;
745 * If the given source and target types have boundary
746 * constraint, lazy checks have to mask any violated
747 * permission and notice it to userspace via audit.
749 type_attribute_bounds_av(scontext
, tcontext
,
753 static int security_validtrans_handle_fail(struct context
*ocontext
,
754 struct context
*ncontext
,
755 struct context
*tcontext
,
758 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
759 u32 olen
, nlen
, tlen
;
761 if (context_struct_to_string(ocontext
, &o
, &olen
))
763 if (context_struct_to_string(ncontext
, &n
, &nlen
))
765 if (context_struct_to_string(tcontext
, &t
, &tlen
))
767 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
768 "op=security_validate_transition seresult=denied"
769 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
770 o
, n
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
776 if (!selinux_enforcing
)
781 static int security_compute_validatetrans(u32 oldsid
, u32 newsid
, u32 tasksid
,
782 u16 orig_tclass
, bool user
)
784 struct context
*ocontext
;
785 struct context
*ncontext
;
786 struct context
*tcontext
;
787 struct class_datum
*tclass_datum
;
788 struct constraint_node
*constraint
;
795 read_lock(&policy_rwlock
);
798 tclass
= unmap_class(orig_tclass
);
800 tclass
= orig_tclass
;
802 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
806 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
808 ocontext
= sidtab_search(&sidtab
, oldsid
);
810 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
816 ncontext
= sidtab_search(&sidtab
, newsid
);
818 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
824 tcontext
= sidtab_search(&sidtab
, tasksid
);
826 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
832 constraint
= tclass_datum
->validatetrans
;
834 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
839 rc
= security_validtrans_handle_fail(ocontext
,
845 constraint
= constraint
->next
;
849 read_unlock(&policy_rwlock
);
853 int security_validate_transition_user(u32 oldsid
, u32 newsid
, u32 tasksid
,
856 return security_compute_validatetrans(oldsid
, newsid
, tasksid
,
860 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
863 return security_compute_validatetrans(oldsid
, newsid
, tasksid
,
868 * security_bounded_transition - check whether the given
869 * transition is directed to bounded, or not.
870 * It returns 0, if @newsid is bounded by @oldsid.
871 * Otherwise, it returns error code.
873 * @oldsid : current security identifier
874 * @newsid : destinated security identifier
876 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
878 struct context
*old_context
, *new_context
;
879 struct type_datum
*type
;
883 read_lock(&policy_rwlock
);
886 old_context
= sidtab_search(&sidtab
, old_sid
);
888 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
894 new_context
= sidtab_search(&sidtab
, new_sid
);
896 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
902 /* type/domain unchanged */
903 if (old_context
->type
== new_context
->type
)
906 index
= new_context
->type
;
908 type
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
912 /* not bounded anymore */
917 /* @newsid is bounded by @oldsid */
919 if (type
->bounds
== old_context
->type
)
922 index
= type
->bounds
;
926 char *old_name
= NULL
;
927 char *new_name
= NULL
;
930 if (!context_struct_to_string(old_context
,
931 &old_name
, &length
) &&
932 !context_struct_to_string(new_context
,
933 &new_name
, &length
)) {
934 audit_log(current
->audit_context
,
935 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
936 "op=security_bounded_transition "
938 "oldcontext=%s newcontext=%s",
945 read_unlock(&policy_rwlock
);
950 static void avd_init(struct av_decision
*avd
)
954 avd
->auditdeny
= 0xffffffff;
955 avd
->seqno
= latest_granting
;
959 void services_compute_xperms_decision(struct extended_perms_decision
*xpermd
,
960 struct avtab_node
*node
)
964 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
965 if (xpermd
->driver
!= node
->datum
.u
.xperms
->driver
)
967 } else if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
968 if (!security_xperm_test(node
->datum
.u
.xperms
->perms
.p
,
975 if (node
->key
.specified
== AVTAB_XPERMS_ALLOWED
) {
976 xpermd
->used
|= XPERMS_ALLOWED
;
977 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
978 memset(xpermd
->allowed
->p
, 0xff,
979 sizeof(xpermd
->allowed
->p
));
981 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
982 for (i
= 0; i
< ARRAY_SIZE(xpermd
->allowed
->p
); i
++)
983 xpermd
->allowed
->p
[i
] |=
984 node
->datum
.u
.xperms
->perms
.p
[i
];
986 } else if (node
->key
.specified
== AVTAB_XPERMS_AUDITALLOW
) {
987 xpermd
->used
|= XPERMS_AUDITALLOW
;
988 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
989 memset(xpermd
->auditallow
->p
, 0xff,
990 sizeof(xpermd
->auditallow
->p
));
992 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
993 for (i
= 0; i
< ARRAY_SIZE(xpermd
->auditallow
->p
); i
++)
994 xpermd
->auditallow
->p
[i
] |=
995 node
->datum
.u
.xperms
->perms
.p
[i
];
997 } else if (node
->key
.specified
== AVTAB_XPERMS_DONTAUDIT
) {
998 xpermd
->used
|= XPERMS_DONTAUDIT
;
999 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
1000 memset(xpermd
->dontaudit
->p
, 0xff,
1001 sizeof(xpermd
->dontaudit
->p
));
1003 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
1004 for (i
= 0; i
< ARRAY_SIZE(xpermd
->dontaudit
->p
); i
++)
1005 xpermd
->dontaudit
->p
[i
] |=
1006 node
->datum
.u
.xperms
->perms
.p
[i
];
1013 void security_compute_xperms_decision(u32 ssid
,
1017 struct extended_perms_decision
*xpermd
)
1020 struct context
*scontext
, *tcontext
;
1021 struct avtab_key avkey
;
1022 struct avtab_node
*node
;
1023 struct ebitmap
*sattr
, *tattr
;
1024 struct ebitmap_node
*snode
, *tnode
;
1027 xpermd
->driver
= driver
;
1029 memset(xpermd
->allowed
->p
, 0, sizeof(xpermd
->allowed
->p
));
1030 memset(xpermd
->auditallow
->p
, 0, sizeof(xpermd
->auditallow
->p
));
1031 memset(xpermd
->dontaudit
->p
, 0, sizeof(xpermd
->dontaudit
->p
));
1033 read_lock(&policy_rwlock
);
1034 if (!ss_initialized
)
1037 scontext
= sidtab_search(&sidtab
, ssid
);
1039 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1044 tcontext
= sidtab_search(&sidtab
, tsid
);
1046 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1051 tclass
= unmap_class(orig_tclass
);
1052 if (unlikely(orig_tclass
&& !tclass
)) {
1053 if (policydb
.allow_unknown
)
1059 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
1060 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass
);
1064 avkey
.target_class
= tclass
;
1065 avkey
.specified
= AVTAB_XPERMS
;
1066 sattr
= flex_array_get(policydb
.type_attr_map_array
,
1067 scontext
->type
- 1);
1069 tattr
= flex_array_get(policydb
.type_attr_map_array
,
1070 tcontext
->type
- 1);
1072 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
1073 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
1074 avkey
.source_type
= i
+ 1;
1075 avkey
.target_type
= j
+ 1;
1076 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
1078 node
= avtab_search_node_next(node
, avkey
.specified
))
1079 services_compute_xperms_decision(xpermd
, node
);
1081 cond_compute_xperms(&policydb
.te_cond_avtab
,
1086 read_unlock(&policy_rwlock
);
1089 memset(xpermd
->allowed
->p
, 0xff, sizeof(xpermd
->allowed
->p
));
1094 * security_compute_av - Compute access vector decisions.
