2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
43 #include "compression.h"
45 static struct kmem_cache
*btrfs_inode_defrag_cachep
;
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
52 struct rb_node rb_node
;
56 * transid where the defrag was added, we search for
57 * extents newer than this
64 /* last offset we were able to defrag */
67 /* if we've wrapped around back to zero once already */
71 static int __compare_inode_defrag(struct inode_defrag
*defrag1
,
72 struct inode_defrag
*defrag2
)
74 if (defrag1
->root
> defrag2
->root
)
76 else if (defrag1
->root
< defrag2
->root
)
78 else if (defrag1
->ino
> defrag2
->ino
)
80 else if (defrag1
->ino
< defrag2
->ino
)
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
92 * If an existing record is found the defrag item you
95 static int __btrfs_add_inode_defrag(struct btrfs_inode
*inode
,
96 struct inode_defrag
*defrag
)
98 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
99 struct inode_defrag
*entry
;
101 struct rb_node
*parent
= NULL
;
104 p
= &fs_info
->defrag_inodes
.rb_node
;
107 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
109 ret
= __compare_inode_defrag(defrag
, entry
);
111 p
= &parent
->rb_left
;
113 p
= &parent
->rb_right
;
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
119 if (defrag
->transid
< entry
->transid
)
120 entry
->transid
= defrag
->transid
;
121 if (defrag
->last_offset
> entry
->last_offset
)
122 entry
->last_offset
= defrag
->last_offset
;
126 set_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
);
127 rb_link_node(&defrag
->rb_node
, parent
, p
);
128 rb_insert_color(&defrag
->rb_node
, &fs_info
->defrag_inodes
);
132 static inline int __need_auto_defrag(struct btrfs_fs_info
*fs_info
)
134 if (!btrfs_test_opt(fs_info
, AUTO_DEFRAG
))
137 if (btrfs_fs_closing(fs_info
))
144 * insert a defrag record for this inode if auto defrag is
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
148 struct btrfs_inode
*inode
)
150 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
151 struct btrfs_root
*root
= inode
->root
;
152 struct inode_defrag
*defrag
;
156 if (!__need_auto_defrag(fs_info
))
159 if (test_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
))
163 transid
= trans
->transid
;
165 transid
= inode
->root
->last_trans
;
167 defrag
= kmem_cache_zalloc(btrfs_inode_defrag_cachep
, GFP_NOFS
);
171 defrag
->ino
= btrfs_ino(inode
);
172 defrag
->transid
= transid
;
173 defrag
->root
= root
->root_key
.objectid
;
175 spin_lock(&fs_info
->defrag_inodes_lock
);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
)) {
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
182 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
184 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
186 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
188 spin_unlock(&fs_info
->defrag_inodes_lock
);
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
197 static void btrfs_requeue_inode_defrag(struct btrfs_inode
*inode
,
198 struct inode_defrag
*defrag
)
200 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
203 if (!__need_auto_defrag(fs_info
))
207 * Here we don't check the IN_DEFRAG flag, because we need merge
210 spin_lock(&fs_info
->defrag_inodes_lock
);
211 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
212 spin_unlock(&fs_info
->defrag_inodes_lock
);
217 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
221 * pick the defragable inode that we want, if it doesn't exist, we will get
224 static struct inode_defrag
*
225 btrfs_pick_defrag_inode(struct btrfs_fs_info
*fs_info
, u64 root
, u64 ino
)
227 struct inode_defrag
*entry
= NULL
;
228 struct inode_defrag tmp
;
230 struct rb_node
*parent
= NULL
;
236 spin_lock(&fs_info
->defrag_inodes_lock
);
237 p
= fs_info
->defrag_inodes
.rb_node
;
240 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
242 ret
= __compare_inode_defrag(&tmp
, entry
);
246 p
= parent
->rb_right
;
251 if (parent
&& __compare_inode_defrag(&tmp
, entry
) > 0) {
252 parent
= rb_next(parent
);
254 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
260 rb_erase(parent
, &fs_info
->defrag_inodes
);
261 spin_unlock(&fs_info
->defrag_inodes_lock
);
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info
*fs_info
)
267 struct inode_defrag
*defrag
;
268 struct rb_node
*node
;
270 spin_lock(&fs_info
->defrag_inodes_lock
);
271 node
= rb_first(&fs_info
->defrag_inodes
);
273 rb_erase(node
, &fs_info
->defrag_inodes
);
274 defrag
= rb_entry(node
, struct inode_defrag
, rb_node
);
275 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
277 cond_resched_lock(&fs_info
->defrag_inodes_lock
);
279 node
= rb_first(&fs_info
->defrag_inodes
);
281 spin_unlock(&fs_info
->defrag_inodes_lock
);
284 #define BTRFS_DEFRAG_BATCH 1024
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info
*fs_info
,
287 struct inode_defrag
*defrag
)
289 struct btrfs_root
*inode_root
;
291 struct btrfs_key key
;
292 struct btrfs_ioctl_defrag_range_args range
;
298 key
.objectid
= defrag
->root
;
299 key
.type
= BTRFS_ROOT_ITEM_KEY
;
300 key
.offset
= (u64
)-1;
302 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
304 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
305 if (IS_ERR(inode_root
)) {
306 ret
= PTR_ERR(inode_root
);
310 key
.objectid
= defrag
->ino
;
311 key
.type
= BTRFS_INODE_ITEM_KEY
;
313 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
315 ret
= PTR_ERR(inode
);
318 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
322 memset(&range
, 0, sizeof(range
));
324 range
.start
= defrag
->last_offset
;
326 sb_start_write(fs_info
->sb
);
327 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
329 sb_end_write(fs_info
->sb
);
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
335 if (num_defrag
== BTRFS_DEFRAG_BATCH
) {
336 defrag
->last_offset
= range
.start
;
337 btrfs_requeue_inode_defrag(BTRFS_I(inode
), defrag
);
338 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
344 defrag
->last_offset
= 0;
346 btrfs_requeue_inode_defrag(BTRFS_I(inode
), defrag
);
348 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
354 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
355 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
360 * run through the list of inodes in the FS that need
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
365 struct inode_defrag
*defrag
;
367 u64 root_objectid
= 0;
369 atomic_inc(&fs_info
->defrag_running
);
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING
,
376 if (!__need_auto_defrag(fs_info
))
379 /* find an inode to defrag */
380 defrag
= btrfs_pick_defrag_inode(fs_info
, root_objectid
,
383 if (root_objectid
|| first_ino
) {
392 first_ino
= defrag
->ino
+ 1;
393 root_objectid
= defrag
->root
;
395 __btrfs_run_defrag_inode(fs_info
, defrag
);
397 atomic_dec(&fs_info
->defrag_running
);
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
403 wake_up(&fs_info
->transaction_wait
);
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
410 static noinline
int btrfs_copy_from_user(loff_t pos
, size_t write_bytes
,
411 struct page
**prepared_pages
,
415 size_t total_copied
= 0;
417 int offset
= pos
& (PAGE_SIZE
- 1);
419 while (write_bytes
> 0) {
420 size_t count
= min_t(size_t,
421 PAGE_SIZE
- offset
, write_bytes
);
422 struct page
*page
= prepared_pages
[pg
];
424 * Copy data from userspace to the current page
426 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page
);
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
440 if (!PageUptodate(page
) && copied
< count
)
443 iov_iter_advance(i
, copied
);
444 write_bytes
-= copied
;
445 total_copied
+= copied
;
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied
== 0))
451 if (copied
< PAGE_SIZE
- offset
) {
462 * unlocks pages after btrfs_file_write is done with them
464 static void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
467 for (i
= 0; i
< num_pages
; i
++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
474 ClearPageChecked(pages
[i
]);
475 unlock_page(pages
[i
]);
480 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode
*inode
,
483 struct extent_state
**cached_state
)
485 u64 search_start
= start
;
486 const u64 end
= start
+ len
- 1;
488 while (search_start
< end
) {
489 const u64 search_len
= end
- search_start
+ 1;
490 struct extent_map
*em
;
494 em
= btrfs_get_extent(inode
, NULL
, 0, search_start
,
499 if (em
->block_start
!= EXTENT_MAP_HOLE
)
503 if (em
->start
< search_start
)
504 em_len
-= search_start
- em
->start
;
505 if (em_len
> search_len
)
508 ret
= set_extent_bit(&inode
->io_tree
, search_start
,
509 search_start
+ em_len
- 1,
511 NULL
, cached_state
, GFP_NOFS
);
513 search_start
= extent_map_end(em
);
522 * after copy_from_user, pages need to be dirtied and we need to make
523 * sure holes are created between the current EOF and the start of
524 * any next extents (if required).
526 * this also makes the decision about creating an inline extent vs
527 * doing real data extents, marking pages dirty and delalloc as required.
