2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 #include "rcu-string.h"
57 #include "dev-replace.h"
62 #include "compression.h"
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
70 struct btrfs_ioctl_timespec_32
{
73 } __attribute__ ((__packed__
));
75 struct btrfs_ioctl_received_subvol_args_32
{
76 char uuid
[BTRFS_UUID_SIZE
]; /* in */
77 __u64 stransid
; /* in */
78 __u64 rtransid
; /* out */
79 struct btrfs_ioctl_timespec_32 stime
; /* in */
80 struct btrfs_ioctl_timespec_32 rtime
; /* out */
82 __u64 reserved
[16]; /* in */
83 } __attribute__ ((__packed__
));
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
89 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
90 struct btrfs_ioctl_send_args_32
{
91 __s64 send_fd
; /* in */
92 __u64 clone_sources_count
; /* in */
93 compat_uptr_t clone_sources
; /* in */
94 __u64 parent_root
; /* in */
96 __u64 reserved
[4]; /* in */
97 } __attribute__ ((__packed__
));
99 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
100 struct btrfs_ioctl_send_args_32)
103 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
104 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
,
107 /* Mask out flags that are inappropriate for the given type of inode. */
108 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
112 else if (S_ISREG(mode
))
113 return flags
& ~FS_DIRSYNC_FL
;
115 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
119 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
121 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
123 unsigned int iflags
= 0;
125 if (flags
& BTRFS_INODE_SYNC
)
126 iflags
|= FS_SYNC_FL
;
127 if (flags
& BTRFS_INODE_IMMUTABLE
)
128 iflags
|= FS_IMMUTABLE_FL
;
129 if (flags
& BTRFS_INODE_APPEND
)
130 iflags
|= FS_APPEND_FL
;
131 if (flags
& BTRFS_INODE_NODUMP
)
132 iflags
|= FS_NODUMP_FL
;
133 if (flags
& BTRFS_INODE_NOATIME
)
134 iflags
|= FS_NOATIME_FL
;
135 if (flags
& BTRFS_INODE_DIRSYNC
)
136 iflags
|= FS_DIRSYNC_FL
;
137 if (flags
& BTRFS_INODE_NODATACOW
)
138 iflags
|= FS_NOCOW_FL
;
140 if (flags
& BTRFS_INODE_NOCOMPRESS
)
141 iflags
|= FS_NOCOMP_FL
;
142 else if (flags
& BTRFS_INODE_COMPRESS
)
143 iflags
|= FS_COMPR_FL
;
149 * Update inode->i_flags based on the btrfs internal flags.
151 void btrfs_update_iflags(struct inode
*inode
)
153 struct btrfs_inode
*ip
= BTRFS_I(inode
);
154 unsigned int new_fl
= 0;
156 if (ip
->flags
& BTRFS_INODE_SYNC
)
158 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
159 new_fl
|= S_IMMUTABLE
;
160 if (ip
->flags
& BTRFS_INODE_APPEND
)
162 if (ip
->flags
& BTRFS_INODE_NOATIME
)
164 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
167 set_mask_bits(&inode
->i_flags
,
168 S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
| S_DIRSYNC
,
172 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
174 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
175 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
177 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
182 static int check_flags(unsigned int flags
)
184 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
185 FS_NOATIME_FL
| FS_NODUMP_FL
| \
186 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
187 FS_NOCOMP_FL
| FS_COMPR_FL
|
191 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
197 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
199 struct inode
*inode
= file_inode(file
);
200 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
201 struct btrfs_inode
*ip
= BTRFS_I(inode
);
202 struct btrfs_root
*root
= ip
->root
;
203 struct btrfs_trans_handle
*trans
;
204 unsigned int flags
, oldflags
;
207 unsigned int i_oldflags
;
210 if (!inode_owner_or_capable(inode
))
213 if (btrfs_root_readonly(root
))
216 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
219 ret
= check_flags(flags
);
223 ret
= mnt_want_write_file(file
);
229 ip_oldflags
= ip
->flags
;
230 i_oldflags
= inode
->i_flags
;
231 mode
= inode
->i_mode
;
233 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
234 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
235 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
236 if (!capable(CAP_LINUX_IMMUTABLE
)) {
242 if (flags
& FS_SYNC_FL
)
243 ip
->flags
|= BTRFS_INODE_SYNC
;
245 ip
->flags
&= ~BTRFS_INODE_SYNC
;
246 if (flags
& FS_IMMUTABLE_FL
)
247 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
249 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
