2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include <linux/magic.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
65 struct btrfs_iget_args
{
66 struct btrfs_key
*location
;
67 struct btrfs_root
*root
;
70 struct btrfs_dio_data
{
72 u64 unsubmitted_oe_range_start
;
73 u64 unsubmitted_oe_range_end
;
77 static const struct inode_operations btrfs_dir_inode_operations
;
78 static const struct inode_operations btrfs_symlink_inode_operations
;
79 static const struct inode_operations btrfs_dir_ro_inode_operations
;
80 static const struct inode_operations btrfs_special_inode_operations
;
81 static const struct inode_operations btrfs_file_inode_operations
;
82 static const struct address_space_operations btrfs_aops
;
83 static const struct address_space_operations btrfs_symlink_aops
;
84 static const struct file_operations btrfs_dir_file_operations
;
85 static const struct extent_io_ops btrfs_extent_io_ops
;
87 static struct kmem_cache
*btrfs_inode_cachep
;
88 struct kmem_cache
*btrfs_trans_handle_cachep
;
89 struct kmem_cache
*btrfs_path_cachep
;
90 struct kmem_cache
*btrfs_free_space_cachep
;
93 static const unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
94 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
95 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
96 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
97 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
98 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
99 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
100 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
103 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
104 static int btrfs_truncate(struct inode
*inode
);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
106 static noinline
int cow_file_range(struct inode
*inode
,
107 struct page
*locked_page
,
108 u64 start
, u64 end
, u64 delalloc_end
,
109 int *page_started
, unsigned long *nr_written
,
110 int unlock
, struct btrfs_dedupe_hash
*hash
);
111 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
112 u64 orig_start
, u64 block_start
,
113 u64 block_len
, u64 orig_block_len
,
114 u64 ram_bytes
, int compress_type
,
117 static void __endio_write_update_ordered(struct inode
*inode
,
118 const u64 offset
, const u64 bytes
,
119 const bool uptodate
);
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
134 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
138 unsigned long index
= offset
>> PAGE_SHIFT
;
139 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
142 while (index
<= end_index
) {
143 page
= find_get_page(inode
->i_mapping
, index
);
147 ClearPagePrivate2(page
);
150 return __endio_write_update_ordered(inode
, offset
+ PAGE_SIZE
,
151 bytes
- PAGE_SIZE
, false);
154 static int btrfs_dirty_inode(struct inode
*inode
);
156 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157 void btrfs_test_inode_set_ops(struct inode
*inode
)
159 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
163 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
164 struct inode
*inode
, struct inode
*dir
,
165 const struct qstr
*qstr
)
169 err
= btrfs_init_acl(trans
, inode
, dir
);
171 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
180 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
181 struct btrfs_path
*path
, int extent_inserted
,
182 struct btrfs_root
*root
, struct inode
*inode
,
183 u64 start
, size_t size
, size_t compressed_size
,
185 struct page
**compressed_pages
)
187 struct extent_buffer
*leaf
;
188 struct page
*page
= NULL
;
191 struct btrfs_file_extent_item
*ei
;
193 size_t cur_size
= size
;
194 unsigned long offset
;
196 if (compressed_size
&& compressed_pages
)
197 cur_size
= compressed_size
;
199 inode_add_bytes(inode
, size
);
201 if (!extent_inserted
) {
202 struct btrfs_key key
;
205 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
207 key
.type
= BTRFS_EXTENT_DATA_KEY
;
209 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
210 path
->leave_spinning
= 1;
211 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
216 leaf
= path
->nodes
[0];
217 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
218 struct btrfs_file_extent_item
);
219 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
220 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
221 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
222 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
223 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
224 ptr
= btrfs_file_extent_inline_start(ei
);
226 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
229 while (compressed_size
> 0) {
230 cpage
= compressed_pages
[i
];
231 cur_size
= min_t(unsigned long, compressed_size
,
234 kaddr
= kmap_atomic(cpage
);
235 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
236 kunmap_atomic(kaddr
);
240 compressed_size
-= cur_size
;
242 btrfs_set_file_extent_compression(leaf
, ei
,
245 page
= find_get_page(inode
->i_mapping
,
246 start
>> PAGE_SHIFT
);
247 btrfs_set_file_extent_compression(leaf
, ei
, 0);
248 kaddr
= kmap_atomic(page
);
249 offset
= start
& (PAGE_SIZE
- 1);
250 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
251 kunmap_atomic(kaddr
);
254 btrfs_mark_buffer_dirty(leaf
);
255 btrfs_release_path(path
);
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
266 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
267 ret
= btrfs_update_inode(trans
, root
, inode
);
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
279 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
280 struct inode
*inode
, u64 start
,
281 u64 end
, size_t compressed_size
,
283 struct page
**compressed_pages
)
285 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
286 struct btrfs_trans_handle
*trans
;
287 u64 isize
= i_size_read(inode
);
288 u64 actual_end
= min(end
+ 1, isize
);
289 u64 inline_len
= actual_end
- start
;
290 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
291 u64 data_len
= inline_len
;
293 struct btrfs_path
*path
;
294 int extent_inserted
= 0;
295 u32 extent_item_size
;
298 data_len
= compressed_size
;
301 actual_end
> fs_info
->sectorsize
||
302 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
304 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
306 data_len
> fs_info
->max_inline
) {
310 path
= btrfs_alloc_path();
314 trans
= btrfs_join_transaction(root
);
316 btrfs_free_path(path
);
317 return PTR_ERR(trans
);
319 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
321 if (compressed_size
&& compressed_pages
)
322 extent_item_size
= btrfs_file_extent_calc_inline_size(
325 extent_item_size
= btrfs_file_extent_calc_inline_size(
328 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
329 start
, aligned_end
, NULL
,
330 1, 1, extent_item_size
, &extent_inserted
);
332 btrfs_abort_transaction(trans
, ret
);
336 if (isize
> actual_end
)
337 inline_len
= min_t(u64
, isize
, actual_end
);
338 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
340 inline_len
, compressed_size
,
341 compress_type
, compressed_pages
);
342 if (ret
&& ret
!= -ENOSPC
) {
343 btrfs_abort_transaction(trans
, ret
);
345 } else if (ret
== -ENOSPC
) {
350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
351 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
354 * Don't forget to free the reserved space, as for inlined extent
355 * it won't count as data extent, free them directly here.
356 * And at reserve time, it's always aligned to page size, so
357 * just free one page here.
359 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
360 btrfs_free_path(path
);
361 btrfs_end_transaction(trans
);
365 struct async_extent
{
370 unsigned long nr_pages
;
372 struct list_head list
;
377 struct btrfs_root
*root
;
378 struct page
*locked_page
;
381 unsigned int write_flags
;
382 struct list_head extents
;
383 struct btrfs_work work
;
386 static noinline
int add_async_extent(struct async_cow
*cow
,
387 u64 start
, u64 ram_size
,
390 unsigned long nr_pages
,
393 struct async_extent
*async_extent
;
395 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
396 BUG_ON(!async_extent
); /* -ENOMEM */
397 async_extent
->start
= start
;
398 async_extent
->ram_size
= ram_size
;
399 async_extent
->compressed_size
= compressed_size
;
400 async_extent
->pages
= pages
;
401 async_extent
->nr_pages
= nr_pages
;
402 async_extent
->compress_type
= compress_type
;
403 list_add_tail(&async_extent
->list
, &cow
->extents
);
407 static inline int inode_need_compress(struct inode
*inode
, u64 start
, u64 end
)
409 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
412 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
415 if (BTRFS_I(inode
)->defrag_compress
)
417 /* bad compression ratios */
418 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
420 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
421 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
422 BTRFS_I(inode
)->prop_compress
)
423 return btrfs_compress_heuristic(inode
, start
, end
);
427 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
428 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
430 /* If this is a small write inside eof, kick off a defrag */
431 if (num_bytes
< small_write
&&
432 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
433 btrfs_add_inode_defrag(NULL
, inode
);
437 * we create compressed extents in two phases. The first
438 * phase compresses a range of pages that have already been
439 * locked (both pages and state bits are locked).
441 * This is done inside an ordered work queue, and the compression
442 * is spread across many cpus. The actual IO submission is step
443 * two, and the ordered work queue takes care of making sure that
444 * happens in the same order things were put onto the queue by
445 * writepages and friends.
447 * If this code finds it can't get good compression, it puts an
448 * entry onto the work queue to write the uncompressed bytes. This
449 * makes sure that both compressed inodes and uncompressed inodes
450 * are written in the same order that the flusher thread sent them
453 static noinline
void compress_file_range(struct inode
*inode
,
454 struct page
*locked_page
,
456 struct async_cow
*async_cow
,
459 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
460 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
461 u64 blocksize
= fs_info
->sectorsize
;
463 u64 isize
= i_size_read(inode
);
465 struct page
**pages
= NULL
;
466 unsigned long nr_pages
;
467 unsigned long total_compressed
= 0;
468 unsigned long total_in
= 0;
471 int compress_type
= fs_info
->compress_type
;
474 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
477 actual_end
= min_t(u64
, isize
, end
+ 1);
480 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
481 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
482 nr_pages
= min_t(unsigned long, nr_pages
,
483 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
486 * we don't want to send crud past the end of i_size through
487 * compression, that's just a waste of CPU time. So, if the
488 * end of the file is before the start of our current
489 * requested range of bytes, we bail out to the uncompressed
490 * cleanup code that can deal with all of this.
492 * It isn't really the fastest way to fix things, but this is a
493 * very uncommon corner.
495 if (actual_end
<= start
)
496 goto cleanup_and_bail_uncompressed
;
498 total_compressed
= actual_end
- start
;
501 * skip compression for a small file range(<=blocksize) that
502 * isn't an inline extent, since it doesn't save disk space at all.
504 if (total_compressed
<= blocksize
&&
505 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
506 goto cleanup_and_bail_uncompressed
;
508 total_compressed
= min_t(unsigned long, total_compressed
,
509 BTRFS_MAX_UNCOMPRESSED
);
514 * we do compression for mount -o compress and when the
515 * inode has not been flagged as nocompress. This flag can
516 * change at any time if we discover bad compression ratios.
518 if (inode_need_compress(inode
, start
, end
)) {
520 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
522 /* just bail out to the uncompressed code */
526 if (BTRFS_I(inode
)->defrag_compress
)
527 compress_type
= BTRFS_I(inode
)->defrag_compress
;
528 else if (BTRFS_I(inode
)->prop_compress
)
529 compress_type
= BTRFS_I(inode
)->prop_compress
;
532 * we need to call clear_page_dirty_for_io on each
533 * page in the range. Otherwise applications with the file
534 * mmap'd can wander in and change the page contents while
535 * we are compressing them.
537 * If the compression fails for any reason, we set the pages
538 * dirty again later on.
540 extent_range_clear_dirty_for_io(inode
, start
, end
);
543 /* Compression level is applied here and only here */
544 ret
= btrfs_compress_pages(
545 compress_type
| (fs_info
->compress_level
<< 4),
546 inode
->i_mapping
, start
,
553 unsigned long offset
= total_compressed
&
555 struct page
*page
= pages
[nr_pages
- 1];
558 /* zero the tail end of the last page, we might be
559 * sending it down to disk
562 kaddr
= kmap_atomic(page
);
563 memset(kaddr
+ offset
, 0,
565 kunmap_atomic(kaddr
);
572 /* lets try to make an inline extent */
573 if (ret
|| total_in
< actual_end
) {
574 /* we didn't compress the entire range, try
575 * to make an uncompressed inline extent.
577 ret
= cow_file_range_inline(root
, inode
, start
, end
,
578 0, BTRFS_COMPRESS_NONE
, NULL
);
580 /* try making a compressed inline extent */
581 ret
= cow_file_range_inline(root
, inode
, start
, end
,
583 compress_type
, pages
);
586 unsigned long clear_flags
= EXTENT_DELALLOC
|
587 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
588 EXTENT_DO_ACCOUNTING
;
589 unsigned long page_error_op
;
591 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
594 * inline extent creation worked or returned error,
595 * we don't need to create any more async work items.
596 * Unlock and free up our temp pages.
598 * We use DO_ACCOUNTING here because we need the
599 * delalloc_release_metadata to be done _after_ we drop
600 * our outstanding extent for clearing delalloc for this
603 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
616 * we aren't doing an inline extent round the compressed size
617 * up to a block size boundary so the allocator does sane
620 total_compressed
= ALIGN(total_compressed
, blocksize
);
623 * one last check to make sure the compression is really a
624 * win, compare the page count read with the blocks on disk,
625 * compression must free at least one sector size
627 total_in
= ALIGN(total_in
, PAGE_SIZE
);
628 if (total_compressed
+ blocksize
<= total_in
) {
632 * The async work queues will take care of doing actual
633 * allocation on disk for these compressed pages, and
634 * will submit them to the elevator.
636 add_async_extent(async_cow
, start
, total_in
,
637 total_compressed
, pages
, nr_pages
,
640 if (start
+ total_in
< end
) {
651 * the compression code ran but failed to make things smaller,
652 * free any pages it allocated and our page pointer array
654 for (i
= 0; i
< nr_pages
; i
++) {
655 WARN_ON(pages
[i
]->mapping
);
660 total_compressed
= 0;
663 /* flag the file so we don't compress in the future */
664 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
665 !(BTRFS_I(inode
)->prop_compress
)) {
666 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
669 cleanup_and_bail_uncompressed
:
671 * No compression, but we still need to write the pages in the file
672 * we've been given so far. redirty the locked page if it corresponds
673 * to our extent and set things up for the async work queue to run
674 * cow_file_range to do the normal delalloc dance.
676 if (page_offset(locked_page
) >= start
&&
677 page_offset(locked_page
) <= end
)
678 __set_page_dirty_nobuffers(locked_page
);
679 /* unlocked later on in the async handlers */
682 extent_range_redirty_for_io(inode
, start
, end
);
683 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0,
684 BTRFS_COMPRESS_NONE
);
690 for (i
= 0; i
< nr_pages
; i
++) {
691 WARN_ON(pages
[i
]->mapping
);
697 static void free_async_extent_pages(struct async_extent
*async_extent
)
701 if (!async_extent
->pages
)
704 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
705 WARN_ON(async_extent
->pages
[i
]->mapping
);
706 put_page(async_extent
->pages
[i
]);
708 kfree(async_extent
->pages
);
709 async_extent
->nr_pages
= 0;
710 async_extent
->pages
= NULL
;
714 * phase two of compressed writeback. This is the ordered portion
715 * of the code, which only gets called in the order the work was
716 * queued. We walk all the async extents created by compress_file_range
717 * and send them down to the disk.
719 static noinline
void submit_compressed_extents(struct inode
*inode
,
720 struct async_cow
*async_cow
)
722 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
723 struct async_extent
*async_extent
;
725 struct btrfs_key ins
;
726 struct extent_map
*em
;
727 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
728 struct extent_io_tree
*io_tree
;
732 while (!list_empty(&async_cow
->extents
)) {
733 async_extent
= list_entry(async_cow
->extents
.next
,
734 struct async_extent
, list
);
735 list_del(&async_extent
->list
);
737 io_tree
= &BTRFS_I(inode
)->io_tree
;
740 /* did the compression code fall back to uncompressed IO? */
741 if (!async_extent
->pages
) {
742 int page_started
= 0;
743 unsigned long nr_written
= 0;
745 lock_extent(io_tree
, async_extent
->start
,
746 async_extent
->start
+
747 async_extent
->ram_size
- 1);
749 /* allocate blocks */
750 ret
= cow_file_range(inode
, async_cow
->locked_page
,
752 async_extent
->start
+
753 async_extent
->ram_size
- 1,
754 async_extent
->start
+
755 async_extent
->ram_size
- 1,
756 &page_started
, &nr_written
, 0,
762 * if page_started, cow_file_range inserted an
763 * inline extent and took care of all the unlocking
764 * and IO for us. Otherwise, we need to submit
765 * all those pages down to the drive.
767 if (!page_started
&& !ret
)
768 extent_write_locked_range(io_tree
,
769 inode
, async_extent
->start
,
770 async_extent
->start
+
771 async_extent
->ram_size
- 1,
775 unlock_page(async_cow
->locked_page
);
781 lock_extent(io_tree
, async_extent
->start
,
782 async_extent
->start
+ async_extent
->ram_size
- 1);
784 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
785 async_extent
->compressed_size
,
786 async_extent
->compressed_size
,
787 0, alloc_hint
, &ins
, 1, 1);
789 free_async_extent_pages(async_extent
);
791 if (ret
== -ENOSPC
) {
792 unlock_extent(io_tree
, async_extent
->start
,
793 async_extent
->start
+
794 async_extent
->ram_size
- 1);
797 * we need to redirty the pages if we decide to
798 * fallback to uncompressed IO, otherwise we
799 * will not submit these pages down to lower
802 extent_range_redirty_for_io(inode
,
804 async_extent
->start
+
805 async_extent
->ram_size
- 1);
812 * here we're doing allocation and writeback of the
815 em
= create_io_em(inode
, async_extent
->start
,
816 async_extent
->ram_size
, /* len */
817 async_extent
->start
, /* orig_start */
818 ins
.objectid
, /* block_start */
819 ins
.offset
, /* block_len */
820 ins
.offset
, /* orig_block_len */
821 async_extent
->ram_size
, /* ram_bytes */
822 async_extent
->compress_type
,
823 BTRFS_ORDERED_COMPRESSED
);
825 /* ret value is not necessary due to void function */
826 goto out_free_reserve
;
829 ret
= btrfs_add_ordered_extent_compress(inode
,
832 async_extent
->ram_size
,
834 BTRFS_ORDERED_COMPRESSED
,
835 async_extent
->compress_type
);
837 btrfs_drop_extent_cache(BTRFS_I(inode
),
839 async_extent
->start
+
840 async_extent
->ram_size
- 1, 0);
841 goto out_free_reserve
;
843 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
846 * clear dirty, set writeback and unlock the pages.
848 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
849 async_extent
->start
+
850 async_extent
->ram_size
- 1,
851 async_extent
->start
+
852 async_extent
->ram_size
- 1,
853 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
854 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
856 if (btrfs_submit_compressed_write(inode
,
858 async_extent
->ram_size
,
860 ins
.offset
, async_extent
->pages
,
861 async_extent
->nr_pages
,
862 async_cow
->write_flags
)) {
863 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
864 struct page
*p
= async_extent
->pages
[0];
865 const u64 start
= async_extent
->start
;
866 const u64 end
= start
+ async_extent
->ram_size
- 1;
868 p
->mapping
= inode
->i_mapping
;
869 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
872 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
876 free_async_extent_pages(async_extent
);
878 alloc_hint
= ins
.objectid
+ ins
.offset
;
884 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
885 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
887 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
888 async_extent
->start
+
889 async_extent
->ram_size
- 1,
890 async_extent
->start
+
891 async_extent
->ram_size
- 1,
892 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
893 EXTENT_DELALLOC_NEW
|
894 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
895 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
896 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
898 free_async_extent_pages(async_extent
);
903 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
906 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
907 struct extent_map
*em
;
910 read_lock(&em_tree
->lock
);
911 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
914 * if block start isn't an actual block number then find the
915 * first block in this inode and use that as a hint. If that
916 * block is also bogus then just don't worry about it.
918 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
920 em
= search_extent_mapping(em_tree
, 0, 0);
921 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
922 alloc_hint
= em
->block_start
;
926 alloc_hint
= em
->block_start
;
930 read_unlock(&em_tree
->lock
);
936 * when extent_io.c finds a delayed allocation range in the file,
937 * the call backs end up in this code. The basic idea is to
938 * allocate extents on disk for the range, and create ordered data structs
939 * in ram to track those extents.
941 * locked_page is the page that writepage had locked already. We use
942 * it to make sure we don't do extra locks or unlocks.
944 * *page_started is set to one if we unlock locked_page and do everything
945 * required to start IO on it. It may be clean and already done with
948 static noinline
int cow_file_range(struct inode
*inode
,
949 struct page
*locked_page
,
950 u64 start
, u64 end
, u64 delalloc_end
,
951 int *page_started
, unsigned long *nr_written
,
952 int unlock
, struct btrfs_dedupe_hash
*hash
)
954 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
955 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
958 unsigned long ram_size
;
960 u64 cur_alloc_size
= 0;
961 u64 blocksize
= fs_info
->sectorsize
;
962 struct btrfs_key ins
;
963 struct extent_map
*em
;
965 unsigned long page_ops
;
966 bool extent_reserved
= false;
969 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
975 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
976 num_bytes
= max(blocksize
, num_bytes
);
977 disk_num_bytes
= num_bytes
;
979 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
982 /* lets try to make an inline extent */
983 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0,
984 BTRFS_COMPRESS_NONE
, NULL
);
987 * We use DO_ACCOUNTING here because we need the
988 * delalloc_release_metadata to be run _after_ we drop
989 * our outstanding extent for clearing delalloc for this
992 extent_clear_unlock_delalloc(inode
, start
, end
,
994 EXTENT_LOCKED
| EXTENT_DELALLOC
|
995 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
996 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
997 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
999 *nr_written
= *nr_written
+
1000 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
1003 } else if (ret
< 0) {
1008 BUG_ON(disk_num_bytes
>
1009 btrfs_super_total_bytes(fs_info
->super_copy
));
1011 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
1012 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1013 start
+ num_bytes
- 1, 0);
1015 while (disk_num_bytes
> 0) {
1016 cur_alloc_size
= disk_num_bytes
;
1017 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1018 fs_info
->sectorsize
, 0, alloc_hint
,
1022 cur_alloc_size
= ins
.offset
;
1023 extent_reserved
= true;
1025 ram_size
= ins
.offset
;
1026 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1027 start
, /* orig_start */
1028 ins
.objectid
, /* block_start */
1029 ins
.offset
, /* block_len */
1030 ins
.offset
, /* orig_block_len */
1031 ram_size
, /* ram_bytes */
1032 BTRFS_COMPRESS_NONE
, /* compress_type */
1033 BTRFS_ORDERED_REGULAR
/* type */);
1036 free_extent_map(em
);
1038 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1039 ram_size
, cur_alloc_size
, 0);
1041 goto out_drop_extent_cache
;
1043 if (root
->root_key
.objectid
==
1044 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1045 ret
= btrfs_reloc_clone_csums(inode
, start
,
1048 * Only drop cache here, and process as normal.
1050 * We must not allow extent_clear_unlock_delalloc()
1051 * at out_unlock label to free meta of this ordered
1052 * extent, as its meta should be freed by
1053 * btrfs_finish_ordered_io().
1055 * So we must continue until @start is increased to
1056 * skip current ordered extent.
1059 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1060 start
+ ram_size
- 1, 0);
1063 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1065 /* we're not doing compressed IO, don't unlock the first
1066 * page (which the caller expects to stay locked), don't
1067 * clear any dirty bits and don't set any writeback bits
1069 * Do set the Private2 bit so we know this page was properly
1070 * setup for writepage
1072 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1073 page_ops
|= PAGE_SET_PRIVATE2
;
1075 extent_clear_unlock_delalloc(inode
, start
,
1076 start
+ ram_size
- 1,
1077 delalloc_end
, locked_page
,
1078 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1080 if (disk_num_bytes
< cur_alloc_size
)
1083 disk_num_bytes
-= cur_alloc_size
;
1084 num_bytes
-= cur_alloc_size
;
1085 alloc_hint
= ins
.objectid
+ ins
.offset
;
1086 start
+= cur_alloc_size
;
1087 extent_reserved
= false;
1090 * btrfs_reloc_clone_csums() error, since start is increased
1091 * extent_clear_unlock_delalloc() at out_unlock label won't
1092 * free metadata of current ordered extent, we're OK to exit.
1100 out_drop_extent_cache
:
1101 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1103 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1104 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1106 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1107 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1108 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1111 * If we reserved an extent for our delalloc range (or a subrange) and
1112 * failed to create the respective ordered extent, then it means that
1113 * when we reserved the extent we decremented the extent's size from
1114 * the data space_info's bytes_may_use counter and incremented the
1115 * space_info's bytes_reserved counter by the same amount. We must make
1116 * sure extent_clear_unlock_delalloc() does not try to decrement again
1117 * the data space_info's bytes_may_use counter, therefore we do not pass
1118 * it the flag EXTENT_CLEAR_DATA_RESV.
1120 if (extent_reserved
) {
1121 extent_clear_unlock_delalloc(inode
, start
,
1122 start
+ cur_alloc_size
,
1123 start
+ cur_alloc_size
,
1127 start
+= cur_alloc_size
;
1131 extent_clear_unlock_delalloc(inode
, start
, end
, delalloc_end
,
1133 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1139 * work queue call back to started compression on a file and pages
1141 static noinline
void async_cow_start(struct btrfs_work
*work
)
1143 struct async_cow
*async_cow
;
1145 async_cow
= container_of(work
, struct async_cow
, work
);
1147 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1148 async_cow
->start
, async_cow
->end
, async_cow
,
1150 if (num_added
== 0) {
1151 btrfs_add_delayed_iput(async_cow
->inode
);
1152 async_cow
->inode
= NULL
;
1157 * work queue call back to submit previously compressed pages
1159 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1161 struct btrfs_fs_info
*fs_info
;
1162 struct async_cow
*async_cow
;
1163 struct btrfs_root
*root
;
1164 unsigned long nr_pages
;
1166 async_cow
= container_of(work
, struct async_cow
, work
);
1168 root
= async_cow
->root
;
1169 fs_info
= root
->fs_info
;
1170 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_SIZE
) >>
1174 * atomic_sub_return implies a barrier for waitqueue_active
1176 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1178 waitqueue_active(&fs_info
->async_submit_wait
))
1179 wake_up(&fs_info
->async_submit_wait
);
1181 if (async_cow
->inode
)
1182 submit_compressed_extents(async_cow
->inode
, async_cow
);
1185 static noinline
void async_cow_free(struct btrfs_work
*work
)
1187 struct async_cow
*async_cow
;
1188 async_cow
= container_of(work
, struct async_cow
, work
);
1189 if (async_cow
->inode
)
1190 btrfs_add_delayed_iput(async_cow
->inode
);
1194 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1195 u64 start
, u64 end
, int *page_started
,
1196 unsigned long *nr_written
,
1197 unsigned int write_flags
)
1199 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1200 struct async_cow
*async_cow
;
1201 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1202 unsigned long nr_pages
;
1205 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1206 1, 0, NULL
, GFP_NOFS
);
1207 while (start
< end
) {
1208 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1209 BUG_ON(!async_cow
); /* -ENOMEM */
1210 async_cow
->inode
= igrab(inode
);
1211 async_cow
->root
= root
;
1212 async_cow
->locked_page
= locked_page
;
1213 async_cow
->start
= start
;
1214 async_cow
->write_flags
= write_flags
;
1216 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1217 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
1220 cur_end
= min(end
, start
+ SZ_512K
- 1);
1222 async_cow
->end
= cur_end
;
1223 INIT_LIST_HEAD(&async_cow
->extents
);
1225 btrfs_init_work(&async_cow
->work
,
1226 btrfs_delalloc_helper
,
1227 async_cow_start
, async_cow_submit
,
1230 nr_pages
= (cur_end
- start
+ PAGE_SIZE
) >>
1232 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1234 btrfs_queue_work(fs_info
->delalloc_workers
, &async_cow
->work
);
1236 *nr_written
+= nr_pages
;
1237 start
= cur_end
+ 1;
1243 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1244 u64 bytenr
, u64 num_bytes
)
1247 struct btrfs_ordered_sum
*sums
;
1250 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1251 bytenr
+ num_bytes
- 1, &list
, 0);
1252 if (ret
== 0 && list_empty(&list
))
1255 while (!list_empty(&list
)) {
1256 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1257 list_del(&sums
->list
);
1264 * when nowcow writeback call back. This checks for snapshots or COW copies
1265 * of the extents that exist in the file, and COWs the file as required.
1267 * If no cow copies or snapshots exist, we write directly to the existing
1270 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1271 struct page
*locked_page
,
1272 u64 start
, u64 end
, int *page_started
, int force
,
1273 unsigned long *nr_written
)
1275 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1276 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1277 struct extent_buffer
*leaf
;
1278 struct btrfs_path
*path
;
1279 struct btrfs_file_extent_item
*fi
;
1280 struct btrfs_key found_key
;
1281 struct extent_map
*em
;
1296 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1298 path
= btrfs_alloc_path();
1300 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
1302 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1303 EXTENT_DO_ACCOUNTING
|
1304 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1306 PAGE_SET_WRITEBACK
|
1307 PAGE_END_WRITEBACK
);
1311 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1313 cow_start
= (u64
)-1;
1316 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1320 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1321 leaf
= path
->nodes
[0];
1322 btrfs_item_key_to_cpu(leaf
, &found_key
,
1323 path
->slots
[0] - 1);
1324 if (found_key
.objectid
== ino
&&
1325 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1330 leaf
= path
->nodes
[0];
1331 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1332 ret
= btrfs_next_leaf(root
, path
);
1334 if (cow_start
!= (u64
)-1)
1335 cur_offset
= cow_start
;
1340 leaf
= path
->nodes
[0];
1346 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1348 if (found_key
.objectid
> ino
)
1350 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1351 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1355 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1356 found_key
.offset
> end
)
1359 if (found_key
.offset
> cur_offset
) {
1360 extent_end
= found_key
.offset
;
1365 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1366 struct btrfs_file_extent_item
);
1367 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1369 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1370 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1371 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1372 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1373 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1374 extent_end
= found_key
.offset
+
1375 btrfs_file_extent_num_bytes(leaf
, fi
);
1377 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1378 if (extent_end
<= start
) {
1382 if (disk_bytenr
== 0)
1384 if (btrfs_file_extent_compression(leaf
, fi
) ||
1385 btrfs_file_extent_encryption(leaf
, fi
) ||
1386 btrfs_file_extent_other_encoding(leaf
, fi
))
1388 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1390 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1392 if (btrfs_cross_ref_exist(root
, ino
,
1394 extent_offset
, disk_bytenr
))
1396 disk_bytenr
+= extent_offset
;
1397 disk_bytenr
+= cur_offset
- found_key
.offset
;
1398 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1400 * if there are pending snapshots for this root,
1401 * we fall into common COW way.