529 int btrfs_dirty_pages(struct inode
*inode
, struct page
**pages
,
530 size_t num_pages
, loff_t pos
, size_t write_bytes
,
531 struct extent_state
**cached
)
533 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
538 u64 end_of_last_block
;
539 u64 end_pos
= pos
+ write_bytes
;
540 loff_t isize
= i_size_read(inode
);
541 unsigned int extra_bits
= 0;
543 start_pos
= pos
& ~((u64
) fs_info
->sectorsize
- 1);
544 num_bytes
= round_up(write_bytes
+ pos
- start_pos
,
545 fs_info
->sectorsize
);
547 end_of_last_block
= start_pos
+ num_bytes
- 1;
549 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))) {
550 if (start_pos
>= isize
&&
551 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)) {
553 * There can't be any extents following eof in this case
554 * so just set the delalloc new bit for the range
557 extra_bits
|= EXTENT_DELALLOC_NEW
;
559 err
= btrfs_find_new_delalloc_bytes(BTRFS_I(inode
),
567 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
568 extra_bits
, cached
, 0);
572 for (i
= 0; i
< num_pages
; i
++) {
573 struct page
*p
= pages
[i
];
580 * we've only changed i_size in ram, and we haven't updated
581 * the disk i_size. There is no need to log the inode
585 i_size_write(inode
, end_pos
);
590 * this drops all the extents in the cache that intersect the range
591 * [start, end]. Existing extents are split as required.
593 void btrfs_drop_extent_cache(struct btrfs_inode
*inode
, u64 start
, u64 end
,
596 struct extent_map
*em
;
597 struct extent_map
*split
= NULL
;
598 struct extent_map
*split2
= NULL
;
599 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
600 u64 len
= end
- start
+ 1;
608 WARN_ON(end
< start
);
609 if (end
== (u64
)-1) {
618 split
= alloc_extent_map();
620 split2
= alloc_extent_map();
621 if (!split
|| !split2
)
624 write_lock(&em_tree
->lock
);
625 em
= lookup_extent_mapping(em_tree
, start
, len
);
627 write_unlock(&em_tree
->lock
);
631 gen
= em
->generation
;
632 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
633 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
635 write_unlock(&em_tree
->lock
);
638 start
= em
->start
+ em
->len
;
640 len
= start
+ len
- (em
->start
+ em
->len
);
642 write_unlock(&em_tree
->lock
);
645 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
646 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
647 clear_bit(EXTENT_FLAG_LOGGING
, &flags
);
648 modified
= !list_empty(&em
->list
);
652 if (em
->start
< start
) {
653 split
->start
= em
->start
;
654 split
->len
= start
- em
->start
;
656 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
657 split
->orig_start
= em
->orig_start
;
658 split
->block_start
= em
->block_start
;
661 split
->block_len
= em
->block_len
;
663 split
->block_len
= split
->len
;
664 split
->orig_block_len
= max(split
->block_len
,
666 split
->ram_bytes
= em
->ram_bytes
;
668 split
->orig_start
= split
->start
;
669 split
->block_len
= 0;
670 split
->block_start
= em
->block_start
;
671 split
->orig_block_len
= 0;
672 split
->ram_bytes
= split
->len
;
675 split
->generation
= gen
;
676 split
->bdev
= em
->bdev
;
677 split
->flags
= flags
;
678 split
->compress_type
= em
->compress_type
;
679 replace_extent_mapping(em_tree
, em
, split
, modified
);
680 free_extent_map(split
);
684 if (testend
&& em
->start
+ em
->len
> start
+ len
) {
685 u64 diff
= start
+ len
- em
->start
;
687 split
->start
= start
+ len
;
688 split
->len
= em
->start
+ em
->len
- (start
+ len
);
689 split
->bdev
= em
->bdev
;
690 split
->flags
= flags
;
691 split
->compress_type
= em
->compress_type
;
692 split
->generation
= gen
;
694 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
695 split
->orig_block_len
= max(em
->block_len
,
698 split
->ram_bytes
= em
->ram_bytes
;
700 split
->block_len
= em
->block_len
;
701 split
->block_start
= em
->block_start
;
702 split
->orig_start
= em
->orig_start
;
704 split
->block_len
= split
->len
;
705 split
->block_start
= em
->block_start
707 split
->orig_start
= em
->orig_start
;
710 split
->ram_bytes
= split
->len
;
711 split
->orig_start
= split
->start
;
712 split
->block_len
= 0;
713 split
->block_start
= em
->block_start
;
714 split
->orig_block_len
= 0;
717 if (extent_map_in_tree(em
)) {
718 replace_extent_mapping(em_tree
, em
, split
,
721 ret
= add_extent_mapping(em_tree
, split
,
723 ASSERT(ret
== 0); /* Logic error */
725 free_extent_map(split
);
729 if (extent_map_in_tree(em
))
730 remove_extent_mapping(em_tree
, em
);
731 write_unlock(&em_tree
->lock
);
735 /* once for the tree*/
739 free_extent_map(split
);
741 free_extent_map(split2
);
745 * this is very complex, but the basic idea is to drop all extents
746 * in the range start - end. hint_block is filled in with a block number
747 * that would be a good hint to the block allocator for this file.
749 * If an extent intersects the range but is not entirely inside the range
750 * it is either truncated or split. Anything entirely inside the range
751 * is deleted from the tree.
753 int __btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
754 struct btrfs_root
*root
, struct inode
*inode
,
755 struct btrfs_path
*path
, u64 start
, u64 end
,
756 u64
*drop_end
, int drop_cache
,
758 u32 extent_item_size
,
761 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
762 struct extent_buffer
*leaf
;
763 struct btrfs_file_extent_item
*fi
;
764 struct btrfs_key key
;
765 struct btrfs_key new_key
;
766 u64 ino
= btrfs_ino(BTRFS_I(inode
));
767 u64 search_start
= start
;
770 u64 extent_offset
= 0;
772 u64 last_end
= start
;
778 int modify_tree
= -1;
781 int leafs_visited
= 0;
784 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
- 1, 0);
786 if (start
>= BTRFS_I(inode
)->disk_i_size
&& !replace_extent
)
789 update_refs
= (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
790 root
== fs_info
->tree_root
);
793 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
794 search_start
, modify_tree
);
797 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
798 leaf
= path
->nodes
[0];
799 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
800 if (key
.objectid
== ino
&&
801 key
.type
== BTRFS_EXTENT_DATA_KEY
)
807 leaf
= path
->nodes
[0];
808 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
810 ret
= btrfs_next_leaf(root
, path
);
818 leaf
= path
->nodes
[0];
822 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
824 if (key
.objectid
> ino
)
826 if (WARN_ON_ONCE(key
.objectid
< ino
) ||
827 key
.type
< BTRFS_EXTENT_DATA_KEY
) {
832 if (key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
835 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
836 struct btrfs_file_extent_item
);
837 extent_type
= btrfs_file_extent_type(leaf
, fi
);
839 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
840 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
841 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
842 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
843 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
844 extent_end
= key
.offset
+
845 btrfs_file_extent_num_bytes(leaf
, fi
);
846 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
847 extent_end
= key
.offset
+
848 btrfs_file_extent_inline_len(leaf
,
856 * Don't skip extent items representing 0 byte lengths. They
857 * used to be created (bug) if while punching holes we hit
858 * -ENOSPC condition. So if we find one here, just ensure we
859 * delete it, otherwise we would insert a new file extent item
860 * with the same key (offset) as that 0 bytes length file
861 * extent item in the call to setup_items_for_insert() later
864 if (extent_end
== key
.offset
&& extent_end
>= search_start
) {
865 last_end
= extent_end
;
866 goto delete_extent_item
;
869 if (extent_end
<= search_start
) {
875 search_start
= max(key
.offset
, start
);
876 if (recow
|| !modify_tree
) {
878 btrfs_release_path(path
);
883 * | - range to drop - |
884 * | -------- extent -------- |
886 if (start
> key
.offset
&& end
< extent_end
) {
888 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
893 memcpy(&new_key
, &key
, sizeof(new_key
));
894 new_key
.offset
= start
;
895 ret
= btrfs_duplicate_item(trans
, root
, path
,
897 if (ret
== -EAGAIN
) {
898 btrfs_release_path(path
);
904 leaf
= path
->nodes
[0];
905 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
906 struct btrfs_file_extent_item
);
907 btrfs_set_file_extent_num_bytes(leaf
, fi
,
910 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
911 struct btrfs_file_extent_item
);
913 extent_offset
+= start
- key
.offset
;
914 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
915 btrfs_set_file_extent_num_bytes(leaf
, fi
,
917 btrfs_mark_buffer_dirty(leaf
);
919 if (update_refs
&& disk_bytenr
> 0) {
920 ret
= btrfs_inc_extent_ref(trans
, root
,
921 disk_bytenr
, num_bytes
, 0,
922 root
->root_key
.objectid
,
924 start
- extent_offset
);
925 BUG_ON(ret
); /* -ENOMEM */
930 * From here on out we will have actually dropped something, so
931 * last_end can be updated.