250 if (flags
& FS_APPEND_FL
)
251 ip
->flags
|= BTRFS_INODE_APPEND
;
253 ip
->flags
&= ~BTRFS_INODE_APPEND
;
254 if (flags
& FS_NODUMP_FL
)
255 ip
->flags
|= BTRFS_INODE_NODUMP
;
257 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
258 if (flags
& FS_NOATIME_FL
)
259 ip
->flags
|= BTRFS_INODE_NOATIME
;
261 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
262 if (flags
& FS_DIRSYNC_FL
)
263 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
265 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
266 if (flags
& FS_NOCOW_FL
) {
269 * It's safe to turn csums off here, no extents exist.
270 * Otherwise we want the flag to reflect the real COW
271 * status of the file and will not set it.
273 if (inode
->i_size
== 0)
274 ip
->flags
|= BTRFS_INODE_NODATACOW
275 | BTRFS_INODE_NODATASUM
;
277 ip
->flags
|= BTRFS_INODE_NODATACOW
;
281 * Revert back under same assumptions as above
284 if (inode
->i_size
== 0)
285 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
286 | BTRFS_INODE_NODATASUM
);
288 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
293 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
294 * flag may be changed automatically if compression code won't make
297 if (flags
& FS_NOCOMP_FL
) {
298 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
299 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
301 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
302 if (ret
&& ret
!= -ENODATA
)
304 } else if (flags
& FS_COMPR_FL
) {
307 ip
->flags
|= BTRFS_INODE_COMPRESS
;
308 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
310 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
312 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZLIB
)
316 ret
= btrfs_set_prop(inode
, "btrfs.compression",
317 comp
, strlen(comp
), 0);
322 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
323 if (ret
&& ret
!= -ENODATA
)
325 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
328 trans
= btrfs_start_transaction(root
, 1);
330 ret
= PTR_ERR(trans
);
334 btrfs_update_iflags(inode
);
335 inode_inc_iversion(inode
);
336 inode
->i_ctime
= current_time(inode
);
337 ret
= btrfs_update_inode(trans
, root
, inode
);
339 btrfs_end_transaction(trans
);
342 ip
->flags
= ip_oldflags
;
343 inode
->i_flags
= i_oldflags
;
348 mnt_drop_write_file(file
);
352 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
354 struct inode
*inode
= file_inode(file
);
356 return put_user(inode
->i_generation
, arg
);
359 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
361 struct inode
*inode
= file_inode(file
);
362 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
363 struct btrfs_device
*device
;
364 struct request_queue
*q
;
365 struct fstrim_range range
;
366 u64 minlen
= ULLONG_MAX
;
368 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
371 if (!capable(CAP_SYS_ADMIN
))
375 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
379 q
= bdev_get_queue(device
->bdev
);
380 if (blk_queue_discard(q
)) {
382 minlen
= min_t(u64
, q
->limits
.discard_granularity
,
390 if (copy_from_user(&range
, arg
, sizeof(range
)))
392 if (range
.start
> total_bytes
||
393 range
.len
< fs_info
->sb
->s_blocksize
)
396 range
.len
= min(range
.len
, total_bytes
- range
.start
);
397 range
.minlen
= max(range
.minlen
, minlen
);
398 ret
= btrfs_trim_fs(fs_info
, &range
);
402 if (copy_to_user(arg
, &range
, sizeof(range
)))
408 int btrfs_is_empty_uuid(u8
*uuid
)
412 for (i
= 0; i
< BTRFS_UUID_SIZE
; i
++) {
419 static noinline
int create_subvol(struct inode
*dir
,
420 struct dentry
*dentry
,
421 const char *name
, int namelen
,
423 struct btrfs_qgroup_inherit
*inherit
)
425 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
426 struct btrfs_trans_handle
*trans
;
427 struct btrfs_key key
;
428 struct btrfs_root_item
*root_item
;
429 struct btrfs_inode_item
*inode_item
;
430 struct extent_buffer
*leaf
;
431 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
432 struct btrfs_root
*new_root
;
433 struct btrfs_block_rsv block_rsv
;
434 struct timespec cur_time
= current_time(dir
);
439 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
444 root_item
= kzalloc(sizeof(*root_item
), GFP_KERNEL
);
448 ret
= btrfs_find_free_objectid(fs_info
->tree_root
, &objectid
);
453 * Don't create subvolume whose level is not zero. Or qgroup will be
454 * screwed up since it assumes subvolume qgroup's level to be 0.