1404 err
= btrfs_start_write_no_snapshotting(root
);
1409 * force cow if csum exists in the range.
1410 * this ensure that csum for a given extent are
1411 * either valid or do not exist.
1413 if (csum_exist_in_range(fs_info
, disk_bytenr
,
1416 btrfs_end_write_no_snapshotting(root
);
1419 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
)) {
1421 btrfs_end_write_no_snapshotting(root
);
1425 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1426 extent_end
= found_key
.offset
+
1427 btrfs_file_extent_inline_len(leaf
,
1428 path
->slots
[0], fi
);
1429 extent_end
= ALIGN(extent_end
,
1430 fs_info
->sectorsize
);
1435 if (extent_end
<= start
) {
1437 if (!nolock
&& nocow
)
1438 btrfs_end_write_no_snapshotting(root
);
1440 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1444 if (cow_start
== (u64
)-1)
1445 cow_start
= cur_offset
;
1446 cur_offset
= extent_end
;
1447 if (cur_offset
> end
)
1453 btrfs_release_path(path
);
1454 if (cow_start
!= (u64
)-1) {
1455 ret
= cow_file_range(inode
, locked_page
,
1456 cow_start
, found_key
.offset
- 1,
1457 end
, page_started
, nr_written
, 1,
1460 if (!nolock
&& nocow
)
1461 btrfs_end_write_no_snapshotting(root
);
1463 btrfs_dec_nocow_writers(fs_info
,
1467 cow_start
= (u64
)-1;
1470 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1471 u64 orig_start
= found_key
.offset
- extent_offset
;
1473 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1475 disk_bytenr
, /* block_start */
1476 num_bytes
, /* block_len */
1477 disk_num_bytes
, /* orig_block_len */
1478 ram_bytes
, BTRFS_COMPRESS_NONE
,
1479 BTRFS_ORDERED_PREALLOC
);
1481 if (!nolock
&& nocow
)
1482 btrfs_end_write_no_snapshotting(root
);
1484 btrfs_dec_nocow_writers(fs_info
,
1489 free_extent_map(em
);
1492 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1493 type
= BTRFS_ORDERED_PREALLOC
;
1495 type
= BTRFS_ORDERED_NOCOW
;
1498 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1499 num_bytes
, num_bytes
, type
);
1501 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1502 BUG_ON(ret
); /* -ENOMEM */
1504 if (root
->root_key
.objectid
==
1505 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1507 * Error handled later, as we must prevent
1508 * extent_clear_unlock_delalloc() in error handler
1509 * from freeing metadata of created ordered extent.
1511 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1514 extent_clear_unlock_delalloc(inode
, cur_offset
,
1515 cur_offset
+ num_bytes
- 1, end
,
1516 locked_page
, EXTENT_LOCKED
|
1518 EXTENT_CLEAR_DATA_RESV
,
1519 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1521 if (!nolock
&& nocow
)
1522 btrfs_end_write_no_snapshotting(root
);
1523 cur_offset
= extent_end
;
1526 * btrfs_reloc_clone_csums() error, now we're OK to call error
1527 * handler, as metadata for created ordered extent will only
1528 * be freed by btrfs_finish_ordered_io().
1532 if (cur_offset
> end
)
1535 btrfs_release_path(path
);
1537 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1538 cow_start
= cur_offset
;
1542 if (cow_start
!= (u64
)-1) {
1543 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
, end
,
1544 page_started
, nr_written
, 1, NULL
);
1550 if (ret
&& cur_offset
< end
)
1551 extent_clear_unlock_delalloc(inode
, cur_offset
, end
, end
,
1552 locked_page
, EXTENT_LOCKED
|
1553 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1554 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1556 PAGE_SET_WRITEBACK
|
1557 PAGE_END_WRITEBACK
);
1558 btrfs_free_path(path
);
1562 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1565 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1566 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1570 * @defrag_bytes is a hint value, no spinlock held here,
1571 * if is not zero, it means the file is defragging.
1572 * Force cow if given extent needs to be defragged.
1574 if (BTRFS_I(inode
)->defrag_bytes
&&
1575 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1576 EXTENT_DEFRAG
, 0, NULL
))
1583 * extent_io.c call back to do delayed allocation processing
1585 static int run_delalloc_range(void *private_data
, struct page
*locked_page
,
1586 u64 start
, u64 end
, int *page_started
,
1587 unsigned long *nr_written
,
1588 struct writeback_control
*wbc
)
1590 struct inode
*inode
= private_data
;
1592 int force_cow
= need_force_cow(inode
, start
, end
);
1593 unsigned int write_flags
= wbc_to_write_flags(wbc
);
1595 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1596 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1597 page_started
, 1, nr_written
);
1598 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1599 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1600 page_started
, 0, nr_written
);
1601 } else if (!inode_need_compress(inode
, start
, end
)) {
1602 ret
= cow_file_range(inode
, locked_page
, start
, end
, end
,
1603 page_started
, nr_written
, 1, NULL
);
1605 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1606 &BTRFS_I(inode
)->runtime_flags
);
1607 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1608 page_started
, nr_written
,
1612 btrfs_cleanup_ordered_extents(inode
, start
, end
- start
+ 1);
1616 static void btrfs_split_extent_hook(void *private_data
,
1617 struct extent_state
*orig
, u64 split
)
1619 struct inode
*inode
= private_data
;
1622 /* not delalloc, ignore it */
1623 if (!(orig
->state
& EXTENT_DELALLOC
))
1626 size
= orig
->end
- orig
->start
+ 1;
1627 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1632 * See the explanation in btrfs_merge_extent_hook, the same
1633 * applies here, just in reverse.
1635 new_size
= orig
->end
- split
+ 1;
1636 num_extents
= count_max_extents(new_size
);
1637 new_size
= split
- orig
->start
;
1638 num_extents
+= count_max_extents(new_size
);
1639 if (count_max_extents(size
) >= num_extents
)
1643 spin_lock(&BTRFS_I(inode
)->lock
);
1644 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1645 spin_unlock(&BTRFS_I(inode
)->lock
);
1649 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1650 * extents so we can keep track of new extents that are just merged onto old
1651 * extents, such as when we are doing sequential writes, so we can properly
1652 * account for the metadata space we'll need.
1654 static void btrfs_merge_extent_hook(void *private_data
,
1655 struct extent_state
*new,
1656 struct extent_state
*other
)
1658 struct inode
*inode
= private_data
;
1659 u64 new_size
, old_size
;
1662 /* not delalloc, ignore it */
1663 if (!(other
->state
& EXTENT_DELALLOC
))
1666 if (new->start
> other
->start
)
1667 new_size
= new->end
- other
->start
+ 1;
1669 new_size
= other
->end
- new->start
+ 1;
1671 /* we're not bigger than the max, unreserve the space and go */
1672 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1673 spin_lock(&BTRFS_I(inode
)->lock
);
1674 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1675 spin_unlock(&BTRFS_I(inode
)->lock
);
1680 * We have to add up either side to figure out how many extents were
1681 * accounted for before we merged into one big extent. If the number of
1682 * extents we accounted for is <= the amount we need for the new range
1683 * then we can return, otherwise drop. Think of it like this
1687 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1688 * need 2 outstanding extents, on one side we have 1 and the other side
1689 * we have 1 so they are == and we can return. But in this case
1691 * [MAX_SIZE+4k][MAX_SIZE+4k]
1693 * Each range on their own accounts for 2 extents, but merged together
1694 * they are only 3 extents worth of accounting, so we need to drop in
1697 old_size
= other
->end
- other
->start
+ 1;
1698 num_extents
= count_max_extents(old_size
);
1699 old_size
= new->end
- new->start
+ 1;
1700 num_extents
+= count_max_extents(old_size
);
1701 if (count_max_extents(new_size
) >= num_extents
)
1704 spin_lock(&BTRFS_I(inode
)->lock
);
1705 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1706 spin_unlock(&BTRFS_I(inode
)->lock
);
1709 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1710 struct inode
*inode
)
1712 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1714 spin_lock(&root
->delalloc_lock
);
1715 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1716 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1717 &root
->delalloc_inodes
);
1718 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1719 &BTRFS_I(inode
)->runtime_flags
);
1720 root
->nr_delalloc_inodes
++;
1721 if (root
->nr_delalloc_inodes
== 1) {
1722 spin_lock(&fs_info
->delalloc_root_lock
);
1723 BUG_ON(!list_empty(&root
->delalloc_root
));
1724 list_add_tail(&root
->delalloc_root
,
1725 &fs_info
->delalloc_roots
);
1726 spin_unlock(&fs_info
->delalloc_root_lock
);
1729 spin_unlock(&root
->delalloc_lock
);
1732 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1733 struct btrfs_inode
*inode
)
1735 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1737 spin_lock(&root
->delalloc_lock
);
1738 if (!list_empty(&inode
->delalloc_inodes
)) {
1739 list_del_init(&inode
->delalloc_inodes
);
1740 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1741 &inode
->runtime_flags
);
1742 root
->nr_delalloc_inodes
--;
1743 if (!root
->nr_delalloc_inodes
) {
1744 spin_lock(&fs_info
->delalloc_root_lock
);
1745 BUG_ON(list_empty(&root
->delalloc_root
));
1746 list_del_init(&root
->delalloc_root
);
1747 spin_unlock(&fs_info
->delalloc_root_lock
);
1750 spin_unlock(&root
->delalloc_lock
);
1754 * extent_io.c set_bit_hook, used to track delayed allocation
1755 * bytes in this file, and to maintain the list of inodes that
1756 * have pending delalloc work to be done.
1758 static void btrfs_set_bit_hook(void *private_data
,
1759 struct extent_state
*state
, unsigned *bits
)
1761 struct inode
*inode
= private_data
;
1763 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1765 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1768 * set_bit and clear bit hooks normally require _irqsave/restore
1769 * but in this case, we are only testing for the DELALLOC
1770 * bit, which is only set or cleared with irqs on
1772 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1773 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1774 u64 len
= state
->end
+ 1 - state
->start
;
1775 u32 num_extents
= count_max_extents(len
);
1776 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
1778 spin_lock(&BTRFS_I(inode
)->lock
);
1779 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
1780 spin_unlock(&BTRFS_I(inode
)->lock
);
1782 /* For sanity tests */
1783 if (btrfs_is_testing(fs_info
))
1786 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
1787 fs_info
->delalloc_batch
);
1788 spin_lock(&BTRFS_I(inode
)->lock
);
1789 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1790 if (*bits
& EXTENT_DEFRAG
)
1791 BTRFS_I(inode
)->defrag_bytes
+= len
;
1792 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1793 &BTRFS_I(inode
)->runtime_flags
))
1794 btrfs_add_delalloc_inodes(root
, inode
);
1795 spin_unlock(&BTRFS_I(inode
)->lock
);
1798 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
1799 (*bits
& EXTENT_DELALLOC_NEW
)) {
1800 spin_lock(&BTRFS_I(inode
)->lock
);
1801 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
1803 spin_unlock(&BTRFS_I(inode
)->lock
);
1808 * extent_io.c clear_bit_hook, see set_bit_hook for why
1810 static void btrfs_clear_bit_hook(void *private_data
,
1811 struct extent_state
*state
,
1814 struct btrfs_inode
*inode
= BTRFS_I((struct inode
*)private_data
);
1815 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1816 u64 len
= state
->end
+ 1 - state
->start
;
1817 u32 num_extents
= count_max_extents(len
);
1819 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
1820 spin_lock(&inode
->lock
);
1821 inode
->defrag_bytes
-= len
;
1822 spin_unlock(&inode
->lock
);
1826 * set_bit and clear bit hooks normally require _irqsave/restore
1827 * but in this case, we are only testing for the DELALLOC
1828 * bit, which is only set or cleared with irqs on
1830 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1831 struct btrfs_root
*root
= inode
->root
;
1832 bool do_list
= !btrfs_is_free_space_inode(inode
);
1834 spin_lock(&inode
->lock
);
1835 btrfs_mod_outstanding_extents(inode
, -num_extents
);
1836 spin_unlock(&inode
->lock
);
1839 * We don't reserve metadata space for space cache inodes so we
1840 * don't need to call dellalloc_release_metadata if there is an
1843 if (*bits
& EXTENT_CLEAR_META_RESV
&&
1844 root
!= fs_info
->tree_root
)
1845 btrfs_delalloc_release_metadata(inode
, len
);
1847 /* For sanity tests. */
1848 if (btrfs_is_testing(fs_info
))
1851 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1852 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
1853 (*bits
& EXTENT_CLEAR_DATA_RESV
))
1854 btrfs_free_reserved_data_space_noquota(
1858 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
1859 fs_info
->delalloc_batch
);
1860 spin_lock(&inode
->lock
);
1861 inode
->delalloc_bytes
-= len
;
1862 if (do_list
&& inode
->delalloc_bytes
== 0 &&
1863 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1864 &inode
->runtime_flags
))
1865 btrfs_del_delalloc_inode(root
, inode
);
1866 spin_unlock(&inode
->lock
);
1869 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
1870 (*bits
& EXTENT_DELALLOC_NEW
)) {
1871 spin_lock(&inode
->lock
);
1872 ASSERT(inode
->new_delalloc_bytes
>= len
);
1873 inode
->new_delalloc_bytes
-= len
;
1874 spin_unlock(&inode
->lock
);
1879 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1880 * we don't create bios that span stripes or chunks
1882 * return 1 if page cannot be merged to bio
1883 * return 0 if page can be merged to bio
1884 * return error otherwise
1886 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1887 size_t size
, struct bio
*bio
,
1888 unsigned long bio_flags
)
1890 struct inode
*inode
= page
->mapping
->host
;
1891 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1892 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1897 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1900 length
= bio
->bi_iter
.bi_size
;
1901 map_length
= length
;
1902 ret
= btrfs_map_block(fs_info
, btrfs_op(bio
), logical
, &map_length
,
1906 if (map_length
< length
+ size
)
1912 * in order to insert checksums into the metadata in large chunks,
1913 * we wait until bio submission time. All the pages in the bio are
1914 * checksummed and sums are attached onto the ordered extent record.
1916 * At IO completion time the cums attached on the ordered extent record
1917 * are inserted into the btree
1919 static blk_status_t
__btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
1920 int mirror_num
, unsigned long bio_flags
,
1923 struct inode
*inode
= private_data
;
1924 blk_status_t ret
= 0;
1926 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
1927 BUG_ON(ret
); /* -ENOMEM */
1932 * in order to insert checksums into the metadata in large chunks,
1933 * we wait until bio submission time. All the pages in the bio are
1934 * checksummed and sums are attached onto the ordered extent record.
1936 * At IO completion time the cums attached on the ordered extent record
1937 * are inserted into the btree
1939 static blk_status_t
__btrfs_submit_bio_done(void *private_data
, struct bio
*bio
,
1940 int mirror_num
, unsigned long bio_flags
,
1943 struct inode
*inode
= private_data
;
1944 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1947 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 1);
1949 bio
->bi_status
= ret
;
1956 * extent_io.c submission hook. This does the right thing for csum calculation
1957 * on write, or reading the csums from the tree before a read
1959 static blk_status_t
btrfs_submit_bio_hook(void *private_data
, struct bio
*bio
,
1960 int mirror_num
, unsigned long bio_flags
,
1963 struct inode
*inode
= private_data
;
1964 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1965 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1966 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
1967 blk_status_t ret
= 0;
1969 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1971 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1973 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
1974 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
1976 if (bio_op(bio
) != REQ_OP_WRITE
) {
1977 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
1981 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1982 ret
= btrfs_submit_compressed_read(inode
, bio
,
1986 } else if (!skip_sum
) {
1987 ret
= btrfs_lookup_bio_sums(inode
, bio
, NULL
);
1992 } else if (async
&& !skip_sum
) {
1993 /* csum items have already been cloned */
1994 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1996 /* we're doing a write, do the async checksumming */
1997 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
1999 __btrfs_submit_bio_start
,
2000 __btrfs_submit_bio_done
);
2002 } else if (!skip_sum
) {
2003 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2009 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
2013 bio
->bi_status
= ret
;
2020 * given a list of ordered sums record them in the inode. This happens
2021 * at IO completion time based on sums calculated at bio submission time.
2023 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2024 struct inode
*inode
, struct list_head
*list
)
2026 struct btrfs_ordered_sum
*sum
;
2028 list_for_each_entry(sum
, list
, list
) {
2029 trans
->adding_csums
= 1;
2030 btrfs_csum_file_blocks(trans
,
2031 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2032 trans
->adding_csums
= 0;
2037 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2038 unsigned int extra_bits
,
2039 struct extent_state
**cached_state
, int dedupe
)
2041 WARN_ON((end
& (PAGE_SIZE
- 1)) == 0);
2042 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2043 extra_bits
, cached_state
);
2046 /* see btrfs_writepage_start_hook for details on why this is required */
2047 struct btrfs_writepage_fixup
{
2049 struct btrfs_work work
;
2052 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2054 struct btrfs_writepage_fixup
*fixup
;
2055 struct btrfs_ordered_extent
*ordered
;
2056 struct extent_state
*cached_state
= NULL
;
2057 struct extent_changeset
*data_reserved
= NULL
;
2059 struct inode
*inode
;
2064 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2068 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2069 ClearPageChecked(page
);
2073 inode
= page
->mapping
->host
;
2074 page_start
= page_offset(page
);
2075 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2077 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2080 /* already ordered? We're done */
2081 if (PagePrivate2(page
))
2084 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2087 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2088 page_end
, &cached_state
, GFP_NOFS
);
2090 btrfs_start_ordered_extent(inode
, ordered
, 1);
2091 btrfs_put_ordered_extent(ordered
);
2095 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2098 mapping_set_error(page
->mapping
, ret
);
2099 end_extent_writepage(page
, ret
, page_start
, page_end
);
2100 ClearPageChecked(page
);
2104 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2107 mapping_set_error(page
->mapping
, ret
);
2108 end_extent_writepage(page
, ret
, page_start
, page_end
);
2109 ClearPageChecked(page
);
2113 ClearPageChecked(page
);
2114 set_page_dirty(page
);
2115 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
2117 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2118 &cached_state
, GFP_NOFS
);
2123 extent_changeset_free(data_reserved
);
2127 * There are a few paths in the higher layers of the kernel that directly
2128 * set the page dirty bit without asking the filesystem if it is a
2129 * good idea. This causes problems because we want to make sure COW
2130 * properly happens and the data=ordered rules are followed.
2132 * In our case any range that doesn't have the ORDERED bit set
2133 * hasn't been properly setup for IO. We kick off an async process
2134 * to fix it up. The async helper will wait for ordered extents, set
2135 * the delalloc bit and make it safe to write the page.
2137 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2139 struct inode
*inode
= page
->mapping
->host
;
2140 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2141 struct btrfs_writepage_fixup
*fixup
;
2143 /* this page is properly in the ordered list */
2144 if (TestClearPagePrivate2(page
))
2147 if (PageChecked(page
))
2150 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2154 SetPageChecked(page
);
2156 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2157 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2159 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2163 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2164 struct inode
*inode
, u64 file_pos
,
2165 u64 disk_bytenr
, u64 disk_num_bytes
,
2166 u64 num_bytes
, u64 ram_bytes
,
2167 u8 compression
, u8 encryption
,
2168 u16 other_encoding
, int extent_type
)
2170 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2171 struct btrfs_file_extent_item
*fi
;
2172 struct btrfs_path
*path
;
2173 struct extent_buffer
*leaf
;
2174 struct btrfs_key ins
;
2176 int extent_inserted
= 0;
2179 path
= btrfs_alloc_path();
2184 * we may be replacing one extent in the tree with another.
2185 * The new extent is pinned in the extent map, and we don't want
2186 * to drop it from the cache until it is completely in the btree.
2188 * So, tell btrfs_drop_extents to leave this extent in the cache.
2189 * the caller is expected to unpin it and allow it to be merged
2192 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2193 file_pos
+ num_bytes
, NULL
, 0,
2194 1, sizeof(*fi
), &extent_inserted
);
2198 if (!extent_inserted
) {
2199 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2200 ins
.offset
= file_pos
;
2201 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2203 path
->leave_spinning
= 1;
2204 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2209 leaf
= path
->nodes
[0];
2210 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2211 struct btrfs_file_extent_item
);
2212 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2213 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2214 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2215 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2216 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2217 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2218 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2219 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2220 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2221 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2223 btrfs_mark_buffer_dirty(leaf
);
2224 btrfs_release_path(path
);
2226 inode_add_bytes(inode
, num_bytes
);
2228 ins
.objectid
= disk_bytenr
;
2229 ins
.offset
= disk_num_bytes
;
2230 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2233 * Release the reserved range from inode dirty range map, as it is
2234 * already moved into delayed_ref_head
2236 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2240 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2241 btrfs_ino(BTRFS_I(inode
)),
2242 file_pos
, qg_released
, &ins
);
2244 btrfs_free_path(path
);
2249 /* snapshot-aware defrag */
2250 struct sa_defrag_extent_backref
{
2251 struct rb_node node
;
2252 struct old_sa_defrag_extent
*old
;
2261 struct old_sa_defrag_extent
{
2262 struct list_head list
;
2263 struct new_sa_defrag_extent
*new;
2272 struct new_sa_defrag_extent
{
2273 struct rb_root root
;
2274 struct list_head head
;
2275 struct btrfs_path
*path
;
2276 struct inode
*inode
;
2284 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2285 struct sa_defrag_extent_backref
*b2
)
2287 if (b1
->root_id
< b2
->root_id
)
2289 else if (b1
->root_id
> b2
->root_id
)
2292 if (b1
->inum
< b2
->inum
)
2294 else if (b1
->inum
> b2
->inum
)
2297 if (b1
->file_pos
< b2
->file_pos
)
2299 else if (b1
->file_pos
> b2
->file_pos
)
2303 * [------------------------------] ===> (a range of space)
2304 * |<--->| |<---->| =============> (fs/file tree A)
2305 * |<---------------------------->| ===> (fs/file tree B)
2307 * A range of space can refer to two file extents in one tree while
2308 * refer to only one file extent in another tree.
2310 * So we may process a disk offset more than one time(two extents in A)
2311 * and locate at the same extent(one extent in B), then insert two same
2312 * backrefs(both refer to the extent in B).
2317 static void backref_insert(struct rb_root
*root
,
2318 struct sa_defrag_extent_backref
*backref
)
2320 struct rb_node
**p
= &root
->rb_node
;
2321 struct rb_node
*parent
= NULL
;
2322 struct sa_defrag_extent_backref
*entry
;
2327 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2329 ret
= backref_comp(backref
, entry
);
2333 p
= &(*p
)->rb_right
;
2336 rb_link_node(&backref
->node
, parent
, p
);
2337 rb_insert_color(&backref
->node
, root
);
2341 * Note the backref might has changed, and in this case we just return 0.
2343 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2346 struct btrfs_file_extent_item
*extent
;
2347 struct old_sa_defrag_extent
*old
= ctx
;
2348 struct new_sa_defrag_extent
*new = old
->new;
2349 struct btrfs_path
*path
= new->path
;
2350 struct btrfs_key key
;
2351 struct btrfs_root
*root
;
2352 struct sa_defrag_extent_backref
*backref
;
2353 struct extent_buffer
*leaf
;
2354 struct inode
*inode
= new->inode
;
2355 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2361 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2362 inum
== btrfs_ino(BTRFS_I(inode
)))
2365 key
.objectid
= root_id
;
2366 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2367 key
.offset
= (u64
)-1;
2369 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2371 if (PTR_ERR(root
) == -ENOENT
)
2374 btrfs_debug(fs_info
, "inum=%llu, offset=%llu, root_id=%llu",
2375 inum
, offset
, root_id
);
2376 return PTR_ERR(root
);
2379 key
.objectid
= inum
;
2380 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2381 if (offset
> (u64
)-1 << 32)
2384 key
.offset
= offset
;
2386 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2387 if (WARN_ON(ret
< 0))
2394 leaf
= path
->nodes
[0];
2395 slot
= path
->slots
[0];
2397 if (slot
>= btrfs_header_nritems(leaf
)) {
2398 ret
= btrfs_next_leaf(root
, path
);
2401 } else if (ret
> 0) {
2410 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2412 if (key
.objectid
> inum
)
2415 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2418 extent
= btrfs_item_ptr(leaf
, slot
,
2419 struct btrfs_file_extent_item
);
2421 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2425 * 'offset' refers to the exact key.offset,
2426 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2427 * (key.offset - extent_offset).
2429 if (key
.offset
!= offset
)
2432 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2433 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2435 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2436 old
->len
|| extent_offset
+ num_bytes
<=
2437 old
->extent_offset
+ old
->offset
)
2442 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2448 backref
->root_id
= root_id
;
2449 backref
->inum
= inum
;
2450 backref
->file_pos
= offset
;
2451 backref
->num_bytes
= num_bytes
;
2452 backref
->extent_offset
= extent_offset
;
2453 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2455 backref_insert(&new->root
, backref
);
2458 btrfs_release_path(path
);
2463 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2464 struct new_sa_defrag_extent
*new)
2466 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2467 struct old_sa_defrag_extent
*old
, *tmp
;
2472 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2473 ret
= iterate_inodes_from_logical(old
->bytenr
+
2474 old
->extent_offset
, fs_info
,
2475 path
, record_one_backref
,
2477 if (ret
< 0 && ret
!= -ENOENT
)
2480 /* no backref to be processed for this extent */
2482 list_del(&old
->list
);
2487 if (list_empty(&new->head
))
2493 static int relink_is_mergable(struct extent_buffer
*leaf
,
2494 struct btrfs_file_extent_item
*fi
,
2495 struct new_sa_defrag_extent
*new)
2497 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2500 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2503 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2506 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2507 btrfs_file_extent_other_encoding(leaf
, fi
))
2514 * Note the backref might has changed, and in this case we just return 0.