933 last_end
= extent_end
;
936 * | ---- range to drop ----- |
937 * | -------- extent -------- |
939 if (start
<= key
.offset
&& end
< extent_end
) {
940 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
945 memcpy(&new_key
, &key
, sizeof(new_key
));
946 new_key
.offset
= end
;
947 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
949 extent_offset
+= end
- key
.offset
;
950 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
951 btrfs_set_file_extent_num_bytes(leaf
, fi
,
953 btrfs_mark_buffer_dirty(leaf
);
954 if (update_refs
&& disk_bytenr
> 0)
955 inode_sub_bytes(inode
, end
- key
.offset
);
959 search_start
= extent_end
;
961 * | ---- range to drop ----- |
962 * | -------- extent -------- |
964 if (start
> key
.offset
&& end
>= extent_end
) {
966 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
971 btrfs_set_file_extent_num_bytes(leaf
, fi
,
973 btrfs_mark_buffer_dirty(leaf
);
974 if (update_refs
&& disk_bytenr
> 0)
975 inode_sub_bytes(inode
, extent_end
- start
);
976 if (end
== extent_end
)
984 * | ---- range to drop ----- |
985 * | ------ extent ------ |
987 if (start
<= key
.offset
&& end
>= extent_end
) {
990 del_slot
= path
->slots
[0];
993 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
998 extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
999 inode_sub_bytes(inode
,
1000 extent_end
- key
.offset
);
1001 extent_end
= ALIGN(extent_end
,
1002 fs_info
->sectorsize
);
1003 } else if (update_refs
&& disk_bytenr
> 0) {
1004 ret
= btrfs_free_extent(trans
, root
,
1005 disk_bytenr
, num_bytes
, 0,
1006 root
->root_key
.objectid
,
1007 key
.objectid
, key
.offset
-
1009 BUG_ON(ret
); /* -ENOMEM */
1010 inode_sub_bytes(inode
,
1011 extent_end
- key
.offset
);
1014 if (end
== extent_end
)
1017 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
1022 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
1025 btrfs_abort_transaction(trans
, ret
);
1032 btrfs_release_path(path
);
1039 if (!ret
&& del_nr
> 0) {
1041 * Set path->slots[0] to first slot, so that after the delete
1042 * if items are move off from our leaf to its immediate left or
1043 * right neighbor leafs, we end up with a correct and adjusted
1044 * path->slots[0] for our insertion (if replace_extent != 0).
1046 path
->slots
[0] = del_slot
;
1047 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1049 btrfs_abort_transaction(trans
, ret
);
1052 leaf
= path
->nodes
[0];
1054 * If btrfs_del_items() was called, it might have deleted a leaf, in
1055 * which case it unlocked our path, so check path->locks[0] matches a
1058 if (!ret
&& replace_extent
&& leafs_visited
== 1 &&
1059 (path
->locks
[0] == BTRFS_WRITE_LOCK_BLOCKING
||
1060 path
->locks
[0] == BTRFS_WRITE_LOCK
) &&
1061 btrfs_leaf_free_space(fs_info
, leaf
) >=
1062 sizeof(struct btrfs_item
) + extent_item_size
) {
1065 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1067 if (!del_nr
&& path
->slots
[0] < btrfs_header_nritems(leaf
)) {
1068 struct btrfs_key slot_key
;
1070 btrfs_item_key_to_cpu(leaf
, &slot_key
, path
->slots
[0]);
1071 if (btrfs_comp_cpu_keys(&key
, &slot_key
) > 0)
1074 setup_items_for_insert(root
, path
, &key
,
1077 sizeof(struct btrfs_item
) +
1078 extent_item_size
, 1);
1082 if (!replace_extent
|| !(*key_inserted
))
1083 btrfs_release_path(path
);
1085 *drop_end
= found
? min(end
, last_end
) : end
;
1089 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
1090 struct btrfs_root
*root
, struct inode
*inode
, u64 start
,
1091 u64 end
, int drop_cache
)
1093 struct btrfs_path
*path
;
1096 path
= btrfs_alloc_path();
1099 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, start
, end
, NULL
,
1100 drop_cache
, 0, 0, NULL
);
1101 btrfs_free_path(path
);
1105 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
1106 u64 objectid
, u64 bytenr
, u64 orig_offset
,
1107 u64
*start
, u64
*end
)
1109 struct btrfs_file_extent_item
*fi
;
1110 struct btrfs_key key
;
1113 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
1116 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1117 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1120 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1121 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
1122 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
1123 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
1124 btrfs_file_extent_compression(leaf
, fi
) ||
1125 btrfs_file_extent_encryption(leaf
, fi
) ||
1126 btrfs_file_extent_other_encoding(leaf
, fi
))
1129 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1130 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
1133 *start
= key
.offset
;
1139 * Mark extent in the range start - end as written.
1141 * This changes extent type from 'pre-allocated' to 'regular'. If only
1142 * part of extent is marked as written, the extent will be split into
1145 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
1146 struct btrfs_inode
*inode
, u64 start
, u64 end
)
1148 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1149 struct btrfs_root
*root
= inode
->root
;
1150 struct extent_buffer
*leaf
;
1151 struct btrfs_path
*path
;
1152 struct btrfs_file_extent_item
*fi
;
1153 struct btrfs_key key
;
1154 struct btrfs_key new_key
;
1166 u64 ino
= btrfs_ino(inode
);
1168 path
= btrfs_alloc_path();
1175 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1178 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1181 if (ret
> 0 && path
->slots
[0] > 0)
1184 leaf
= path
->nodes
[0];
1185 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1186 if (key
.objectid
!= ino
||
1187 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
1189 btrfs_abort_transaction(trans
, ret
);
1192 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1193 struct btrfs_file_extent_item
);
1194 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_PREALLOC
) {
1196 btrfs_abort_transaction(trans
, ret
);
1199 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1200 if (key
.offset
> start
|| extent_end
< end
) {
1202 btrfs_abort_transaction(trans
, ret
);
1206 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1207 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1208 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
1209 memcpy(&new_key
, &key
, sizeof(new_key
));
1211 if (start
== key
.offset
&& end
< extent_end
) {
1214 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1215 ino
, bytenr
, orig_offset
,
1216 &other_start
, &other_end
)) {
1217 new_key
.offset
= end
;
1218 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
1219 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1220 struct btrfs_file_extent_item
);
1221 btrfs_set_file_extent_generation(leaf
, fi
,
1223 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1225 btrfs_set_file_extent_offset(leaf
, fi
,
1227 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1228 struct btrfs_file_extent_item
);
1229 btrfs_set_file_extent_generation(leaf
, fi
,
1231 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1233 btrfs_mark_buffer_dirty(leaf
);
1238 if (start
> key
.offset
&& end
== extent_end
) {
1241 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1242 ino
, bytenr
, orig_offset
,
1243 &other_start
, &other_end
)) {
1244 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1245 struct btrfs_file_extent_item
);
1246 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1247 start
- key
.offset
);
1248 btrfs_set_file_extent_generation(leaf
, fi
,
1251 new_key
.offset
= start
;
1252 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
1254 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1255 struct btrfs_file_extent_item
);
1256 btrfs_set_file_extent_generation(leaf
, fi
,
1258 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1260 btrfs_set_file_extent_offset(leaf
, fi
,
1261 start
- orig_offset
);
1262 btrfs_mark_buffer_dirty(leaf
);
1267 while (start
> key
.offset
|| end
< extent_end
) {
1268 if (key
.offset
== start
)
1271 new_key
.offset
= split
;
1272 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
1273 if (ret
== -EAGAIN
) {
1274 btrfs_release_path(path
);
1278 btrfs_abort_transaction(trans
, ret
);
1282 leaf
= path
->nodes
[0];
1283 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1284 struct btrfs_file_extent_item
);
1285 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1286 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1287 split
- key
.offset
);
1289 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1290 struct btrfs_file_extent_item
);
1292 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1293 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
1294 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1295 extent_end
- split
);
1296 btrfs_mark_buffer_dirty(leaf
);
1298 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
,
1299 0, root
->root_key
.objectid
,
1302 btrfs_abort_transaction(trans
, ret
);
1306 if (split
== start
) {
1309 if (start
!= key
.offset
) {
1311 btrfs_abort_transaction(trans
, ret
);
1322 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1323 ino
, bytenr
, orig_offset
,
1324 &other_start
, &other_end
)) {
1326 btrfs_release_path(path
);
1329 extent_end
= other_end
;
1330 del_slot
= path
->slots
[0] + 1;
1332 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1333 0, root
->root_key
.objectid
,
1336 btrfs_abort_transaction(trans
, ret
);
1342 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1343 ino
, bytenr
, orig_offset
,
1344 &other_start
, &other_end
)) {
1346 btrfs_release_path(path
);
1349 key
.offset
= other_start
;
1350 del_slot
= path
->slots
[0];
1352 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1353 0, root
->root_key
.objectid
,
1356 btrfs_abort_transaction(trans
, ret
);
1361 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1362 struct btrfs_file_extent_item
);
1363 btrfs_set_file_extent_type(leaf
, fi
,
1364 BTRFS_FILE_EXTENT_REG
);
1365 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1366 btrfs_mark_buffer_dirty(leaf
);
1368 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1369 struct btrfs_file_extent_item
);
1370 btrfs_set_file_extent_type(leaf
, fi
,
1371 BTRFS_FILE_EXTENT_REG
);
1372 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1373 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1374 extent_end
- key
.offset
);
1375 btrfs_mark_buffer_dirty(leaf
);
1377 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1379 btrfs_abort_transaction(trans
, ret
);
1384 btrfs_free_path(path
);
1389 * on error we return an unlocked page and the error value
1390 * on success we return a locked page and 0
1392 static int prepare_uptodate_page(struct inode
*inode
,
1393 struct page
*page
, u64 pos
,
1394 bool force_uptodate
)
1398 if (((pos
& (PAGE_SIZE
- 1)) || force_uptodate
) &&
1399 !PageUptodate(page
)) {
1400 ret
= btrfs_readpage(NULL
, page
);
1404 if (!PageUptodate(page
)) {
1408 if (page
->mapping
!= inode
->i_mapping
) {
1417 * this just gets pages into the page cache and locks them down.