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1104 void security_compute_av(u32 ssid
,
1107 struct av_decision
*avd
,
1108 struct extended_perms
*xperms
)
1111 struct context
*scontext
= NULL
, *tcontext
= NULL
;
1113 read_lock(&policy_rwlock
);
1116 if (!ss_initialized
)
1119 scontext
= sidtab_search(&sidtab
, ssid
);
1121 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1126 /* permissive domain? */
1127 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
1128 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
1130 tcontext
= sidtab_search(&sidtab
, tsid
);
1132 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1137 tclass
= unmap_class(orig_tclass
);
1138 if (unlikely(orig_tclass
&& !tclass
)) {
1139 if (policydb
.allow_unknown
)
1143 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
, xperms
);
1144 map_decision(orig_tclass
, avd
, policydb
.allow_unknown
);
1146 read_unlock(&policy_rwlock
);
1149 avd
->allowed
= 0xffffffff;
1153 void security_compute_av_user(u32 ssid
,
1156 struct av_decision
*avd
)
1158 struct context
*scontext
= NULL
, *tcontext
= NULL
;
1160 read_lock(&policy_rwlock
);
1162 if (!ss_initialized
)
1165 scontext
= sidtab_search(&sidtab
, ssid
);
1167 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1172 /* permissive domain? */
1173 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
1174 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
1176 tcontext
= sidtab_search(&sidtab
, tsid
);
1178 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1183 if (unlikely(!tclass
)) {
1184 if (policydb
.allow_unknown
)
1189 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
, NULL
);
1191 read_unlock(&policy_rwlock
);
1194 avd
->allowed
= 0xffffffff;
1199 * Write the security context string representation of
1200 * the context structure `context' into a dynamically
1201 * allocated string of the correct size. Set `*scontext'
1202 * to point to this string and set `*scontext_len' to
1203 * the length of the string.
1205 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
1214 *scontext_len
= context
->len
;
1216 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
1223 /* Compute the size of the context. */
1224 *scontext_len
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) + 1;
1225 *scontext_len
+= strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) + 1;
1226 *scontext_len
+= strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1)) + 1;
1227 *scontext_len
+= mls_compute_context_len(context
);
1232 /* Allocate space for the context; caller must free this space. */
1233 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1236 *scontext
= scontextp
;
1239 * Copy the user name, role name and type name into the context.
1241 scontextp
+= sprintf(scontextp
, "%s:%s:%s",
1242 sym_name(&policydb
, SYM_USERS
, context
->user
- 1),
1243 sym_name(&policydb
, SYM_ROLES
, context
->role
- 1),
1244 sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1246 mls_sid_to_context(context
, &scontextp
);
1253 #include "initial_sid_to_string.h"
1255 const char *security_get_initial_sid_context(u32 sid
)
1257 if (unlikely(sid
> SECINITSID_NUM
))
1259 return initial_sid_to_string
[sid
];
1262 static int security_sid_to_context_core(u32 sid
, char **scontext
,
1263 u32
*scontext_len
, int force
)
1265 struct context
*context
;
1272 if (!ss_initialized
) {
1273 if (sid
<= SECINITSID_NUM
) {
1276 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
1279 scontextp
= kmemdup(initial_sid_to_string
[sid
],
1280 *scontext_len
, GFP_ATOMIC
);
1285 *scontext
= scontextp
;
1288 printk(KERN_ERR
"SELinux: %s: called before initial "
1289 "load_policy on unknown SID %d\n", __func__
, sid
);
1293 read_lock(&policy_rwlock
);
1295 context
= sidtab_search_force(&sidtab
, sid
);
1297 context
= sidtab_search(&sidtab
, sid
);
1299 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1304 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
1306 read_unlock(&policy_rwlock
);
1313 * security_sid_to_context - Obtain a context for a given SID.
1314 * @sid: security identifier, SID
1315 * @scontext: security context
1316 * @scontext_len: length in bytes
1318 * Write the string representation of the context associated with @sid
1319 * into a dynamically allocated string of the correct size. Set @scontext
1320 * to point to this string and set @scontext_len to the length of the string.
1322 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
1324 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
1327 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
1329 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
1333 * Caveat: Mutates scontext.
1335 static int string_to_context_struct(struct policydb
*pol
,
1336 struct sidtab
*sidtabp
,
1339 struct context
*ctx
,
1342 struct role_datum
*role
;
1343 struct type_datum
*typdatum
;
1344 struct user_datum
*usrdatum
;
1345 char *scontextp
, *p
, oldc
;
1350 /* Parse the security context. */
1353 scontextp
= (char *) scontext
;
1355 /* Extract the user. */
1357 while (*p
&& *p
!= ':')
1365 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1369 ctx
->user
= usrdatum
->value
;
1373 while (*p
&& *p
!= ':')
1381 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1384 ctx
->role
= role
->value
;
1388 while (*p
&& *p
!= ':')
1393 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1394 if (!typdatum
|| typdatum
->attribute
)
1397 ctx
->type
= typdatum
->value
;
1399 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1404 if ((p
- scontext
) < scontext_len
)
1407 /* Check the validity of the new context. */
1408 if (!policydb_context_isvalid(pol
, ctx
))
1413 context_destroy(ctx
);
1417 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1418 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1421 char *scontext2
, *str
= NULL
;
1422 struct context context
;
1425 /* An empty security context is never valid. */
1429 if (!ss_initialized
) {
1432 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1433 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1438 *sid
= SECINITSID_KERNEL
;
1443 /* Copy the string so that we can modify the copy as we parse it. */
1444 scontext2
= kmalloc(scontext_len
+ 1, gfp_flags
);
1447 memcpy(scontext2
, scontext
, scontext_len
);
1448 scontext2
[scontext_len
] = 0;
1451 /* Save another copy for storing in uninterpreted form */
1453 str
= kstrdup(scontext2
, gfp_flags
);
1458 read_lock(&policy_rwlock
);
1459 rc
= string_to_context_struct(&policydb
, &sidtab
, scontext2
,
1460 scontext_len
, &context
, def_sid
);
1461 if (rc
== -EINVAL
&& force
) {
1463 context
.len
= scontext_len
;
1467 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1468 context_destroy(&context
);
1470 read_unlock(&policy_rwlock
);
1478 * security_context_to_sid - Obtain a SID for a given security context.