2516 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2517 struct sa_defrag_extent_backref
*prev
,
2518 struct sa_defrag_extent_backref
*backref
)
2520 struct btrfs_file_extent_item
*extent
;
2521 struct btrfs_file_extent_item
*item
;
2522 struct btrfs_ordered_extent
*ordered
;
2523 struct btrfs_trans_handle
*trans
;
2524 struct btrfs_root
*root
;
2525 struct btrfs_key key
;
2526 struct extent_buffer
*leaf
;
2527 struct old_sa_defrag_extent
*old
= backref
->old
;
2528 struct new_sa_defrag_extent
*new = old
->new;
2529 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2530 struct inode
*inode
;
2531 struct extent_state
*cached
= NULL
;
2540 if (prev
&& prev
->root_id
== backref
->root_id
&&
2541 prev
->inum
== backref
->inum
&&
2542 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2545 /* step 1: get root */
2546 key
.objectid
= backref
->root_id
;
2547 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2548 key
.offset
= (u64
)-1;
2550 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2552 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2554 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2555 if (PTR_ERR(root
) == -ENOENT
)
2557 return PTR_ERR(root
);
2560 if (btrfs_root_readonly(root
)) {
2561 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2565 /* step 2: get inode */
2566 key
.objectid
= backref
->inum
;
2567 key
.type
= BTRFS_INODE_ITEM_KEY
;
2570 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2571 if (IS_ERR(inode
)) {
2572 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2576 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2578 /* step 3: relink backref */
2579 lock_start
= backref
->file_pos
;
2580 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2581 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2584 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2586 btrfs_put_ordered_extent(ordered
);
2590 trans
= btrfs_join_transaction(root
);
2591 if (IS_ERR(trans
)) {
2592 ret
= PTR_ERR(trans
);
2596 key
.objectid
= backref
->inum
;
2597 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2598 key
.offset
= backref
->file_pos
;
2600 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2603 } else if (ret
> 0) {
2608 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2609 struct btrfs_file_extent_item
);
2611 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2612 backref
->generation
)
2615 btrfs_release_path(path
);
2617 start
= backref
->file_pos
;
2618 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2619 start
+= old
->extent_offset
+ old
->offset
-
2620 backref
->extent_offset
;
2622 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2623 old
->extent_offset
+ old
->offset
+ old
->len
);
2624 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2626 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2631 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2632 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2635 path
->leave_spinning
= 1;
2637 struct btrfs_file_extent_item
*fi
;
2639 struct btrfs_key found_key
;
2641 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2646 leaf
= path
->nodes
[0];
2647 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2649 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2650 struct btrfs_file_extent_item
);
2651 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2653 if (extent_len
+ found_key
.offset
== start
&&
2654 relink_is_mergable(leaf
, fi
, new)) {
2655 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2657 btrfs_mark_buffer_dirty(leaf
);
2658 inode_add_bytes(inode
, len
);
2664 btrfs_release_path(path
);
2669 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2672 btrfs_abort_transaction(trans
, ret
);
2676 leaf
= path
->nodes
[0];
2677 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2678 struct btrfs_file_extent_item
);
2679 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2680 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2681 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2682 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2683 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2684 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2685 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2686 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2687 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2688 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2690 btrfs_mark_buffer_dirty(leaf
);
2691 inode_add_bytes(inode
, len
);
2692 btrfs_release_path(path
);
2694 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2696 backref
->root_id
, backref
->inum
,
2697 new->file_pos
); /* start - extent_offset */
2699 btrfs_abort_transaction(trans
, ret
);
2705 btrfs_release_path(path
);
2706 path
->leave_spinning
= 0;
2707 btrfs_end_transaction(trans
);
2709 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2715 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2717 struct old_sa_defrag_extent
*old
, *tmp
;
2722 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2728 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2730 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2731 struct btrfs_path
*path
;
2732 struct sa_defrag_extent_backref
*backref
;
2733 struct sa_defrag_extent_backref
*prev
= NULL
;
2734 struct inode
*inode
;
2735 struct btrfs_root
*root
;
2736 struct rb_node
*node
;
2740 root
= BTRFS_I(inode
)->root
;
2742 path
= btrfs_alloc_path();
2746 if (!record_extent_backrefs(path
, new)) {
2747 btrfs_free_path(path
);
2750 btrfs_release_path(path
);
2753 node
= rb_first(&new->root
);
2756 rb_erase(node
, &new->root
);
2758 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2760 ret
= relink_extent_backref(path
, prev
, backref
);
2773 btrfs_free_path(path
);
2775 free_sa_defrag_extent(new);
2777 atomic_dec(&fs_info
->defrag_running
);
2778 wake_up(&fs_info
->transaction_wait
);
2781 static struct new_sa_defrag_extent
*
2782 record_old_file_extents(struct inode
*inode
,
2783 struct btrfs_ordered_extent
*ordered
)
2785 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2786 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2787 struct btrfs_path
*path
;
2788 struct btrfs_key key
;
2789 struct old_sa_defrag_extent
*old
;
2790 struct new_sa_defrag_extent
*new;
2793 new = kmalloc(sizeof(*new), GFP_NOFS
);
2798 new->file_pos
= ordered
->file_offset
;
2799 new->len
= ordered
->len
;
2800 new->bytenr
= ordered
->start
;
2801 new->disk_len
= ordered
->disk_len
;
2802 new->compress_type
= ordered
->compress_type
;
2803 new->root
= RB_ROOT
;
2804 INIT_LIST_HEAD(&new->head
);
2806 path
= btrfs_alloc_path();
2810 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2811 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2812 key
.offset
= new->file_pos
;
2814 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2817 if (ret
> 0 && path
->slots
[0] > 0)
2820 /* find out all the old extents for the file range */
2822 struct btrfs_file_extent_item
*extent
;
2823 struct extent_buffer
*l
;
2832 slot
= path
->slots
[0];
2834 if (slot
>= btrfs_header_nritems(l
)) {
2835 ret
= btrfs_next_leaf(root
, path
);
2843 btrfs_item_key_to_cpu(l
, &key
, slot
);
2845 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
2847 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2849 if (key
.offset
>= new->file_pos
+ new->len
)
2852 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2854 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2855 if (key
.offset
+ num_bytes
< new->file_pos
)
2858 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2862 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2864 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2868 offset
= max(new->file_pos
, key
.offset
);
2869 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2871 old
->bytenr
= disk_bytenr
;
2872 old
->extent_offset
= extent_offset
;
2873 old
->offset
= offset
- key
.offset
;
2874 old
->len
= end
- offset
;
2877 list_add_tail(&old
->list
, &new->head
);
2883 btrfs_free_path(path
);
2884 atomic_inc(&fs_info
->defrag_running
);
2889 btrfs_free_path(path
);
2891 free_sa_defrag_extent(new);
2895 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2898 struct btrfs_block_group_cache
*cache
;
2900 cache
= btrfs_lookup_block_group(fs_info
, start
);
2903 spin_lock(&cache
->lock
);
2904 cache
->delalloc_bytes
-= len
;
2905 spin_unlock(&cache
->lock
);
2907 btrfs_put_block_group(cache
);
2910 /* as ordered data IO finishes, this gets called so we can finish
2911 * an ordered extent if the range of bytes in the file it covers are
2914 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2916 struct inode
*inode
= ordered_extent
->inode
;
2917 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2918 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2919 struct btrfs_trans_handle
*trans
= NULL
;
2920 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2921 struct extent_state
*cached_state
= NULL
;
2922 struct new_sa_defrag_extent
*new = NULL
;
2923 int compress_type
= 0;
2925 u64 logical_len
= ordered_extent
->len
;
2927 bool truncated
= false;
2928 bool range_locked
= false;
2929 bool clear_new_delalloc_bytes
= false;
2931 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2932 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2933 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2934 clear_new_delalloc_bytes
= true;
2936 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
2938 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2943 btrfs_free_io_failure_record(BTRFS_I(inode
),
2944 ordered_extent
->file_offset
,
2945 ordered_extent
->file_offset
+
2946 ordered_extent
->len
- 1);
2948 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2950 logical_len
= ordered_extent
->truncated_len
;
2951 /* Truncated the entire extent, don't bother adding */
2956 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2957 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2960 * For mwrite(mmap + memset to write) case, we still reserve
2961 * space for NOCOW range.
2962 * As NOCOW won't cause a new delayed ref, just free the space
2964 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
2965 ordered_extent
->len
);
2966 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2968 trans
= btrfs_join_transaction_nolock(root
);
2970 trans
= btrfs_join_transaction(root
);
2971 if (IS_ERR(trans
)) {
2972 ret
= PTR_ERR(trans
);
2976 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
2977 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2978 if (ret
) /* -ENOMEM or corruption */
2979 btrfs_abort_transaction(trans
, ret
);
2983 range_locked
= true;
2984 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2985 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2988 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
2989 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2990 EXTENT_DEFRAG
, 0, cached_state
);
2992 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
2993 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
2994 /* the inode is shared */
2995 new = record_old_file_extents(inode
, ordered_extent
);
2997 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
2998 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2999 EXTENT_DEFRAG
, 0, 0, &cached_state
, GFP_NOFS
);
3003 trans
= btrfs_join_transaction_nolock(root
);
3005 trans
= btrfs_join_transaction(root
);
3006 if (IS_ERR(trans
)) {
3007 ret
= PTR_ERR(trans
);
3012 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
3014 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
3015 compress_type
= ordered_extent
->compress_type
;
3016 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
3017 BUG_ON(compress_type
);
3018 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
3019 ordered_extent
->len
);
3020 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
3021 ordered_extent
->file_offset
,
3022 ordered_extent
->file_offset
+
3025 BUG_ON(root
== fs_info
->tree_root
);
3026 ret
= insert_reserved_file_extent(trans
, inode
,
3027 ordered_extent
->file_offset
,
3028 ordered_extent
->start
,
3029 ordered_extent
->disk_len
,
3030 logical_len
, logical_len
,
3031 compress_type
, 0, 0,
3032 BTRFS_FILE_EXTENT_REG
);
3034 btrfs_release_delalloc_bytes(fs_info
,
3035 ordered_extent
->start
,
3036 ordered_extent
->disk_len
);
3038 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
3039 ordered_extent
->file_offset
, ordered_extent
->len
,
3042 btrfs_abort_transaction(trans
, ret
);
3046 add_pending_csums(trans
, inode
, &ordered_extent
->list
);
3048 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3049 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3050 if (ret
) { /* -ENOMEM or corruption */
3051 btrfs_abort_transaction(trans
, ret
);
3056 if (range_locked
|| clear_new_delalloc_bytes
) {
3057 unsigned int clear_bits
= 0;
3060 clear_bits
|= EXTENT_LOCKED
;
3061 if (clear_new_delalloc_bytes
)
3062 clear_bits
|= EXTENT_DELALLOC_NEW
;
3063 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
3064 ordered_extent
->file_offset
,
3065 ordered_extent
->file_offset
+
3066 ordered_extent
->len
- 1,
3068 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0,
3069 0, &cached_state
, GFP_NOFS
);
3073 btrfs_end_transaction(trans
);
3075 if (ret
|| truncated
) {
3079 start
= ordered_extent
->file_offset
+ logical_len
;
3081 start
= ordered_extent
->file_offset
;
3082 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
3083 clear_extent_uptodate(io_tree
, start
, end
, NULL
, GFP_NOFS
);
3085 /* Drop the cache for the part of the extent we didn't write. */
3086 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
3089 * If the ordered extent had an IOERR or something else went
3090 * wrong we need to return the space for this ordered extent
3091 * back to the allocator. We only free the extent in the
3092 * truncated case if we didn't write out the extent at all.
3094 if ((ret
|| !logical_len
) &&
3095 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3096 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3097 btrfs_free_reserved_extent(fs_info
,
3098 ordered_extent
->start
,
3099 ordered_extent
->disk_len
, 1);
3104 * This needs to be done to make sure anybody waiting knows we are done
3105 * updating everything for this ordered extent.
3107 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3109 /* for snapshot-aware defrag */
3112 free_sa_defrag_extent(new);
3113 atomic_dec(&fs_info
->defrag_running
);
3115 relink_file_extents(new);
3120 btrfs_put_ordered_extent(ordered_extent
);
3121 /* once for the tree */
3122 btrfs_put_ordered_extent(ordered_extent
);
3127 static void finish_ordered_fn(struct btrfs_work
*work
)
3129 struct btrfs_ordered_extent
*ordered_extent
;
3130 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3131 btrfs_finish_ordered_io(ordered_extent
);
3134 static void btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
3135 struct extent_state
*state
, int uptodate
)
3137 struct inode
*inode
= page
->mapping
->host
;
3138 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3139 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3140 struct btrfs_workqueue
*wq
;
3141 btrfs_work_func_t func
;
3143 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3145 ClearPagePrivate2(page
);
3146 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3147 end
- start
+ 1, uptodate
))
3150 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
3151 wq
= fs_info
->endio_freespace_worker
;
3152 func
= btrfs_freespace_write_helper
;
3154 wq
= fs_info
->endio_write_workers
;
3155 func
= btrfs_endio_write_helper
;
3158 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3160 btrfs_queue_work(wq
, &ordered_extent
->work
);
3163 static int __readpage_endio_check(struct inode
*inode
,
3164 struct btrfs_io_bio
*io_bio
,
3165 int icsum
, struct page
*page
,
3166 int pgoff
, u64 start
, size_t len
)
3172 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3174 kaddr
= kmap_atomic(page
);
3175 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3176 btrfs_csum_final(csum
, (u8
*)&csum
);
3177 if (csum
!= csum_expected
)
3180 kunmap_atomic(kaddr
);
3183 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
3184 io_bio
->mirror_num
);
3185 memset(kaddr
+ pgoff
, 1, len
);
3186 flush_dcache_page(page
);
3187 kunmap_atomic(kaddr
);
3192 * when reads are done, we need to check csums to verify the data is correct
3193 * if there's a match, we allow the bio to finish. If not, the code in
3194 * extent_io.c will try to find good copies for us.
3196 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3197 u64 phy_offset
, struct page
*page
,
3198 u64 start
, u64 end
, int mirror
)
3200 size_t offset
= start
- page_offset(page
);
3201 struct inode
*inode
= page
->mapping
->host
;
3202 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3203 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3205 if (PageChecked(page
)) {
3206 ClearPageChecked(page
);
3210 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3213 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3214 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3215 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3219 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3220 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3221 start
, (size_t)(end
- start
+ 1));
3224 void btrfs_add_delayed_iput(struct inode
*inode
)
3226 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3227 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3229 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3232 spin_lock(&fs_info
->delayed_iput_lock
);
3233 if (binode
->delayed_iput_count
== 0) {
3234 ASSERT(list_empty(&binode
->delayed_iput
));
3235 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3237 binode
->delayed_iput_count
++;
3239 spin_unlock(&fs_info
->delayed_iput_lock
);
3242 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3245 spin_lock(&fs_info
->delayed_iput_lock
);
3246 while (!list_empty(&fs_info
->delayed_iputs
)) {
3247 struct btrfs_inode
*inode
;
3249 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3250 struct btrfs_inode
, delayed_iput
);
3251 if (inode
->delayed_iput_count
) {
3252 inode
->delayed_iput_count
--;
3253 list_move_tail(&inode
->delayed_iput
,
3254 &fs_info
->delayed_iputs
);
3256 list_del_init(&inode
->delayed_iput
);
3258 spin_unlock(&fs_info
->delayed_iput_lock
);
3259 iput(&inode
->vfs_inode
);
3260 spin_lock(&fs_info
->delayed_iput_lock
);
3262 spin_unlock(&fs_info
->delayed_iput_lock
);
3266 * This is called in transaction commit time. If there are no orphan
3267 * files in the subvolume, it removes orphan item and frees block_rsv
3270 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
3271 struct btrfs_root
*root
)
3273 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3274 struct btrfs_block_rsv
*block_rsv
;
3277 if (atomic_read(&root
->orphan_inodes
) ||
3278 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
3281 spin_lock(&root
->orphan_lock
);
3282 if (atomic_read(&root
->orphan_inodes
)) {
3283 spin_unlock(&root
->orphan_lock
);
3287 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
3288 spin_unlock(&root
->orphan_lock
);
3292 block_rsv
= root
->orphan_block_rsv
;
3293 root
->orphan_block_rsv
= NULL
;
3294 spin_unlock(&root
->orphan_lock
);
3296 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
) &&
3297 btrfs_root_refs(&root
->root_item
) > 0) {
3298 ret
= btrfs_del_orphan_item(trans
, fs_info
->tree_root
,
3299 root
->root_key
.objectid
);
3301 btrfs_abort_transaction(trans
, ret
);
3303 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
3308 WARN_ON(block_rsv
->size
> 0);
3309 btrfs_free_block_rsv(fs_info
, block_rsv
);
3314 * This creates an orphan entry for the given inode in case something goes
3315 * wrong in the middle of an unlink/truncate.
3317 * NOTE: caller of this function should reserve 5 units of metadata for
3320 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
3321 struct btrfs_inode
*inode
)
3323 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
3324 struct btrfs_root
*root
= inode
->root
;
3325 struct btrfs_block_rsv
*block_rsv
= NULL
;
3330 if (!root
->orphan_block_rsv
) {
3331 block_rsv
= btrfs_alloc_block_rsv(fs_info
,
3332 BTRFS_BLOCK_RSV_TEMP
);
3337 spin_lock(&root
->orphan_lock
);
3338 if (!root
->orphan_block_rsv
) {
3339 root
->orphan_block_rsv
= block_rsv
;
3340 } else if (block_rsv
) {
3341 btrfs_free_block_rsv(fs_info
, block_rsv
);
3345 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3346 &inode
->runtime_flags
)) {
3349 * For proper ENOSPC handling, we should do orphan
3350 * cleanup when mounting. But this introduces backward
3351 * compatibility issue.
3353 if (!xchg(&root
->orphan_item_inserted
, 1))
3359 atomic_inc(&root
->orphan_inodes
);
3362 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3363 &inode
->runtime_flags
))
3365 spin_unlock(&root
->orphan_lock
);
3367 /* grab metadata reservation from transaction handle */
3369 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
3373 * dec doesn't need spin_lock as ->orphan_block_rsv
3374 * would be released only if ->orphan_inodes is
3377 atomic_dec(&root
->orphan_inodes
);
3378 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3379 &inode
->runtime_flags
);
3381 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3382 &inode
->runtime_flags
);
3387 /* insert an orphan item to track this unlinked/truncated file */
3389 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
3392 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3393 &inode
->runtime_flags
);
3394 btrfs_orphan_release_metadata(inode
);
3397 * btrfs_orphan_commit_root may race with us and set
3398 * ->orphan_block_rsv to zero, in order to avoid that,
3399 * decrease ->orphan_inodes after everything is done.
3401 atomic_dec(&root
->orphan_inodes
);
3402 if (ret
!= -EEXIST
) {
3403 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3404 &inode
->runtime_flags
);
3405 btrfs_abort_transaction(trans
, ret
);
3412 /* insert an orphan item to track subvolume contains orphan files */
3414 ret
= btrfs_insert_orphan_item(trans
, fs_info
->tree_root
,
3415 root
->root_key
.objectid
);
3416 if (ret
&& ret
!= -EEXIST
) {
3417 btrfs_abort_transaction(trans
, ret
);
3425 * We have done the truncate/delete so we can go ahead and remove the orphan
3426 * item for this particular inode.
3428 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3429 struct btrfs_inode
*inode
)
3431 struct btrfs_root
*root
= inode
->root
;
3432 int delete_item
= 0;
3435 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3436 &inode
->runtime_flags
))
3439 if (delete_item
&& trans
)
3440 ret
= btrfs_del_orphan_item(trans
, root
, btrfs_ino(inode
));
3442 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3443 &inode
->runtime_flags
))
3444 btrfs_orphan_release_metadata(inode
);
3447 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3448 * to zero, in order to avoid that, decrease ->orphan_inodes after
3449 * everything is done.
3452 atomic_dec(&root
->orphan_inodes
);
3458 * this cleans up any orphans that may be left on the list from the last use
3461 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3463 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3464 struct btrfs_path
*path
;
3465 struct extent_buffer
*leaf
;
3466 struct btrfs_key key
, found_key
;
3467 struct btrfs_trans_handle
*trans
;
3468 struct inode
*inode
;
3469 u64 last_objectid
= 0;
3470 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3472 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3475 path
= btrfs_alloc_path();
3480 path
->reada
= READA_BACK
;
3482 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3483 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3484 key
.offset
= (u64
)-1;
3487 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3492 * if ret == 0 means we found what we were searching for, which
3493 * is weird, but possible, so only screw with path if we didn't
3494 * find the key and see if we have stuff that matches
3498 if (path
->slots
[0] == 0)
3503 /* pull out the item */
3504 leaf
= path
->nodes
[0];
3505 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3507 /* make sure the item matches what we want */
3508 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3510 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3513 /* release the path since we're done with it */
3514 btrfs_release_path(path
);
3517 * this is where we are basically btrfs_lookup, without the
3518 * crossing root thing. we store the inode number in the
3519 * offset of the orphan item.
3522 if (found_key
.offset
== last_objectid
) {
3524 "Error removing orphan entry, stopping orphan cleanup");
3529 last_objectid
= found_key
.offset
;
3531 found_key
.objectid
= found_key
.offset
;
3532 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3533 found_key
.offset
= 0;
3534 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
, NULL
);
3535 ret
= PTR_ERR_OR_ZERO(inode
);
3536 if (ret
&& ret
!= -ENOENT
)
3539 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3540 struct btrfs_root
*dead_root
;
3541 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3542 int is_dead_root
= 0;
3545 * this is an orphan in the tree root. Currently these
3546 * could come from 2 sources:
3547 * a) a snapshot deletion in progress
3548 * b) a free space cache inode
3549 * We need to distinguish those two, as the snapshot
3550 * orphan must not get deleted.
3551 * find_dead_roots already ran before us, so if this
3552 * is a snapshot deletion, we should find the root
3553 * in the dead_roots list
3555 spin_lock(&fs_info
->trans_lock
);
3556 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3558 if (dead_root
->root_key
.objectid
==
3559 found_key
.objectid
) {
3564 spin_unlock(&fs_info
->trans_lock
);
3566 /* prevent this orphan from being found again */
3567 key
.offset
= found_key
.objectid
- 1;
3572 * Inode is already gone but the orphan item is still there,
3573 * kill the orphan item.
3575 if (ret
== -ENOENT
) {
3576 trans
= btrfs_start_transaction(root
, 1);
3577 if (IS_ERR(trans
)) {
3578 ret
= PTR_ERR(trans
);
3581 btrfs_debug(fs_info
, "auto deleting %Lu",
3582 found_key
.objectid
);
3583 ret
= btrfs_del_orphan_item(trans
, root
,
3584 found_key
.objectid
);
3585 btrfs_end_transaction(trans
);
3592 * add this inode to the orphan list so btrfs_orphan_del does
3593 * the proper thing when we hit it
3595 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3596 &BTRFS_I(inode
)->runtime_flags
);
3597 atomic_inc(&root
->orphan_inodes
);
3599 /* if we have links, this was a truncate, lets do that */
3600 if (inode
->i_nlink
) {
3601 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3607 /* 1 for the orphan item deletion. */
3608 trans
= btrfs_start_transaction(root
, 1);
3609 if (IS_ERR(trans
)) {
3611 ret
= PTR_ERR(trans
);
3614 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3615 btrfs_end_transaction(trans
);
3621 ret
= btrfs_truncate(inode
);
3623 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
3628 /* this will do delete_inode and everything for us */
3633 /* release the path since we're done with it */
3634 btrfs_release_path(path
);
3636 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3638 if (root
->orphan_block_rsv
)
3639 btrfs_block_rsv_release(fs_info
, root
->orphan_block_rsv
,
3642 if (root
->orphan_block_rsv
||
3643 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3644 trans
= btrfs_join_transaction(root
);
3646 btrfs_end_transaction(trans
);
3650 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3652 btrfs_debug(fs_info
, "truncated %d orphans", nr_truncate
);
3656 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3657 btrfs_free_path(path
);
3662 * very simple check to peek ahead in the leaf looking for xattrs. If we
3663 * don't find any xattrs, we know there can't be any acls.
3665 * slot is the slot the inode is in, objectid is the objectid of the inode
3667 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3668 int slot
, u64 objectid
,
3669 int *first_xattr_slot
)
3671 u32 nritems
= btrfs_header_nritems(leaf
);
3672 struct btrfs_key found_key
;
3673 static u64 xattr_access
= 0;
3674 static u64 xattr_default
= 0;
3677 if (!xattr_access
) {
3678 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3679 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3680 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3681 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3685 *first_xattr_slot
= -1;
3686 while (slot
< nritems
) {
3687 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3689 /* we found a different objectid, there must not be acls */
3690 if (found_key
.objectid
!= objectid
)
3693 /* we found an xattr, assume we've got an acl */
3694 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3695 if (*first_xattr_slot
== -1)
3696 *first_xattr_slot
= slot
;
3697 if (found_key
.offset
== xattr_access
||
3698 found_key
.offset
== xattr_default
)
3703 * we found a key greater than an xattr key, there can't
3704 * be any acls later on
3706 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3713 * it goes inode, inode backrefs, xattrs, extents,
3714 * so if there are a ton of hard links to an inode there can
3715 * be a lot of backrefs. Don't waste time searching too hard,
3716 * this is just an optimization
3721 /* we hit the end of the leaf before we found an xattr or
3722 * something larger than an xattr. We have to assume the inode
3725 if (*first_xattr_slot
== -1)
3726 *first_xattr_slot
= slot
;
3731 * read an inode from the btree into the in-memory inode
3733 static int btrfs_read_locked_inode(struct inode
*inode
)
3735 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3736 struct btrfs_path
*path
;
3737 struct extent_buffer
*leaf
;
3738 struct btrfs_inode_item
*inode_item
;
3739 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3740 struct btrfs_key location
;
3745 bool filled
= false;
3746 int first_xattr_slot
;
3748 ret
= btrfs_fill_inode(inode
, &rdev
);
3752 path
= btrfs_alloc_path();
3758 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3760 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3767 leaf
= path
->nodes
[0];
3772 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3773 struct btrfs_inode_item
);
3774 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3775 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3776 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3777 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3778 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3780 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3781 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3783 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3784 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3786 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3787 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3789 BTRFS_I(inode
)->i_otime
.tv_sec
=
3790 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3791 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3792 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3794 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3795 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3796 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3798 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
3799 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3801 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3803 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3804 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3808 * If we were modified in the current generation and evicted from memory
3809 * and then re-read we need to do a full sync since we don't have any
3810 * idea about which extents were modified before we were evicted from
3813 * This is required for both inode re-read from disk and delayed inode
3814 * in delayed_nodes_tree.
3816 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3817 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3818 &BTRFS_I(inode
)->runtime_flags
);
3821 * We don't persist the id of the transaction where an unlink operation
3822 * against the inode was last made. So here we assume the inode might
3823 * have been evicted, and therefore the exact value of last_unlink_trans
3824 * lost, and set it to last_trans to avoid metadata inconsistencies
3825 * between the inode and its parent if the inode is fsync'ed and the log
3826 * replayed. For example, in the scenario:
3829 * ln mydir/foo mydir/bar
3832 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3833 * xfs_io -c fsync mydir/foo
3835 * mount fs, triggers fsync log replay
3837 * We must make sure that when we fsync our inode foo we also log its
3838 * parent inode, otherwise after log replay the parent still has the
3839 * dentry with the "bar" name but our inode foo has a link count of 1
3840 * and doesn't have an inode ref with the name "bar" anymore.
3842 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3843 * but it guarantees correctness at the expense of occasional full
3844 * transaction commits on fsync if our inode is a directory, or if our
3845 * inode is not a directory, logging its parent unnecessarily.
3847 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3850 if (inode
->i_nlink
!= 1 ||
3851 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3854 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3855 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3858 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3859 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3860 struct btrfs_inode_ref
*ref
;
3862 ref
= (struct btrfs_inode_ref
*)ptr
;
3863 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3864 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3865 struct btrfs_inode_extref
*extref
;
3867 extref
= (struct btrfs_inode_extref
*)ptr
;
3868 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3873 * try to precache a NULL acl entry for files that don't have
3874 * any xattrs or acls
3876 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3877 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3878 if (first_xattr_slot
!= -1) {
3879 path
->slots
[0] = first_xattr_slot
;
3880 ret
= btrfs_load_inode_props(inode
, path
);
3883 "error loading props for ino %llu (root %llu): %d",
3884 btrfs_ino(BTRFS_I(inode
)),
3885 root
->root_key
.objectid
, ret
);
3887 btrfs_free_path(path
);
3890 cache_no_acl(inode
);
3892 switch (inode
->i_mode
& S_IFMT
) {
3894 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3895 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3896 inode
->i_fop
= &btrfs_file_operations
;
3897 inode
->i_op
= &btrfs_file_inode_operations
;
3900 inode
->i_fop
= &btrfs_dir_file_operations
;
3901 inode
->i_op
= &btrfs_dir_inode_operations
;
3904 inode
->i_op
= &btrfs_symlink_inode_operations
;
3905 inode_nohighmem(inode
);
3906 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3909 inode
->i_op
= &btrfs_special_inode_operations
;
3910 init_special_inode(inode
, inode
->i_mode
, rdev
);
3914 btrfs_update_iflags(inode
);
3918 btrfs_free_path(path
);
3919 make_bad_inode(inode
);
3924 * given a leaf and an inode, copy the inode fields into the leaf
3926 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3927 struct extent_buffer
*leaf
,
3928 struct btrfs_inode_item
*item
,
3929 struct inode
*inode
)
3931 struct btrfs_map_token token
;
3933 btrfs_init_map_token(&token
);
3935 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3936 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3937 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3939 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3940 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3942 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3943 inode
->i_atime
.tv_sec
, &token
);
3944 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3945 inode
->i_atime
.tv_nsec
, &token
);
3947 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3948 inode
->i_mtime
.tv_sec
, &token
);
3949 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3950 inode
->i_mtime
.tv_nsec
, &token
);
3952 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3953 inode
->i_ctime
.tv_sec
, &token
);
3954 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3955 inode
->i_ctime
.tv_nsec
, &token
);
3957 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3958 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3959 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3960 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3962 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3964 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3966 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3967 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3968 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3969 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3970 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3974 * copy everything in the in-memory inode into the btree.
3976 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3977 struct btrfs_root
*root
, struct inode
*inode
)
3979 struct btrfs_inode_item
*inode_item
;
3980 struct btrfs_path
*path
;
3981 struct extent_buffer
*leaf
;
3984 path
= btrfs_alloc_path();
3988 path
->leave_spinning
= 1;
3989 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3997 leaf
= path
->nodes
[0];
3998 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3999 struct btrfs_inode_item
);
4001 fill_inode_item(trans
, leaf
, inode_item
, inode
);
4002 btrfs_mark_buffer_dirty(leaf
);
4003 btrfs_set_inode_last_trans(trans
, inode
);
4006 btrfs_free_path(path
);
4011 * copy everything in the in-memory inode into the btree.
4013 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
4014 struct btrfs_root
*root
, struct inode
*inode
)
4016 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4020 * If the inode is a free space inode, we can deadlock during commit
4021 * if we put it into the delayed code.
4023 * The data relocation inode should also be directly updated
4026 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
4027 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
4028 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
4029 btrfs_update_root_times(trans
, root
);
4031 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
4033 btrfs_set_inode_last_trans(trans
, inode
);
4037 return btrfs_update_inode_item(trans
, root
, inode
);
4040 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
4041 struct btrfs_root
*root
,
4042 struct inode
*inode
)
4046 ret
= btrfs_update_inode(trans
, root
, inode
);
4048 return btrfs_update_inode_item(trans
, root
, inode
);
4053 * unlink helper that gets used here in inode.c and in the tree logging
4054 * recovery code. It remove a link in a directory with a given name, and
4055 * also drops the back refs in the inode to the directory
4057 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4058 struct btrfs_root
*root
,
4059 struct btrfs_inode
*dir
,
4060 struct btrfs_inode
*inode
,
4061 const char *name
, int name_len
)
4063 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4064 struct btrfs_path
*path
;
4066 struct extent_buffer
*leaf
;
4067 struct btrfs_dir_item
*di
;
4068 struct btrfs_key key
;
4070 u64 ino
= btrfs_ino(inode
);
4071 u64 dir_ino
= btrfs_ino(dir
);
4073 path
= btrfs_alloc_path();
4079 path
->leave_spinning
= 1;
4080 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4081 name
, name_len
, -1);
4090 leaf
= path
->nodes
[0];
4091 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4092 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4095 btrfs_release_path(path
);
4098 * If we don't have dir index, we have to get it by looking up
4099 * the inode ref, since we get the inode ref, remove it directly,
4100 * it is unnecessary to do delayed deletion.
4102 * But if we have dir index, needn't search inode ref to get it.
4103 * Since the inode ref is close to the inode item, it is better
4104 * that we delay to delete it, and just do this deletion when
4105 * we update the inode item.