1419 static noinline
int prepare_pages(struct inode
*inode
, struct page
**pages
,
1420 size_t num_pages
, loff_t pos
,
1421 size_t write_bytes
, bool force_uptodate
)
1424 unsigned long index
= pos
>> PAGE_SHIFT
;
1425 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1429 for (i
= 0; i
< num_pages
; i
++) {
1431 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1432 mask
| __GFP_WRITE
);
1440 err
= prepare_uptodate_page(inode
, pages
[i
], pos
,
1442 if (!err
&& i
== num_pages
- 1)
1443 err
= prepare_uptodate_page(inode
, pages
[i
],
1444 pos
+ write_bytes
, false);
1447 if (err
== -EAGAIN
) {
1454 wait_on_page_writeback(pages
[i
]);
1459 while (faili
>= 0) {
1460 unlock_page(pages
[faili
]);
1461 put_page(pages
[faili
]);
1469 * This function locks the extent and properly waits for data=ordered extents
1470 * to finish before allowing the pages to be modified if need.
1473 * 1 - the extent is locked
1474 * 0 - the extent is not locked, and everything is OK
1475 * -EAGAIN - need re-prepare the pages
1476 * the other < 0 number - Something wrong happens
1479 lock_and_cleanup_extent_if_need(struct btrfs_inode
*inode
, struct page
**pages
,
1480 size_t num_pages
, loff_t pos
,
1482 u64
*lockstart
, u64
*lockend
,
1483 struct extent_state
**cached_state
)
1485 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1491 start_pos
= round_down(pos
, fs_info
->sectorsize
);
1492 last_pos
= start_pos
1493 + round_up(pos
+ write_bytes
- start_pos
,
1494 fs_info
->sectorsize
) - 1;
1496 if (start_pos
< inode
->vfs_inode
.i_size
) {
1497 struct btrfs_ordered_extent
*ordered
;
1499 lock_extent_bits(&inode
->io_tree
, start_pos
, last_pos
,
1501 ordered
= btrfs_lookup_ordered_range(inode
, start_pos
,
1502 last_pos
- start_pos
+ 1);
1504 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1505 ordered
->file_offset
<= last_pos
) {
1506 unlock_extent_cached(&inode
->io_tree
, start_pos
,
1507 last_pos
, cached_state
, GFP_NOFS
);
1508 for (i
= 0; i
< num_pages
; i
++) {
1509 unlock_page(pages
[i
]);
1512 btrfs_start_ordered_extent(&inode
->vfs_inode
,
1514 btrfs_put_ordered_extent(ordered
);
1518 btrfs_put_ordered_extent(ordered
);
1519 clear_extent_bit(&inode
->io_tree
, start_pos
, last_pos
,
1520 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1521 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
1522 0, 0, cached_state
, GFP_NOFS
);
1523 *lockstart
= start_pos
;
1524 *lockend
= last_pos
;
1528 for (i
= 0; i
< num_pages
; i
++) {
1529 if (clear_page_dirty_for_io(pages
[i
]))
1530 account_page_redirty(pages
[i
]);
1531 set_page_extent_mapped(pages
[i
]);
1532 WARN_ON(!PageLocked(pages
[i
]));
1538 static noinline
int check_can_nocow(struct btrfs_inode
*inode
, loff_t pos
,
1539 size_t *write_bytes
)
1541 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1542 struct btrfs_root
*root
= inode
->root
;
1543 struct btrfs_ordered_extent
*ordered
;
1544 u64 lockstart
, lockend
;
1548 ret
= btrfs_start_write_no_snapshotting(root
);
1552 lockstart
= round_down(pos
, fs_info
->sectorsize
);
1553 lockend
= round_up(pos
+ *write_bytes
,
1554 fs_info
->sectorsize
) - 1;
1557 lock_extent(&inode
->io_tree
, lockstart
, lockend
);
1558 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
1559 lockend
- lockstart
+ 1);
1563 unlock_extent(&inode
->io_tree
, lockstart
, lockend
);
1564 btrfs_start_ordered_extent(&inode
->vfs_inode
, ordered
, 1);
1565 btrfs_put_ordered_extent(ordered
);
1568 num_bytes
= lockend
- lockstart
+ 1;
1569 ret
= can_nocow_extent(&inode
->vfs_inode
, lockstart
, &num_bytes
,
1573 btrfs_end_write_no_snapshotting(root
);
1575 *write_bytes
= min_t(size_t, *write_bytes
,
1576 num_bytes
- pos
+ lockstart
);
1579 unlock_extent(&inode
->io_tree
, lockstart
, lockend
);
1584 static noinline ssize_t
__btrfs_buffered_write(struct file
*file
,
1588 struct inode
*inode
= file_inode(file
);
1589 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1590 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1591 struct page
**pages
= NULL
;
1592 struct extent_state
*cached_state
= NULL
;
1593 struct extent_changeset
*data_reserved
= NULL
;
1594 u64 release_bytes
= 0;
1597 size_t num_written
= 0;
1600 bool only_release_metadata
= false;
1601 bool force_page_uptodate
= false;
1603 nrptrs
= min(DIV_ROUND_UP(iov_iter_count(i
), PAGE_SIZE
),
1604 PAGE_SIZE
/ (sizeof(struct page
*)));
1605 nrptrs
= min(nrptrs
, current
->nr_dirtied_pause
- current
->nr_dirtied
);
1606 nrptrs
= max(nrptrs
, 8);
1607 pages
= kmalloc_array(nrptrs
, sizeof(struct page
*), GFP_KERNEL
);
1611 while (iov_iter_count(i
) > 0) {
1612 size_t offset
= pos
& (PAGE_SIZE
- 1);
1613 size_t sector_offset
;
1614 size_t write_bytes
= min(iov_iter_count(i
),
1615 nrptrs
* (size_t)PAGE_SIZE
-
1617 size_t num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1619 size_t reserve_bytes
;
1622 size_t dirty_sectors
;
1626 WARN_ON(num_pages
> nrptrs
);
1629 * Fault pages before locking them in prepare_pages
1630 * to avoid recursive lock
1632 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1637 sector_offset
= pos
& (fs_info
->sectorsize
- 1);
1638 reserve_bytes
= round_up(write_bytes
+ sector_offset
,
1639 fs_info
->sectorsize
);
1641 extent_changeset_release(data_reserved
);
1642 ret
= btrfs_check_data_free_space(inode
, &data_reserved
, pos
,
1645 if ((BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1646 BTRFS_INODE_PREALLOC
)) &&
1647 check_can_nocow(BTRFS_I(inode
), pos
,
1648 &write_bytes
) > 0) {
1650 * For nodata cow case, no need to reserve
1653 only_release_metadata
= true;
1655 * our prealloc extent may be smaller than
1656 * write_bytes, so scale down.
1658 num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1660 reserve_bytes
= round_up(write_bytes
+
1662 fs_info
->sectorsize
);
1668 WARN_ON(reserve_bytes
== 0);
1669 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
),
1672 if (!only_release_metadata
)
1673 btrfs_free_reserved_data_space(inode
,
1677 btrfs_end_write_no_snapshotting(root
);
1681 release_bytes
= reserve_bytes
;
1684 * This is going to setup the pages array with the number of
1685 * pages we want, so we don't really need to worry about the
1686 * contents of pages from loop to loop
1688 ret
= prepare_pages(inode
, pages
, num_pages
,
1690 force_page_uptodate
);
1692 btrfs_delalloc_release_extents(BTRFS_I(inode
),
1697 extents_locked
= lock_and_cleanup_extent_if_need(
1698 BTRFS_I(inode
), pages
,
1699 num_pages
, pos
, write_bytes
, &lockstart
,
1700 &lockend
, &cached_state
);
1701 if (extents_locked
< 0) {
1702 if (extents_locked
== -EAGAIN
)
1704 btrfs_delalloc_release_extents(BTRFS_I(inode
),
1706 ret
= extents_locked
;
1710 copied
= btrfs_copy_from_user(pos
, write_bytes
, pages
, i
);
1712 num_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, reserve_bytes
);
1713 dirty_sectors
= round_up(copied
+ sector_offset
,
1714 fs_info
->sectorsize
);
1715 dirty_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, dirty_sectors
);
1718 * if we have trouble faulting in the pages, fall
1719 * back to one page at a time
1721 if (copied
< write_bytes
)
1725 force_page_uptodate
= true;
1729 force_page_uptodate
= false;
1730 dirty_pages
= DIV_ROUND_UP(copied
+ offset
,
1734 if (num_sectors
> dirty_sectors
) {
1735 /* release everything except the sectors we dirtied */
1736 release_bytes
-= dirty_sectors
<<
1737 fs_info
->sb
->s_blocksize_bits
;
1738 if (only_release_metadata
) {
1739 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
1744 __pos
= round_down(pos
,
1745 fs_info
->sectorsize
) +
1746 (dirty_pages
<< PAGE_SHIFT
);
1747 btrfs_delalloc_release_space(inode
,
1748 data_reserved
, __pos
,
1753 release_bytes
= round_up(copied
+ sector_offset
,
1754 fs_info
->sectorsize
);
1757 ret
= btrfs_dirty_pages(inode
, pages
, dirty_pages
,
1760 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1761 lockstart
, lockend
, &cached_state
,
1763 btrfs_delalloc_release_extents(BTRFS_I(inode
), reserve_bytes
);
1765 btrfs_drop_pages(pages
, num_pages
);
1770 if (only_release_metadata
)
1771 btrfs_end_write_no_snapshotting(root
);
1773 if (only_release_metadata
&& copied
> 0) {
1774 lockstart
= round_down(pos
,
1775 fs_info
->sectorsize
);
1776 lockend
= round_up(pos
+ copied
,
1777 fs_info
->sectorsize
) - 1;
1779 set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
1780 lockend
, EXTENT_NORESERVE
, NULL
,
1782 only_release_metadata
= false;
1785 btrfs_drop_pages(pages
, num_pages
);
1789 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1790 if (dirty_pages
< (fs_info
->nodesize
>> PAGE_SHIFT
) + 1)
1791 btrfs_btree_balance_dirty(fs_info
);
1794 num_written
+= copied
;
1799 if (release_bytes
) {
1800 if (only_release_metadata
) {
1801 btrfs_end_write_no_snapshotting(root
);
1802 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
1805 btrfs_delalloc_release_space(inode
, data_reserved
,
1806 round_down(pos
, fs_info
->sectorsize
),
1811 extent_changeset_free(data_reserved
);
1812 return num_written
? num_written
: ret
;
1815 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
1817 struct file
*file
= iocb
->ki_filp
;
1818 struct inode
*inode
= file_inode(file
);
1819 loff_t pos
= iocb
->ki_pos
;
1821 ssize_t written_buffered
;
1825 written
= generic_file_direct_write(iocb
, from
);
1827 if (written
< 0 || !iov_iter_count(from
))
1831 written_buffered
= __btrfs_buffered_write(file
, from
, pos
);
1832 if (written_buffered
< 0) {
1833 err
= written_buffered
;
1837 * Ensure all data is persisted. We want the next direct IO read to be
1838 * able to read what was just written.