1479 * @scontext: security context
1480 * @scontext_len: length in bytes
1481 * @sid: security identifier, SID
1482 * @gfp: context for the allocation
1484 * Obtains a SID associated with the security context that
1485 * has the string representation specified by @scontext.
1486 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1487 * memory is available, or 0 on success.
1489 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
,
1492 return security_context_to_sid_core(scontext
, scontext_len
,
1493 sid
, SECSID_NULL
, gfp
, 0);
1496 int security_context_str_to_sid(const char *scontext
, u32
*sid
, gfp_t gfp
)
1498 return security_context_to_sid(scontext
, strlen(scontext
), sid
, gfp
);
1502 * security_context_to_sid_default - Obtain a SID for a given security context,
1503 * falling back to specified default if needed.
1505 * @scontext: security context
1506 * @scontext_len: length in bytes
1507 * @sid: security identifier, SID
1508 * @def_sid: default SID to assign on error
1510 * Obtains a SID associated with the security context that
1511 * has the string representation specified by @scontext.
1512 * The default SID is passed to the MLS layer to be used to allow
1513 * kernel labeling of the MLS field if the MLS field is not present
1514 * (for upgrading to MLS without full relabel).
1515 * Implicitly forces adding of the context even if it cannot be mapped yet.
1516 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1517 * memory is available, or 0 on success.
1519 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1520 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1522 return security_context_to_sid_core(scontext
, scontext_len
,
1523 sid
, def_sid
, gfp_flags
, 1);
1526 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1529 return security_context_to_sid_core(scontext
, scontext_len
,
1530 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1533 static int compute_sid_handle_invalid_context(
1534 struct context
*scontext
,
1535 struct context
*tcontext
,
1537 struct context
*newcontext
)
1539 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1540 u32 slen
, tlen
, nlen
;
1542 if (context_struct_to_string(scontext
, &s
, &slen
))
1544 if (context_struct_to_string(tcontext
, &t
, &tlen
))
1546 if (context_struct_to_string(newcontext
, &n
, &nlen
))
1548 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1549 "op=security_compute_sid invalid_context=%s"
1553 n
, s
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
1558 if (!selinux_enforcing
)
1563 static void filename_compute_type(struct policydb
*p
, struct context
*newcontext
,
1564 u32 stype
, u32 ttype
, u16 tclass
,
1565 const char *objname
)
1567 struct filename_trans ft
;
1568 struct filename_trans_datum
*otype
;
1571 * Most filename trans rules are going to live in specific directories
1572 * like /dev or /var/run. This bitmap will quickly skip rule searches
1573 * if the ttype does not contain any rules.
1575 if (!ebitmap_get_bit(&p
->filename_trans_ttypes
, ttype
))
1583 otype
= hashtab_search(p
->filename_trans
, &ft
);
1585 newcontext
->type
= otype
->otype
;
1588 static int security_compute_sid(u32 ssid
,
1592 const char *objname
,
1596 struct class_datum
*cladatum
= NULL
;
1597 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1598 struct role_trans
*roletr
= NULL
;
1599 struct avtab_key avkey
;
1600 struct avtab_datum
*avdatum
;
1601 struct avtab_node
*node
;
1606 if (!ss_initialized
) {
1607 switch (orig_tclass
) {
1608 case SECCLASS_PROCESS
: /* kernel value */
1618 context_init(&newcontext
);
1620 read_lock(&policy_rwlock
);
1623 tclass
= unmap_class(orig_tclass
);
1624 sock
= security_is_socket_class(orig_tclass
);
1626 tclass
= orig_tclass
;
1627 sock
= security_is_socket_class(map_class(tclass
));
1630 scontext
= sidtab_search(&sidtab
, ssid
);
1632 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1637 tcontext
= sidtab_search(&sidtab
, tsid
);
1639 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1645 if (tclass
&& tclass
<= policydb
.p_classes
.nprim
)
1646 cladatum
= policydb
.class_val_to_struct
[tclass
- 1];
1648 /* Set the user identity. */
1649 switch (specified
) {
1650 case AVTAB_TRANSITION
:
1652 if (cladatum
&& cladatum
->default_user
== DEFAULT_TARGET
) {
1653 newcontext
.user
= tcontext
->user
;
1655 /* notice this gets both DEFAULT_SOURCE and unset */
1656 /* Use the process user identity. */
1657 newcontext
.user
= scontext
->user
;
1661 /* Use the related object owner. */
1662 newcontext
.user
= tcontext
->user
;
1666 /* Set the role to default values. */
1667 if (cladatum
&& cladatum
->default_role
== DEFAULT_SOURCE
) {
1668 newcontext
.role
= scontext
->role
;
1669 } else if (cladatum
&& cladatum
->default_role
== DEFAULT_TARGET
) {
1670 newcontext
.role
= tcontext
->role
;
1672 if ((tclass
== policydb
.process_class
) || (sock
== true))
1673 newcontext
.role
= scontext
->role
;
1675 newcontext
.role
= OBJECT_R_VAL
;
1678 /* Set the type to default values. */
1679 if (cladatum
&& cladatum
->default_type
== DEFAULT_SOURCE
) {
1680 newcontext
.type
= scontext
->type
;
1681 } else if (cladatum
&& cladatum
->default_type
== DEFAULT_TARGET
) {
1682 newcontext
.type
= tcontext
->type
;
1684 if ((tclass
== policydb
.process_class
) || (sock
== true)) {
1685 /* Use the type of process. */
1686 newcontext
.type
= scontext
->type
;
1688 /* Use the type of the related object. */
1689 newcontext
.type
= tcontext
->type
;
1693 /* Look for a type transition/member/change rule. */
1694 avkey
.source_type
= scontext
->type
;
1695 avkey
.target_type
= tcontext
->type
;
1696 avkey
.target_class
= tclass
;
1697 avkey
.specified
= specified
;
1698 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1700 /* If no permanent rule, also check for enabled conditional rules */
1702 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1703 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1704 if (node
->key
.specified
& AVTAB_ENABLED
) {
1705 avdatum
= &node
->datum
;
1712 /* Use the type from the type transition/member/change rule. */
1713 newcontext
.type
= avdatum
->u
.data
;
1716 /* if we have a objname this is a file trans check so check those rules */
1718 filename_compute_type(&policydb
, &newcontext
, scontext
->type
,
1719 tcontext
->type
, tclass
, objname
);
1721 /* Check for class-specific changes. */
1722 if (specified
& AVTAB_TRANSITION
) {
1723 /* Look for a role transition rule. */
1724 for (roletr
= policydb
.role_tr
; roletr
; roletr
= roletr
->next
) {
1725 if ((roletr
->role
== scontext
->role
) &&
1726 (roletr
->type
== tcontext
->type
) &&
1727 (roletr
->tclass
== tclass
)) {
1728 /* Use the role transition rule. */
1729 newcontext
.role
= roletr
->new_role
;
1735 /* Set the MLS attributes.