4107 if (inode
->dir_index
) {
4108 ret
= btrfs_delayed_delete_inode_ref(inode
);
4110 index
= inode
->dir_index
;
4115 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
4119 "failed to delete reference to %.*s, inode %llu parent %llu",
4120 name_len
, name
, ino
, dir_ino
);
4121 btrfs_abort_transaction(trans
, ret
);
4125 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, dir
, index
);
4127 btrfs_abort_transaction(trans
, ret
);
4131 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
4133 if (ret
!= 0 && ret
!= -ENOENT
) {
4134 btrfs_abort_transaction(trans
, ret
);
4138 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
4143 btrfs_abort_transaction(trans
, ret
);
4145 btrfs_free_path(path
);
4149 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
4150 inode_inc_iversion(&inode
->vfs_inode
);
4151 inode_inc_iversion(&dir
->vfs_inode
);
4152 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
4153 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
4154 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
4159 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4160 struct btrfs_root
*root
,
4161 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
4162 const char *name
, int name_len
)
4165 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
4167 drop_nlink(&inode
->vfs_inode
);
4168 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
4174 * helper to start transaction for unlink and rmdir.
4176 * unlink and rmdir are special in btrfs, they do not always free space, so
4177 * if we cannot make our reservations the normal way try and see if there is
4178 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4179 * allow the unlink to occur.
4181 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4183 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4186 * 1 for the possible orphan item
4187 * 1 for the dir item
4188 * 1 for the dir index
4189 * 1 for the inode ref
4192 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4195 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4197 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4198 struct btrfs_trans_handle
*trans
;
4199 struct inode
*inode
= d_inode(dentry
);
4202 trans
= __unlink_start_trans(dir
);
4204 return PTR_ERR(trans
);
4206 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
4209 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4210 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4211 dentry
->d_name
.len
);
4215 if (inode
->i_nlink
== 0) {
4216 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4222 btrfs_end_transaction(trans
);
4223 btrfs_btree_balance_dirty(root
->fs_info
);
4227 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4228 struct btrfs_root
*root
,
4229 struct inode
*dir
, u64 objectid
,
4230 const char *name
, int name_len
)
4232 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4233 struct btrfs_path
*path
;
4234 struct extent_buffer
*leaf
;
4235 struct btrfs_dir_item
*di
;
4236 struct btrfs_key key
;
4239 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
4241 path
= btrfs_alloc_path();
4245 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4246 name
, name_len
, -1);
4247 if (IS_ERR_OR_NULL(di
)) {
4255 leaf
= path
->nodes
[0];
4256 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4257 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4258 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4260 btrfs_abort_transaction(trans
, ret
);
4263 btrfs_release_path(path
);
4265 ret
= btrfs_del_root_ref(trans
, fs_info
, objectid
,
4266 root
->root_key
.objectid
, dir_ino
,
4267 &index
, name
, name_len
);
4269 if (ret
!= -ENOENT
) {
4270 btrfs_abort_transaction(trans
, ret
);
4273 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4275 if (IS_ERR_OR_NULL(di
)) {
4280 btrfs_abort_transaction(trans
, ret
);
4284 leaf
= path
->nodes
[0];
4285 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4286 btrfs_release_path(path
);
4289 btrfs_release_path(path
);
4291 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, BTRFS_I(dir
), index
);
4293 btrfs_abort_transaction(trans
, ret
);
4297 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
4298 inode_inc_iversion(dir
);
4299 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
4300 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4302 btrfs_abort_transaction(trans
, ret
);
4304 btrfs_free_path(path
);
4308 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4310 struct inode
*inode
= d_inode(dentry
);
4312 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4313 struct btrfs_trans_handle
*trans
;
4314 u64 last_unlink_trans
;
4316 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4318 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4321 trans
= __unlink_start_trans(dir
);
4323 return PTR_ERR(trans
);
4325 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4326 err
= btrfs_unlink_subvol(trans
, root
, dir
,
4327 BTRFS_I(inode
)->location
.objectid
,
4328 dentry
->d_name
.name
,
4329 dentry
->d_name
.len
);
4333 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4337 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4339 /* now the directory is empty */
4340 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4341 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4342 dentry
->d_name
.len
);
4344 btrfs_i_size_write(BTRFS_I(inode
), 0);
4346 * Propagate the last_unlink_trans value of the deleted dir to
4347 * its parent directory. This is to prevent an unrecoverable
4348 * log tree in the case we do something like this:
4350 * 2) create snapshot under dir foo
4351 * 3) delete the snapshot
4354 * 6) fsync foo or some file inside foo
4356 if (last_unlink_trans
>= trans
->transid
)
4357 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4360 btrfs_end_transaction(trans
);
4361 btrfs_btree_balance_dirty(root
->fs_info
);
4366 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4367 struct btrfs_root
*root
,
4370 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4374 * This is only used to apply pressure to the enospc system, we don't
4375 * intend to use this reservation at all.
4377 bytes_deleted
= btrfs_csum_bytes_to_leaves(fs_info
, bytes_deleted
);
4378 bytes_deleted
*= fs_info
->nodesize
;
4379 ret
= btrfs_block_rsv_add(root
, &fs_info
->trans_block_rsv
,
4380 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4382 trace_btrfs_space_reservation(fs_info
, "transaction",
4385 trans
->bytes_reserved
+= bytes_deleted
;
4392 * Return this if we need to call truncate_block for the last bit of the
4395 #define NEED_TRUNCATE_BLOCK 1
4398 * this can truncate away extent items, csum items and directory items.
4399 * It starts at a high offset and removes keys until it can't find
4400 * any higher than new_size
4402 * csum items that cross the new i_size are truncated to the new size
4405 * min_type is the minimum key type to truncate down to. If set to 0, this
4406 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4408 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4409 struct btrfs_root
*root
,
4410 struct inode
*inode
,
4411 u64 new_size
, u32 min_type
)
4413 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4414 struct btrfs_path
*path
;
4415 struct extent_buffer
*leaf
;
4416 struct btrfs_file_extent_item
*fi
;
4417 struct btrfs_key key
;
4418 struct btrfs_key found_key
;
4419 u64 extent_start
= 0;
4420 u64 extent_num_bytes
= 0;
4421 u64 extent_offset
= 0;
4423 u64 last_size
= new_size
;
4424 u32 found_type
= (u8
)-1;
4427 int pending_del_nr
= 0;
4428 int pending_del_slot
= 0;
4429 int extent_type
= -1;
4432 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4433 u64 bytes_deleted
= 0;
4434 bool be_nice
= false;
4435 bool should_throttle
= false;
4436 bool should_end
= false;
4438 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4441 * for non-free space inodes and ref cows, we want to back off from
4444 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4445 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4448 path
= btrfs_alloc_path();
4451 path
->reada
= READA_BACK
;
4454 * We want to drop from the next block forward in case this new size is
4455 * not block aligned since we will be keeping the last block of the
4456 * extent just the way it is.
4458 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4459 root
== fs_info
->tree_root
)
4460 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4461 fs_info
->sectorsize
),
4465 * This function is also used to drop the items in the log tree before
4466 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4467 * it is used to drop the loged items. So we shouldn't kill the delayed
4470 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4471 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4474 key
.offset
= (u64
)-1;
4479 * with a 16K leaf size and 128MB extents, you can actually queue
4480 * up a huge file in a single leaf. Most of the time that
4481 * bytes_deleted is > 0, it will be huge by the time we get here
4483 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4484 if (btrfs_should_end_transaction(trans
)) {
4491 path
->leave_spinning
= 1;
4492 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4499 /* there are no items in the tree for us to truncate, we're
4502 if (path
->slots
[0] == 0)
4509 leaf
= path
->nodes
[0];
4510 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4511 found_type
= found_key
.type
;
4513 if (found_key
.objectid
!= ino
)
4516 if (found_type
< min_type
)
4519 item_end
= found_key
.offset
;
4520 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4521 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4522 struct btrfs_file_extent_item
);
4523 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4524 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4526 btrfs_file_extent_num_bytes(leaf
, fi
);
4528 trace_btrfs_truncate_show_fi_regular(
4529 BTRFS_I(inode
), leaf
, fi
,
4531 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4532 item_end
+= btrfs_file_extent_inline_len(leaf
,
4533 path
->slots
[0], fi
);
4535 trace_btrfs_truncate_show_fi_inline(
4536 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4541 if (found_type
> min_type
) {
4544 if (item_end
< new_size
)
4546 if (found_key
.offset
>= new_size
)
4552 /* FIXME, shrink the extent if the ref count is only 1 */
4553 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4556 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4558 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4560 u64 orig_num_bytes
=
4561 btrfs_file_extent_num_bytes(leaf
, fi
);
4562 extent_num_bytes
= ALIGN(new_size
-
4564 fs_info
->sectorsize
);
4565 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4567 num_dec
= (orig_num_bytes
-
4569 if (test_bit(BTRFS_ROOT_REF_COWS
,
4572 inode_sub_bytes(inode
, num_dec
);
4573 btrfs_mark_buffer_dirty(leaf
);
4576 btrfs_file_extent_disk_num_bytes(leaf
,
4578 extent_offset
= found_key
.offset
-
4579 btrfs_file_extent_offset(leaf
, fi
);
4581 /* FIXME blocksize != 4096 */
4582 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4583 if (extent_start
!= 0) {
4585 if (test_bit(BTRFS_ROOT_REF_COWS
,
4587 inode_sub_bytes(inode
, num_dec
);
4590 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4592 * we can't truncate inline items that have had
4596 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4597 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4598 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4599 u32 size
= (u32
)(new_size
- found_key
.offset
);
4601 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4602 size
= btrfs_file_extent_calc_inline_size(size
);
4603 btrfs_truncate_item(root
->fs_info
, path
, size
, 1);
4604 } else if (!del_item
) {
4606 * We have to bail so the last_size is set to
4607 * just before this extent.
4609 err
= NEED_TRUNCATE_BLOCK
;
4613 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4614 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4618 last_size
= found_key
.offset
;
4620 last_size
= new_size
;
4622 if (!pending_del_nr
) {
4623 /* no pending yet, add ourselves */
4624 pending_del_slot
= path
->slots
[0];
4626 } else if (pending_del_nr
&&
4627 path
->slots
[0] + 1 == pending_del_slot
) {
4628 /* hop on the pending chunk */
4630 pending_del_slot
= path
->slots
[0];
4637 should_throttle
= false;
4640 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4641 root
== fs_info
->tree_root
)) {
4642 btrfs_set_path_blocking(path
);
4643 bytes_deleted
+= extent_num_bytes
;
4644 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4645 extent_num_bytes
, 0,
4646 btrfs_header_owner(leaf
),
4647 ino
, extent_offset
);
4649 if (btrfs_should_throttle_delayed_refs(trans
, fs_info
))
4650 btrfs_async_run_delayed_refs(fs_info
,
4651 trans
->delayed_ref_updates
* 2,
4654 if (truncate_space_check(trans
, root
,
4655 extent_num_bytes
)) {
4658 if (btrfs_should_throttle_delayed_refs(trans
,
4660 should_throttle
= true;
4664 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4667 if (path
->slots
[0] == 0 ||
4668 path
->slots
[0] != pending_del_slot
||
4669 should_throttle
|| should_end
) {
4670 if (pending_del_nr
) {
4671 ret
= btrfs_del_items(trans
, root
, path
,
4675 btrfs_abort_transaction(trans
, ret
);
4680 btrfs_release_path(path
);
4681 if (should_throttle
) {
4682 unsigned long updates
= trans
->delayed_ref_updates
;
4684 trans
->delayed_ref_updates
= 0;
4685 ret
= btrfs_run_delayed_refs(trans
,
4693 * if we failed to refill our space rsv, bail out
4694 * and let the transaction restart
4706 if (pending_del_nr
) {
4707 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4710 btrfs_abort_transaction(trans
, ret
);
4713 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4714 ASSERT(last_size
>= new_size
);
4715 if (!err
&& last_size
> new_size
)
4716 last_size
= new_size
;
4717 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4720 btrfs_free_path(path
);
4722 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4723 unsigned long updates
= trans
->delayed_ref_updates
;
4725 trans
->delayed_ref_updates
= 0;
4726 ret
= btrfs_run_delayed_refs(trans
, fs_info
,
4736 * btrfs_truncate_block - read, zero a chunk and write a block
4737 * @inode - inode that we're zeroing
4738 * @from - the offset to start zeroing
4739 * @len - the length to zero, 0 to zero the entire range respective to the
4741 * @front - zero up to the offset instead of from the offset on
4743 * This will find the block for the "from" offset and cow the block and zero the
4744 * part we want to zero. This is used with truncate and hole punching.
4746 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4749 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4750 struct address_space
*mapping
= inode
->i_mapping
;
4751 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4752 struct btrfs_ordered_extent
*ordered
;
4753 struct extent_state
*cached_state
= NULL
;
4754 struct extent_changeset
*data_reserved
= NULL
;
4756 u32 blocksize
= fs_info
->sectorsize
;
4757 pgoff_t index
= from
>> PAGE_SHIFT
;
4758 unsigned offset
= from
& (blocksize
- 1);
4760 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4765 if ((offset
& (blocksize
- 1)) == 0 &&
4766 (!len
|| ((len
& (blocksize
- 1)) == 0)))
4769 block_start
= round_down(from
, blocksize
);
4770 block_end
= block_start
+ blocksize
- 1;
4772 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
4773 block_start
, blocksize
);
4778 page
= find_or_create_page(mapping
, index
, mask
);
4780 btrfs_delalloc_release_space(inode
, data_reserved
,
4781 block_start
, blocksize
);
4782 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4787 if (!PageUptodate(page
)) {
4788 ret
= btrfs_readpage(NULL
, page
);
4790 if (page
->mapping
!= mapping
) {
4795 if (!PageUptodate(page
)) {
4800 wait_on_page_writeback(page
);
4802 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4803 set_page_extent_mapped(page
);
4805 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4807 unlock_extent_cached(io_tree
, block_start
, block_end
,
4808 &cached_state
, GFP_NOFS
);
4811 btrfs_start_ordered_extent(inode
, ordered
, 1);
4812 btrfs_put_ordered_extent(ordered
);
4816 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4817 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4818 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4819 0, 0, &cached_state
, GFP_NOFS
);
4821 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
4824 unlock_extent_cached(io_tree
, block_start
, block_end
,
4825 &cached_state
, GFP_NOFS
);
4829 if (offset
!= blocksize
) {
4831 len
= blocksize
- offset
;
4834 memset(kaddr
+ (block_start
- page_offset(page
)),
4837 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4839 flush_dcache_page(page
);
4842 ClearPageChecked(page
);
4843 set_page_dirty(page
);
4844 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
,
4849 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4851 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4855 extent_changeset_free(data_reserved
);
4859 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4860 u64 offset
, u64 len
)
4862 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4863 struct btrfs_trans_handle
*trans
;
4867 * Still need to make sure the inode looks like it's been updated so
4868 * that any holes get logged if we fsync.
4870 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4871 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4872 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4873 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4878 * 1 - for the one we're dropping
4879 * 1 - for the one we're adding
4880 * 1 - for updating the inode.
4882 trans
= btrfs_start_transaction(root
, 3);
4884 return PTR_ERR(trans
);
4886 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4888 btrfs_abort_transaction(trans
, ret
);
4889 btrfs_end_transaction(trans
);
4893 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
4894 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4896 btrfs_abort_transaction(trans
, ret
);
4898 btrfs_update_inode(trans
, root
, inode
);
4899 btrfs_end_transaction(trans
);
4904 * This function puts in dummy file extents for the area we're creating a hole
4905 * for. So if we are truncating this file to a larger size we need to insert
4906 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4907 * the range between oldsize and size
4909 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4911 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4912 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4913 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4914 struct extent_map
*em
= NULL
;
4915 struct extent_state
*cached_state
= NULL
;
4916 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4917 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
4918 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
4925 * If our size started in the middle of a block we need to zero out the
4926 * rest of the block before we expand the i_size, otherwise we could
4927 * expose stale data.
4929 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4933 if (size
<= hole_start
)
4937 struct btrfs_ordered_extent
*ordered
;
4939 lock_extent_bits(io_tree
, hole_start
, block_end
- 1,
4941 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), hole_start
,
4942 block_end
- hole_start
);
4945 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4946 &cached_state
, GFP_NOFS
);
4947 btrfs_start_ordered_extent(inode
, ordered
, 1);
4948 btrfs_put_ordered_extent(ordered
);
4951 cur_offset
= hole_start
;
4953 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
4954 block_end
- cur_offset
, 0);
4960 last_byte
= min(extent_map_end(em
), block_end
);
4961 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
4962 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4963 struct extent_map
*hole_em
;
4964 hole_size
= last_byte
- cur_offset
;
4966 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4970 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
4971 cur_offset
+ hole_size
- 1, 0);
4972 hole_em
= alloc_extent_map();
4974 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4975 &BTRFS_I(inode
)->runtime_flags
);
4978 hole_em
->start
= cur_offset
;
4979 hole_em
->len
= hole_size
;
4980 hole_em
->orig_start
= cur_offset
;
4982 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4983 hole_em
->block_len
= 0;
4984 hole_em
->orig_block_len
= 0;
4985 hole_em
->ram_bytes
= hole_size
;
4986 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
4987 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4988 hole_em
->generation
= fs_info
->generation
;
4991 write_lock(&em_tree
->lock
);
4992 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4993 write_unlock(&em_tree
->lock
);
4996 btrfs_drop_extent_cache(BTRFS_I(inode
),
5001 free_extent_map(hole_em
);
5004 free_extent_map(em
);
5006 cur_offset
= last_byte
;
5007 if (cur_offset
>= block_end
)
5010 free_extent_map(em
);
5011 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
5016 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
5018 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5019 struct btrfs_trans_handle
*trans
;
5020 loff_t oldsize
= i_size_read(inode
);
5021 loff_t newsize
= attr
->ia_size
;
5022 int mask
= attr
->ia_valid
;
5026 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5027 * special case where we need to update the times despite not having
5028 * these flags set. For all other operations the VFS set these flags
5029 * explicitly if it wants a timestamp update.
5031 if (newsize
!= oldsize
) {
5032 inode_inc_iversion(inode
);
5033 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
5034 inode
->i_ctime
= inode
->i_mtime
=
5035 current_time(inode
);
5038 if (newsize
> oldsize
) {
5040 * Don't do an expanding truncate while snapshotting is ongoing.
5041 * This is to ensure the snapshot captures a fully consistent
5042 * state of this file - if the snapshot captures this expanding
5043 * truncation, it must capture all writes that happened before
5046 btrfs_wait_for_snapshot_creation(root
);
5047 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
5049 btrfs_end_write_no_snapshotting(root
);
5053 trans
= btrfs_start_transaction(root
, 1);
5054 if (IS_ERR(trans
)) {
5055 btrfs_end_write_no_snapshotting(root
);
5056 return PTR_ERR(trans
);
5059 i_size_write(inode
, newsize
);
5060 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
5061 pagecache_isize_extended(inode
, oldsize
, newsize
);
5062 ret
= btrfs_update_inode(trans
, root
, inode
);
5063 btrfs_end_write_no_snapshotting(root
);
5064 btrfs_end_transaction(trans
);
5068 * We're truncating a file that used to have good data down to
5069 * zero. Make sure it gets into the ordered flush list so that
5070 * any new writes get down to disk quickly.
5073 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
5074 &BTRFS_I(inode
)->runtime_flags
);
5077 * 1 for the orphan item we're going to add
5078 * 1 for the orphan item deletion.
5080 trans
= btrfs_start_transaction(root
, 2);
5082 return PTR_ERR(trans
);
5085 * We need to do this in case we fail at _any_ point during the
5086 * actual truncate. Once we do the truncate_setsize we could
5087 * invalidate pages which forces any outstanding ordered io to
5088 * be instantly completed which will give us extents that need
5089 * to be truncated. If we fail to get an orphan inode down we
5090 * could have left over extents that were never meant to live,
5091 * so we need to guarantee from this point on that everything
5092 * will be consistent.
5094 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
5095 btrfs_end_transaction(trans
);
5099 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5100 truncate_setsize(inode
, newsize
);
5102 /* Disable nonlocked read DIO to avoid the end less truncate */
5103 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
5104 inode_dio_wait(inode
);
5105 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
5107 ret
= btrfs_truncate(inode
);
5108 if (ret
&& inode
->i_nlink
) {
5111 /* To get a stable disk_i_size */
5112 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5114 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5119 * failed to truncate, disk_i_size is only adjusted down
5120 * as we remove extents, so it should represent the true
5121 * size of the inode, so reset the in memory size and
5122 * delete our orphan entry.
5124 trans
= btrfs_join_transaction(root
);
5125 if (IS_ERR(trans
)) {
5126 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5129 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5130 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
5132 btrfs_abort_transaction(trans
, err
);
5133 btrfs_end_transaction(trans
);
5140 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5142 struct inode
*inode
= d_inode(dentry
);
5143 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5146 if (btrfs_root_readonly(root
))
5149 err
= setattr_prepare(dentry
, attr
);
5153 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5154 err
= btrfs_setsize(inode
, attr
);
5159 if (attr
->ia_valid
) {
5160 setattr_copy(inode
, attr
);
5161 inode_inc_iversion(inode
);
5162 err
= btrfs_dirty_inode(inode
);
5164 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5165 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5172 * While truncating the inode pages during eviction, we get the VFS calling
5173 * btrfs_invalidatepage() against each page of the inode. This is slow because
5174 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5175 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5176 * extent_state structures over and over, wasting lots of time.
5178 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5179 * those expensive operations on a per page basis and do only the ordered io
5180 * finishing, while we release here the extent_map and extent_state structures,
5181 * without the excessive merging and splitting.
5183 static void evict_inode_truncate_pages(struct inode
*inode
)
5185 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5186 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5187 struct rb_node
*node
;
5189 ASSERT(inode
->i_state
& I_FREEING
);
5190 truncate_inode_pages_final(&inode
->i_data
);
5192 write_lock(&map_tree
->lock
);
5193 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
5194 struct extent_map
*em
;
5196 node
= rb_first(&map_tree
->map
);
5197 em
= rb_entry(node
, struct extent_map
, rb_node
);
5198 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5199 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5200 remove_extent_mapping(map_tree
, em
);
5201 free_extent_map(em
);
5202 if (need_resched()) {
5203 write_unlock(&map_tree
->lock
);
5205 write_lock(&map_tree
->lock
);
5208 write_unlock(&map_tree
->lock
);
5211 * Keep looping until we have no more ranges in the io tree.
5212 * We can have ongoing bios started by readpages (called from readahead)
5213 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5214 * still in progress (unlocked the pages in the bio but did not yet
5215 * unlocked the ranges in the io tree). Therefore this means some
5216 * ranges can still be locked and eviction started because before
5217 * submitting those bios, which are executed by a separate task (work
5218 * queue kthread), inode references (inode->i_count) were not taken
5219 * (which would be dropped in the end io callback of each bio).
5220 * Therefore here we effectively end up waiting for those bios and
5221 * anyone else holding locked ranges without having bumped the inode's
5222 * reference count - if we don't do it, when they access the inode's
5223 * io_tree to unlock a range it may be too late, leading to an
5224 * use-after-free issue.
5226 spin_lock(&io_tree
->lock
);
5227 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5228 struct extent_state
*state
;
5229 struct extent_state
*cached_state
= NULL
;
5233 node
= rb_first(&io_tree
->state
);
5234 state
= rb_entry(node
, struct extent_state
, rb_node
);
5235 start
= state
->start
;
5237 spin_unlock(&io_tree
->lock
);
5239 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5242 * If still has DELALLOC flag, the extent didn't reach disk,
5243 * and its reserved space won't be freed by delayed_ref.
5244 * So we need to free its reserved space here.
5245 * (Refer to comment in btrfs_invalidatepage, case 2)
5247 * Note, end is the bytenr of last byte, so we need + 1 here.
5249 if (state
->state
& EXTENT_DELALLOC
)
5250 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
5252 clear_extent_bit(io_tree
, start
, end
,
5253 EXTENT_LOCKED
| EXTENT_DIRTY
|
5254 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5255 EXTENT_DEFRAG
, 1, 1,
5256 &cached_state
, GFP_NOFS
);
5259 spin_lock(&io_tree
->lock
);
5261 spin_unlock(&io_tree
->lock
);
5264 void btrfs_evict_inode(struct inode
*inode
)
5266 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5267 struct btrfs_trans_handle
*trans
;
5268 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5269 struct btrfs_block_rsv
*rsv
, *global_rsv
;
5270 int steal_from_global
= 0;
5274 trace_btrfs_inode_evict(inode
);
5281 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
5283 evict_inode_truncate_pages(inode
);
5285 if (inode
->i_nlink
&&
5286 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5287 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5288 btrfs_is_free_space_inode(BTRFS_I(inode
))))
5291 if (is_bad_inode(inode
)) {
5292 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5295 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5296 if (!special_file(inode
->i_mode
))
5297 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5299 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
5301 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
5302 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
5303 &BTRFS_I(inode
)->runtime_flags
));
5307 if (inode
->i_nlink
> 0) {
5308 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5309 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5313 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5315 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5319 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5321 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5324 rsv
->size
= min_size
;
5326 global_rsv
= &fs_info
->global_block_rsv
;
5328 btrfs_i_size_write(BTRFS_I(inode
), 0);
5331 * This is a bit simpler than btrfs_truncate since we've already
5332 * reserved our space for our orphan item in the unlink, so we just
5333 * need to reserve some slack space in case we add bytes and update
5334 * inode item when doing the truncate.
5337 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5338 BTRFS_RESERVE_FLUSH_LIMIT
);
5341 * Try and steal from the global reserve since we will
5342 * likely not use this space anyway, we want to try as
5343 * hard as possible to get this to work.
5346 steal_from_global
++;
5348 steal_from_global
= 0;
5352 * steal_from_global == 0: we reserved stuff, hooray!
5353 * steal_from_global == 1: we didn't reserve stuff, boo!
5354 * steal_from_global == 2: we've committed, still not a lot of
5355 * room but maybe we'll have room in the global reserve this
5357 * steal_from_global == 3: abandon all hope!
5359 if (steal_from_global
> 2) {
5361 "Could not get space for a delete, will truncate on mount %d",
5363 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5364 btrfs_free_block_rsv(fs_info
, rsv
);
5368 trans
= btrfs_join_transaction(root
);
5369 if (IS_ERR(trans
)) {
5370 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5371 btrfs_free_block_rsv(fs_info
, rsv
);
5376 * We can't just steal from the global reserve, we need to make
5377 * sure there is room to do it, if not we need to commit and try
5380 if (steal_from_global
) {
5381 if (!btrfs_check_space_for_delayed_refs(trans
, fs_info
))
5382 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
,
5389 * Couldn't steal from the global reserve, we have too much
5390 * pending stuff built up, commit the transaction and try it
5394 ret
= btrfs_commit_transaction(trans
);
5396 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5397 btrfs_free_block_rsv(fs_info
, rsv
);
5402 steal_from_global
= 0;
5405 trans
->block_rsv
= rsv
;
5407 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5408 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5411 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5412 btrfs_end_transaction(trans
);
5414 btrfs_btree_balance_dirty(fs_info
);
5417 btrfs_free_block_rsv(fs_info
, rsv
);
5420 * Errors here aren't a big deal, it just means we leave orphan items
5421 * in the tree. They will be cleaned up on the next mount.
5424 trans
->block_rsv
= root
->orphan_block_rsv
;
5425 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5427 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5430 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5431 if (!(root
== fs_info
->tree_root
||
5432 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5433 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
5435 btrfs_end_transaction(trans
);
5436 btrfs_btree_balance_dirty(fs_info
);
5438 btrfs_remove_delayed_node(BTRFS_I(inode
));
5443 * this returns the key found in the dir entry in the location pointer.
5444 * If no dir entries were found, location->objectid is 0.
5446 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5447 struct btrfs_key
*location
)
5449 const char *name
= dentry
->d_name
.name
;
5450 int namelen
= dentry
->d_name
.len
;
5451 struct btrfs_dir_item
*di
;
5452 struct btrfs_path
*path
;
5453 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5456 path
= btrfs_alloc_path();
5460 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5465 if (IS_ERR_OR_NULL(di
))
5468 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5469 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5470 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5471 btrfs_warn(root
->fs_info
,
5472 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5473 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5474 location
->objectid
, location
->type
, location
->offset
);
5478 btrfs_free_path(path
);
5481 location
->objectid
= 0;
5486 * when we hit a tree root in a directory, the btrfs part of the inode
5487 * needs to be changed to reflect the root directory of the tree root. This
5488 * is kind of like crossing a mount point.