1840 endbyte
= pos
+ written_buffered
- 1;
1841 err
= btrfs_fdatawrite_range(inode
, pos
, endbyte
);
1844 err
= filemap_fdatawait_range(inode
->i_mapping
, pos
, endbyte
);
1847 written
+= written_buffered
;
1848 iocb
->ki_pos
= pos
+ written_buffered
;
1849 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_SHIFT
,
1850 endbyte
>> PAGE_SHIFT
);
1852 return written
? written
: err
;
1855 static void update_time_for_write(struct inode
*inode
)
1857 struct timespec now
;
1859 if (IS_NOCMTIME(inode
))
1862 now
= current_time(inode
);
1863 if (!timespec_equal(&inode
->i_mtime
, &now
))
1864 inode
->i_mtime
= now
;
1866 if (!timespec_equal(&inode
->i_ctime
, &now
))
1867 inode
->i_ctime
= now
;
1869 if (IS_I_VERSION(inode
))
1870 inode_inc_iversion(inode
);
1873 static ssize_t
btrfs_file_write_iter(struct kiocb
*iocb
,
1874 struct iov_iter
*from
)
1876 struct file
*file
= iocb
->ki_filp
;
1877 struct inode
*inode
= file_inode(file
);
1878 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1879 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1882 ssize_t num_written
= 0;
1883 bool sync
= (file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
);
1886 size_t count
= iov_iter_count(from
);
1890 if (!(iocb
->ki_flags
& IOCB_DIRECT
) &&
1891 (iocb
->ki_flags
& IOCB_NOWAIT
))
1894 if (!inode_trylock(inode
)) {
1895 if (iocb
->ki_flags
& IOCB_NOWAIT
)
1900 err
= generic_write_checks(iocb
, from
);
1902 inode_unlock(inode
);
1907 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
1909 * We will allocate space in case nodatacow is not set,
1912 if (!(BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1913 BTRFS_INODE_PREALLOC
)) ||
1914 check_can_nocow(BTRFS_I(inode
), pos
, &count
) <= 0) {
1915 inode_unlock(inode
);
1920 current
->backing_dev_info
= inode_to_bdi(inode
);
1921 err
= file_remove_privs(file
);
1923 inode_unlock(inode
);
1928 * If BTRFS flips readonly due to some impossible error
1929 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1930 * although we have opened a file as writable, we have
1931 * to stop this write operation to ensure FS consistency.
1933 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
1934 inode_unlock(inode
);
1940 * We reserve space for updating the inode when we reserve space for the
1941 * extent we are going to write, so we will enospc out there. We don't
1942 * need to start yet another transaction to update the inode as we will
1943 * update the inode when we finish writing whatever data we write.
1945 update_time_for_write(inode
);
1947 start_pos
= round_down(pos
, fs_info
->sectorsize
);
1948 oldsize
= i_size_read(inode
);
1949 if (start_pos
> oldsize
) {
1950 /* Expand hole size to cover write data, preventing empty gap */
1951 end_pos
= round_up(pos
+ count
,
1952 fs_info
->sectorsize
);
1953 err
= btrfs_cont_expand(inode
, oldsize
, end_pos
);
1955 inode_unlock(inode
);
1958 if (start_pos
> round_up(oldsize
, fs_info
->sectorsize
))
1963 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1965 if (iocb
->ki_flags
& IOCB_DIRECT
) {
1966 num_written
= __btrfs_direct_write(iocb
, from
);
1968 num_written
= __btrfs_buffered_write(file
, from
, pos
);
1969 if (num_written
> 0)
1970 iocb
->ki_pos
= pos
+ num_written
;
1972 pagecache_isize_extended(inode
, oldsize
,
1973 i_size_read(inode
));
1976 inode_unlock(inode
);
1979 * We also have to set last_sub_trans to the current log transid,
1980 * otherwise subsequent syncs to a file that's been synced in this
1981 * transaction will appear to have already occurred.
1983 spin_lock(&BTRFS_I(inode
)->lock
);
1984 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
1985 spin_unlock(&BTRFS_I(inode
)->lock
);
1986 if (num_written
> 0)
1987 num_written
= generic_write_sync(iocb
, num_written
);
1990 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1992 current
->backing_dev_info
= NULL
;
1993 return num_written
? num_written
: err
;
1996 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1998 struct btrfs_file_private
*private = filp
->private_data
;
2000 if (private && private->trans
)
2001 btrfs_ioctl_trans_end(filp
);
2002 if (private && private->filldir_buf
)
2003 kfree(private->filldir_buf
);
2005 filp
->private_data
= NULL
;
2008 * ordered_data_close is set by settattr when we are about to truncate
2009 * a file from a non-zero size to a zero size. This tries to
2010 * flush down new bytes that may have been written if the
2011 * application were using truncate to replace a file in place.
2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
2014 &BTRFS_I(inode
)->runtime_flags
))
2015 filemap_flush(inode
->i_mapping
);
2019 static int start_ordered_ops(struct inode
*inode
, loff_t start
, loff_t end
)
2023 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
2024 ret
= btrfs_fdatawrite_range(inode
, start
, end
);
2025 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
2031 * fsync call for both files and directories. This logs the inode into
2032 * the tree log instead of forcing full commits whenever possible.
2034 * It needs to call filemap_fdatawait so that all ordered extent updates are
2035 * in the metadata btree are up to date for copying to the log.
2037 * It drops the inode mutex before doing the tree log commit. This is an
2038 * important optimization for directories because holding the mutex prevents
2039 * new operations on the dir while we write to disk.
2041 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
2043 struct dentry
*dentry
= file_dentry(file
);
2044 struct inode
*inode
= d_inode(dentry
);
2045 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2046 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2047 struct btrfs_trans_handle
*trans
;
2048 struct btrfs_log_ctx ctx
;
2050 bool full_sync
= false;
2054 * The range length can be represented by u64, we have to do the typecasts
2055 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2057 len
= (u64
)end
- (u64
)start
+ 1;
2058 trace_btrfs_sync_file(file
, datasync
);
2060 btrfs_init_log_ctx(&ctx
, inode
);
2063 * We write the dirty pages in the range and wait until they complete
2064 * out of the ->i_mutex. If so, we can flush the dirty pages by
2065 * multi-task, and make the performance up. See
2066 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2068 ret
= start_ordered_ops(inode
, start
, end
);
2073 atomic_inc(&root
->log_batch
);
2074 full_sync
= test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2075 &BTRFS_I(inode
)->runtime_flags
);
2077 * We might have have had more pages made dirty after calling
2078 * start_ordered_ops and before acquiring the inode's i_mutex.
2082 * For a full sync, we need to make sure any ordered operations
2083 * start and finish before we start logging the inode, so that
2084 * all extents are persisted and the respective file extent
2085 * items are in the fs/subvol btree.
2087 ret
= btrfs_wait_ordered_range(inode
, start
, len
);
2090 * Start any new ordered operations before starting to log the
2091 * inode. We will wait for them to finish in btrfs_sync_log().
2093 * Right before acquiring the inode's mutex, we might have new
2094 * writes dirtying pages, which won't immediately start the
2095 * respective ordered operations - that is done through the
2096 * fill_delalloc callbacks invoked from the writepage and
2097 * writepages address space operations. So make sure we start
2098 * all ordered operations before starting to log our inode. Not
2099 * doing this means that while logging the inode, writeback
2100 * could start and invoke writepage/writepages, which would call
2101 * the fill_delalloc callbacks (cow_file_range,
2102 * submit_compressed_extents). These callbacks add first an
2103 * extent map to the modified list of extents and then create
2104 * the respective ordered operation, which means in
2105 * tree-log.c:btrfs_log_inode() we might capture all existing
2106 * ordered operations (with btrfs_get_logged_extents()) before
2107 * the fill_delalloc callback adds its ordered operation, and by
2108 * the time we visit the modified list of extent maps (with
2109 * btrfs_log_changed_extents()), we see and process the extent
2110 * map they created. We then use the extent map to construct a
2111 * file extent item for logging without waiting for the
2112 * respective ordered operation to finish - this file extent
2113 * item points to a disk location that might not have yet been
2114 * written to, containing random data - so after a crash a log
2115 * replay will make our inode have file extent items that point
2116 * to disk locations containing invalid data, as we returned
2117 * success to userspace without waiting for the respective
2118 * ordered operation to finish, because it wasn't captured by
2119 * btrfs_get_logged_extents().