1736 This is done last because it may allocate memory. */
1737 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
,
1742 /* Check the validity of the context. */
1743 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1744 rc
= compute_sid_handle_invalid_context(scontext
,
1751 /* Obtain the sid for the context. */
1752 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1754 read_unlock(&policy_rwlock
);
1755 context_destroy(&newcontext
);
1761 * security_transition_sid - Compute the SID for a new subject/object.
1762 * @ssid: source security identifier
1763 * @tsid: target security identifier
1764 * @tclass: target security class
1765 * @out_sid: security identifier for new subject/object
1767 * Compute a SID to use for labeling a new subject or object in the
1768 * class @tclass based on a SID pair (@ssid, @tsid).
1769 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1770 * if insufficient memory is available, or %0 if the new SID was
1771 * computed successfully.
1773 int security_transition_sid(u32 ssid
, u32 tsid
, u16 tclass
,
1774 const struct qstr
*qstr
, u32
*out_sid
)
1776 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1777 qstr
? qstr
->name
: NULL
, out_sid
, true);
1780 int security_transition_sid_user(u32 ssid
, u32 tsid
, u16 tclass
,
1781 const char *objname
, u32
*out_sid
)
1783 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1784 objname
, out_sid
, false);
1788 * security_member_sid - Compute the SID for member selection.
1789 * @ssid: source security identifier
1790 * @tsid: target security identifier
1791 * @tclass: target security class
1792 * @out_sid: security identifier for selected member
1794 * Compute a SID to use when selecting a member of a polyinstantiated
1795 * object of class @tclass based on a SID pair (@ssid, @tsid).
1796 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1797 * if insufficient memory is available, or %0 if the SID was
1798 * computed successfully.
1800 int security_member_sid(u32 ssid
,
1805 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, NULL
,
1810 * security_change_sid - Compute the SID for object relabeling.
1811 * @ssid: source security identifier
1812 * @tsid: target security identifier
1813 * @tclass: target security class
1814 * @out_sid: security identifier for selected member
1816 * Compute a SID to use for relabeling an object of class @tclass
1817 * based on a SID pair (@ssid, @tsid).
1818 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1819 * if insufficient memory is available, or %0 if the SID was
1820 * computed successfully.
1822 int security_change_sid(u32 ssid
,
1827 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, NULL
,
1831 /* Clone the SID into the new SID table. */
1832 static int clone_sid(u32 sid
,
1833 struct context
*context
,
1836 struct sidtab
*s
= arg
;
1838 if (sid
> SECINITSID_NUM
)
1839 return sidtab_insert(s
, sid
, context
);
1844 static inline int convert_context_handle_invalid_context(struct context
*context
)
1849 if (selinux_enforcing
)
1852 if (!context_struct_to_string(context
, &s
, &len
)) {
1853 printk(KERN_WARNING
"SELinux: Context %s would be invalid if enforcing\n", s
);
1859 struct convert_context_args
{
1860 struct policydb
*oldp
;
1861 struct policydb
*newp
;
1865 * Convert the values in the security context
1866 * structure `c' from the values specified
1867 * in the policy `p->oldp' to the values specified
1868 * in the policy `p->newp'. Verify that the
1869 * context is valid under the new policy.
1871 static int convert_context(u32 key
,
1875 struct convert_context_args
*args
;
1876 struct context oldc
;
1877 struct ocontext
*oc
;
1878 struct mls_range
*range
;
1879 struct role_datum
*role
;
1880 struct type_datum
*typdatum
;
1881 struct user_datum
*usrdatum
;
1886 if (key
<= SECINITSID_NUM
)
1895 s
= kstrdup(c
->str
, GFP_KERNEL
);
1899 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1900 c
->len
, &ctx
, SECSID_NULL
);
1903 printk(KERN_INFO
"SELinux: Context %s became valid (mapped).\n",
1905 /* Replace string with mapped representation. */
1907 memcpy(c
, &ctx
, sizeof(*c
));
1909 } else if (rc
== -EINVAL
) {
1910 /* Retain string representation for later mapping. */
1914 /* Other error condition, e.g. ENOMEM. */
1915 printk(KERN_ERR
"SELinux: Unable to map context %s, rc = %d.\n",
1921 rc
= context_cpy(&oldc
, c
);
1925 /* Convert the user. */
1927 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1928 sym_name(args
->oldp
, SYM_USERS
, c
->user
- 1));
1931 c
->user
= usrdatum
->value
;
1933 /* Convert the role. */
1935 role
= hashtab_search(args
->newp
->p_roles
.table
,
1936 sym_name(args
->oldp
, SYM_ROLES
, c
->role
- 1));
1939 c
->role
= role
->value
;
1941 /* Convert the type. */
1943 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1944 sym_name(args
->oldp
, SYM_TYPES
, c
->type
- 1));
1947 c
->type
= typdatum
->value
;
1949 /* Convert the MLS fields if dealing with MLS policies */
1950 if (args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1951 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1954 } else if (args
->oldp
->mls_enabled
&& !args
->newp
->mls_enabled
) {
1956 * Switching between MLS and non-MLS policy:
1957 * free any storage used by the MLS fields in the
1958 * context for all existing entries in the sidtab.
1960 mls_context_destroy(c
);
1961 } else if (!args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1963 * Switching between non-MLS and MLS policy:
1964 * ensure that the MLS fields of the context for all
1965 * existing entries in the sidtab are filled in with a
1966 * suitable default value, likely taken from one of the
1969 oc
= args
->newp
->ocontexts
[OCON_ISID
];
1970 while (oc
&& oc
->sid
[0] != SECINITSID_UNLABELED
)
1974 printk(KERN_ERR
"SELinux: unable to look up"
1975 " the initial SIDs list\n");
1978 range
= &oc
->context
[0].range
;
1979 rc
= mls_range_set(c
, range
);
1984 /* Check the validity of the new context. */
1985 if (!policydb_context_isvalid(args
->newp
, c
)) {
1986 rc
= convert_context_handle_invalid_context(&oldc
);
1991 context_destroy(&oldc
);
1997 /* Map old representation to string and save it. */
1998 rc
= context_struct_to_string(&oldc
, &s
, &len
);
2001 context_destroy(&oldc
);
2005 printk(KERN_INFO
"SELinux: Context %s became invalid (unmapped).\n",
2011 static void security_load_policycaps(void)
2013 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
2014 POLICYDB_CAPABILITY_NETPEER
);
2015 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
2016 POLICYDB_CAPABILITY_OPENPERM
);
2017 selinux_policycap_alwaysnetwork
= ebitmap_get_bit(&policydb
.policycaps
,
2018 POLICYDB_CAPABILITY_ALWAYSNETWORK
);
2021 static int security_preserve_bools(struct policydb
*p
);
2024 * security_load_policy - Load a security policy configuration.