5490 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5492 struct dentry
*dentry
,
5493 struct btrfs_key
*location
,
5494 struct btrfs_root
**sub_root
)
5496 struct btrfs_path
*path
;
5497 struct btrfs_root
*new_root
;
5498 struct btrfs_root_ref
*ref
;
5499 struct extent_buffer
*leaf
;
5500 struct btrfs_key key
;
5504 path
= btrfs_alloc_path();
5511 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5512 key
.type
= BTRFS_ROOT_REF_KEY
;
5513 key
.offset
= location
->objectid
;
5515 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5522 leaf
= path
->nodes
[0];
5523 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5524 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5525 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5528 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5529 (unsigned long)(ref
+ 1),
5530 dentry
->d_name
.len
);
5534 btrfs_release_path(path
);
5536 new_root
= btrfs_read_fs_root_no_name(fs_info
, location
);
5537 if (IS_ERR(new_root
)) {
5538 err
= PTR_ERR(new_root
);
5542 *sub_root
= new_root
;
5543 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5544 location
->type
= BTRFS_INODE_ITEM_KEY
;
5545 location
->offset
= 0;
5548 btrfs_free_path(path
);
5552 static void inode_tree_add(struct inode
*inode
)
5554 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5555 struct btrfs_inode
*entry
;
5557 struct rb_node
*parent
;
5558 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5559 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5561 if (inode_unhashed(inode
))
5564 spin_lock(&root
->inode_lock
);
5565 p
= &root
->inode_tree
.rb_node
;
5568 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5570 if (ino
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5571 p
= &parent
->rb_left
;
5572 else if (ino
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5573 p
= &parent
->rb_right
;
5575 WARN_ON(!(entry
->vfs_inode
.i_state
&
5576 (I_WILL_FREE
| I_FREEING
)));
5577 rb_replace_node(parent
, new, &root
->inode_tree
);
5578 RB_CLEAR_NODE(parent
);
5579 spin_unlock(&root
->inode_lock
);
5583 rb_link_node(new, parent
, p
);
5584 rb_insert_color(new, &root
->inode_tree
);
5585 spin_unlock(&root
->inode_lock
);
5588 static void inode_tree_del(struct inode
*inode
)
5590 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5591 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5594 spin_lock(&root
->inode_lock
);
5595 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5596 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5597 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5598 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5600 spin_unlock(&root
->inode_lock
);
5602 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5603 synchronize_srcu(&fs_info
->subvol_srcu
);
5604 spin_lock(&root
->inode_lock
);
5605 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5606 spin_unlock(&root
->inode_lock
);
5608 btrfs_add_dead_root(root
);
5612 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
5614 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5615 struct rb_node
*node
;
5616 struct rb_node
*prev
;
5617 struct btrfs_inode
*entry
;
5618 struct inode
*inode
;
5621 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
5622 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
5624 spin_lock(&root
->inode_lock
);
5626 node
= root
->inode_tree
.rb_node
;
5630 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5632 if (objectid
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5633 node
= node
->rb_left
;
5634 else if (objectid
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5635 node
= node
->rb_right
;
5641 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
5642 if (objectid
<= btrfs_ino(BTRFS_I(&entry
->vfs_inode
))) {
5646 prev
= rb_next(prev
);
5650 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5651 objectid
= btrfs_ino(BTRFS_I(&entry
->vfs_inode
)) + 1;
5652 inode
= igrab(&entry
->vfs_inode
);
5654 spin_unlock(&root
->inode_lock
);
5655 if (atomic_read(&inode
->i_count
) > 1)
5656 d_prune_aliases(inode
);
5658 * btrfs_drop_inode will have it removed from
5659 * the inode cache when its usage count
5664 spin_lock(&root
->inode_lock
);
5668 if (cond_resched_lock(&root
->inode_lock
))
5671 node
= rb_next(node
);
5673 spin_unlock(&root
->inode_lock
);
5676 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5678 struct btrfs_iget_args
*args
= p
;
5679 inode
->i_ino
= args
->location
->objectid
;
5680 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5681 sizeof(*args
->location
));
5682 BTRFS_I(inode
)->root
= args
->root
;
5686 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5688 struct btrfs_iget_args
*args
= opaque
;
5689 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5690 args
->root
== BTRFS_I(inode
)->root
;
5693 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5694 struct btrfs_key
*location
,
5695 struct btrfs_root
*root
)
5697 struct inode
*inode
;
5698 struct btrfs_iget_args args
;
5699 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5701 args
.location
= location
;
5704 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5705 btrfs_init_locked_inode
,
5710 /* Get an inode object given its location and corresponding root.
5711 * Returns in *is_new if the inode was read from disk
5713 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5714 struct btrfs_root
*root
, int *new)
5716 struct inode
*inode
;
5718 inode
= btrfs_iget_locked(s
, location
, root
);
5720 return ERR_PTR(-ENOMEM
);
5722 if (inode
->i_state
& I_NEW
) {
5725 ret
= btrfs_read_locked_inode(inode
);
5726 if (!is_bad_inode(inode
)) {
5727 inode_tree_add(inode
);
5728 unlock_new_inode(inode
);
5732 unlock_new_inode(inode
);
5735 inode
= ERR_PTR(ret
< 0 ? ret
: -ESTALE
);
5742 static struct inode
*new_simple_dir(struct super_block
*s
,
5743 struct btrfs_key
*key
,
5744 struct btrfs_root
*root
)
5746 struct inode
*inode
= new_inode(s
);
5749 return ERR_PTR(-ENOMEM
);
5751 BTRFS_I(inode
)->root
= root
;
5752 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5753 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5755 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5756 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5757 inode
->i_opflags
&= ~IOP_XATTR
;
5758 inode
->i_fop
= &simple_dir_operations
;
5759 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5760 inode
->i_mtime
= current_time(inode
);
5761 inode
->i_atime
= inode
->i_mtime
;
5762 inode
->i_ctime
= inode
->i_mtime
;
5763 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5768 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5770 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5771 struct inode
*inode
;
5772 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5773 struct btrfs_root
*sub_root
= root
;
5774 struct btrfs_key location
;
5778 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5779 return ERR_PTR(-ENAMETOOLONG
);
5781 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5783 return ERR_PTR(ret
);
5785 if (location
.objectid
== 0)
5786 return ERR_PTR(-ENOENT
);
5788 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5789 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5793 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5794 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5795 &location
, &sub_root
);
5798 inode
= ERR_PTR(ret
);
5800 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5802 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5804 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5806 if (!IS_ERR(inode
) && root
!= sub_root
) {
5807 down_read(&fs_info
->cleanup_work_sem
);
5808 if (!sb_rdonly(inode
->i_sb
))
5809 ret
= btrfs_orphan_cleanup(sub_root
);
5810 up_read(&fs_info
->cleanup_work_sem
);
5813 inode
= ERR_PTR(ret
);
5820 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5822 struct btrfs_root
*root
;
5823 struct inode
*inode
= d_inode(dentry
);
5825 if (!inode
&& !IS_ROOT(dentry
))
5826 inode
= d_inode(dentry
->d_parent
);
5829 root
= BTRFS_I(inode
)->root
;
5830 if (btrfs_root_refs(&root
->root_item
) == 0)
5833 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5839 static void btrfs_dentry_release(struct dentry
*dentry
)
5841 kfree(dentry
->d_fsdata
);
5844 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5847 struct inode
*inode
;
5849 inode
= btrfs_lookup_dentry(dir
, dentry
);
5850 if (IS_ERR(inode
)) {
5851 if (PTR_ERR(inode
) == -ENOENT
)
5854 return ERR_CAST(inode
);
5857 return d_splice_alias(inode
, dentry
);
5860 unsigned char btrfs_filetype_table
[] = {
5861 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5865 * All this infrastructure exists because dir_emit can fault, and we are holding
5866 * the tree lock when doing readdir. For now just allocate a buffer and copy
5867 * our information into that, and then dir_emit from the buffer. This is
5868 * similar to what NFS does, only we don't keep the buffer around in pagecache
5869 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5870 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5873 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5875 struct btrfs_file_private
*private;
5877 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
5880 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
5881 if (!private->filldir_buf
) {
5885 file
->private_data
= private;
5896 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
5899 struct dir_entry
*entry
= addr
;
5900 char *name
= (char *)(entry
+ 1);
5902 ctx
->pos
= entry
->offset
;
5903 if (!dir_emit(ctx
, name
, entry
->name_len
, entry
->ino
,
5906 addr
+= sizeof(struct dir_entry
) + entry
->name_len
;
5912 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5914 struct inode
*inode
= file_inode(file
);
5915 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5916 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5917 struct btrfs_file_private
*private = file
->private_data
;
5918 struct btrfs_dir_item
*di
;
5919 struct btrfs_key key
;
5920 struct btrfs_key found_key
;
5921 struct btrfs_path
*path
;
5923 struct list_head ins_list
;
5924 struct list_head del_list
;
5926 struct extent_buffer
*leaf
;
5933 struct btrfs_key location
;
5935 if (!dir_emit_dots(file
, ctx
))
5938 path
= btrfs_alloc_path();
5942 addr
= private->filldir_buf
;
5943 path
->reada
= READA_FORWARD
;
5945 INIT_LIST_HEAD(&ins_list
);
5946 INIT_LIST_HEAD(&del_list
);
5947 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5950 key
.type
= BTRFS_DIR_INDEX_KEY
;
5951 key
.offset
= ctx
->pos
;
5952 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5954 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5959 struct dir_entry
*entry
;
5961 leaf
= path
->nodes
[0];
5962 slot
= path
->slots
[0];
5963 if (slot
>= btrfs_header_nritems(leaf
)) {
5964 ret
= btrfs_next_leaf(root
, path
);
5972 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5974 if (found_key
.objectid
!= key
.objectid
)
5976 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5978 if (found_key
.offset
< ctx
->pos
)
5980 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5982 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5983 if (verify_dir_item(fs_info
, leaf
, slot
, di
))
5986 name_len
= btrfs_dir_name_len(leaf
, di
);
5987 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
5989 btrfs_release_path(path
);
5990 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5993 addr
= private->filldir_buf
;
6000 entry
->name_len
= name_len
;
6001 name_ptr
= (char *)(entry
+ 1);
6002 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
6004 entry
->type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
6005 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
6006 entry
->ino
= location
.objectid
;
6007 entry
->offset
= found_key
.offset
;
6009 addr
+= sizeof(struct dir_entry
) + name_len
;
6010 total_len
+= sizeof(struct dir_entry
) + name_len
;
6014 btrfs_release_path(path
);
6016 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
6020 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
6025 * Stop new entries from being returned after we return the last
6028 * New directory entries are assigned a strictly increasing
6029 * offset. This means that new entries created during readdir
6030 * are *guaranteed* to be seen in the future by that readdir.
6031 * This has broken buggy programs which operate on names as
6032 * they're returned by readdir. Until we re-use freed offsets
6033 * we have this hack to stop new entries from being returned
6034 * under the assumption that they'll never reach this huge
6037 * This is being careful not to overflow 32bit loff_t unless the
6038 * last entry requires it because doing so has broken 32bit apps
6041 if (ctx
->pos
>= INT_MAX
)
6042 ctx
->pos
= LLONG_MAX
;
6049 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
6050 btrfs_free_path(path
);
6054 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
6056 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6057 struct btrfs_trans_handle
*trans
;
6059 bool nolock
= false;
6061 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6064 if (btrfs_fs_closing(root
->fs_info
) &&
6065 btrfs_is_free_space_inode(BTRFS_I(inode
)))
6068 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
6070 trans
= btrfs_join_transaction_nolock(root
);
6072 trans
= btrfs_join_transaction(root
);
6074 return PTR_ERR(trans
);
6075 ret
= btrfs_commit_transaction(trans
);
6081 * This is somewhat expensive, updating the tree every time the
6082 * inode changes. But, it is most likely to find the inode in cache.
6083 * FIXME, needs more benchmarking...there are no reasons other than performance
6084 * to keep or drop this code.
6086 static int btrfs_dirty_inode(struct inode
*inode
)
6088 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6089 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6090 struct btrfs_trans_handle
*trans
;
6093 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6096 trans
= btrfs_join_transaction(root
);
6098 return PTR_ERR(trans
);
6100 ret
= btrfs_update_inode(trans
, root
, inode
);
6101 if (ret
&& ret
== -ENOSPC
) {
6102 /* whoops, lets try again with the full transaction */
6103 btrfs_end_transaction(trans
);
6104 trans
= btrfs_start_transaction(root
, 1);
6106 return PTR_ERR(trans
);
6108 ret
= btrfs_update_inode(trans
, root
, inode
);
6110 btrfs_end_transaction(trans
);
6111 if (BTRFS_I(inode
)->delayed_node
)
6112 btrfs_balance_delayed_items(fs_info
);
6118 * This is a copy of file_update_time. We need this so we can return error on
6119 * ENOSPC for updating the inode in the case of file write and mmap writes.
6121 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
6124 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6126 if (btrfs_root_readonly(root
))
6129 if (flags
& S_VERSION
)
6130 inode_inc_iversion(inode
);
6131 if (flags
& S_CTIME
)
6132 inode
->i_ctime
= *now
;
6133 if (flags
& S_MTIME
)
6134 inode
->i_mtime
= *now
;
6135 if (flags
& S_ATIME
)
6136 inode
->i_atime
= *now
;
6137 return btrfs_dirty_inode(inode
);
6141 * find the highest existing sequence number in a directory
6142 * and then set the in-memory index_cnt variable to reflect
6143 * free sequence numbers
6145 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
6147 struct btrfs_root
*root
= inode
->root
;
6148 struct btrfs_key key
, found_key
;
6149 struct btrfs_path
*path
;
6150 struct extent_buffer
*leaf
;
6153 key
.objectid
= btrfs_ino(inode
);
6154 key
.type
= BTRFS_DIR_INDEX_KEY
;
6155 key
.offset
= (u64
)-1;
6157 path
= btrfs_alloc_path();
6161 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6164 /* FIXME: we should be able to handle this */
6170 * MAGIC NUMBER EXPLANATION:
6171 * since we search a directory based on f_pos we have to start at 2
6172 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6173 * else has to start at 2
6175 if (path
->slots
[0] == 0) {
6176 inode
->index_cnt
= 2;
6182 leaf
= path
->nodes
[0];
6183 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6185 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6186 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6187 inode
->index_cnt
= 2;
6191 inode
->index_cnt
= found_key
.offset
+ 1;
6193 btrfs_free_path(path
);
6198 * helper to find a free sequence number in a given directory. This current
6199 * code is very simple, later versions will do smarter things in the btree
6201 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
6205 if (dir
->index_cnt
== (u64
)-1) {
6206 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6208 ret
= btrfs_set_inode_index_count(dir
);
6214 *index
= dir
->index_cnt
;
6220 static int btrfs_insert_inode_locked(struct inode
*inode
)
6222 struct btrfs_iget_args args
;
6223 args
.location
= &BTRFS_I(inode
)->location
;
6224 args
.root
= BTRFS_I(inode
)->root
;
6226 return insert_inode_locked4(inode
,
6227 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6228 btrfs_find_actor
, &args
);
6232 * Inherit flags from the parent inode.
6234 * Currently only the compression flags and the cow flags are inherited.
6236 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
6243 flags
= BTRFS_I(dir
)->flags
;
6245 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
6246 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
6247 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
6248 } else if (flags
& BTRFS_INODE_COMPRESS
) {
6249 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
6250 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
6253 if (flags
& BTRFS_INODE_NODATACOW
) {
6254 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
6255 if (S_ISREG(inode
->i_mode
))
6256 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6259 btrfs_update_iflags(inode
);
6262 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6263 struct btrfs_root
*root
,
6265 const char *name
, int name_len
,
6266 u64 ref_objectid
, u64 objectid
,
6267 umode_t mode
, u64
*index
)
6269 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6270 struct inode
*inode
;
6271 struct btrfs_inode_item
*inode_item
;
6272 struct btrfs_key
*location
;
6273 struct btrfs_path
*path
;
6274 struct btrfs_inode_ref
*ref
;
6275 struct btrfs_key key
[2];
6277 int nitems
= name
? 2 : 1;
6281 path
= btrfs_alloc_path();
6283 return ERR_PTR(-ENOMEM
);
6285 inode
= new_inode(fs_info
->sb
);
6287 btrfs_free_path(path
);
6288 return ERR_PTR(-ENOMEM
);
6292 * O_TMPFILE, set link count to 0, so that after this point,
6293 * we fill in an inode item with the correct link count.
6296 set_nlink(inode
, 0);
6299 * we have to initialize this early, so we can reclaim the inode
6300 * number if we fail afterwards in this function.
6302 inode
->i_ino
= objectid
;
6305 trace_btrfs_inode_request(dir
);
6307 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
6309 btrfs_free_path(path
);
6311 return ERR_PTR(ret
);
6317 * index_cnt is ignored for everything but a dir,
6318 * btrfs_get_inode_index_count has an explanation for the magic
6321 BTRFS_I(inode
)->index_cnt
= 2;
6322 BTRFS_I(inode
)->dir_index
= *index
;
6323 BTRFS_I(inode
)->root
= root
;
6324 BTRFS_I(inode
)->generation
= trans
->transid
;
6325 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6328 * We could have gotten an inode number from somebody who was fsynced
6329 * and then removed in this same transaction, so let's just set full
6330 * sync since it will be a full sync anyway and this will blow away the
6331 * old info in the log.
6333 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6335 key
[0].objectid
= objectid
;
6336 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6339 sizes
[0] = sizeof(struct btrfs_inode_item
);
6343 * Start new inodes with an inode_ref. This is slightly more
6344 * efficient for small numbers of hard links since they will
6345 * be packed into one item. Extended refs will kick in if we
6346 * add more hard links than can fit in the ref item.
6348 key
[1].objectid
= objectid
;
6349 key
[1].type
= BTRFS_INODE_REF_KEY
;
6350 key
[1].offset
= ref_objectid
;
6352 sizes
[1] = name_len
+ sizeof(*ref
);
6355 location
= &BTRFS_I(inode
)->location
;
6356 location
->objectid
= objectid
;
6357 location
->offset
= 0;
6358 location
->type
= BTRFS_INODE_ITEM_KEY
;
6360 ret
= btrfs_insert_inode_locked(inode
);
6364 path
->leave_spinning
= 1;
6365 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6369 inode_init_owner(inode
, dir
, mode
);
6370 inode_set_bytes(inode
, 0);
6372 inode
->i_mtime
= current_time(inode
);
6373 inode
->i_atime
= inode
->i_mtime
;
6374 inode
->i_ctime
= inode
->i_mtime
;
6375 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6377 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6378 struct btrfs_inode_item
);
6379 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6380 sizeof(*inode_item
));
6381 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6384 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6385 struct btrfs_inode_ref
);
6386 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6387 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6388 ptr
= (unsigned long)(ref
+ 1);
6389 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6392 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6393 btrfs_free_path(path
);
6395 btrfs_inherit_iflags(inode
, dir
);
6397 if (S_ISREG(mode
)) {
6398 if (btrfs_test_opt(fs_info
, NODATASUM
))
6399 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6400 if (btrfs_test_opt(fs_info
, NODATACOW
))
6401 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6402 BTRFS_INODE_NODATASUM
;
6405 inode_tree_add(inode
);
6407 trace_btrfs_inode_new(inode
);
6408 btrfs_set_inode_last_trans(trans
, inode
);
6410 btrfs_update_root_times(trans
, root
);
6412 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6415 "error inheriting props for ino %llu (root %llu): %d",
6416 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
6421 unlock_new_inode(inode
);
6424 BTRFS_I(dir
)->index_cnt
--;
6425 btrfs_free_path(path
);
6427 return ERR_PTR(ret
);
6430 static inline u8
btrfs_inode_type(struct inode
*inode
)
6432 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6436 * utility function to add 'inode' into 'parent_inode' with
6437 * a give name and a given sequence number.
6438 * if 'add_backref' is true, also insert a backref from the
6439 * inode to the parent directory.
6441 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6442 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6443 const char *name
, int name_len
, int add_backref
, u64 index
)
6445 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6447 struct btrfs_key key
;
6448 struct btrfs_root
*root
= parent_inode
->root
;
6449 u64 ino
= btrfs_ino(inode
);
6450 u64 parent_ino
= btrfs_ino(parent_inode
);
6452 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6453 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6456 key
.type
= BTRFS_INODE_ITEM_KEY
;
6460 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6461 ret
= btrfs_add_root_ref(trans
, fs_info
, key
.objectid
,
6462 root
->root_key
.objectid
, parent_ino
,
6463 index
, name
, name_len
);
6464 } else if (add_backref
) {
6465 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6469 /* Nothing to clean up yet */
6473 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6475 btrfs_inode_type(&inode
->vfs_inode
), index
);
6476 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6479 btrfs_abort_transaction(trans
, ret
);
6483 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6485 inode_inc_iversion(&parent_inode
->vfs_inode
);
6486 parent_inode
->vfs_inode
.i_mtime
= parent_inode
->vfs_inode
.i_ctime
=
6487 current_time(&parent_inode
->vfs_inode
);
6488 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6490 btrfs_abort_transaction(trans
, ret
);
6494 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6497 err
= btrfs_del_root_ref(trans
, fs_info
, key
.objectid
,
6498 root
->root_key
.objectid
, parent_ino
,
6499 &local_index
, name
, name_len
);
6501 } else if (add_backref
) {
6505 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6506 ino
, parent_ino
, &local_index
);
6511 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6512 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6513 struct btrfs_inode
*inode
, int backref
, u64 index
)
6515 int err
= btrfs_add_link(trans
, dir
, inode
,
6516 dentry
->d_name
.name
, dentry
->d_name
.len
,
6523 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6524 umode_t mode
, dev_t rdev
)
6526 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6527 struct btrfs_trans_handle
*trans
;
6528 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6529 struct inode
*inode
= NULL
;
6536 * 2 for inode item and ref
6538 * 1 for xattr if selinux is on
6540 trans
= btrfs_start_transaction(root
, 5);
6542 return PTR_ERR(trans
);
6544 err
= btrfs_find_free_ino(root
, &objectid
);
6548 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6549 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6551 if (IS_ERR(inode
)) {
6552 err
= PTR_ERR(inode
);
6557 * If the active LSM wants to access the inode during
6558 * d_instantiate it needs these. Smack checks to see
6559 * if the filesystem supports xattrs by looking at the
6562 inode
->i_op
= &btrfs_special_inode_operations
;
6563 init_special_inode(inode
, inode
->i_mode
, rdev
);
6565 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6567 goto out_unlock_inode
;
6569 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6572 goto out_unlock_inode
;
6574 btrfs_update_inode(trans
, root
, inode
);
6575 unlock_new_inode(inode
);
6576 d_instantiate(dentry
, inode
);
6580 btrfs_end_transaction(trans
);
6581 btrfs_balance_delayed_items(fs_info
);
6582 btrfs_btree_balance_dirty(fs_info
);
6584 inode_dec_link_count(inode
);
6591 unlock_new_inode(inode
);
6596 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6597 umode_t mode
, bool excl
)
6599 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6600 struct btrfs_trans_handle
*trans
;
6601 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6602 struct inode
*inode
= NULL
;
6603 int drop_inode_on_err
= 0;
6609 * 2 for inode item and ref
6611 * 1 for xattr if selinux is on
6613 trans
= btrfs_start_transaction(root
, 5);
6615 return PTR_ERR(trans
);
6617 err
= btrfs_find_free_ino(root
, &objectid
);
6621 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6622 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6624 if (IS_ERR(inode
)) {
6625 err
= PTR_ERR(inode
);
6628 drop_inode_on_err
= 1;
6630 * If the active LSM wants to access the inode during
6631 * d_instantiate it needs these. Smack checks to see
6632 * if the filesystem supports xattrs by looking at the
6635 inode
->i_fop
= &btrfs_file_operations
;
6636 inode
->i_op
= &btrfs_file_inode_operations
;
6637 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6639 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6641 goto out_unlock_inode
;
6643 err
= btrfs_update_inode(trans
, root
, inode
);
6645 goto out_unlock_inode
;
6647 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6650 goto out_unlock_inode
;
6652 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6653 unlock_new_inode(inode
);
6654 d_instantiate(dentry
, inode
);
6657 btrfs_end_transaction(trans
);
6658 if (err
&& drop_inode_on_err
) {
6659 inode_dec_link_count(inode
);
6662 btrfs_balance_delayed_items(fs_info
);
6663 btrfs_btree_balance_dirty(fs_info
);
6667 unlock_new_inode(inode
);
6672 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6673 struct dentry
*dentry
)
6675 struct btrfs_trans_handle
*trans
= NULL
;
6676 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6677 struct inode
*inode
= d_inode(old_dentry
);
6678 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6683 /* do not allow sys_link's with other subvols of the same device */
6684 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6687 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6690 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6695 * 2 items for inode and inode ref
6696 * 2 items for dir items
6697 * 1 item for parent inode
6699 trans
= btrfs_start_transaction(root
, 5);
6700 if (IS_ERR(trans
)) {
6701 err
= PTR_ERR(trans
);
6706 /* There are several dir indexes for this inode, clear the cache. */
6707 BTRFS_I(inode
)->dir_index
= 0ULL;
6709 inode_inc_iversion(inode
);
6710 inode
->i_ctime
= current_time(inode
);
6712 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6714 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6720 struct dentry
*parent
= dentry
->d_parent
;
6721 err
= btrfs_update_inode(trans
, root
, inode
);
6724 if (inode
->i_nlink
== 1) {
6726 * If new hard link count is 1, it's a file created
6727 * with open(2) O_TMPFILE flag.
6729 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6733 d_instantiate(dentry
, inode
);
6734 btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
);
6737 btrfs_balance_delayed_items(fs_info
);
6740 btrfs_end_transaction(trans
);
6742 inode_dec_link_count(inode
);
6745 btrfs_btree_balance_dirty(fs_info
);
6749 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6751 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6752 struct inode
*inode
= NULL
;
6753 struct btrfs_trans_handle
*trans
;
6754 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6756 int drop_on_err
= 0;
6761 * 2 items for inode and ref
6762 * 2 items for dir items
6763 * 1 for xattr if selinux is on
6765 trans
= btrfs_start_transaction(root
, 5);
6767 return PTR_ERR(trans
);
6769 err
= btrfs_find_free_ino(root
, &objectid
);
6773 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6774 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6775 S_IFDIR
| mode
, &index
);
6776 if (IS_ERR(inode
)) {
6777 err
= PTR_ERR(inode
);
6782 /* these must be set before we unlock the inode */
6783 inode
->i_op
= &btrfs_dir_inode_operations
;
6784 inode
->i_fop
= &btrfs_dir_file_operations
;
6786 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6788 goto out_fail_inode
;
6790 btrfs_i_size_write(BTRFS_I(inode
), 0);
6791 err
= btrfs_update_inode(trans
, root
, inode
);
6793 goto out_fail_inode
;
6795 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6796 dentry
->d_name
.name
,
6797 dentry
->d_name
.len
, 0, index
);
6799 goto out_fail_inode
;
6801 d_instantiate(dentry
, inode
);
6803 * mkdir is special. We're unlocking after we call d_instantiate
6804 * to avoid a race with nfsd calling d_instantiate.
6806 unlock_new_inode(inode
);
6810 btrfs_end_transaction(trans
);
6812 inode_dec_link_count(inode
);
6815 btrfs_balance_delayed_items(fs_info
);
6816 btrfs_btree_balance_dirty(fs_info
);
6820 unlock_new_inode(inode
);
6824 /* Find next extent map of a given extent map, caller needs to ensure locks */
6825 static struct extent_map
*next_extent_map(struct extent_map
*em
)
6827 struct rb_node
*next
;
6829 next
= rb_next(&em
->rb_node
);
6832 return container_of(next
, struct extent_map
, rb_node
);
6835 static struct extent_map
*prev_extent_map(struct extent_map
*em
)
6837 struct rb_node
*prev
;
6839 prev
= rb_prev(&em
->rb_node
);
6842 return container_of(prev
, struct extent_map
, rb_node
);
6845 /* helper for btfs_get_extent. Given an existing extent in the tree,
6846 * the existing extent is the nearest extent to map_start,
6847 * and an extent that you want to insert, deal with overlap and insert
6848 * the best fitted new extent into the tree.
6850 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
6851 struct extent_map
*existing
,
6852 struct extent_map
*em
,
6855 struct extent_map
*prev
;
6856 struct extent_map
*next
;
6861 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
6863 if (existing
->start
> map_start
) {
6865 prev
= prev_extent_map(next
);
6868 next
= next_extent_map(prev
);
6871 start
= prev
? extent_map_end(prev
) : em
->start
;
6872 start
= max_t(u64
, start
, em
->start
);
6873 end
= next
? next
->start
: extent_map_end(em
);
6874 end
= min_t(u64
, end
, extent_map_end(em
));
6875 start_diff
= start
- em
->start
;
6877 em
->len
= end
- start
;
6878 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
6879 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
6880 em
->block_start
+= start_diff
;
6881 em
->block_len
-= start_diff
;
6883 return add_extent_mapping(em_tree
, em
, 0);
6886 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6888 size_t pg_offset
, u64 extent_offset
,
6889 struct btrfs_file_extent_item
*item
)
6892 struct extent_buffer
*leaf
= path
->nodes
[0];
6895 unsigned long inline_size
;
6899 WARN_ON(pg_offset
!= 0);
6900 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6901 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6902 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6903 btrfs_item_nr(path
->slots
[0]));
6904 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6907 ptr
= btrfs_file_extent_inline_start(item
);
6909 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6911 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6912 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6913 extent_offset
, inline_size
, max_size
);
6916 * decompression code contains a memset to fill in any space between the end
6917 * of the uncompressed data and the end of max_size in case the decompressed
6918 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6919 * the end of an inline extent and the beginning of the next block, so we
6920 * cover that region here.
6923 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6924 char *map
= kmap(page
);
6925 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6933 * a bit scary, this does extent mapping from logical file offset to the disk.
6934 * the ugly parts come from merging extents from the disk with the in-ram
6935 * representation. This gets more complex because of the data=ordered code,
6936 * where the in-ram extents might be locked pending data=ordered completion.
6938 * This also copies inline extents directly into the page.