456 if (btrfs_qgroup_level(objectid
)) {
461 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
463 * The same as the snapshot creation, please see the comment
464 * of create_snapshot().
466 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
467 8, &qgroup_reserved
, false);
471 trans
= btrfs_start_transaction(root
, 0);
473 ret
= PTR_ERR(trans
);
474 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
477 trans
->block_rsv
= &block_rsv
;
478 trans
->bytes_reserved
= block_rsv
.size
;
480 ret
= btrfs_qgroup_inherit(trans
, fs_info
, 0, objectid
, inherit
);
484 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
490 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
491 btrfs_set_header_bytenr(leaf
, leaf
->start
);
492 btrfs_set_header_generation(leaf
, trans
->transid
);
493 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
494 btrfs_set_header_owner(leaf
, objectid
);
496 write_extent_buffer_fsid(leaf
, fs_info
->fsid
);
497 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
498 btrfs_mark_buffer_dirty(leaf
);
500 inode_item
= &root_item
->inode
;
501 btrfs_set_stack_inode_generation(inode_item
, 1);
502 btrfs_set_stack_inode_size(inode_item
, 3);
503 btrfs_set_stack_inode_nlink(inode_item
, 1);
504 btrfs_set_stack_inode_nbytes(inode_item
,
506 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
508 btrfs_set_root_flags(root_item
, 0);
509 btrfs_set_root_limit(root_item
, 0);
510 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
512 btrfs_set_root_bytenr(root_item
, leaf
->start
);
513 btrfs_set_root_generation(root_item
, trans
->transid
);
514 btrfs_set_root_level(root_item
, 0);
515 btrfs_set_root_refs(root_item
, 1);
516 btrfs_set_root_used(root_item
, leaf
->len
);
517 btrfs_set_root_last_snapshot(root_item
, 0);
519 btrfs_set_root_generation_v2(root_item
,
520 btrfs_root_generation(root_item
));
521 uuid_le_gen(&new_uuid
);
522 memcpy(root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
523 btrfs_set_stack_timespec_sec(&root_item
->otime
, cur_time
.tv_sec
);
524 btrfs_set_stack_timespec_nsec(&root_item
->otime
, cur_time
.tv_nsec
);
525 root_item
->ctime
= root_item
->otime
;
526 btrfs_set_root_ctransid(root_item
, trans
->transid
);
527 btrfs_set_root_otransid(root_item
, trans
->transid
);
529 btrfs_tree_unlock(leaf
);
530 free_extent_buffer(leaf
);
533 btrfs_set_root_dirid(root_item
, new_dirid
);
535 key
.objectid
= objectid
;
537 key
.type
= BTRFS_ROOT_ITEM_KEY
;
538 ret
= btrfs_insert_root(trans
, fs_info
->tree_root
, &key
,
543 key
.offset
= (u64
)-1;
544 new_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
545 if (IS_ERR(new_root
)) {
546 ret
= PTR_ERR(new_root
);
547 btrfs_abort_transaction(trans
, ret
);
551 btrfs_record_root_in_trans(trans
, new_root
);
553 ret
= btrfs_create_subvol_root(trans
, new_root
, root
, new_dirid
);
555 /* We potentially lose an unused inode item here */
556 btrfs_abort_transaction(trans
, ret
);
560 mutex_lock(&new_root