2025 * @data: binary policy data
2026 * @len: length of data in bytes
2028 * Load a new set of security policy configuration data,
2029 * validate it and convert the SID table as necessary.
2030 * This function will flush the access vector cache after
2031 * loading the new policy.
2033 int security_load_policy(void *data
, size_t len
)
2035 struct policydb
*oldpolicydb
, *newpolicydb
;
2036 struct sidtab oldsidtab
, newsidtab
;
2037 struct selinux_mapping
*oldmap
, *map
= NULL
;
2038 struct convert_context_args args
;
2042 struct policy_file file
= { data
, len
}, *fp
= &file
;
2044 oldpolicydb
= kzalloc(2 * sizeof(*oldpolicydb
), GFP_KERNEL
);
2049 newpolicydb
= oldpolicydb
+ 1;
2051 if (!ss_initialized
) {
2053 rc
= policydb_read(&policydb
, fp
);
2055 avtab_cache_destroy();
2060 rc
= selinux_set_mapping(&policydb
, secclass_map
,
2062 ¤t_mapping_size
);
2064 policydb_destroy(&policydb
);
2065 avtab_cache_destroy();
2069 rc
= policydb_load_isids(&policydb
, &sidtab
);
2071 policydb_destroy(&policydb
);
2072 avtab_cache_destroy();
2076 security_load_policycaps();
2078 seqno
= ++latest_granting
;
2079 selinux_complete_init();
2080 avc_ss_reset(seqno
);
2081 selnl_notify_policyload(seqno
);
2082 selinux_status_update_policyload(seqno
);
2083 selinux_netlbl_cache_invalidate();
2084 selinux_xfrm_notify_policyload();
2089 sidtab_hash_eval(&sidtab
, "sids");
2092 rc
= policydb_read(newpolicydb
, fp
);
2096 newpolicydb
->len
= len
;
2097 /* If switching between different policy types, log MLS status */
2098 if (policydb
.mls_enabled
&& !newpolicydb
->mls_enabled
)
2099 printk(KERN_INFO
"SELinux: Disabling MLS support...\n");
2100 else if (!policydb
.mls_enabled
&& newpolicydb
->mls_enabled
)
2101 printk(KERN_INFO
"SELinux: Enabling MLS support...\n");
2103 rc
= policydb_load_isids(newpolicydb
, &newsidtab
);
2105 printk(KERN_ERR
"SELinux: unable to load the initial SIDs\n");
2106 policydb_destroy(newpolicydb
);
2110 rc
= selinux_set_mapping(newpolicydb
, secclass_map
, &map
, &map_size
);
2114 rc
= security_preserve_bools(newpolicydb
);
2116 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
2120 /* Clone the SID table. */
2121 sidtab_shutdown(&sidtab
);
2123 rc
= sidtab_map(&sidtab
, clone_sid
, &newsidtab
);
2128 * Convert the internal representations of contexts
2129 * in the new SID table.
2131 args
.oldp
= &policydb
;
2132 args
.newp
= newpolicydb
;
2133 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
2135 printk(KERN_ERR
"SELinux: unable to convert the internal"
2136 " representation of contexts in the new SID"
2141 /* Save the old policydb and SID table to free later. */
2142 memcpy(oldpolicydb
, &policydb
, sizeof(policydb
));
2143 sidtab_set(&oldsidtab
, &sidtab
);
2145 /* Install the new policydb and SID table. */
2146 write_lock_irq(&policy_rwlock
);
2147 memcpy(&policydb
, newpolicydb
, sizeof(policydb
));
2148 sidtab_set(&sidtab
, &newsidtab
);
2149 security_load_policycaps();
2150 oldmap
= current_mapping
;
2151 current_mapping
= map
;
2152 current_mapping_size
= map_size
;
2153 seqno
= ++latest_granting
;
2154 write_unlock_irq(&policy_rwlock
);
2156 /* Free the old policydb and SID table. */
2157 policydb_destroy(oldpolicydb
);
2158 sidtab_destroy(&oldsidtab
);
2161 avc_ss_reset(seqno
);
2162 selnl_notify_policyload(seqno
);
2163 selinux_status_update_policyload(seqno
);
2164 selinux_netlbl_cache_invalidate();
2165 selinux_xfrm_notify_policyload();
2172 sidtab_destroy(&newsidtab
);
2173 policydb_destroy(newpolicydb
);
2180 size_t security_policydb_len(void)
2184 read_lock(&policy_rwlock
);
2186 read_unlock(&policy_rwlock
);
2192 * security_port_sid - Obtain the SID for a port.
2193 * @protocol: protocol number
2194 * @port: port number
2195 * @out_sid: security identifier
2197 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
2202 read_lock(&policy_rwlock
);
2204 c
= policydb
.ocontexts
[OCON_PORT
];
2206 if (c
->u
.port
.protocol
== protocol
&&
2207 c
->u
.port
.low_port
<= port
&&
2208 c
->u
.port
.high_port
>= port
)
2215 rc
= sidtab_context_to_sid(&sidtab
,
2221 *out_sid
= c
->sid
[0];
2223 *out_sid
= SECINITSID_PORT
;
2227 read_unlock(&policy_rwlock
);
2232 * security_netif_sid - Obtain the SID for a network interface.
2233 * @name: interface name
2234 * @if_sid: interface SID
2236 int security_netif_sid(char *name
, u32
*if_sid
)
2241 read_lock(&policy_rwlock
);
2243 c
= policydb
.ocontexts
[OCON_NETIF
];
2245 if (strcmp(name
, c
->u
.name
) == 0)
2251 if (!c
->sid
[0] || !c
->sid
[1]) {
2252 rc
= sidtab_context_to_sid(&sidtab
,
2257 rc
= sidtab_context_to_sid(&sidtab
,
2263 *if_sid
= c
->sid
[0];
2265 *if_sid
= SECINITSID_NETIF
;
2268 read_unlock(&policy_rwlock
);
2272 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
2276 for (i
= 0; i
< 4; i
++)
2277 if (addr
[i
] != (input
[i
] & mask
[i
])) {
2286 * security_node_sid - Obtain the SID for a node (host).
2287 * @domain: communication domain aka address family
2289 * @addrlen: address length in bytes
2290 * @out_sid: security identifier
2292 int security_node_sid(u16 domain
,
2300 read_lock(&policy_rwlock
);
2307 if (addrlen
!= sizeof(u32
))
2310 addr
= *((u32
*)addrp
);
2312 c
= policydb
.ocontexts
[OCON_NODE
];
2314 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
2323 if (addrlen
!= sizeof(u64
) * 2)
2325 c
= policydb
.ocontexts
[OCON_NODE6
];
2327 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
2336 *out_sid
= SECINITSID_NODE
;
2342 rc
= sidtab_context_to_sid(&sidtab
,
2348 *out_sid
= c
->sid
[0];
2350 *out_sid
= SECINITSID_NODE
;
2355 read_unlock(&policy_rwlock
);
2362 * security_get_user_sids - Obtain reachable SIDs for a user.