6940 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6942 size_t pg_offset
, u64 start
, u64 len
,
6945 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6948 u64 extent_start
= 0;
6950 u64 objectid
= btrfs_ino(inode
);
6952 struct btrfs_path
*path
= NULL
;
6953 struct btrfs_root
*root
= inode
->root
;
6954 struct btrfs_file_extent_item
*item
;
6955 struct extent_buffer
*leaf
;
6956 struct btrfs_key found_key
;
6957 struct extent_map
*em
= NULL
;
6958 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6959 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6960 struct btrfs_trans_handle
*trans
= NULL
;
6961 const bool new_inline
= !page
|| create
;
6964 read_lock(&em_tree
->lock
);
6965 em
= lookup_extent_mapping(em_tree
, start
, len
);
6967 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6968 read_unlock(&em_tree
->lock
);
6971 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6972 free_extent_map(em
);
6973 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6974 free_extent_map(em
);
6978 em
= alloc_extent_map();
6983 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6984 em
->start
= EXTENT_MAP_HOLE
;
6985 em
->orig_start
= EXTENT_MAP_HOLE
;
6987 em
->block_len
= (u64
)-1;
6990 path
= btrfs_alloc_path();
6996 * Chances are we'll be called again, so go ahead and do
6999 path
->reada
= READA_FORWARD
;
7002 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
7003 objectid
, start
, trans
!= NULL
);
7010 if (path
->slots
[0] == 0)
7015 leaf
= path
->nodes
[0];
7016 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7017 struct btrfs_file_extent_item
);
7018 /* are we inside the extent that was found? */
7019 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7020 found_type
= found_key
.type
;
7021 if (found_key
.objectid
!= objectid
||
7022 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
7024 * If we backup past the first extent we want to move forward
7025 * and see if there is an extent in front of us, otherwise we'll
7026 * say there is a hole for our whole search range which can
7033 found_type
= btrfs_file_extent_type(leaf
, item
);
7034 extent_start
= found_key
.offset
;
7035 if (found_type
== BTRFS_FILE_EXTENT_REG
||
7036 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7037 extent_end
= extent_start
+
7038 btrfs_file_extent_num_bytes(leaf
, item
);
7040 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
7042 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
7044 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
7045 extent_end
= ALIGN(extent_start
+ size
,
7046 fs_info
->sectorsize
);
7048 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
7053 if (start
>= extent_end
) {
7055 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
7056 ret
= btrfs_next_leaf(root
, path
);
7063 leaf
= path
->nodes
[0];
7065 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7066 if (found_key
.objectid
!= objectid
||
7067 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7069 if (start
+ len
<= found_key
.offset
)
7071 if (start
> found_key
.offset
)
7074 em
->orig_start
= start
;
7075 em
->len
= found_key
.offset
- start
;
7079 btrfs_extent_item_to_extent_map(inode
, path
, item
,
7082 if (found_type
== BTRFS_FILE_EXTENT_REG
||
7083 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7085 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
7089 size_t extent_offset
;
7095 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
7096 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
7097 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
7098 size
- extent_offset
);
7099 em
->start
= extent_start
+ extent_offset
;
7100 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
7101 em
->orig_block_len
= em
->len
;
7102 em
->orig_start
= em
->start
;
7103 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
7104 if (create
== 0 && !PageUptodate(page
)) {
7105 if (btrfs_file_extent_compression(leaf
, item
) !=
7106 BTRFS_COMPRESS_NONE
) {
7107 ret
= uncompress_inline(path
, page
, pg_offset
,
7108 extent_offset
, item
);
7115 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
7117 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
7118 memset(map
+ pg_offset
+ copy_size
, 0,
7119 PAGE_SIZE
- pg_offset
-
7124 flush_dcache_page(page
);
7125 } else if (create
&& PageUptodate(page
)) {
7129 free_extent_map(em
);
7132 btrfs_release_path(path
);
7133 trans
= btrfs_join_transaction(root
);
7136 return ERR_CAST(trans
);
7140 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
7143 btrfs_mark_buffer_dirty(leaf
);
7145 set_extent_uptodate(io_tree
, em
->start
,
7146 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
7151 em
->orig_start
= start
;
7154 em
->block_start
= EXTENT_MAP_HOLE
;
7155 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
7157 btrfs_release_path(path
);
7158 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
7160 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7161 em
->start
, em
->len
, start
, len
);
7167 write_lock(&em_tree
->lock
);
7168 ret
= add_extent_mapping(em_tree
, em
, 0);
7169 /* it is possible that someone inserted the extent into the tree
7170 * while we had the lock dropped. It is also possible that
7171 * an overlapping map exists in the tree
7173 if (ret
== -EEXIST
) {
7174 struct extent_map
*existing
;
7178 existing
= search_extent_mapping(em_tree
, start
, len
);
7180 * existing will always be non-NULL, since there must be
7181 * extent causing the -EEXIST.
7183 if (existing
->start
== em
->start
&&
7184 extent_map_end(existing
) >= extent_map_end(em
) &&
7185 em
->block_start
== existing
->block_start
) {
7187 * The existing extent map already encompasses the
7188 * entire extent map we tried to add.
7190 free_extent_map(em
);
7194 } else if (start
>= extent_map_end(existing
) ||
7195 start
<= existing
->start
) {
7197 * The existing extent map is the one nearest to
7198 * the [start, start + len) range which overlaps
7200 err
= merge_extent_mapping(em_tree
, existing
,
7202 free_extent_map(existing
);
7204 free_extent_map(em
);
7208 free_extent_map(em
);
7213 write_unlock(&em_tree
->lock
);
7216 trace_btrfs_get_extent(root
, inode
, em
);
7218 btrfs_free_path(path
);
7220 ret
= btrfs_end_transaction(trans
);
7225 free_extent_map(em
);
7226 return ERR_PTR(err
);
7228 BUG_ON(!em
); /* Error is always set */
7232 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
7234 size_t pg_offset
, u64 start
, u64 len
,
7237 struct extent_map
*em
;
7238 struct extent_map
*hole_em
= NULL
;
7239 u64 range_start
= start
;
7245 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
7249 * If our em maps to:
7251 * - a pre-alloc extent,
7252 * there might actually be delalloc bytes behind it.
7254 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7255 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7260 /* check to see if we've wrapped (len == -1 or similar) */
7269 /* ok, we didn't find anything, lets look for delalloc */
7270 found
= count_range_bits(&inode
->io_tree
, &range_start
,
7271 end
, len
, EXTENT_DELALLOC
, 1);
7272 found_end
= range_start
+ found
;
7273 if (found_end
< range_start
)
7274 found_end
= (u64
)-1;
7277 * we didn't find anything useful, return
7278 * the original results from get_extent()
7280 if (range_start
> end
|| found_end
<= start
) {
7286 /* adjust the range_start to make sure it doesn't
7287 * go backwards from the start they passed in
7289 range_start
= max(start
, range_start
);
7290 found
= found_end
- range_start
;
7293 u64 hole_start
= start
;
7296 em
= alloc_extent_map();
7302 * when btrfs_get_extent can't find anything it
7303 * returns one huge hole
7305 * make sure what it found really fits our range, and
7306 * adjust to make sure it is based on the start from
7310 u64 calc_end
= extent_map_end(hole_em
);
7312 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7313 free_extent_map(hole_em
);
7316 hole_start
= max(hole_em
->start
, start
);
7317 hole_len
= calc_end
- hole_start
;
7321 if (hole_em
&& range_start
> hole_start
) {
7322 /* our hole starts before our delalloc, so we
7323 * have to return just the parts of the hole
7324 * that go until the delalloc starts
7326 em
->len
= min(hole_len
,
7327 range_start
- hole_start
);
7328 em
->start
= hole_start
;
7329 em
->orig_start
= hole_start
;
7331 * don't adjust block start at all,
7332 * it is fixed at EXTENT_MAP_HOLE
7334 em
->block_start
= hole_em
->block_start
;
7335 em
->block_len
= hole_len
;
7336 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7337 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7339 em
->start
= range_start
;
7341 em
->orig_start
= range_start
;
7342 em
->block_start
= EXTENT_MAP_DELALLOC
;
7343 em
->block_len
= found
;
7345 } else if (hole_em
) {
7350 free_extent_map(hole_em
);
7352 free_extent_map(em
);
7353 return ERR_PTR(err
);
7358 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7361 const u64 orig_start
,
7362 const u64 block_start
,
7363 const u64 block_len
,
7364 const u64 orig_block_len
,
7365 const u64 ram_bytes
,
7368 struct extent_map
*em
= NULL
;
7371 if (type
!= BTRFS_ORDERED_NOCOW
) {
7372 em
= create_io_em(inode
, start
, len
, orig_start
,
7373 block_start
, block_len
, orig_block_len
,
7375 BTRFS_COMPRESS_NONE
, /* compress_type */
7380 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7381 len
, block_len
, type
);
7384 free_extent_map(em
);
7385 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
7386 start
+ len
- 1, 0);
7395 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7398 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7399 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7400 struct extent_map
*em
;
7401 struct btrfs_key ins
;
7405 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7406 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
7407 0, alloc_hint
, &ins
, 1, 1);
7409 return ERR_PTR(ret
);
7411 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7412 ins
.objectid
, ins
.offset
, ins
.offset
,
7413 ins
.offset
, BTRFS_ORDERED_REGULAR
);
7414 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
7416 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
7423 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7424 * block must be cow'd
7426 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7427 u64
*orig_start
, u64
*orig_block_len
,
7430 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7431 struct btrfs_path
*path
;
7433 struct extent_buffer
*leaf
;
7434 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7435 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7436 struct btrfs_file_extent_item
*fi
;
7437 struct btrfs_key key
;
7444 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7446 path
= btrfs_alloc_path();
7450 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
7451 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
7455 slot
= path
->slots
[0];
7458 /* can't find the item, must cow */
7465 leaf
= path
->nodes
[0];
7466 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7467 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
7468 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7469 /* not our file or wrong item type, must cow */
7473 if (key
.offset
> offset
) {
7474 /* Wrong offset, must cow */
7478 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7479 found_type
= btrfs_file_extent_type(leaf
, fi
);
7480 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7481 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7482 /* not a regular extent, must cow */
7486 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7489 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7490 if (extent_end
<= offset
)
7493 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7494 if (disk_bytenr
== 0)
7497 if (btrfs_file_extent_compression(leaf
, fi
) ||
7498 btrfs_file_extent_encryption(leaf
, fi
) ||
7499 btrfs_file_extent_other_encoding(leaf
, fi
))
7502 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7505 *orig_start
= key
.offset
- backref_offset
;
7506 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7507 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7510 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7513 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7514 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7517 range_end
= round_up(offset
+ num_bytes
,
7518 root
->fs_info
->sectorsize
) - 1;
7519 ret
= test_range_bit(io_tree
, offset
, range_end
,
7520 EXTENT_DELALLOC
, 0, NULL
);
7527 btrfs_release_path(path
);
7530 * look for other files referencing this extent, if we
7531 * find any we must cow
7534 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
7535 key
.offset
- backref_offset
, disk_bytenr
);
7542 * adjust disk_bytenr and num_bytes to cover just the bytes
7543 * in this extent we are about to write. If there
7544 * are any csums in that range we have to cow in order
7545 * to keep the csums correct
7547 disk_bytenr
+= backref_offset
;
7548 disk_bytenr
+= offset
- key
.offset
;
7549 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7552 * all of the above have passed, it is safe to overwrite this extent
7558 btrfs_free_path(path
);
7562 bool btrfs_page_exists_in_range(struct inode
*inode
, loff_t start
, loff_t end
)
7564 struct radix_tree_root
*root
= &inode
->i_mapping
->page_tree
;
7566 void **pagep
= NULL
;
7567 struct page
*page
= NULL
;
7568 unsigned long start_idx
;
7569 unsigned long end_idx
;
7571 start_idx
= start
>> PAGE_SHIFT
;
7574 * end is the last byte in the last page. end == start is legal
7576 end_idx
= end
>> PAGE_SHIFT
;
7580 /* Most of the code in this while loop is lifted from
7581 * find_get_page. It's been modified to begin searching from a
7582 * page and return just the first page found in that range. If the
7583 * found idx is less than or equal to the end idx then we know that
7584 * a page exists. If no pages are found or if those pages are
7585 * outside of the range then we're fine (yay!) */
7586 while (page
== NULL
&&
7587 radix_tree_gang_lookup_slot(root
, &pagep
, NULL
, start_idx
, 1)) {
7588 page
= radix_tree_deref_slot(pagep
);
7589 if (unlikely(!page
))
7592 if (radix_tree_exception(page
)) {
7593 if (radix_tree_deref_retry(page
)) {
7598 * Otherwise, shmem/tmpfs must be storing a swap entry
7599 * here as an exceptional entry: so return it without
7600 * attempting to raise page count.
7603 break; /* TODO: Is this relevant for this use case? */
7606 if (!page_cache_get_speculative(page
)) {
7612 * Has the page moved?
7613 * This is part of the lockless pagecache protocol. See
7614 * include/linux/pagemap.h for details.
7616 if (unlikely(page
!= *pagep
)) {
7623 if (page
->index
<= end_idx
)
7632 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7633 struct extent_state
**cached_state
, int writing
)
7635 struct btrfs_ordered_extent
*ordered
;
7639 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7642 * We're concerned with the entire range that we're going to be
7643 * doing DIO to, so we need to make sure there's no ordered
7644 * extents in this range.
7646 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7647 lockend
- lockstart
+ 1);
7650 * We need to make sure there are no buffered pages in this
7651 * range either, we could have raced between the invalidate in
7652 * generic_file_direct_write and locking the extent. The
7653 * invalidate needs to happen so that reads after a write do not
7658 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)))
7661 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7662 cached_state
, GFP_NOFS
);
7666 * If we are doing a DIO read and the ordered extent we
7667 * found is for a buffered write, we can not wait for it
7668 * to complete and retry, because if we do so we can
7669 * deadlock with concurrent buffered writes on page
7670 * locks. This happens only if our DIO read covers more
7671 * than one extent map, if at this point has already
7672 * created an ordered extent for a previous extent map
7673 * and locked its range in the inode's io tree, and a
7674 * concurrent write against that previous extent map's
7675 * range and this range started (we unlock the ranges
7676 * in the io tree only when the bios complete and
7677 * buffered writes always lock pages before attempting
7678 * to lock range in the io tree).
7681 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7682 btrfs_start_ordered_extent(inode
, ordered
, 1);
7685 btrfs_put_ordered_extent(ordered
);
7688 * We could trigger writeback for this range (and wait
7689 * for it to complete) and then invalidate the pages for
7690 * this range (through invalidate_inode_pages2_range()),
7691 * but that can lead us to a deadlock with a concurrent
7692 * call to readpages() (a buffered read or a defrag call
7693 * triggered a readahead) on a page lock due to an
7694 * ordered dio extent we created before but did not have
7695 * yet a corresponding bio submitted (whence it can not
7696 * complete), which makes readpages() wait for that
7697 * ordered extent to complete while holding a lock on
7712 /* The callers of this must take lock_extent() */
7713 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7714 u64 orig_start
, u64 block_start
,
7715 u64 block_len
, u64 orig_block_len
,
7716 u64 ram_bytes
, int compress_type
,
7719 struct extent_map_tree
*em_tree
;
7720 struct extent_map
*em
;
7721 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7724 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7725 type
== BTRFS_ORDERED_COMPRESSED
||
7726 type
== BTRFS_ORDERED_NOCOW
||
7727 type
== BTRFS_ORDERED_REGULAR
);
7729 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7730 em
= alloc_extent_map();
7732 return ERR_PTR(-ENOMEM
);
7735 em
->orig_start
= orig_start
;
7737 em
->block_len
= block_len
;
7738 em
->block_start
= block_start
;
7739 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7740 em
->orig_block_len
= orig_block_len
;
7741 em
->ram_bytes
= ram_bytes
;
7742 em
->generation
= -1;
7743 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7744 if (type
== BTRFS_ORDERED_PREALLOC
) {
7745 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7746 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7747 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7748 em
->compress_type
= compress_type
;
7752 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7753 em
->start
+ em
->len
- 1, 0);
7754 write_lock(&em_tree
->lock
);
7755 ret
= add_extent_mapping(em_tree
, em
, 1);
7756 write_unlock(&em_tree
->lock
);
7758 * The caller has taken lock_extent(), who could race with us
7761 } while (ret
== -EEXIST
);
7764 free_extent_map(em
);
7765 return ERR_PTR(ret
);
7768 /* em got 2 refs now, callers needs to do free_extent_map once. */
7772 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7773 struct buffer_head
*bh_result
, int create
)
7775 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7776 struct extent_map
*em
;
7777 struct extent_state
*cached_state
= NULL
;
7778 struct btrfs_dio_data
*dio_data
= NULL
;
7779 u64 start
= iblock
<< inode
->i_blkbits
;
7780 u64 lockstart
, lockend
;
7781 u64 len
= bh_result
->b_size
;
7782 int unlock_bits
= EXTENT_LOCKED
;
7786 unlock_bits
|= EXTENT_DIRTY
;
7788 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7791 lockend
= start
+ len
- 1;
7793 if (current
->journal_info
) {
7795 * Need to pull our outstanding extents and set journal_info to NULL so
7796 * that anything that needs to check if there's a transaction doesn't get
7799 dio_data
= current
->journal_info
;
7800 current
->journal_info
= NULL
;
7804 * If this errors out it's because we couldn't invalidate pagecache for
7805 * this range and we need to fallback to buffered.
7807 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7813 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
7820 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7821 * io. INLINE is special, and we could probably kludge it in here, but
7822 * it's still buffered so for safety lets just fall back to the generic
7825 * For COMPRESSED we _have_ to read the entire extent in so we can
7826 * decompress it, so there will be buffering required no matter what we
7827 * do, so go ahead and fallback to buffered.
7829 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7830 * to buffered IO. Don't blame me, this is the price we pay for using
7833 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7834 em
->block_start
== EXTENT_MAP_INLINE
) {
7835 free_extent_map(em
);
7840 /* Just a good old fashioned hole, return */
7841 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
7842 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
7843 free_extent_map(em
);
7848 * We don't allocate a new extent in the following cases
7850 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7852 * 2) The extent is marked as PREALLOC. We're good to go here and can
7853 * just use the extent.
7857 len
= min(len
, em
->len
- (start
- em
->start
));
7858 lockstart
= start
+ len
;
7862 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7863 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7864 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7866 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7868 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7869 type
= BTRFS_ORDERED_PREALLOC
;
7871 type
= BTRFS_ORDERED_NOCOW
;
7872 len
= min(len
, em
->len
- (start
- em
->start
));
7873 block_start
= em
->block_start
+ (start
- em
->start
);
7875 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7876 &orig_block_len
, &ram_bytes
) == 1 &&
7877 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7878 struct extent_map
*em2
;
7880 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7881 orig_start
, block_start
,
7882 len
, orig_block_len
,
7884 btrfs_dec_nocow_writers(fs_info
, block_start
);
7885 if (type
== BTRFS_ORDERED_PREALLOC
) {
7886 free_extent_map(em
);
7889 if (em2
&& IS_ERR(em2
)) {
7894 * For inode marked NODATACOW or extent marked PREALLOC,
7895 * use the existing or preallocated extent, so does not
7896 * need to adjust btrfs_space_info's bytes_may_use.
7898 btrfs_free_reserved_data_space_noquota(inode
,
7905 * this will cow the extent, reset the len in case we changed
7908 len
= bh_result
->b_size
;
7909 free_extent_map(em
);
7910 em
= btrfs_new_extent_direct(inode
, start
, len
);
7915 len
= min(len
, em
->len
- (start
- em
->start
));
7917 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7919 bh_result
->b_size
= len
;
7920 bh_result
->b_bdev
= em
->bdev
;
7921 set_buffer_mapped(bh_result
);
7923 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7924 set_buffer_new(bh_result
);
7927 * Need to update the i_size under the extent lock so buffered
7928 * readers will get the updated i_size when we unlock.
7930 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7931 i_size_write(inode
, start
+ len
);
7933 WARN_ON(dio_data
->reserve
< len
);
7934 dio_data
->reserve
-= len
;
7935 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7936 current
->journal_info
= dio_data
;
7940 * In the case of write we need to clear and unlock the entire range,
7941 * in the case of read we need to unlock only the end area that we
7942 * aren't using if there is any left over space.
7944 if (lockstart
< lockend
) {
7945 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7946 lockend
, unlock_bits
, 1, 0,
7947 &cached_state
, GFP_NOFS
);
7949 free_extent_state(cached_state
);
7952 free_extent_map(em
);
7957 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7958 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
7961 current
->journal_info
= dio_data
;
7965 static inline blk_status_t
submit_dio_repair_bio(struct inode
*inode
,
7969 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7972 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7976 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7980 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
7986 static int btrfs_check_dio_repairable(struct inode
*inode
,
7987 struct bio
*failed_bio
,
7988 struct io_failure_record
*failrec
,
7991 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7994 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7995 if (num_copies
== 1) {
7997 * we only have a single copy of the data, so don't bother with
7998 * all the retry and error correction code that follows. no
7999 * matter what the error is, it is very likely to persist.
8001 btrfs_debug(fs_info
,
8002 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
8003 num_copies
, failrec
->this_mirror
, failed_mirror
);
8007 failrec
->failed_mirror
= failed_mirror
;
8008 failrec
->this_mirror
++;
8009 if (failrec
->this_mirror
== failed_mirror
)
8010 failrec
->this_mirror
++;
8012 if (failrec
->this_mirror
> num_copies
) {
8013 btrfs_debug(fs_info
,
8014 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
8015 num_copies
, failrec
->this_mirror
, failed_mirror
);
8022 static blk_status_t
dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
8023 struct page
*page
, unsigned int pgoff
,
8024 u64 start
, u64 end
, int failed_mirror
,
8025 bio_end_io_t
*repair_endio
, void *repair_arg
)
8027 struct io_failure_record
*failrec
;
8028 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8029 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
8032 unsigned int read_mode
= 0;
8035 blk_status_t status
;
8037 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
8039 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
8041 return errno_to_blk_status(ret
);
8043 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
8046 free_io_failure(failure_tree
, io_tree
, failrec
);
8047 return BLK_STS_IOERR
;
8050 segs
= bio_segments(failed_bio
);
8052 (failed_bio
->bi_io_vec
->bv_len
> btrfs_inode_sectorsize(inode
)))
8053 read_mode
|= REQ_FAILFAST_DEV
;
8055 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
8056 isector
>>= inode
->i_sb
->s_blocksize_bits
;
8057 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
8058 pgoff
, isector
, repair_endio
, repair_arg
);
8059 bio_set_op_attrs(bio
, REQ_OP_READ
, read_mode
);
8061 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
8062 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8063 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
8065 status
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
8067 free_io_failure(failure_tree
, io_tree
, failrec
);
8074 struct btrfs_retry_complete
{
8075 struct completion done
;
8076 struct inode
*inode
;
8081 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
8083 struct btrfs_retry_complete
*done
= bio
->bi_private
;
8084 struct inode
*inode
= done
->inode
;
8085 struct bio_vec
*bvec
;
8086 struct extent_io_tree
*io_tree
, *failure_tree
;
8092 ASSERT(bio
->bi_vcnt
== 1);
8093 io_tree
= &BTRFS_I(inode
)->io_tree
;
8094 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
8095 ASSERT(bio
->bi_io_vec
->bv_len
== btrfs_inode_sectorsize(inode
));
8098 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
8099 bio_for_each_segment_all(bvec
, bio
, i
)
8100 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
, failure_tree
,
8101 io_tree
, done
->start
, bvec
->bv_page
,
8102 btrfs_ino(BTRFS_I(inode
)), 0);
8104 complete(&done
->done
);
8108 static blk_status_t
__btrfs_correct_data_nocsum(struct inode
*inode
,
8109 struct btrfs_io_bio
*io_bio
)
8111 struct btrfs_fs_info
*fs_info
;
8112 struct bio_vec bvec
;
8113 struct bvec_iter iter
;
8114 struct btrfs_retry_complete done
;
8120 blk_status_t err
= BLK_STS_OK
;
8122 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8123 sectorsize
= fs_info
->sectorsize
;
8125 start
= io_bio
->logical
;
8127 io_bio
->bio
.bi_iter
= io_bio
->iter
;
8129 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
8130 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
8131 pgoff
= bvec
.bv_offset
;
8133 next_block_or_try_again
:
8136 init_completion(&done
.done
);
8138 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8139 pgoff
, start
, start
+ sectorsize
- 1,
8141 btrfs_retry_endio_nocsum
, &done
);
8147 wait_for_completion_io(&done
.done
);
8149 if (!done
.uptodate
) {
8150 /* We might have another mirror, so try again */
8151 goto next_block_or_try_again
;
8155 start
+= sectorsize
;
8159 pgoff
+= sectorsize
;
8160 ASSERT(pgoff
< PAGE_SIZE
);
8161 goto next_block_or_try_again
;
8168 static void btrfs_retry_endio(struct bio
*bio
)
8170 struct btrfs_retry_complete
*done
= bio
->bi_private
;
8171 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8172 struct extent_io_tree
*io_tree
, *failure_tree
;
8173 struct inode
*inode
= done
->inode
;
8174 struct bio_vec
*bvec
;
8184 ASSERT(bio
->bi_vcnt
== 1);
8185 ASSERT(bio
->bi_io_vec
->bv_len
== btrfs_inode_sectorsize(done
->inode
));
8187 io_tree
= &BTRFS_I(inode
)->io_tree
;
8188 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
8190 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
8191 bio_for_each_segment_all(bvec
, bio
, i
) {
8192 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
8193 bvec
->bv_offset
, done
->start
,
8196 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
8197 failure_tree
, io_tree
, done
->start
,
8199 btrfs_ino(BTRFS_I(inode
)),
8205 done
->uptodate
= uptodate
;
8207 complete(&done
->done
);
8211 static blk_status_t
__btrfs_subio_endio_read(struct inode
*inode
,
8212 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8214 struct btrfs_fs_info
*fs_info
;
8215 struct bio_vec bvec
;
8216 struct bvec_iter iter
;
8217 struct btrfs_retry_complete done
;
8224 bool uptodate
= (err
== 0);
8226 blk_status_t status
;
8228 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8229 sectorsize
= fs_info
->sectorsize
;
8232 start
= io_bio
->logical
;
8234 io_bio
->bio
.bi_iter
= io_bio
->iter
;
8236 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
8237 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
8239 pgoff
= bvec
.bv_offset
;
8242 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
8243 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
8244 bvec
.bv_page
, pgoff
, start
, sectorsize
);
8251 init_completion(&done
.done
);
8253 status
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8254 pgoff
, start
, start
+ sectorsize
- 1,
8255 io_bio
->mirror_num
, btrfs_retry_endio
,
8262 wait_for_completion_io(&done
.done
);
8264 if (!done
.uptodate
) {
8265 /* We might have another mirror, so try again */
8269 offset
+= sectorsize
;
8270 start
+= sectorsize
;
8276 pgoff
+= sectorsize
;
8277 ASSERT(pgoff
< PAGE_SIZE
);
8285 static blk_status_t
btrfs_subio_endio_read(struct inode
*inode
,
8286 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8288 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8292 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8296 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8300 static void btrfs_endio_direct_read(struct bio
*bio
)
8302 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8303 struct inode
*inode
= dip
->inode
;
8304 struct bio
*dio_bio
;
8305 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8306 blk_status_t err
= bio
->bi_status
;
8308 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
8309 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8311 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8312 dip
->logical_offset
+ dip
->bytes
- 1);
8313 dio_bio
= dip
->dio_bio
;
8317 dio_bio
->bi_status
= err
;
8318 dio_end_io(dio_bio
);
8321 io_bio
->end_io(io_bio
, blk_status_to_errno(err
));
8325 static void __endio_write_update_ordered(struct inode
*inode
,
8326 const u64 offset
, const u64 bytes
,
8327 const bool uptodate
)
8329 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8330 struct btrfs_ordered_extent
*ordered
= NULL
;
8331 struct btrfs_workqueue
*wq
;
8332 btrfs_work_func_t func
;
8333 u64 ordered_offset
= offset
;
8334 u64 ordered_bytes
= bytes
;
8338 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
8339 wq
= fs_info
->endio_freespace_worker
;
8340 func
= btrfs_freespace_write_helper
;
8342 wq
= fs_info
->endio_write_workers
;
8343 func
= btrfs_endio_write_helper
;
8347 last_offset
= ordered_offset
;
8348 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8355 btrfs_init_work(&ordered
->work
, func
, finish_ordered_fn
, NULL
, NULL
);
8356 btrfs_queue_work(wq
, &ordered
->work
);
8359 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8360 * in the range, we can exit.
8362 if (ordered_offset
== last_offset
)
8365 * our bio might span multiple ordered extents. If we haven't
8366 * completed the accounting for the whole dio, go back and try again
8368 if (ordered_offset
< offset
+ bytes
) {
8369 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8375 static void btrfs_endio_direct_write(struct bio
*bio
)
8377 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8378 struct bio
*dio_bio
= dip
->dio_bio
;
8380 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
8381 dip
->bytes
, !bio
->bi_status
);
8385 dio_bio
->bi_status
= bio
->bi_status
;
8386 dio_end_io(dio_bio
);
8390 static blk_status_t
__btrfs_submit_bio_start_direct_io(void *private_data
,
8391 struct bio
*bio
, int mirror_num
,
8392 unsigned long bio_flags
, u64 offset
)
8394 struct inode
*inode
= private_data
;
8396 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
8397 BUG_ON(ret
); /* -ENOMEM */
8401 static void btrfs_end_dio_bio(struct bio
*bio
)
8403 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8404 blk_status_t err
= bio
->bi_status
;
8407 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8408 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8409 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
8411 (unsigned long long)bio
->bi_iter
.bi_sector
,
8412 bio
->bi_iter
.bi_size
, err
);
8414 if (dip
->subio_endio
)
8415 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8421 * before atomic variable goto zero, we must make sure
8422 * dip->errors is perceived to be set.