2121 ret
= start_ordered_ops(inode
, start
, end
);
2124 inode_unlock(inode
);
2127 atomic_inc(&root
->log_batch
);
2130 * If the last transaction that changed this file was before the current
2131 * transaction and we have the full sync flag set in our inode, we can
2132 * bail out now without any syncing.
2134 * Note that we can't bail out if the full sync flag isn't set. This is
2135 * because when the full sync flag is set we start all ordered extents
2136 * and wait for them to fully complete - when they complete they update
2137 * the inode's last_trans field through:
2139 * btrfs_finish_ordered_io() ->
2140 * btrfs_update_inode_fallback() ->
2141 * btrfs_update_inode() ->
2142 * btrfs_set_inode_last_trans()
2144 * So we are sure that last_trans is up to date and can do this check to
2145 * bail out safely. For the fast path, when the full sync flag is not
2146 * set in our inode, we can not do it because we start only our ordered
2147 * extents and don't wait for them to complete (that is when
2148 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2149 * value might be less than or equals to fs_info->last_trans_committed,
2150 * and setting a speculative last_trans for an inode when a buffered
2151 * write is made (such as fs_info->generation + 1 for example) would not
2152 * be reliable since after setting the value and before fsync is called
2153 * any number of transactions can start and commit (transaction kthread
2154 * commits the current transaction periodically), and a transaction
2155 * commit does not start nor waits for ordered extents to complete.
2158 if (btrfs_inode_in_log(BTRFS_I(inode
), fs_info
->generation
) ||
2159 (full_sync
&& BTRFS_I(inode
)->last_trans
<=
2160 fs_info
->last_trans_committed
) ||
2161 (!btrfs_have_ordered_extents_in_range(inode
, start
, len
) &&
2162 BTRFS_I(inode
)->last_trans
2163 <= fs_info
->last_trans_committed
)) {
2165 * We've had everything committed since the last time we were
2166 * modified so clear this flag in case it was set for whatever
2167 * reason, it's no longer relevant.
2169 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2170 &BTRFS_I(inode
)->runtime_flags
);
2172 * An ordered extent might have started before and completed
2173 * already with io errors, in which case the inode was not
2174 * updated and we end up here. So check the inode's mapping
2175 * for any errors that might have happened since we last
2176 * checked called fsync.
2178 ret
= filemap_check_wb_err(inode
->i_mapping
, file
->f_wb_err
);
2179 inode_unlock(inode
);
2184 * ok we haven't committed the transaction yet, lets do a commit
2186 if (file
->private_data
)
2187 btrfs_ioctl_trans_end(file
);
2190 * We use start here because we will need to wait on the IO to complete
2191 * in btrfs_sync_log, which could require joining a transaction (for
2192 * example checking cross references in the nocow path). If we use join
2193 * here we could get into a situation where we're waiting on IO to
2194 * happen that is blocked on a transaction trying to commit. With start
2195 * we inc the extwriter counter, so we wait for all extwriters to exit
2196 * before we start blocking join'ers. This comment is to keep somebody
2197 * from thinking they are super smart and changing this to
2198 * btrfs_join_transaction *cough*Josef*cough*.
2200 trans
= btrfs_start_transaction(root
, 0);
2201 if (IS_ERR(trans
)) {
2202 ret
= PTR_ERR(trans
);
2203 inode_unlock(inode
);
2208 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
, start
, end
, &ctx
);
2210 /* Fallthrough and commit/free transaction. */
2214 /* we've logged all the items and now have a consistent
2215 * version of the file in the log. It is possible that
2216 * someone will come in and modify the file, but that's
2217 * fine because the log is consistent on disk, and we
2218 * have references to all of the file's extents
2220 * It is possible that someone will come in and log the
2221 * file again, but that will end up using the synchronization
2222 * inside btrfs_sync_log to keep things safe.
2224 inode_unlock(inode
);
2227 * If any of the ordered extents had an error, just return it to user
2228 * space, so that the application knows some writes didn't succeed and
2229 * can take proper action (retry for e.g.). Blindly committing the
2230 * transaction in this case, would fool userspace that everything was
2231 * successful. And we also want to make sure our log doesn't contain
2232 * file extent items pointing to extents that weren't fully written to -
2233 * just like in the non fast fsync path, where we check for the ordered
2234 * operation's error flag before writing to the log tree and return -EIO
2235 * if any of them had this flag set (btrfs_wait_ordered_range) -
2236 * therefore we need to check for errors in the ordered operations,
2237 * which are indicated by ctx.io_err.
2240 btrfs_end_transaction(trans
);
2245 if (ret
!= BTRFS_NO_LOG_SYNC
) {
2247 ret
= btrfs_sync_log(trans
, root
, &ctx
);
2249 ret
= btrfs_end_transaction(trans
);
2254 ret
= btrfs_wait_ordered_range(inode
, start
, len
);
2256 btrfs_end_transaction(trans
);
2260 ret
= btrfs_commit_transaction(trans
);
2262 ret
= btrfs_end_transaction(trans
);
2265 ASSERT(list_empty(&ctx
.list
));
2266 err
= file_check_and_advance_wb_err(file
);
2269 return ret
> 0 ? -EIO
: ret
;
2272 static const struct vm_operations_struct btrfs_file_vm_ops
= {
2273 .fault
= filemap_fault
,
2274 .map_pages
= filemap_map_pages
,
2275 .page_mkwrite
= btrfs_page_mkwrite
,
2278 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
2280 struct address_space
*mapping
= filp
->f_mapping
;
2282 if (!mapping
->a_ops
->readpage
)
2285 file_accessed(filp
);
2286 vma
->vm_ops
= &btrfs_file_vm_ops
;
2291 static int hole_mergeable(struct btrfs_inode
*inode
, struct extent_buffer
*leaf
,
2292 int slot
, u64 start
, u64 end
)
2294 struct btrfs_file_extent_item
*fi
;
2295 struct btrfs_key key
;
2297 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
2300 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2301 if (key
.objectid
!= btrfs_ino(inode
) ||
2302 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2305 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
2307 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2310 if (btrfs_file_extent_disk_bytenr(leaf
, fi
))
2313 if (key
.offset
== end
)
2315 if (key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
) == start
)
2320 static int fill_holes(struct btrfs_trans_handle
*trans
,
2321 struct btrfs_inode
*inode
,
2322 struct btrfs_path
*path
, u64 offset
, u64 end
)
2324 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
2325 struct btrfs_root
*root
= inode
->root
;
2326 struct extent_buffer
*leaf
;
2327 struct btrfs_file_extent_item
*fi
;
2328 struct extent_map
*hole_em
;
2329 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
2330 struct btrfs_key key
;
2333 if (btrfs_fs_incompat(fs_info
, NO_HOLES
))
2336 key
.objectid
= btrfs_ino(inode
);
2337 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2338 key
.offset
= offset
;
2340 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2343 * We should have dropped this offset, so if we find it then
2344 * something has gone horribly wrong.
2351 leaf
= path
->nodes
[0];
2352 if (hole_mergeable(inode
, leaf
, path
->slots
[0] - 1, offset
, end
)) {
2356 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2357 struct btrfs_file_extent_item
);
2358 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) +
2360 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2361 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2362 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2363 btrfs_mark_buffer_dirty(leaf
);
2367 if (hole_mergeable(inode
, leaf
, path
->slots
[0], offset
, end
)) {
2370 key
.offset
= offset
;
2371 btrfs_set_item_key_safe(fs_info
, path
, &key
);
2372 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2373 struct btrfs_file_extent_item
);
2374 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) + end
-
2376 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2377 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2378 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2379 btrfs_mark_buffer_dirty(leaf
);
2382 btrfs_release_path(path
);
2384 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
),
2385 offset
, 0, 0, end
- offset
, 0, end
- offset
, 0, 0, 0);
2390 btrfs_release_path(path
);
2392 hole_em
= alloc_extent_map();
2394 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2395 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
2397 hole_em
->start
= offset
;
2398 hole_em
->len
= end
- offset
;
2399 hole_em
->ram_bytes
= hole_em
->len
;
2400 hole_em
->orig_start
= offset
;
2402 hole_em
->block_start
= EXTENT_MAP_HOLE
;
2403 hole_em
->block_len
= 0;
2404 hole_em
->orig_block_len
= 0;
2405 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
2406 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
2407 hole_em
->generation
= trans
->transid
;
2410 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2411 write_lock(&em_tree
->lock
);
2412 ret
= add_extent_mapping(em_tree
, hole_em
, 1);
2413 write_unlock(&em_tree
->lock
);
2414 } while (ret
== -EEXIST
);
2415 free_extent_map(hole_em
);
2417 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2418 &inode
->runtime_flags
);
2425 * Find a hole extent on given inode and change start/len to the end of hole
2426 * extent.(hole/vacuum extent whose em->start <= start &&
2427 * em->start + em->len > start)
2428 * When a hole extent is found, return 1 and modify start/len.
2430 static int find_first_non_hole(struct inode
*inode
, u64
*start
, u64
*len
)
2432 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2433 struct extent_map
*em
;
2436 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0,
2437 round_down(*start
, fs_info
->sectorsize
),
2438 round_up(*len
, fs_info
->sectorsize
), 0);
2442 /* Hole or vacuum extent(only exists in no-hole mode) */
2443 if (em
->block_start
== EXTENT_MAP_HOLE
) {
2445 *len
= em
->start
+ em
->len
> *start
+ *len
?