2363 * @fromsid: starting SID
2364 * @username: username
2365 * @sids: array of reachable SIDs for user
2366 * @nel: number of elements in @sids
2368 * Generate the set of SIDs for legal security contexts
2369 * for a given user that can be reached by @fromsid.
2370 * Set *@sids to point to a dynamically allocated
2371 * array containing the set of SIDs. Set *@nel to the
2372 * number of elements in the array.
2375 int security_get_user_sids(u32 fromsid
,
2380 struct context
*fromcon
, usercon
;
2381 u32
*mysids
= NULL
, *mysids2
, sid
;
2382 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2383 struct user_datum
*user
;
2384 struct role_datum
*role
;
2385 struct ebitmap_node
*rnode
, *tnode
;
2391 if (!ss_initialized
)
2394 read_lock(&policy_rwlock
);
2396 context_init(&usercon
);
2399 fromcon
= sidtab_search(&sidtab
, fromsid
);
2404 user
= hashtab_search(policydb
.p_users
.table
, username
);
2408 usercon
.user
= user
->value
;
2411 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2415 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2416 role
= policydb
.role_val_to_struct
[i
];
2417 usercon
.role
= i
+ 1;
2418 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2419 usercon
.type
= j
+ 1;
2421 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2424 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2427 if (mynel
< maxnel
) {
2428 mysids
[mynel
++] = sid
;
2432 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2435 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2438 mysids
[mynel
++] = sid
;
2444 read_unlock(&policy_rwlock
);
2451 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2456 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2457 struct av_decision dummy_avd
;
2458 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2459 SECCLASS_PROCESS
, /* kernel value */
2460 PROCESS__TRANSITION
, AVC_STRICT
,
2463 mysids2
[j
++] = mysids
[i
];
2475 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2476 * @fstype: filesystem type
2477 * @path: path from root of mount
2478 * @sclass: file security class
2479 * @sid: SID for path
2481 * Obtain a SID to use for a file in a filesystem that
2482 * cannot support xattr or use a fixed labeling behavior like
2483 * transition SIDs or task SIDs.
2485 * The caller must acquire the policy_rwlock before calling this function.
2487 static inline int __security_genfs_sid(const char *fstype
,
2494 struct genfs
*genfs
;
2498 while (path
[0] == '/' && path
[1] == '/')
2501 sclass
= unmap_class(orig_sclass
);
2502 *sid
= SECINITSID_UNLABELED
;
2504 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2505 cmp
= strcmp(fstype
, genfs
->fstype
);
2514 for (c
= genfs
->head
; c
; c
= c
->next
) {
2515 len
= strlen(c
->u
.name
);
2516 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2517 (strncmp(c
->u
.name
, path
, len
) == 0))
2526 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0], &c
->sid
[0]);
2538 * security_genfs_sid - Obtain a SID for a file in a filesystem
2539 * @fstype: filesystem type
2540 * @path: path from root of mount
2541 * @sclass: file security class
2542 * @sid: SID for path
2544 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2547 int security_genfs_sid(const char *fstype
,
2554 read_lock(&policy_rwlock
);
2555 retval
= __security_genfs_sid(fstype
, path
, orig_sclass
, sid
);
2556 read_unlock(&policy_rwlock
);
2561 * security_fs_use - Determine how to handle labeling for a filesystem.
2562 * @sb: superblock in question
2564 int security_fs_use(struct super_block
*sb
)
2568 struct superblock_security_struct
*sbsec
= sb
->s_security
;
2569 const char *fstype
= sb
->s_type
->name
;
2571 read_lock(&policy_rwlock
);
2573 c
= policydb
.ocontexts
[OCON_FSUSE
];
2575 if (strcmp(fstype
, c
->u
.name
) == 0)
2581 sbsec
->behavior
= c
->v
.behavior
;
2583 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0],
2588 sbsec
->sid
= c
->sid
[0];
2590 rc
= __security_genfs_sid(fstype
, "/", SECCLASS_DIR
,
2593 sbsec
->behavior
= SECURITY_FS_USE_NONE
;
2596 sbsec
->behavior
= SECURITY_FS_USE_GENFS
;
2601 read_unlock(&policy_rwlock
);
2605 int security_get_bools(int *len
, char ***names
, int **values
)
2609 read_lock(&policy_rwlock
);
2614 *len
= policydb
.p_bools
.nprim
;
2619 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2624 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2628 for (i
= 0; i
< *len
; i
++) {
2629 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2632 (*names
)[i
] = kstrdup(sym_name(&policydb
, SYM_BOOLS
, i
), GFP_ATOMIC
);
2638 read_unlock(&policy_rwlock
);
2642 for (i
= 0; i
< *len
; i
++)
2650 int security_set_bools(int len
, int *values
)
2653 int lenp
, seqno
= 0;
2654 struct cond_node
*cur
;
2656 write_lock_irq(&policy_rwlock
);
2659 lenp
= policydb
.p_bools
.nprim
;
2663 for (i
= 0; i
< len
; i
++) {
2664 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2665 audit_log(current
->audit_context
, GFP_ATOMIC
,
2666 AUDIT_MAC_CONFIG_CHANGE
,
2667 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2668 sym_name(&policydb
, SYM_BOOLS
, i
),
2670 policydb
.bool_val_to_struct
[i
]->state
,
2671 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
2672 audit_get_sessionid(current
));
2675 policydb
.bool_val_to_struct
[i
]->state
= 1;
2677 policydb
.bool_val_to_struct
[i
]->state
= 0;
2680 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2681 rc
= evaluate_cond_node(&policydb
, cur
);
2686 seqno
= ++latest_granting
;
2689 write_unlock_irq(&policy_rwlock
);
2691 avc_ss_reset(seqno
);
2692 selnl_notify_policyload(seqno
);
2693 selinux_status_update_policyload(seqno
);
2694 selinux_xfrm_notify_policyload();
2699 int security_get_bool_value(int index
)
2704 read_lock(&policy_rwlock
);
2707 len
= policydb
.p_bools
.nprim
;
2711 rc
= policydb
.bool_val_to_struct
[index
]->state
;
2713 read_unlock(&policy_rwlock
);
2717 static int security_preserve_bools(struct policydb
*p
)
2719 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2720 char **bnames
= NULL
;
2721 struct cond_bool_datum
*booldatum
;
2722 struct cond_node
*cur
;
2724 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2727 for (i
= 0; i
< nbools
; i
++) {
2728 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2730 booldatum
->state
= bvalues
[i
];
2732 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2733 rc
= evaluate_cond_node(p
, cur
);
2740 for (i
= 0; i
< nbools
; i
++)
2749 * security_sid_mls_copy() - computes a new sid based on the given
2750 * sid and the mls portion of mls_sid.