8424 smp_mb__before_atomic();
8427 /* if there are more bios still pending for this dio, just exit */
8428 if (!atomic_dec_and_test(&dip
->pending_bios
))
8432 bio_io_error(dip
->orig_bio
);
8434 dip
->dio_bio
->bi_status
= BLK_STS_OK
;
8435 bio_endio(dip
->orig_bio
);
8441 static inline blk_status_t
btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
8442 struct btrfs_dio_private
*dip
,
8446 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8447 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8451 * We load all the csum data we need when we submit
8452 * the first bio to reduce the csum tree search and
8455 if (dip
->logical_offset
== file_offset
) {
8456 ret
= btrfs_lookup_bio_sums_dio(inode
, dip
->orig_bio
,
8462 if (bio
== dip
->orig_bio
)
8465 file_offset
-= dip
->logical_offset
;
8466 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8467 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8472 static inline blk_status_t
8473 __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
, u64 file_offset
,
8476 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8477 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8478 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
8482 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8487 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
8492 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
8495 if (write
&& async_submit
) {
8496 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
8498 __btrfs_submit_bio_start_direct_io
,
8499 __btrfs_submit_bio_done
);
8503 * If we aren't doing async submit, calculate the csum of the
8506 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
8510 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
8516 ret
= btrfs_map_bio(fs_info
, bio
, 0, 0);
8522 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
)
8524 struct inode
*inode
= dip
->inode
;
8525 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8527 struct bio
*orig_bio
= dip
->orig_bio
;
8528 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8529 u64 file_offset
= dip
->logical_offset
;
8531 int async_submit
= 0;
8533 int clone_offset
= 0;
8536 blk_status_t status
;
8538 map_length
= orig_bio
->bi_iter
.bi_size
;
8539 submit_len
= map_length
;
8540 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
), start_sector
<< 9,
8541 &map_length
, NULL
, 0);
8545 if (map_length
>= submit_len
) {
8547 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8551 /* async crcs make it difficult to collect full stripe writes. */
8552 if (btrfs_data_alloc_profile(fs_info
) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8558 ASSERT(map_length
<= INT_MAX
);
8559 atomic_inc(&dip
->pending_bios
);
8561 clone_len
= min_t(int, submit_len
, map_length
);
8564 * This will never fail as it's passing GPF_NOFS and
8565 * the allocation is backed by btrfs_bioset.
8567 bio
= btrfs_bio_clone_partial(orig_bio
, clone_offset
,
8569 bio
->bi_private
= dip
;
8570 bio
->bi_end_io
= btrfs_end_dio_bio
;
8571 btrfs_io_bio(bio
)->logical
= file_offset
;
8573 ASSERT(submit_len
>= clone_len
);
8574 submit_len
-= clone_len
;
8575 if (submit_len
== 0)
8579 * Increase the count before we submit the bio so we know
8580 * the end IO handler won't happen before we increase the
8581 * count. Otherwise, the dip might get freed before we're
8582 * done setting it up.
8584 atomic_inc(&dip
->pending_bios
);
8586 status
= __btrfs_submit_dio_bio(bio
, inode
, file_offset
,
8590 atomic_dec(&dip
->pending_bios
);
8594 clone_offset
+= clone_len
;
8595 start_sector
+= clone_len
>> 9;
8596 file_offset
+= clone_len
;
8598 map_length
= submit_len
;
8599 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
),
8600 start_sector
<< 9, &map_length
, NULL
, 0);
8603 } while (submit_len
> 0);
8606 status
= __btrfs_submit_dio_bio(bio
, inode
, file_offset
, async_submit
);
8614 * before atomic variable goto zero, we must
8615 * make sure dip->errors is perceived to be set.
8617 smp_mb__before_atomic();
8618 if (atomic_dec_and_test(&dip
->pending_bios
))
8619 bio_io_error(dip
->orig_bio
);
8621 /* bio_end_io() will handle error, so we needn't return it */
8625 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8628 struct btrfs_dio_private
*dip
= NULL
;
8629 struct bio
*bio
= NULL
;
8630 struct btrfs_io_bio
*io_bio
;
8631 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8634 bio
= btrfs_bio_clone(dio_bio
);
8636 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8642 dip
->private = dio_bio
->bi_private
;
8644 dip
->logical_offset
= file_offset
;
8645 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8646 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8647 bio
->bi_private
= dip
;
8648 dip
->orig_bio
= bio
;
8649 dip
->dio_bio
= dio_bio
;
8650 atomic_set(&dip
->pending_bios
, 0);
8651 io_bio
= btrfs_io_bio(bio
);
8652 io_bio
->logical
= file_offset
;
8655 bio
->bi_end_io
= btrfs_endio_direct_write
;
8657 bio
->bi_end_io
= btrfs_endio_direct_read
;
8658 dip
->subio_endio
= btrfs_subio_endio_read
;
8662 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8663 * even if we fail to submit a bio, because in such case we do the
8664 * corresponding error handling below and it must not be done a second
8665 * time by btrfs_direct_IO().
8668 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8670 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8672 dio_data
->unsubmitted_oe_range_start
=
8673 dio_data
->unsubmitted_oe_range_end
;
8676 ret
= btrfs_submit_direct_hook(dip
);
8681 io_bio
->end_io(io_bio
, ret
);
8685 * If we arrived here it means either we failed to submit the dip
8686 * or we either failed to clone the dio_bio or failed to allocate the
8687 * dip. If we cloned the dio_bio and allocated the dip, we can just
8688 * call bio_endio against our io_bio so that we get proper resource
8689 * cleanup if we fail to submit the dip, otherwise, we must do the
8690 * same as btrfs_endio_direct_[write|read] because we can't call these
8691 * callbacks - they require an allocated dip and a clone of dio_bio.
8696 * The end io callbacks free our dip, do the final put on bio
8697 * and all the cleanup and final put for dio_bio (through
8704 __endio_write_update_ordered(inode
,
8706 dio_bio
->bi_iter
.bi_size
,
8709 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8710 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8712 dio_bio
->bi_status
= BLK_STS_IOERR
;
8714 * Releases and cleans up our dio_bio, no need to bio_put()
8715 * nor bio_endio()/bio_io_error() against dio_bio.
8717 dio_end_io(dio_bio
);
8724 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8725 const struct iov_iter
*iter
, loff_t offset
)
8729 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8730 ssize_t retval
= -EINVAL
;
8732 if (offset
& blocksize_mask
)
8735 if (iov_iter_alignment(iter
) & blocksize_mask
)
8738 /* If this is a write we don't need to check anymore */
8739 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8742 * Check to make sure we don't have duplicate iov_base's in this
8743 * iovec, if so return EINVAL, otherwise we'll get csum errors
8744 * when reading back.
8746 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8747 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8748 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8757 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8759 struct file
*file
= iocb
->ki_filp
;
8760 struct inode
*inode
= file
->f_mapping
->host
;
8761 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8762 struct btrfs_dio_data dio_data
= { 0 };
8763 struct extent_changeset
*data_reserved
= NULL
;
8764 loff_t offset
= iocb
->ki_pos
;
8768 bool relock
= false;
8771 if (check_direct_IO(fs_info
, iter
, offset
))
8774 inode_dio_begin(inode
);
8777 * The generic stuff only does filemap_write_and_wait_range, which
8778 * isn't enough if we've written compressed pages to this area, so
8779 * we need to flush the dirty pages again to make absolutely sure
8780 * that any outstanding dirty pages are on disk.
8782 count
= iov_iter_count(iter
);
8783 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8784 &BTRFS_I(inode
)->runtime_flags
))
8785 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8786 offset
+ count
- 1);
8788 if (iov_iter_rw(iter
) == WRITE
) {
8790 * If the write DIO is beyond the EOF, we need update
8791 * the isize, but it is protected by i_mutex. So we can
8792 * not unlock the i_mutex at this case.
8794 if (offset
+ count
<= inode
->i_size
) {
8795 dio_data
.overwrite
= 1;
8796 inode_unlock(inode
);
8798 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
8802 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
8808 * We need to know how many extents we reserved so that we can
8809 * do the accounting properly if we go over the number we
8810 * originally calculated. Abuse current->journal_info for this.
8812 dio_data
.reserve
= round_up(count
,
8813 fs_info
->sectorsize
);
8814 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8815 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8816 current
->journal_info
= &dio_data
;
8817 down_read(&BTRFS_I(inode
)->dio_sem
);
8818 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8819 &BTRFS_I(inode
)->runtime_flags
)) {
8820 inode_dio_end(inode
);
8821 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8825 ret
= __blockdev_direct_IO(iocb
, inode
,
8826 fs_info
->fs_devices
->latest_bdev
,
8827 iter
, btrfs_get_blocks_direct
, NULL
,
8828 btrfs_submit_direct
, flags
);
8829 if (iov_iter_rw(iter
) == WRITE
) {
8830 up_read(&BTRFS_I(inode
)->dio_sem
);
8831 current
->journal_info
= NULL
;
8832 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8833 if (dio_data
.reserve
)
8834 btrfs_delalloc_release_space(inode
, data_reserved
,
8835 offset
, dio_data
.reserve
);
8837 * On error we might have left some ordered extents
8838 * without submitting corresponding bios for them, so
8839 * cleanup them up to avoid other tasks getting them
8840 * and waiting for them to complete forever.
8842 if (dio_data
.unsubmitted_oe_range_start
<
8843 dio_data
.unsubmitted_oe_range_end
)
8844 __endio_write_update_ordered(inode
,
8845 dio_data
.unsubmitted_oe_range_start
,
8846 dio_data
.unsubmitted_oe_range_end
-
8847 dio_data
.unsubmitted_oe_range_start
,
8849 } else if (ret
>= 0 && (size_t)ret
< count
)
8850 btrfs_delalloc_release_space(inode
, data_reserved
,
8851 offset
, count
- (size_t)ret
);
8852 btrfs_delalloc_release_extents(BTRFS_I(inode
), count
);
8856 inode_dio_end(inode
);
8860 extent_changeset_free(data_reserved
);
8864 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8866 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8867 __u64 start
, __u64 len
)
8871 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8875 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
8878 int btrfs_readpage(struct file
*file
, struct page
*page
)
8880 struct extent_io_tree
*tree
;
8881 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8882 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8885 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8887 struct extent_io_tree
*tree
;
8888 struct inode
*inode
= page
->mapping
->host
;
8891 if (current
->flags
& PF_MEMALLOC
) {
8892 redirty_page_for_writepage(wbc
, page
);
8898 * If we are under memory pressure we will call this directly from the
8899 * VM, we need to make sure we have the inode referenced for the ordered
8900 * extent. If not just return like we didn't do anything.
8902 if (!igrab(inode
)) {
8903 redirty_page_for_writepage(wbc
, page
);
8904 return AOP_WRITEPAGE_ACTIVATE
;
8906 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8907 ret
= extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
8908 btrfs_add_delayed_iput(inode
);
8912 static int btrfs_writepages(struct address_space
*mapping
,
8913 struct writeback_control
*wbc
)
8915 struct extent_io_tree
*tree
;
8917 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8918 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
8922 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8923 struct list_head
*pages
, unsigned nr_pages
)
8925 struct extent_io_tree
*tree
;
8926 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8927 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
8930 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8932 struct extent_io_tree
*tree
;
8933 struct extent_map_tree
*map
;
8936 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8937 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
8938 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
8940 ClearPagePrivate(page
);
8941 set_page_private(page
, 0);
8947 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8949 if (PageWriteback(page
) || PageDirty(page
))
8951 return __btrfs_releasepage(page
, gfp_flags
);
8954 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8955 unsigned int length
)
8957 struct inode
*inode
= page
->mapping
->host
;
8958 struct extent_io_tree
*tree
;
8959 struct btrfs_ordered_extent
*ordered
;
8960 struct extent_state
*cached_state
= NULL
;
8961 u64 page_start
= page_offset(page
);
8962 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8965 int inode_evicting
= inode
->i_state
& I_FREEING
;
8968 * we have the page locked, so new writeback can't start,
8969 * and the dirty bit won't be cleared while we are here.
8971 * Wait for IO on this page so that we can safely clear
8972 * the PagePrivate2 bit and do ordered accounting
8974 wait_on_page_writeback(page
);
8976 tree
= &BTRFS_I(inode
)->io_tree
;
8978 btrfs_releasepage(page
, GFP_NOFS
);
8982 if (!inode_evicting
)
8983 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8986 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8987 page_end
- start
+ 1);
8989 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8991 * IO on this page will never be started, so we need
8992 * to account for any ordered extents now
8994 if (!inode_evicting
)
8995 clear_extent_bit(tree
, start
, end
,
8996 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8997 EXTENT_DELALLOC_NEW
|
8998 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8999 EXTENT_DEFRAG
, 1, 0, &cached_state
,
9002 * whoever cleared the private bit is responsible
9003 * for the finish_ordered_io
9005 if (TestClearPagePrivate2(page
)) {
9006 struct btrfs_ordered_inode_tree
*tree
;
9009 tree
= &BTRFS_I(inode
)->ordered_tree
;
9011 spin_lock_irq(&tree
->lock
);
9012 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
9013 new_len
= start
- ordered
->file_offset
;
9014 if (new_len
< ordered
->truncated_len
)
9015 ordered
->truncated_len
= new_len
;
9016 spin_unlock_irq(&tree
->lock
);
9018 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
9020 end
- start
+ 1, 1))
9021 btrfs_finish_ordered_io(ordered
);
9023 btrfs_put_ordered_extent(ordered
);
9024 if (!inode_evicting
) {
9025 cached_state
= NULL
;
9026 lock_extent_bits(tree
, start
, end
,
9031 if (start
< page_end
)
9036 * Qgroup reserved space handler
9037 * Page here will be either
9038 * 1) Already written to disk
9039 * In this case, its reserved space is released from data rsv map
9040 * and will be freed by delayed_ref handler finally.
9041 * So even we call qgroup_free_data(), it won't decrease reserved
9043 * 2) Not written to disk
9044 * This means the reserved space should be freed here. However,
9045 * if a truncate invalidates the page (by clearing PageDirty)
9046 * and the page is accounted for while allocating extent
9047 * in btrfs_check_data_free_space() we let delayed_ref to
9048 * free the entire extent.
9050 if (PageDirty(page
))
9051 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
9052 if (!inode_evicting
) {
9053 clear_extent_bit(tree
, page_start
, page_end
,
9054 EXTENT_LOCKED
| EXTENT_DIRTY
|
9055 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
9056 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
9057 &cached_state
, GFP_NOFS
);
9059 __btrfs_releasepage(page
, GFP_NOFS
);
9062 ClearPageChecked(page
);
9063 if (PagePrivate(page
)) {
9064 ClearPagePrivate(page
);
9065 set_page_private(page
, 0);
9071 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9072 * called from a page fault handler when a page is first dirtied. Hence we must
9073 * be careful to check for EOF conditions here. We set the page up correctly
9074 * for a written page which means we get ENOSPC checking when writing into
9075 * holes and correct delalloc and unwritten extent mapping on filesystems that
9076 * support these features.
9078 * We are not allowed to take the i_mutex here so we have to play games to
9079 * protect against truncate races as the page could now be beyond EOF. Because
9080 * vmtruncate() writes the inode size before removing pages, once we have the
9081 * page lock we can determine safely if the page is beyond EOF. If it is not
9082 * beyond EOF, then the page is guaranteed safe against truncation until we
9085 int btrfs_page_mkwrite(struct vm_fault
*vmf
)
9087 struct page
*page
= vmf
->page
;
9088 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
9089 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9090 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
9091 struct btrfs_ordered_extent
*ordered
;
9092 struct extent_state
*cached_state
= NULL
;
9093 struct extent_changeset
*data_reserved
= NULL
;
9095 unsigned long zero_start
;
9104 reserved_space
= PAGE_SIZE
;
9106 sb_start_pagefault(inode
->i_sb
);
9107 page_start
= page_offset(page
);
9108 page_end
= page_start
+ PAGE_SIZE
- 1;
9112 * Reserving delalloc space after obtaining the page lock can lead to
9113 * deadlock. For example, if a dirty page is locked by this function
9114 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9115 * dirty page write out, then the btrfs_writepage() function could
9116 * end up waiting indefinitely to get a lock on the page currently
9117 * being processed by btrfs_page_mkwrite() function.
9119 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
9122 ret
= file_update_time(vmf
->vma
->vm_file
);
9128 else /* -ENOSPC, -EIO, etc */
9129 ret
= VM_FAULT_SIGBUS
;
9135 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
9138 size
= i_size_read(inode
);
9140 if ((page
->mapping
!= inode
->i_mapping
) ||
9141 (page_start
>= size
)) {
9142 /* page got truncated out from underneath us */
9145 wait_on_page_writeback(page
);
9147 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
9148 set_page_extent_mapped(page
);
9151 * we can't set the delalloc bits if there are pending ordered
9152 * extents. Drop our locks and wait for them to finish
9154 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
9157 unlock_extent_cached(io_tree
, page_start
, page_end
,
9158 &cached_state
, GFP_NOFS
);
9160 btrfs_start_ordered_extent(inode
, ordered
, 1);
9161 btrfs_put_ordered_extent(ordered
);
9165 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
9166 reserved_space
= round_up(size
- page_start
,
9167 fs_info
->sectorsize
);
9168 if (reserved_space
< PAGE_SIZE
) {
9169 end
= page_start
+ reserved_space
- 1;
9170 btrfs_delalloc_release_space(inode
, data_reserved
,
9171 page_start
, PAGE_SIZE
- reserved_space
);
9176 * page_mkwrite gets called when the page is firstly dirtied after it's
9177 * faulted in, but write(2) could also dirty a page and set delalloc
9178 * bits, thus in this case for space account reason, we still need to
9179 * clear any delalloc bits within this page range since we have to
9180 * reserve data&meta space before lock_page() (see above comments).
9182 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
9183 EXTENT_DIRTY
| EXTENT_DELALLOC
|
9184 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
9185 0, 0, &cached_state
, GFP_NOFS
);
9187 ret
= btrfs_set_extent_delalloc(inode
, page_start
, end
, 0,
9190 unlock_extent_cached(io_tree
, page_start
, page_end
,
9191 &cached_state
, GFP_NOFS
);
9192 ret
= VM_FAULT_SIGBUS
;
9197 /* page is wholly or partially inside EOF */
9198 if (page_start
+ PAGE_SIZE
> size
)
9199 zero_start
= size
& ~PAGE_MASK
;
9201 zero_start
= PAGE_SIZE
;
9203 if (zero_start
!= PAGE_SIZE
) {
9205 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
9206 flush_dcache_page(page
);
9209 ClearPageChecked(page
);
9210 set_page_dirty(page
);
9211 SetPageUptodate(page
);
9213 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
9214 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
9215 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
9217 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
9221 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
9222 sb_end_pagefault(inode
->i_sb
);
9223 extent_changeset_free(data_reserved
);
9224 return VM_FAULT_LOCKED
;
9228 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
9229 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
9232 sb_end_pagefault(inode
->i_sb
);
9233 extent_changeset_free(data_reserved
);
9237 static int btrfs_truncate(struct inode
*inode
)
9239 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9240 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9241 struct btrfs_block_rsv
*rsv
;
9244 struct btrfs_trans_handle
*trans
;
9245 u64 mask
= fs_info
->sectorsize
- 1;
9246 u64 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
9248 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
9254 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9255 * 3 things going on here
9257 * 1) We need to reserve space for our orphan item and the space to
9258 * delete our orphan item. Lord knows we don't want to have a dangling
9259 * orphan item because we didn't reserve space to remove it.
9261 * 2) We need to reserve space to update our inode.
9263 * 3) We need to have something to cache all the space that is going to
9264 * be free'd up by the truncate operation, but also have some slack
9265 * space reserved in case it uses space during the truncate (thank you
9266 * very much snapshotting).
9268 * And we need these to all be separate. The fact is we can use a lot of
9269 * space doing the truncate, and we have no earthly idea how much space
9270 * we will use, so we need the truncate reservation to be separate so it
9271 * doesn't end up using space reserved for updating the inode or
9272 * removing the orphan item. We also need to be able to stop the
9273 * transaction and start a new one, which means we need to be able to
9274 * update the inode several times, and we have no idea of knowing how
9275 * many times that will be, so we can't just reserve 1 item for the
9276 * entirety of the operation, so that has to be done separately as well.
9277 * Then there is the orphan item, which does indeed need to be held on
9278 * to for the whole operation, and we need nobody to touch this reserved
9279 * space except the orphan code.
9281 * So that leaves us with
9283 * 1) root->orphan_block_rsv - for the orphan deletion.
9284 * 2) rsv - for the truncate reservation, which we will steal from the
9285 * transaction reservation.
9286 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9287 * updating the inode.
9289 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
9292 rsv
->size
= min_size
;
9296 * 1 for the truncate slack space
9297 * 1 for updating the inode.
9299 trans
= btrfs_start_transaction(root
, 2);
9300 if (IS_ERR(trans
)) {
9301 err
= PTR_ERR(trans
);
9305 /* Migrate the slack space for the truncate to our reserve */
9306 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
9311 * So if we truncate and then write and fsync we normally would just
9312 * write the extents that changed, which is a problem if we need to
9313 * first truncate that entire inode. So set this flag so we write out
9314 * all of the extents in the inode to the sync log so we're completely
9317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9318 trans
->block_rsv
= rsv
;
9321 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9323 BTRFS_EXTENT_DATA_KEY
);
9324 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9325 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
) {
9330 ret
= btrfs_update_inode(trans
, root
, inode
);
9336 btrfs_end_transaction(trans
);
9337 btrfs_btree_balance_dirty(fs_info
);
9339 trans
= btrfs_start_transaction(root
, 2);
9340 if (IS_ERR(trans
)) {
9341 ret
= err
= PTR_ERR(trans
);
9346 btrfs_block_rsv_release(fs_info
, rsv
, -1);
9347 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
9349 BUG_ON(ret
); /* shouldn't happen */
9350 trans
->block_rsv
= rsv
;
9354 * We can't call btrfs_truncate_block inside a trans handle as we could
9355 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9356 * we've truncated everything except the last little bit, and can do
9357 * btrfs_truncate_block and then update the disk_i_size.
9359 if (ret
== NEED_TRUNCATE_BLOCK
) {
9360 btrfs_end_transaction(trans
);
9361 btrfs_btree_balance_dirty(fs_info
);
9363 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
9366 trans
= btrfs_start_transaction(root
, 1);
9367 if (IS_ERR(trans
)) {
9368 ret
= PTR_ERR(trans
);
9371 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
9374 if (ret
== 0 && inode
->i_nlink
> 0) {
9375 trans
->block_rsv
= root
->orphan_block_rsv
;
9376 ret
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
9382 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9383 ret
= btrfs_update_inode(trans
, root
, inode
);
9387 ret
= btrfs_end_transaction(trans
);
9388 btrfs_btree_balance_dirty(fs_info
);
9391 btrfs_free_block_rsv(fs_info
, rsv
);
9400 * create a new subvolume directory/inode (helper for the ioctl).
9402 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9403 struct btrfs_root
*new_root
,
9404 struct btrfs_root
*parent_root
,
9407 struct inode
*inode
;
9411 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9412 new_dirid
, new_dirid
,
9413 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9416 return PTR_ERR(inode
);
9417 inode
->i_op
= &btrfs_dir_inode_operations
;
9418 inode
->i_fop
= &btrfs_dir_file_operations
;
9420 set_nlink(inode
, 1);
9421 btrfs_i_size_write(BTRFS_I(inode
), 0);
9422 unlock_new_inode(inode
);
9424 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9426 btrfs_err(new_root
->fs_info
,
9427 "error inheriting subvolume %llu properties: %d",
9428 new_root
->root_key
.objectid
, err
);
9430 err
= btrfs_update_inode(trans
, new_root
, inode
);
9436 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9438 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
9439 struct btrfs_inode
*ei
;
9440 struct inode
*inode
;
9442 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
9449 ei
->last_sub_trans
= 0;
9450 ei
->logged_trans
= 0;
9451 ei
->delalloc_bytes
= 0;
9452 ei
->new_delalloc_bytes
= 0;
9453 ei
->defrag_bytes
= 0;
9454 ei
->disk_i_size
= 0;
9457 ei
->index_cnt
= (u64
)-1;
9459 ei
->last_unlink_trans
= 0;
9460 ei
->last_log_commit
= 0;
9461 ei
->delayed_iput_count
= 0;
9463 spin_lock_init(&ei
->lock
);
9464 ei
->outstanding_extents
= 0;
9465 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
9466 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
9467 BTRFS_BLOCK_RSV_DELALLOC
);
9468 ei
->runtime_flags
= 0;
9469 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
9470 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
9472 ei
->delayed_node
= NULL
;
9474 ei
->i_otime
.tv_sec
= 0;
9475 ei
->i_otime
.tv_nsec
= 0;
9477 inode
= &ei
->vfs_inode
;
9478 extent_map_tree_init(&ei
->extent_tree
);
9479 extent_io_tree_init(&ei
->io_tree
, inode
);
9480 extent_io_tree_init(&ei
->io_failure_tree
, inode
);
9481 ei
->io_tree
.track_uptodate
= 1;
9482 ei
->io_failure_tree
.track_uptodate
= 1;
9483 atomic_set(&ei
->sync_writers
, 0);
9484 mutex_init(&ei
->log_mutex
);
9485 mutex_init(&ei
->delalloc_mutex
);
9486 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9487 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9488 INIT_LIST_HEAD(&ei
->delayed_iput
);
9489 RB_CLEAR_NODE(&ei
->rb_node
);
9490 init_rwsem(&ei
->dio_sem
);
9495 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9496 void btrfs_test_destroy_inode(struct inode
*inode
)
9498 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9499 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9503 static void btrfs_i_callback(struct rcu_head
*head
)
9505 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
9506 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9509 void btrfs_destroy_inode(struct inode
*inode
)
9511 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9512 struct btrfs_ordered_extent
*ordered
;
9513 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9515 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9516 WARN_ON(inode
->i_data
.nrpages
);
9517 WARN_ON(BTRFS_I(inode
)->block_rsv
.reserved
);
9518 WARN_ON(BTRFS_I(inode
)->block_rsv
.size
);
9519 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9520 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9521 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
9522 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9523 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9526 * This can happen where we create an inode, but somebody else also
9527 * created the same inode and we need to destroy the one we already
9533 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
9534 &BTRFS_I(inode
)->runtime_flags
)) {
9535 btrfs_info(fs_info
, "inode %llu still on the orphan list",
9536 btrfs_ino(BTRFS_I(inode
)));
9537 atomic_dec(&root
->orphan_inodes
);
9541 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9546 "found ordered extent %llu %llu on inode cleanup",
9547 ordered
->file_offset
, ordered
->len
);
9548 btrfs_remove_ordered_extent(inode
, ordered
);
9549 btrfs_put_ordered_extent(ordered
);
9550 btrfs_put_ordered_extent(ordered
);
9553 btrfs_qgroup_check_reserved_leak(inode
);
9554 inode_tree_del(inode
);
9555 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9557 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9560 int btrfs_drop_inode(struct inode
*inode
)
9562 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9567 /* the snap/subvol tree is on deleting */
9568 if (btrfs_root_refs(&root
->root_item
) == 0)
9571 return generic_drop_inode(inode
);
9574 static void init_once(void *foo
)
9576 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9578 inode_init_once(&ei
->vfs_inode
);
9581 void btrfs_destroy_cachep(void)
9584 * Make sure all delayed rcu free inodes are flushed before we
9588 kmem_cache_destroy(btrfs_inode_cachep
);
9589 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9590 kmem_cache_destroy(btrfs_path_cachep
);
9591 kmem_cache_destroy(btrfs_free_space_cachep
);
9594 int btrfs_init_cachep(void)
9596 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9597 sizeof(struct btrfs_inode
), 0,
9598 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9600 if (!btrfs_inode_cachep
)
9603 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9604 sizeof(struct btrfs_trans_handle
), 0,
9605 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9606 if (!btrfs_trans_handle_cachep
)
9609 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9610 sizeof(struct btrfs_path
), 0,
9611 SLAB_MEM_SPREAD
, NULL
);
9612 if (!btrfs_path_cachep
)
9615 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9616 sizeof(struct btrfs_free_space
), 0,
9617 SLAB_MEM_SPREAD
, NULL
);
9618 if (!btrfs_free_space_cachep
)
9623 btrfs_destroy_cachep();
9627 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
9628 u32 request_mask
, unsigned int flags
)
9631 struct inode
*inode
= d_inode(path
->dentry
);
9632 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9633 u32 bi_flags
= BTRFS_I(inode
)->flags
;
9635 stat
->result_mask
|= STATX_BTIME
;
9636 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
9637 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
9638 if (bi_flags
& BTRFS_INODE_APPEND
)
9639 stat
->attributes
|= STATX_ATTR_APPEND
;
9640 if (bi_flags
& BTRFS_INODE_COMPRESS
)
9641 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
9642 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
9643 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
9644 if (bi_flags
& BTRFS_INODE_NODUMP
)
9645 stat
->attributes
|= STATX_ATTR_NODUMP
;
9647 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
9648 STATX_ATTR_COMPRESSED
|
9649 STATX_ATTR_IMMUTABLE
|
9652 generic_fillattr(inode
, stat
);
9653 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9655 spin_lock(&BTRFS_I(inode
)->lock
);
9656 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
9657 spin_unlock(&BTRFS_I(inode
)->lock
);
9658 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9659 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9663 static int btrfs_rename_exchange(struct inode
*old_dir
,
9664 struct dentry
*old_dentry
,
9665 struct inode
*new_dir
,
9666 struct dentry
*new_dentry
)
9668 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9669 struct btrfs_trans_handle
*trans
;
9670 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9671 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9672 struct inode
*new_inode
= new_dentry
->d_inode
;
9673 struct inode
*old_inode
= old_dentry
->d_inode
;
9674 struct timespec ctime
= current_time(old_inode
);
9675 struct dentry
*parent
;
9676 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9677 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
9682 bool root_log_pinned
= false;
9683 bool dest_log_pinned
= false;
9685 /* we only allow rename subvolume link between subvolumes */
9686 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9689 /* close the race window with snapshot create/destroy ioctl */
9690 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9691 down_read(&fs_info
->subvol_sem
);
9692 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9693 down_read(&fs_info
->subvol_sem
);
9696 * We want to reserve the absolute worst case amount of items. So if
9697 * both inodes are subvols and we need to unlink them then that would
9698 * require 4 item modifications, but if they are both normal inodes it
9699 * would require 5 item modifications, so we'll assume their normal
9700 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9701 * should cover the worst case number of items we'll modify.
9703 trans
= btrfs_start_transaction(root
, 12);
9704 if (IS_ERR(trans
)) {
9705 ret
= PTR_ERR(trans
);
9710 * We need to find a free sequence number both in the source and
9711 * in the destination directory for the exchange.