2446 0 : *start
+ *len
- em
->start
- em
->len
;
2447 *start
= em
->start
+ em
->len
;
2449 free_extent_map(em
);
2453 static int btrfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
2455 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2456 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2457 struct extent_state
*cached_state
= NULL
;
2458 struct btrfs_path
*path
;
2459 struct btrfs_block_rsv
*rsv
;
2460 struct btrfs_trans_handle
*trans
;
2465 u64 orig_start
= offset
;
2467 u64 min_size
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2471 unsigned int rsv_count
;
2473 bool no_holes
= btrfs_fs_incompat(fs_info
, NO_HOLES
);
2475 bool truncated_block
= false;
2476 bool updated_inode
= false;
2478 ret
= btrfs_wait_ordered_range(inode
, offset
, len
);
2483 ino_size
= round_up(inode
->i_size
, fs_info
->sectorsize
);
2484 ret
= find_first_non_hole(inode
, &offset
, &len
);
2486 goto out_only_mutex
;
2488 /* Already in a large hole */
2490 goto out_only_mutex
;
2493 lockstart
= round_up(offset
, btrfs_inode_sectorsize(inode
));
2494 lockend
= round_down(offset
+ len
,
2495 btrfs_inode_sectorsize(inode
)) - 1;
2496 same_block
= (BTRFS_BYTES_TO_BLKS(fs_info
, offset
))
2497 == (BTRFS_BYTES_TO_BLKS(fs_info
, offset
+ len
- 1));
2499 * We needn't truncate any block which is beyond the end of the file
2500 * because we are sure there is no data there.
2503 * Only do this if we are in the same block and we aren't doing the
2506 if (same_block
&& len
< fs_info
->sectorsize
) {
2507 if (offset
< ino_size
) {
2508 truncated_block
= true;
2509 ret
= btrfs_truncate_block(inode
, offset
, len
, 0);
2513 goto out_only_mutex
;
2516 /* zero back part of the first block */
2517 if (offset
< ino_size
) {
2518 truncated_block
= true;
2519 ret
= btrfs_truncate_block(inode
, offset
, 0, 0);
2521 inode_unlock(inode
);
2526 /* Check the aligned pages after the first unaligned page,
2527 * if offset != orig_start, which means the first unaligned page
2528 * including several following pages are already in holes,
2529 * the extra check can be skipped */
2530 if (offset
== orig_start
) {
2531 /* after truncate page, check hole again */
2532 len
= offset
+ len
- lockstart
;
2534 ret
= find_first_non_hole(inode
, &offset
, &len
);
2536 goto out_only_mutex
;
2539 goto out_only_mutex
;
2544 /* Check the tail unaligned part is in a hole */
2545 tail_start
= lockend
+ 1;
2546 tail_len
= offset
+ len
- tail_start
;
2548 ret
= find_first_non_hole(inode
, &tail_start
, &tail_len
);
2549 if (unlikely(ret
< 0))
2550 goto out_only_mutex
;
2552 /* zero the front end of the last page */
2553 if (tail_start
+ tail_len
< ino_size
) {
2554 truncated_block
= true;
2555 ret
= btrfs_truncate_block(inode
,
2556 tail_start
+ tail_len
,
2559 goto out_only_mutex
;
2564 if (lockend
< lockstart
) {
2566 goto out_only_mutex
;
2570 struct btrfs_ordered_extent
*ordered
;
2572 truncate_pagecache_range(inode
, lockstart
, lockend
);
2574 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2576 ordered
= btrfs_lookup_first_ordered_extent(inode
, lockend
);
2579 * We need to make sure we have no ordered extents in this range
2580 * and nobody raced in and read a page in this range, if we did
2581 * we need to try again.
2584 (ordered
->file_offset
+ ordered
->len
<= lockstart
||
2585 ordered
->file_offset
> lockend
)) &&
2586 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)) {
2588 btrfs_put_ordered_extent(ordered
);
2592 btrfs_put_ordered_extent(ordered
);
2593 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2594 lockend
, &cached_state
, GFP_NOFS
);
2595 ret
= btrfs_wait_ordered_range(inode
, lockstart
,
2596 lockend
- lockstart
+ 1);
2598 inode_unlock(inode
);
2603 path
= btrfs_alloc_path();
2609 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
2614 rsv
->size
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2618 * 1 - update the inode
2619 * 1 - removing the extents in the range
2620 * 1 - adding the hole extent if no_holes isn't set
2622 rsv_count
= no_holes
? 2 : 3;
2623 trans
= btrfs_start_transaction(root
, rsv_count
);
2624 if (IS_ERR(trans
)) {
2625 err
= PTR_ERR(trans
);
2629 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
2632 trans
->block_rsv
= rsv
;
2634 cur_offset
= lockstart
;
2635 len
= lockend
- cur_offset
;
2636 while (cur_offset
< lockend
) {
2637 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
2638 cur_offset
, lockend
+ 1,
2639 &drop_end
, 1, 0, 0, NULL
);
2643 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2645 if (cur_offset
< drop_end
&& cur_offset
< ino_size
) {
2646 ret
= fill_holes(trans
, BTRFS_I(inode
), path
,
2647 cur_offset
, drop_end
);
2650 * If we failed then we didn't insert our hole
2651 * entries for the area we dropped, so now the
2652 * fs is corrupted, so we must abort the
2655 btrfs_abort_transaction(trans
, ret
);
2661 cur_offset
= drop_end
;
2663 ret
= btrfs_update_inode(trans
, root
, inode
);
2669 btrfs_end_transaction(trans
);
2670 btrfs_btree_balance_dirty(fs_info
);
2672 trans
= btrfs_start_transaction(root
, rsv_count
);
2673 if (IS_ERR(trans
)) {
2674 ret
= PTR_ERR(trans
);
2679 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
2681 BUG_ON(ret
); /* shouldn't happen */
2682 trans
->block_rsv
= rsv
;
2684 ret
= find_first_non_hole(inode
, &cur_offset
, &len
);
2685 if (unlikely(ret
< 0))
2698 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2700 * If we are using the NO_HOLES feature we might have had already an
2701 * hole that overlaps a part of the region [lockstart, lockend] and
2702 * ends at (or beyond) lockend. Since we have no file extent items to
2703 * represent holes, drop_end can be less than lockend and so we must
2704 * make sure we have an extent map representing the existing hole (the
2705 * call to __btrfs_drop_extents() might have dropped the existing extent
2706 * map representing the existing hole), otherwise the fast fsync path
2707 * will not record the existence of the hole region
2708 * [existing_hole_start, lockend].
2710 if (drop_end
<= lockend
)
2711 drop_end
= lockend
+ 1;
2713 * Don't insert file hole extent item if it's for a range beyond eof
2714 * (because it's useless) or if it represents a 0 bytes range (when
2715 * cur_offset == drop_end).
2717 if (cur_offset
< ino_size
&& cur_offset
< drop_end
) {
2718 ret
= fill_holes(trans
, BTRFS_I(inode
), path
,
2719 cur_offset
, drop_end
);
2721 /* Same comment as above. */
2722 btrfs_abort_transaction(trans
, ret
);
2732 inode_inc_iversion(inode
);
2733 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2735 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2736 ret
= btrfs_update_inode(trans
, root
, inode
);
2737 updated_inode
= true;
2738 btrfs_end_transaction(trans
);
2739 btrfs_btree_balance_dirty(fs_info
);
2741 btrfs_free_path(path
);
2742 btrfs_free_block_rsv(fs_info
, rsv
);
2744 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2745 &cached_state
, GFP_NOFS
);
2747 if (!updated_inode
&& truncated_block
&& !ret
&& !err
) {
2749 * If we only end up zeroing part of a page, we still need to
2750 * update the inode item, so that all the time fields are
2751 * updated as well as the necessary btrfs inode in memory fields
2752 * for detecting, at fsync time, if the inode isn't yet in the
2753 * log tree or it's there but not up to date.
2755 trans
= btrfs_start_transaction(root
, 1);
2756 if (IS_ERR(trans
)) {
2757 err
= PTR_ERR(trans
);
2759 err
= btrfs_update_inode(trans
, root
, inode
);
2760 ret
= btrfs_end_transaction(trans
);
2763 inode_unlock(inode
);
2769 /* Helper structure to record which range is already reserved */
2770 struct falloc_range
{
2771 struct list_head list
;
2777 * Helper function to add falloc range
2779 * Caller should have locked the larger range of extent containing
2782 static int add_falloc_range(struct list_head
*head
, u64 start
, u64 len
)
2784 struct falloc_range
*prev
= NULL
;
2785 struct falloc_range
*range
= NULL
;
2787 if (list_empty(head
))
2791 * As fallocate iterate by bytenr order, we only need to check
2794 prev
= list_entry(head
->prev
, struct falloc_range
, list
);
2795 if (prev
->start
+ prev
->len
== start
) {
2800 range
= kmalloc(sizeof(*range
), GFP_KERNEL
);
2803 range
->start
= start
;
2805 list_add_tail(&range
->list
, head
);
2809 static long btrfs_fallocate(struct file
*file
, int mode
,
2810 loff_t offset
, loff_t len
)
2812 struct inode
*inode
= file_inode(file
);
2813 struct extent_state
*cached_state
= NULL
;
2814 struct extent_changeset
*data_reserved
= NULL
;
2815 struct falloc_range
*range
;
2816 struct falloc_range
*tmp
;
2817 struct list_head reserve_list
;
2825 struct extent_map
*em
;
2826 int blocksize
= btrfs_inode_sectorsize(inode
);
2829 alloc_start
= round_down(offset
, blocksize
);
2830 alloc_end
= round_up(offset
+ len
, blocksize
);
2831 cur_offset
= alloc_start
;
2833 /* Make sure we aren't being give some crap mode */
2834 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2837 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2838 return btrfs_punch_hole(inode
, offset
, len
);
2841 * Only trigger disk allocation, don't trigger qgroup reserve
2843 * For qgroup space, it will be checked later.