2752 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2754 struct context
*context1
;
2755 struct context
*context2
;
2756 struct context newcon
;
2762 if (!ss_initialized
|| !policydb
.mls_enabled
) {
2767 context_init(&newcon
);
2769 read_lock(&policy_rwlock
);
2772 context1
= sidtab_search(&sidtab
, sid
);
2774 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2780 context2
= sidtab_search(&sidtab
, mls_sid
);
2782 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2787 newcon
.user
= context1
->user
;
2788 newcon
.role
= context1
->role
;
2789 newcon
.type
= context1
->type
;
2790 rc
= mls_context_cpy(&newcon
, context2
);
2794 /* Check the validity of the new context. */
2795 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2796 rc
= convert_context_handle_invalid_context(&newcon
);
2798 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2799 audit_log(current
->audit_context
,
2800 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2801 "op=security_sid_mls_copy "
2802 "invalid_context=%s", s
);
2809 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2811 read_unlock(&policy_rwlock
);
2812 context_destroy(&newcon
);
2818 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2819 * @nlbl_sid: NetLabel SID
2820 * @nlbl_type: NetLabel labeling protocol type
2821 * @xfrm_sid: XFRM SID
2824 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2825 * resolved into a single SID it is returned via @peer_sid and the function
2826 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2827 * returns a negative value. A table summarizing the behavior is below:
2829 * | function return | @sid
2830 * ------------------------------+-----------------+-----------------
2831 * no peer labels | 0 | SECSID_NULL
2832 * single peer label | 0 | <peer_label>
2833 * multiple, consistent labels | 0 | <peer_label>
2834 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2837 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2842 struct context
*nlbl_ctx
;
2843 struct context
*xfrm_ctx
;
2845 *peer_sid
= SECSID_NULL
;
2847 /* handle the common (which also happens to be the set of easy) cases
2848 * right away, these two if statements catch everything involving a
2849 * single or absent peer SID/label */
2850 if (xfrm_sid
== SECSID_NULL
) {
2851 *peer_sid
= nlbl_sid
;
2854 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2855 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2857 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2858 *peer_sid
= xfrm_sid
;
2862 /* we don't need to check ss_initialized here since the only way both
2863 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2864 * security server was initialized and ss_initialized was true */
2865 if (!policydb
.mls_enabled
)
2868 read_lock(&policy_rwlock
);
2871 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2873 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2874 __func__
, nlbl_sid
);
2878 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2880 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2881 __func__
, xfrm_sid
);
2884 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2888 /* at present NetLabel SIDs/labels really only carry MLS
2889 * information so if the MLS portion of the NetLabel SID
2890 * matches the MLS portion of the labeled XFRM SID/label
2891 * then pass along the XFRM SID as it is the most
2893 *peer_sid
= xfrm_sid
;
2895 read_unlock(&policy_rwlock
);
2899 static int get_classes_callback(void *k
, void *d
, void *args
)
2901 struct class_datum
*datum
= d
;
2902 char *name
= k
, **classes
= args
;
2903 int value
= datum
->value
- 1;
2905 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2906 if (!classes
[value
])
2912 int security_get_classes(char ***classes
, int *nclasses
)
2916 read_lock(&policy_rwlock
);
2919 *nclasses
= policydb
.p_classes
.nprim
;
2920 *classes
= kcalloc(*nclasses
, sizeof(**classes
), GFP_ATOMIC
);
2924 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2928 for (i
= 0; i
< *nclasses
; i
++)
2929 kfree((*classes
)[i
]);
2934 read_unlock(&policy_rwlock
);
2938 static int get_permissions_callback(void *k
, void *d
, void *args
)
2940 struct perm_datum
*datum
= d
;
2941 char *name
= k
, **perms
= args
;
2942 int value
= datum
->value
- 1;
2944 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2951 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2954 struct class_datum
*match
;
2956 read_lock(&policy_rwlock
);
2959 match
= hashtab_search(policydb
.p_classes
.table
, class);
2961 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2967 *nperms
= match
->permissions
.nprim
;
2968 *perms
= kcalloc(*nperms
, sizeof(**perms
), GFP_ATOMIC
);
2972 if (match
->comdatum
) {
2973 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2974 get_permissions_callback
, *perms
);
2979 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2985 read_unlock(&policy_rwlock
);
2989 read_unlock(&policy_rwlock
);
2990 for (i
= 0; i
< *nperms
; i
++)
2996 int security_get_reject_unknown(void)
2998 return policydb
.reject_unknown
;
3001 int security_get_allow_unknown(void)
3003 return policydb
.allow_unknown
;
3007 * security_policycap_supported - Check for a specific policy capability
3008 * @req_cap: capability
3011 * This function queries the currently loaded policy to see if it supports the
3012 * capability specified by @req_cap. Returns true (1) if the capability is
3013 * supported, false (0) if it isn't supported.
3016 int security_policycap_supported(unsigned int req_cap
)
3020 read_lock(&policy_rwlock
);
3021 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
3022 read_unlock(&policy_rwlock
);
3027 struct selinux_audit_rule
{
3029 struct context au_ctxt
;
3032 void selinux_audit_rule_free(void *vrule
)
3034 struct selinux_audit_rule
*rule
= vrule
;
3037 context_destroy(&rule
->au_ctxt
);
3042 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
3044 struct selinux_audit_rule
*tmprule
;
3045 struct role_datum
*roledatum
;
3046 struct type_datum
*typedatum
;
3047 struct user_datum
*userdatum
;
3048 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
3053 if (!ss_initialized
)
3057 case AUDIT_SUBJ_USER
:
3058 case AUDIT_SUBJ_ROLE
:
3059 case AUDIT_SUBJ_TYPE
:
3060 case AUDIT_OBJ_USER
:
3061 case AUDIT_OBJ_ROLE
:
3062 case AUDIT_OBJ_TYPE
:
3063 /* only 'equals' and 'not equals' fit user, role, and type */
3064 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
3067 case AUDIT_SUBJ_SEN
:
3068 case AUDIT_SUBJ_CLR
:
3069 case AUDIT_OBJ_LEV_LOW
:
3070 case AUDIT_OBJ_LEV_HIGH
:
3071 /* we do not allow a range, indicated by the presence of '-' */
3072 if (strchr(rulestr
, '-'))
3076 /* only the above fields are valid */
3080 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
3084 context_init(&tmprule
->au_ctxt
);
3086 read_lock(&policy_rwlock
);
3088 tmprule
->au_seqno
= latest_granting
;
3091 case AUDIT_SUBJ_USER
:
3092 case AUDIT_OBJ_USER
:
3094 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
3097 tmprule
->au_ctxt
.user
= userdatum
->value
;
3099 case AUDIT_SUBJ_ROLE
:
3100 case AUDIT_OBJ_ROLE
:
3102 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
3105 tmprule
->au_ctxt
.role
= roledatum
->value
;
3107 case AUDIT_SUBJ_TYPE
:
3108 case AUDIT_OBJ_TYPE
:
3110 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
3113 tmprule
->au_ctxt
.type
= typedatum
->value
;
3115 case AUDIT_SUBJ_SEN
:
3116 case AUDIT_SUBJ_CLR
:
3117 case AUDIT_OBJ_LEV_LOW
:
3118 case AUDIT_OBJ_LEV_HIGH
:
3119 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
3126 read_unlock(&policy_rwlock
);
3129 selinux_audit_rule_free(tmprule
);
3138 /* Check to see if the rule contains any selinux fields */
3139 int selinux_audit_rule_known(struct audit_krule
*rule
)
3143 for (i
= 0; i
< rule
->field_count
; i
++) {
3144 struct audit_field
*f
= &rule
->fields
[i
];
3146 case AUDIT_SUBJ_USER
:
3147 case AUDIT_SUBJ_ROLE
:
3148 case AUDIT_SUBJ_TYPE
:
3149 case AUDIT_SUBJ_SEN
:
3150 case AUDIT_SUBJ_CLR
:
3151 case AUDIT_OBJ_USER
:
3152 case AUDIT_OBJ_ROLE
:
3153 case AUDIT_OBJ_TYPE
:
3154 case AUDIT_OBJ_LEV_LOW
:
3155 case AUDIT_OBJ_LEV_HIGH
:
3163 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
3164 struct audit_context
*actx
)
3166 struct context
*ctxt
;
3167 struct mls_level
*level
;
3168 struct selinux_audit_rule
*rule
= vrule
;
3171 if (unlikely(!rule
)) {
3172 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3176 read_lock(&policy_rwlock
);
3178 if (rule
->au_seqno
< latest_granting
) {
3183 ctxt
= sidtab_search(&sidtab
, sid
);
3184 if (unlikely(!ctxt
)) {
3185 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3191 /* a field/op pair that is not caught here will simply fall through
3194 case AUDIT_SUBJ_USER
:
3195 case AUDIT_OBJ_USER
:
3198 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
3200 case Audit_not_equal
:
3201 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
3205 case AUDIT_SUBJ_ROLE
:
3206 case AUDIT_OBJ_ROLE
:
3209 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
3211 case Audit_not_equal
:
3212 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
3216 case AUDIT_SUBJ_TYPE
:
3217 case AUDIT_OBJ_TYPE
:
3220 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
3222 case Audit_not_equal
:
3223 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
3227 case AUDIT_SUBJ_SEN
:
3228 case AUDIT_SUBJ_CLR
:
3229 case AUDIT_OBJ_LEV_LOW
:
3230 case AUDIT_OBJ_LEV_HIGH
:
3231 level
= ((field
== AUDIT_SUBJ_SEN
||
3232 field
== AUDIT_OBJ_LEV_LOW
) ?
3233 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
3236 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3239 case Audit_not_equal
:
3240 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3244 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3246 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3250 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3254 match
= (mls_level_dom(level
,
3255 &rule
->au_ctxt
.range
.level
[0]) &&
3256 !mls_level_eq(level
,
3257 &rule
->au_ctxt
.range
.level
[0]));
3260 match
= mls_level_dom(level
,
3261 &rule
->au_ctxt
.range
.level
[0]);
3267 read_unlock(&policy_rwlock
);
3271 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
3273 static int aurule_avc_callback(u32 event
)
3277 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
3278 err
= aurule_callback();
3282 static int __init
aurule_init(void)
3286 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
);
3288 panic("avc_add_callback() failed, error %d\n", err
);
3292 __initcall(aurule_init
);
3294 #ifdef CONFIG_NETLABEL
3296 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3297 * @secattr: the NetLabel packet security attributes
3298 * @sid: the SELinux SID
3301 * Attempt to cache the context in @ctx, which was derived from the packet in
3302 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3303 * already been initialized.
3306 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
3311 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
3312 if (sid_cache
== NULL
)
3314 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
3315 if (secattr
->cache
== NULL
) {
3321 secattr
->cache
->free
= kfree
;
3322 secattr
->cache
->data
= sid_cache
;
3323 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
3327 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3328 * @secattr: the NetLabel packet security attributes
3329 * @sid: the SELinux SID
3332 * Convert the given NetLabel security attributes in @secattr into a
3333 * SELinux SID. If the @secattr field does not contain a full SELinux
3334 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3335 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3336 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3337 * conversion for future lookups. Returns zero on success, negative values on
3341 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
3345 struct context
*ctx
;
3346 struct context ctx_new
;
3348 if (!ss_initialized
) {
3353 read_lock(&policy_rwlock
);
3355 if (secattr
->flags
& NETLBL_SECATTR_CACHE
)
3356 *sid
= *(u32
*)secattr
->cache
->data
;
3357 else if (secattr
->flags
& NETLBL_SECATTR_SECID
)
3358 *sid
= secattr
->attr
.secid
;
3359 else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
3361 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
3365 context_init(&ctx_new
);
3366 ctx_new
.user
= ctx
->user
;
3367 ctx_new
.role
= ctx
->role
;
3368 ctx_new
.type
= ctx
->type
;
3369 mls_import_netlbl_lvl(&ctx_new
, secattr
);
3370 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
3371 rc
= mls_import_netlbl_cat(&ctx_new
, secattr
);
3376 if (!mls_context_isvalid(&policydb
, &ctx_new
))
3379 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3383 security_netlbl_cache_add(secattr
, *sid
);
3385 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3389 read_unlock(&policy_rwlock
);
3392 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3394 read_unlock(&policy_rwlock
);
3399 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3400 * @sid: the SELinux SID
3401 * @secattr: the NetLabel packet security attributes
3404 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3405 * Returns zero on success, negative values on failure.
3408 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3411 struct context
*ctx
;
3413 if (!ss_initialized
)
3416 read_lock(&policy_rwlock
);
3419 ctx
= sidtab_search(&sidtab
, sid
);
3424 secattr
->domain
= kstrdup(sym_name(&policydb
, SYM_TYPES
, ctx
->type
- 1),
3426 if (secattr
->domain
== NULL
)
3429 secattr
->attr
.secid
= sid
;
3430 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3431 mls_export_netlbl_lvl(ctx
, secattr
);
3432 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3434 read_unlock(&policy_rwlock
);
3437 #endif /* CONFIG_NETLABEL */
3440 * security_read_policy - read the policy.
3441 * @data: binary policy data
3442 * @len: length of data in bytes
3445 int security_read_policy(void **data
, size_t *len
)
3448 struct policy_file fp
;
3450 if (!ss_initialized
)
3453 *len
= security_policydb_len();
3455 *data
= vmalloc_user(*len
);
3462 read_lock(&policy_rwlock
);
3463 rc
= policydb_write(&policydb
, &fp
);
3464 read_unlock(&policy_rwlock
);
3469 *len
= (unsigned long)fp
.data
- (unsigned long)*data
;