9713 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
9716 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
9720 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9721 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9723 /* Reference for the source. */
9724 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9725 /* force full log commit if subvolume involved. */
9726 btrfs_set_log_full_commit(fs_info
, trans
);
9728 btrfs_pin_log_trans(root
);
9729 root_log_pinned
= true;
9730 ret
= btrfs_insert_inode_ref(trans
, dest
,
9731 new_dentry
->d_name
.name
,
9732 new_dentry
->d_name
.len
,
9734 btrfs_ino(BTRFS_I(new_dir
)),
9740 /* And now for the dest. */
9741 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9742 /* force full log commit if subvolume involved. */
9743 btrfs_set_log_full_commit(fs_info
, trans
);
9745 btrfs_pin_log_trans(dest
);
9746 dest_log_pinned
= true;
9747 ret
= btrfs_insert_inode_ref(trans
, root
,
9748 old_dentry
->d_name
.name
,
9749 old_dentry
->d_name
.len
,
9751 btrfs_ino(BTRFS_I(old_dir
)),
9757 /* Update inode version and ctime/mtime. */
9758 inode_inc_iversion(old_dir
);
9759 inode_inc_iversion(new_dir
);
9760 inode_inc_iversion(old_inode
);
9761 inode_inc_iversion(new_inode
);
9762 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9763 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9764 old_inode
->i_ctime
= ctime
;
9765 new_inode
->i_ctime
= ctime
;
9767 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9768 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9769 BTRFS_I(old_inode
), 1);
9770 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
9771 BTRFS_I(new_inode
), 1);
9774 /* src is a subvolume */
9775 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9776 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9777 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
,
9779 old_dentry
->d_name
.name
,
9780 old_dentry
->d_name
.len
);
9781 } else { /* src is an inode */
9782 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9783 BTRFS_I(old_dentry
->d_inode
),
9784 old_dentry
->d_name
.name
,
9785 old_dentry
->d_name
.len
);
9787 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9790 btrfs_abort_transaction(trans
, ret
);
9794 /* dest is a subvolume */
9795 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9796 root_objectid
= BTRFS_I(new_inode
)->root
->root_key
.objectid
;
9797 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9799 new_dentry
->d_name
.name
,
9800 new_dentry
->d_name
.len
);
9801 } else { /* dest is an inode */
9802 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9803 BTRFS_I(new_dentry
->d_inode
),
9804 new_dentry
->d_name
.name
,
9805 new_dentry
->d_name
.len
);
9807 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9810 btrfs_abort_transaction(trans
, ret
);
9814 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9815 new_dentry
->d_name
.name
,
9816 new_dentry
->d_name
.len
, 0, old_idx
);
9818 btrfs_abort_transaction(trans
, ret
);
9822 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9823 old_dentry
->d_name
.name
,
9824 old_dentry
->d_name
.len
, 0, new_idx
);
9826 btrfs_abort_transaction(trans
, ret
);
9830 if (old_inode
->i_nlink
== 1)
9831 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9832 if (new_inode
->i_nlink
== 1)
9833 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9835 if (root_log_pinned
) {
9836 parent
= new_dentry
->d_parent
;
9837 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
9839 btrfs_end_log_trans(root
);
9840 root_log_pinned
= false;
9842 if (dest_log_pinned
) {
9843 parent
= old_dentry
->d_parent
;
9844 btrfs_log_new_name(trans
, BTRFS_I(new_inode
), BTRFS_I(new_dir
),
9846 btrfs_end_log_trans(dest
);
9847 dest_log_pinned
= false;
9851 * If we have pinned a log and an error happened, we unpin tasks
9852 * trying to sync the log and force them to fallback to a transaction
9853 * commit if the log currently contains any of the inodes involved in
9854 * this rename operation (to ensure we do not persist a log with an
9855 * inconsistent state for any of these inodes or leading to any
9856 * inconsistencies when replayed). If the transaction was aborted, the
9857 * abortion reason is propagated to userspace when attempting to commit
9858 * the transaction. If the log does not contain any of these inodes, we
9859 * allow the tasks to sync it.
9861 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9862 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9863 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9864 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9866 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9867 btrfs_set_log_full_commit(fs_info
, trans
);
9869 if (root_log_pinned
) {
9870 btrfs_end_log_trans(root
);
9871 root_log_pinned
= false;
9873 if (dest_log_pinned
) {
9874 btrfs_end_log_trans(dest
);
9875 dest_log_pinned
= false;
9878 ret
= btrfs_end_transaction(trans
);
9880 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9881 up_read(&fs_info
->subvol_sem
);
9882 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9883 up_read(&fs_info
->subvol_sem
);
9888 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9889 struct btrfs_root
*root
,
9891 struct dentry
*dentry
)
9894 struct inode
*inode
;
9898 ret
= btrfs_find_free_ino(root
, &objectid
);
9902 inode
= btrfs_new_inode(trans
, root
, dir
,
9903 dentry
->d_name
.name
,
9905 btrfs_ino(BTRFS_I(dir
)),
9907 S_IFCHR
| WHITEOUT_MODE
,
9910 if (IS_ERR(inode
)) {
9911 ret
= PTR_ERR(inode
);
9915 inode
->i_op
= &btrfs_special_inode_operations
;
9916 init_special_inode(inode
, inode
->i_mode
,
9919 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9924 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9925 BTRFS_I(inode
), 0, index
);
9929 ret
= btrfs_update_inode(trans
, root
, inode
);
9931 unlock_new_inode(inode
);
9933 inode_dec_link_count(inode
);
9939 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9940 struct inode
*new_dir
, struct dentry
*new_dentry
,
9943 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9944 struct btrfs_trans_handle
*trans
;
9945 unsigned int trans_num_items
;
9946 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9947 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9948 struct inode
*new_inode
= d_inode(new_dentry
);
9949 struct inode
*old_inode
= d_inode(old_dentry
);
9953 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9954 bool log_pinned
= false;
9956 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9959 /* we only allow rename subvolume link between subvolumes */
9960 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9963 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9964 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9967 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9968 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9972 /* check for collisions, even if the name isn't there */
9973 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9974 new_dentry
->d_name
.name
,
9975 new_dentry
->d_name
.len
);
9978 if (ret
== -EEXIST
) {
9980 * eexist without a new_inode */
9981 if (WARN_ON(!new_inode
)) {
9985 /* maybe -EOVERFLOW */
9992 * we're using rename to replace one file with another. Start IO on it
9993 * now so we don't add too much work to the end of the transaction
9995 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9996 filemap_flush(old_inode
->i_mapping
);
9998 /* close the racy window with snapshot create/destroy ioctl */
9999 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
10000 down_read(&fs_info
->subvol_sem
);
10002 * We want to reserve the absolute worst case amount of items. So if
10003 * both inodes are subvols and we need to unlink them then that would
10004 * require 4 item modifications, but if they are both normal inodes it
10005 * would require 5 item modifications, so we'll assume they are normal
10006 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
10007 * should cover the worst case number of items we'll modify.
10008 * If our rename has the whiteout flag, we need more 5 units for the
10009 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
10010 * when selinux is enabled).
10012 trans_num_items
= 11;
10013 if (flags
& RENAME_WHITEOUT
)
10014 trans_num_items
+= 5;
10015 trans
= btrfs_start_transaction(root
, trans_num_items
);
10016 if (IS_ERR(trans
)) {
10017 ret
= PTR_ERR(trans
);
10022 btrfs_record_root_in_trans(trans
, dest
);
10024 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
10028 BTRFS_I(old_inode
)->dir_index
= 0ULL;
10029 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
10030 /* force full log commit if subvolume involved. */
10031 btrfs_set_log_full_commit(fs_info
, trans
);
10033 btrfs_pin_log_trans(root
);
10035 ret
= btrfs_insert_inode_ref(trans
, dest
,
10036 new_dentry
->d_name
.name
,
10037 new_dentry
->d_name
.len
,
10039 btrfs_ino(BTRFS_I(new_dir
)), index
);
10044 inode_inc_iversion(old_dir
);
10045 inode_inc_iversion(new_dir
);
10046 inode_inc_iversion(old_inode
);
10047 old_dir
->i_ctime
= old_dir
->i_mtime
=
10048 new_dir
->i_ctime
= new_dir
->i_mtime
=
10049 old_inode
->i_ctime
= current_time(old_dir
);
10051 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
10052 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
10053 BTRFS_I(old_inode
), 1);
10055 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
10056 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
10057 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
10058 old_dentry
->d_name
.name
,
10059 old_dentry
->d_name
.len
);
10061 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
10062 BTRFS_I(d_inode(old_dentry
)),
10063 old_dentry
->d_name
.name
,
10064 old_dentry
->d_name
.len
);
10066 ret
= btrfs_update_inode(trans
, root
, old_inode
);
10069 btrfs_abort_transaction(trans
, ret
);
10074 inode_inc_iversion(new_inode
);
10075 new_inode
->i_ctime
= current_time(new_inode
);
10076 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
10077 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
10078 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
10079 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
10081 new_dentry
->d_name
.name
,
10082 new_dentry
->d_name
.len
);
10083 BUG_ON(new_inode
->i_nlink
== 0);
10085 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
10086 BTRFS_I(d_inode(new_dentry
)),
10087 new_dentry
->d_name
.name
,
10088 new_dentry
->d_name
.len
);
10090 if (!ret
&& new_inode
->i_nlink
== 0)
10091 ret
= btrfs_orphan_add(trans
,
10092 BTRFS_I(d_inode(new_dentry
)));
10094 btrfs_abort_transaction(trans
, ret
);
10099 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
10100 new_dentry
->d_name
.name
,
10101 new_dentry
->d_name
.len
, 0, index
);
10103 btrfs_abort_transaction(trans
, ret
);
10107 if (old_inode
->i_nlink
== 1)
10108 BTRFS_I(old_inode
)->dir_index
= index
;
10111 struct dentry
*parent
= new_dentry
->d_parent
;
10113 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
10115 btrfs_end_log_trans(root
);
10116 log_pinned
= false;
10119 if (flags
& RENAME_WHITEOUT
) {
10120 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
10124 btrfs_abort_transaction(trans
, ret
);
10130 * If we have pinned the log and an error happened, we unpin tasks
10131 * trying to sync the log and force them to fallback to a transaction
10132 * commit if the log currently contains any of the inodes involved in
10133 * this rename operation (to ensure we do not persist a log with an
10134 * inconsistent state for any of these inodes or leading to any
10135 * inconsistencies when replayed). If the transaction was aborted, the
10136 * abortion reason is propagated to userspace when attempting to commit
10137 * the transaction. If the log does not contain any of these inodes, we
10138 * allow the tasks to sync it.
10140 if (ret
&& log_pinned
) {
10141 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
10142 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
10143 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
10145 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
10146 btrfs_set_log_full_commit(fs_info
, trans
);
10148 btrfs_end_log_trans(root
);
10149 log_pinned
= false;
10151 btrfs_end_transaction(trans
);
10153 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
10154 up_read(&fs_info
->subvol_sem
);
10159 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
10160 struct inode
*new_dir
, struct dentry
*new_dentry
,
10161 unsigned int flags
)
10163 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
10166 if (flags
& RENAME_EXCHANGE
)
10167 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
10170 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
10173 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
10175 struct btrfs_delalloc_work
*delalloc_work
;
10176 struct inode
*inode
;
10178 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
10180 inode
= delalloc_work
->inode
;
10181 filemap_flush(inode
->i_mapping
);
10182 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
10183 &BTRFS_I(inode
)->runtime_flags
))
10184 filemap_flush(inode
->i_mapping
);
10186 if (delalloc_work
->delay_iput
)
10187 btrfs_add_delayed_iput(inode
);
10190 complete(&delalloc_work
->completion
);
10193 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
10196 struct btrfs_delalloc_work
*work
;
10198 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
10202 init_completion(&work
->completion
);
10203 INIT_LIST_HEAD(&work
->list
);
10204 work
->inode
= inode
;
10205 work
->delay_iput
= delay_iput
;
10206 WARN_ON_ONCE(!inode
);
10207 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
10208 btrfs_run_delalloc_work
, NULL
, NULL
);
10213 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
10215 wait_for_completion(&work
->completion
);
10220 * some fairly slow code that needs optimization. This walks the list
10221 * of all the inodes with pending delalloc and forces them to disk.
10223 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
,
10226 struct btrfs_inode
*binode
;
10227 struct inode
*inode
;
10228 struct btrfs_delalloc_work
*work
, *next
;
10229 struct list_head works
;
10230 struct list_head splice
;
10233 INIT_LIST_HEAD(&works
);
10234 INIT_LIST_HEAD(&splice
);
10236 mutex_lock(&root
->delalloc_mutex
);
10237 spin_lock(&root
->delalloc_lock
);
10238 list_splice_init(&root
->delalloc_inodes
, &splice
);
10239 while (!list_empty(&splice
)) {
10240 binode
= list_entry(splice
.next
, struct btrfs_inode
,
10243 list_move_tail(&binode
->delalloc_inodes
,
10244 &root
->delalloc_inodes
);
10245 inode
= igrab(&binode
->vfs_inode
);
10247 cond_resched_lock(&root
->delalloc_lock
);
10250 spin_unlock(&root
->delalloc_lock
);
10252 work
= btrfs_alloc_delalloc_work(inode
, delay_iput
);
10255 btrfs_add_delayed_iput(inode
);
10261 list_add_tail(&work
->list
, &works
);
10262 btrfs_queue_work(root
->fs_info
->flush_workers
,
10265 if (nr
!= -1 && ret
>= nr
)
10268 spin_lock(&root
->delalloc_lock
);
10270 spin_unlock(&root
->delalloc_lock
);
10273 list_for_each_entry_safe(work
, next
, &works
, list
) {
10274 list_del_init(&work
->list
);
10275 btrfs_wait_and_free_delalloc_work(work
);
10278 if (!list_empty_careful(&splice
)) {
10279 spin_lock(&root
->delalloc_lock
);
10280 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10281 spin_unlock(&root
->delalloc_lock
);
10283 mutex_unlock(&root
->delalloc_mutex
);
10287 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
10289 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10292 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10295 ret
= __start_delalloc_inodes(root
, delay_iput
, -1);
10301 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
,
10304 struct btrfs_root
*root
;
10305 struct list_head splice
;
10308 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10311 INIT_LIST_HEAD(&splice
);
10313 mutex_lock(&fs_info
->delalloc_root_mutex
);
10314 spin_lock(&fs_info
->delalloc_root_lock
);
10315 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10316 while (!list_empty(&splice
) && nr
) {
10317 root
= list_first_entry(&splice
, struct btrfs_root
,
10319 root
= btrfs_grab_fs_root(root
);
10321 list_move_tail(&root
->delalloc_root
,
10322 &fs_info
->delalloc_roots
);
10323 spin_unlock(&fs_info
->delalloc_root_lock
);
10325 ret
= __start_delalloc_inodes(root
, delay_iput
, nr
);
10326 btrfs_put_fs_root(root
);
10334 spin_lock(&fs_info
->delalloc_root_lock
);
10336 spin_unlock(&fs_info
->delalloc_root_lock
);
10340 if (!list_empty_careful(&splice
)) {
10341 spin_lock(&fs_info
->delalloc_root_lock
);
10342 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10343 spin_unlock(&fs_info
->delalloc_root_lock
);
10345 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10349 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10350 const char *symname
)
10352 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10353 struct btrfs_trans_handle
*trans
;
10354 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10355 struct btrfs_path
*path
;
10356 struct btrfs_key key
;
10357 struct inode
*inode
= NULL
;
10359 int drop_inode
= 0;
10365 struct btrfs_file_extent_item
*ei
;
10366 struct extent_buffer
*leaf
;
10368 name_len
= strlen(symname
);
10369 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
10370 return -ENAMETOOLONG
;
10373 * 2 items for inode item and ref
10374 * 2 items for dir items
10375 * 1 item for updating parent inode item
10376 * 1 item for the inline extent item
10377 * 1 item for xattr if selinux is on
10379 trans
= btrfs_start_transaction(root
, 7);
10381 return PTR_ERR(trans
);
10383 err
= btrfs_find_free_ino(root
, &objectid
);
10387 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10388 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
10389 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
10390 if (IS_ERR(inode
)) {
10391 err
= PTR_ERR(inode
);
10396 * If the active LSM wants to access the inode during
10397 * d_instantiate it needs these. Smack checks to see
10398 * if the filesystem supports xattrs by looking at the
10401 inode
->i_fop
= &btrfs_file_operations
;
10402 inode
->i_op
= &btrfs_file_inode_operations
;
10403 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10404 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10406 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10408 goto out_unlock_inode
;
10410 path
= btrfs_alloc_path();
10413 goto out_unlock_inode
;
10415 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
10417 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10418 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10419 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10422 btrfs_free_path(path
);
10423 goto out_unlock_inode
;
10425 leaf
= path
->nodes
[0];
10426 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10427 struct btrfs_file_extent_item
);
10428 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10429 btrfs_set_file_extent_type(leaf
, ei
,
10430 BTRFS_FILE_EXTENT_INLINE
);
10431 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10432 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10433 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10434 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10436 ptr
= btrfs_file_extent_inline_start(ei
);
10437 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10438 btrfs_mark_buffer_dirty(leaf
);
10439 btrfs_free_path(path
);
10441 inode
->i_op
= &btrfs_symlink_inode_operations
;
10442 inode_nohighmem(inode
);
10443 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
10444 inode_set_bytes(inode
, name_len
);
10445 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
10446 err
= btrfs_update_inode(trans
, root
, inode
);
10448 * Last step, add directory indexes for our symlink inode. This is the
10449 * last step to avoid extra cleanup of these indexes if an error happens
10453 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
10454 BTRFS_I(inode
), 0, index
);
10457 goto out_unlock_inode
;
10460 unlock_new_inode(inode
);
10461 d_instantiate(dentry
, inode
);
10464 btrfs_end_transaction(trans
);
10466 inode_dec_link_count(inode
);
10469 btrfs_btree_balance_dirty(fs_info
);
10474 unlock_new_inode(inode
);
10478 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10479 u64 start
, u64 num_bytes
, u64 min_size
,
10480 loff_t actual_len
, u64
*alloc_hint
,
10481 struct btrfs_trans_handle
*trans
)
10483 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
10484 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10485 struct extent_map
*em
;
10486 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10487 struct btrfs_key ins
;
10488 u64 cur_offset
= start
;
10491 u64 last_alloc
= (u64
)-1;
10493 bool own_trans
= true;
10494 u64 end
= start
+ num_bytes
- 1;
10498 while (num_bytes
> 0) {
10500 trans
= btrfs_start_transaction(root
, 3);
10501 if (IS_ERR(trans
)) {
10502 ret
= PTR_ERR(trans
);
10507 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10508 cur_bytes
= max(cur_bytes
, min_size
);
10510 * If we are severely fragmented we could end up with really
10511 * small allocations, so if the allocator is returning small
10512 * chunks lets make its job easier by only searching for those
10515 cur_bytes
= min(cur_bytes
, last_alloc
);
10516 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
10517 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
10520 btrfs_end_transaction(trans
);
10523 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
10525 last_alloc
= ins
.offset
;
10526 ret
= insert_reserved_file_extent(trans
, inode
,
10527 cur_offset
, ins
.objectid
,
10528 ins
.offset
, ins
.offset
,
10529 ins
.offset
, 0, 0, 0,
10530 BTRFS_FILE_EXTENT_PREALLOC
);
10532 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
10534 btrfs_abort_transaction(trans
, ret
);
10536 btrfs_end_transaction(trans
);
10540 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10541 cur_offset
+ ins
.offset
-1, 0);
10543 em
= alloc_extent_map();
10545 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10546 &BTRFS_I(inode
)->runtime_flags
);
10550 em
->start
= cur_offset
;
10551 em
->orig_start
= cur_offset
;
10552 em
->len
= ins
.offset
;
10553 em
->block_start
= ins
.objectid
;
10554 em
->block_len
= ins
.offset
;
10555 em
->orig_block_len
= ins
.offset
;
10556 em
->ram_bytes
= ins
.offset
;
10557 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
10558 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10559 em
->generation
= trans
->transid
;
10562 write_lock(&em_tree
->lock
);
10563 ret
= add_extent_mapping(em_tree
, em
, 1);
10564 write_unlock(&em_tree
->lock
);
10565 if (ret
!= -EEXIST
)
10567 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10568 cur_offset
+ ins
.offset
- 1,
10571 free_extent_map(em
);
10573 num_bytes
-= ins
.offset
;
10574 cur_offset
+= ins
.offset
;
10575 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10577 inode_inc_iversion(inode
);
10578 inode
->i_ctime
= current_time(inode
);
10579 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10580 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10581 (actual_len
> inode
->i_size
) &&
10582 (cur_offset
> inode
->i_size
)) {
10583 if (cur_offset
> actual_len
)
10584 i_size
= actual_len
;
10586 i_size
= cur_offset
;
10587 i_size_write(inode
, i_size
);
10588 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10591 ret
= btrfs_update_inode(trans
, root
, inode
);
10594 btrfs_abort_transaction(trans
, ret
);
10596 btrfs_end_transaction(trans
);
10601 btrfs_end_transaction(trans
);
10603 if (cur_offset
< end
)
10604 btrfs_free_reserved_data_space(inode
, NULL
, cur_offset
,
10605 end
- cur_offset
+ 1);
10609 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10610 u64 start
, u64 num_bytes
, u64 min_size
,
10611 loff_t actual_len
, u64
*alloc_hint
)
10613 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10614 min_size
, actual_len
, alloc_hint
,
10618 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10619 struct btrfs_trans_handle
*trans
, int mode
,
10620 u64 start
, u64 num_bytes
, u64 min_size
,
10621 loff_t actual_len
, u64
*alloc_hint
)
10623 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10624 min_size
, actual_len
, alloc_hint
, trans
);
10627 static int btrfs_set_page_dirty(struct page
*page
)
10629 return __set_page_dirty_nobuffers(page
);
10632 static int btrfs_permission(struct inode
*inode
, int mask
)
10634 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10635 umode_t mode
= inode
->i_mode
;
10637 if (mask
& MAY_WRITE
&&
10638 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10639 if (btrfs_root_readonly(root
))
10641 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10644 return generic_permission(inode
, mask
);
10647 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10649 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10650 struct btrfs_trans_handle
*trans
;
10651 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10652 struct inode
*inode
= NULL
;
10658 * 5 units required for adding orphan entry
10660 trans
= btrfs_start_transaction(root
, 5);
10662 return PTR_ERR(trans
);
10664 ret
= btrfs_find_free_ino(root
, &objectid
);
10668 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10669 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
10670 if (IS_ERR(inode
)) {
10671 ret
= PTR_ERR(inode
);
10676 inode
->i_fop
= &btrfs_file_operations
;
10677 inode
->i_op
= &btrfs_file_inode_operations
;
10679 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10680 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10682 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10686 ret
= btrfs_update_inode(trans
, root
, inode
);
10689 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10694 * We set number of links to 0 in btrfs_new_inode(), and here we set
10695 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10698 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10700 set_nlink(inode
, 1);
10701 unlock_new_inode(inode
);
10702 d_tmpfile(dentry
, inode
);
10703 mark_inode_dirty(inode
);
10706 btrfs_end_transaction(trans
);
10709 btrfs_balance_delayed_items(fs_info
);
10710 btrfs_btree_balance_dirty(fs_info
);
10714 unlock_new_inode(inode
);
10719 __attribute__((const))
10720 static int btrfs_readpage_io_failed_hook(struct page
*page
, int failed_mirror
)
10725 static struct btrfs_fs_info
*iotree_fs_info(void *private_data
)
10727 struct inode
*inode
= private_data
;
10728 return btrfs_sb(inode
->i_sb
);
10731 static void btrfs_check_extent_io_range(void *private_data
, const char *caller
,
10732 u64 start
, u64 end
)
10734 struct inode
*inode
= private_data
;
10737 isize
= i_size_read(inode
);
10738 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
10739 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
10740 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10741 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
10745 void btrfs_set_range_writeback(void *private_data
, u64 start
, u64 end
)
10747 struct inode
*inode
= private_data
;
10748 unsigned long index
= start
>> PAGE_SHIFT
;
10749 unsigned long end_index
= end
>> PAGE_SHIFT
;
10752 while (index
<= end_index
) {
10753 page
= find_get_page(inode
->i_mapping
, index
);
10754 ASSERT(page
); /* Pages should be in the extent_io_tree */
10755 set_page_writeback(page
);
10761 static const struct inode_operations btrfs_dir_inode_operations
= {
10762 .getattr
= btrfs_getattr
,
10763 .lookup
= btrfs_lookup
,
10764 .create
= btrfs_create
,
10765 .unlink
= btrfs_unlink
,
10766 .link
= btrfs_link
,
10767 .mkdir
= btrfs_mkdir
,
10768 .rmdir
= btrfs_rmdir
,
10769 .rename
= btrfs_rename2
,
10770 .symlink
= btrfs_symlink
,
10771 .setattr
= btrfs_setattr
,
10772 .mknod
= btrfs_mknod
,
10773 .listxattr
= btrfs_listxattr
,
10774 .permission
= btrfs_permission
,
10775 .get_acl
= btrfs_get_acl
,
10776 .set_acl
= btrfs_set_acl
,
10777 .update_time
= btrfs_update_time
,
10778 .tmpfile
= btrfs_tmpfile
,
10780 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
10781 .lookup
= btrfs_lookup
,
10782 .permission
= btrfs_permission
,
10783 .update_time
= btrfs_update_time
,
10786 static const struct file_operations btrfs_dir_file_operations
= {
10787 .llseek
= generic_file_llseek
,
10788 .read
= generic_read_dir
,
10789 .iterate_shared
= btrfs_real_readdir
,
10790 .open
= btrfs_opendir
,
10791 .unlocked_ioctl
= btrfs_ioctl
,
10792 #ifdef CONFIG_COMPAT
10793 .compat_ioctl
= btrfs_compat_ioctl
,
10795 .release
= btrfs_release_file
,
10796 .fsync
= btrfs_sync_file
,
10799 static const struct extent_io_ops btrfs_extent_io_ops
= {
10800 /* mandatory callbacks */
10801 .submit_bio_hook
= btrfs_submit_bio_hook
,
10802 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10803 .merge_bio_hook
= btrfs_merge_bio_hook
,
10804 .readpage_io_failed_hook
= btrfs_readpage_io_failed_hook
,
10805 .tree_fs_info
= iotree_fs_info
,
10806 .set_range_writeback
= btrfs_set_range_writeback
,
10808 /* optional callbacks */
10809 .fill_delalloc
= run_delalloc_range
,
10810 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
10811 .writepage_start_hook
= btrfs_writepage_start_hook
,
10812 .set_bit_hook
= btrfs_set_bit_hook
,
10813 .clear_bit_hook
= btrfs_clear_bit_hook
,
10814 .merge_extent_hook
= btrfs_merge_extent_hook
,
10815 .split_extent_hook
= btrfs_split_extent_hook
,
10816 .check_extent_io_range
= btrfs_check_extent_io_range
,
10820 * btrfs doesn't support the bmap operation because swapfiles
10821 * use bmap to make a mapping of extents in the file. They assume
10822 * these extents won't change over the life of the file and they
10823 * use the bmap result to do IO directly to the drive.
10825 * the btrfs bmap call would return logical addresses that aren't
10826 * suitable for IO and they also will change frequently as COW
10827 * operations happen. So, swapfile + btrfs == corruption.
10829 * For now we're avoiding this by dropping bmap.
10831 static const struct address_space_operations btrfs_aops
= {
10832 .readpage
= btrfs_readpage
,
10833 .writepage
= btrfs_writepage
,
10834 .writepages
= btrfs_writepages
,
10835 .readpages
= btrfs_readpages
,
10836 .direct_IO
= btrfs_direct_IO
,
10837 .invalidatepage
= btrfs_invalidatepage
,
10838 .releasepage
= btrfs_releasepage
,
10839 .set_page_dirty
= btrfs_set_page_dirty
,
10840 .error_remove_page
= generic_error_remove_page
,
10843 static const struct address_space_operations btrfs_symlink_aops
= {
10844 .readpage
= btrfs_readpage
,
10845 .writepage
= btrfs_writepage
,
10846 .invalidatepage
= btrfs_invalidatepage
,
10847 .releasepage
= btrfs_releasepage
,
10850 static const struct inode_operations btrfs_file_inode_operations
= {
10851 .getattr
= btrfs_getattr
,
10852 .setattr
= btrfs_setattr
,
10853 .listxattr
= btrfs_listxattr
,
10854 .permission
= btrfs_permission
,
10855 .fiemap
= btrfs_fiemap
,
10856 .get_acl
= btrfs_get_acl
,
10857 .set_acl
= btrfs_set_acl
,
10858 .update_time
= btrfs_update_time
,
10860 static const struct inode_operations btrfs_special_inode_operations
= {
10861 .getattr
= btrfs_getattr
,
10862 .setattr
= btrfs_setattr
,
10863 .permission
= btrfs_permission
,
10864 .listxattr
= btrfs_listxattr
,
10865 .get_acl
= btrfs_get_acl
,
10866 .set_acl
= btrfs_set_acl
,
10867 .update_time
= btrfs_update_time
,
10869 static const struct inode_operations btrfs_symlink_inode_operations
= {
10870 .get_link
= page_get_link
,
10871 .getattr
= btrfs_getattr
,
10872 .setattr
= btrfs_setattr
,
10873 .permission
= btrfs_permission
,
10874 .listxattr
= btrfs_listxattr
,
10875 .update_time
= btrfs_update_time
,
10878 const struct dentry_operations btrfs_dentry_operations
= {
10879 .d_delete
= btrfs_dentry_delete
,
10880 .d_release
= btrfs_dentry_release
,