2845 ret
= btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode
),
2846 alloc_end
- alloc_start
);
2852 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
) {
2853 ret
= inode_newsize_ok(inode
, offset
+ len
);
2859 * TODO: Move these two operations after we have checked
2860 * accurate reserved space, or fallocate can still fail but
2861 * with page truncated or size expanded.
2863 * But that's a minor problem and won't do much harm BTW.
2865 if (alloc_start
> inode
->i_size
) {
2866 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
2870 } else if (offset
+ len
> inode
->i_size
) {
2872 * If we are fallocating from the end of the file onward we
2873 * need to zero out the end of the block if i_size lands in the
2874 * middle of a block.
2876 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
2882 * wait for ordered IO before we have any locks. We'll loop again
2883 * below with the locks held.
2885 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
2886 alloc_end
- alloc_start
);
2890 locked_end
= alloc_end
- 1;
2892 struct btrfs_ordered_extent
*ordered
;
2894 /* the extent lock is ordered inside the running
2897 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
2898 locked_end
, &cached_state
);
2899 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2902 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
2903 ordered
->file_offset
< alloc_end
) {
2904 btrfs_put_ordered_extent(ordered
);
2905 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
2906 alloc_start
, locked_end
,
2907 &cached_state
, GFP_KERNEL
);
2909 * we can't wait on the range with the transaction
2910 * running or with the extent lock held
2912 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
2913 alloc_end
- alloc_start
);
2918 btrfs_put_ordered_extent(ordered
);
2923 /* First, check if we exceed the qgroup limit */
2924 INIT_LIST_HEAD(&reserve_list
);
2926 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
2927 alloc_end
- cur_offset
, 0);
2932 last_byte
= min(extent_map_end(em
), alloc_end
);
2933 actual_end
= min_t(u64
, extent_map_end(em
), offset
+ len
);
2934 last_byte
= ALIGN(last_byte
, blocksize
);
2935 if (em
->block_start
== EXTENT_MAP_HOLE
||
2936 (cur_offset
>= inode
->i_size
&&
2937 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
2938 ret
= add_falloc_range(&reserve_list
, cur_offset
,
2939 last_byte
- cur_offset
);
2941 free_extent_map(em
);
2944 ret
= btrfs_qgroup_reserve_data(inode
, &data_reserved
,
2945 cur_offset
, last_byte
- cur_offset
);
2947 free_extent_map(em
);
2952 * Do not need to reserve unwritten extent for this
2953 * range, free reserved data space first, otherwise
2954 * it'll result in false ENOSPC error.
2956 btrfs_free_reserved_data_space(inode
, data_reserved
,
2957 cur_offset
, last_byte
- cur_offset
);
2959 free_extent_map(em
);
2960 cur_offset
= last_byte
;
2961 if (cur_offset
>= alloc_end
)
2966 * If ret is still 0, means we're OK to fallocate.
2967 * Or just cleanup the list and exit.
2969 list_for_each_entry_safe(range
, tmp
, &reserve_list
, list
) {
2971 ret
= btrfs_prealloc_file_range(inode
, mode
,
2973 range
->len
, i_blocksize(inode
),
2974 offset
+ len
, &alloc_hint
);
2976 btrfs_free_reserved_data_space(inode
,
2977 data_reserved
, range
->start
,
2979 list_del(&range
->list
);
2985 if (actual_end
> inode
->i_size
&&
2986 !(mode
& FALLOC_FL_KEEP_SIZE
)) {
2987 struct btrfs_trans_handle
*trans
;
2988 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2991 * We didn't need to allocate any more space, but we
2992 * still extended the size of the file so we need to
2993 * update i_size and the inode item.
2995 trans
= btrfs_start_transaction(root
, 1);
2996 if (IS_ERR(trans
)) {
2997 ret
= PTR_ERR(trans
);
2999 inode
->i_ctime
= current_time(inode
);
3000 i_size_write(inode
, actual_end
);
3001 btrfs_ordered_update_i_size(inode
, actual_end
, NULL
);
3002 ret
= btrfs_update_inode(trans
, root
, inode
);
3004 btrfs_end_transaction(trans
);
3006 ret
= btrfs_end_transaction(trans
);
3010 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
3011 &cached_state
, GFP_KERNEL
);
3013 inode_unlock(inode
);
3014 /* Let go of our reservation. */
3016 btrfs_free_reserved_data_space(inode
, data_reserved
,
3017 alloc_start
, alloc_end
- cur_offset
);
3018 extent_changeset_free(data_reserved
);
3022 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int whence
)
3024 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3025 struct extent_map
*em
= NULL
;
3026 struct extent_state
*cached_state
= NULL
;
3033 if (inode
->i_size
== 0)
3037 * *offset can be negative, in this case we start finding DATA/HOLE from
3038 * the very start of the file.
3040 start
= max_t(loff_t
, 0, *offset
);
3042 lockstart
= round_down(start
, fs_info
->sectorsize
);
3043 lockend
= round_up(i_size_read(inode
),
3044 fs_info
->sectorsize
);
3045 if (lockend
<= lockstart
)
3046 lockend
= lockstart
+ fs_info
->sectorsize
;
3048 len
= lockend
- lockstart
+ 1;
3050 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
3053 while (start
< inode
->i_size
) {
3054 em
= btrfs_get_extent_fiemap(BTRFS_I(inode
), NULL
, 0,
3062 if (whence
== SEEK_HOLE
&&
3063 (em
->block_start
== EXTENT_MAP_HOLE
||
3064 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
3066 else if (whence
== SEEK_DATA
&&
3067 (em
->block_start
!= EXTENT_MAP_HOLE
&&
3068 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
3071 start
= em
->start
+ em
->len
;
3072 free_extent_map(em
);
3076 free_extent_map(em
);
3078 if (whence
== SEEK_DATA
&& start
>= inode
->i_size
)
3081 *offset
= min_t(loff_t
, start
, inode
->i_size
);
3083 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
3084 &cached_state
, GFP_NOFS
);
3088 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int whence
)
3090 struct inode
*inode
= file
->f_mapping
->host
;
3097 offset
= generic_file_llseek(file
, offset
, whence
);
3101 if (offset
>= i_size_read(inode
)) {
3102 inode_unlock(inode
);
3106 ret
= find_desired_extent(inode
, &offset
, whence
);
3108 inode_unlock(inode
);
3113 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
3115 inode_unlock(inode
);
3119 static int btrfs_file_open(struct inode
*inode
, struct file
*filp
)
3121 filp
->f_mode
|= FMODE_NOWAIT
;
3122 return generic_file_open(inode
, filp
);
3125 const struct file_operations btrfs_file_operations
= {
3126 .llseek
= btrfs_file_llseek
,
3127 .read_iter
= generic_file_read_iter
,
3128 .splice_read
= generic_file_splice_read
,
3129 .write_iter
= btrfs_file_write_iter
,
3130 .mmap
= btrfs_file_mmap
,
3131 .open
= btrfs_file_open
,
3132 .release
= btrfs_release_file
,
3133 .fsync
= btrfs_sync_file
,
3134 .fallocate
= btrfs_fallocate
,
3135 .unlocked_ioctl
= btrfs_ioctl
,
3136 #ifdef CONFIG_COMPAT
3137 .compat_ioctl
= btrfs_compat_ioctl
,
3139 .clone_file_range
= btrfs_clone_file_range
,
3140 .dedupe_file_range
= btrfs_dedupe_file_range
,
3143 void btrfs_auto_defrag_exit(void)
3145 kmem_cache_destroy(btrfs_inode_defrag_cachep
);
3148 int btrfs_auto_defrag_init(void)
3150 btrfs_inode_defrag_cachep
= kmem_cache_create("btrfs_inode_defrag",
3151 sizeof(struct inode_defrag
), 0,
3154 if (!btrfs_inode_defrag_cachep
)
3160 int btrfs_fdatawrite_range(struct inode
*inode
, loff_t start
, loff_t end
)
3165 * So with compression we will find and lock a dirty page and clear the
3166 * first one as dirty, setup an async extent, and immediately return
3167 * with the entire range locked but with nobody actually marked with
3168 * writeback. So we can't just filemap_write_and_wait_range() and
3169 * expect it to work since it will just kick off a thread to do the
3170 * actual work. So we need to call filemap_fdatawrite_range _again_
3171 * since it will wait on the page lock, which won't be unlocked until
3172 * after the pages have been marked as writeback and so we're good to go
3173 * from there. We have to do this otherwise we'll miss the ordered
3174 * extents and that results in badness. Please Josef, do not think you
3175 * know better and pull this out at some point in the future, it is
3176 * right and you are wrong.
3178 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3179 if (!ret
&& test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
3180 &BTRFS_I(inode
)->runtime_flags
))
3181 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);