->objectid_mutex
);
561 new_root
->highest_objectid
= new_dirid
;
562 mutex_unlock(&new_root
->objectid_mutex
);
565 * insert the directory item
567 ret
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
569 btrfs_abort_transaction(trans
, ret
);
573 ret
= btrfs_insert_dir_item(trans
, root
,
574 name
, namelen
, BTRFS_I(dir
), &key
,
575 BTRFS_FT_DIR
, index
);
577 btrfs_abort_transaction(trans
, ret
);
581 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ namelen
* 2);
582 ret
= btrfs_update_inode(trans
, root
, dir
);
585 ret
= btrfs_add_root_ref(trans
, fs_info
,
586 objectid
, root
->root_key
.objectid
,
587 btrfs_ino(BTRFS_I(dir
)), index
, name
, namelen
);
590 ret
= btrfs_uuid_tree_add(trans
, fs_info
, root_item
->uuid
,
591 BTRFS_UUID_KEY_SUBVOL
, objectid
);
593 btrfs_abort_transaction(trans
, ret
);
597 trans
->block_rsv
= NULL
;
598 trans
->bytes_reserved
= 0;
599 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
602 *async_transid
= trans
->transid
;
603 err
= btrfs_commit_transaction_async(trans
, 1);
605 err
= btrfs_commit_transaction(trans
);
607 err
= btrfs_commit_transaction(trans
);
613 inode
= btrfs_lookup_dentry(dir
, dentry
);
615 return PTR_ERR(inode
);
616 d_instantiate(dentry
, inode
);
625 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
626 struct dentry
*dentry
,
627 u64
*async_transid
, bool readonly
,
628 struct btrfs_qgroup_inherit
*inherit
)
630 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
632 struct btrfs_pending_snapshot
*pending_snapshot
;
633 struct btrfs_trans_handle
*trans
;
636 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
639 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_KERNEL
);
640 if (!pending_snapshot
)
643 pending_snapshot
->root_item
= kzalloc(sizeof(struct btrfs_root_item
),
645 pending_snapshot
->path
= btrfs_alloc_path();
646 if (!pending_snapshot
->root_item
|| !pending_snapshot
->path
) {
651 atomic_inc(&root
->will_be_snapshotted
);
652 smp_mb__after_atomic();
653 /* wait for no snapshot writes */
654 wait_event(root
->subv_writers
->wait
,
655 percpu_counter_sum(&root
->subv_writers
->counter
) == 0);
657 ret
= btrfs_start_delalloc_inodes(root
, 0);
661 btrfs_wait_ordered_extents(root
, U64_MAX
, 0, (u64
)-1);
663 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
664 BTRFS_BLOCK_RSV_TEMP
);
666 * 1 - parent dir inode
669 * 2 - root ref/backref
670 * 1 - root of snapshot
673 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
674 &pending_snapshot
->block_rsv
, 8,
675 &pending_snapshot
->qgroup_reserved
,
680 pending_snapshot
->dentry
= dentry
;
681 pending_snapshot
->root
= root
;
682 pending_snapshot
->readonly
= readonly
;
683 pending_snapshot
->dir
= dir
;
684 pending_snapshot
->inherit
= inherit
;
686 trans
= btrfs_start_transaction(root
, 0);
688 ret
= PTR_ERR(trans
);
692 spin_lock(&fs_info
->trans_lock
);
693 list_add(&pending_snapshot
->list
,
694 &trans
->transaction
->pending_snapshots
);
695 spin_unlock(&fs_info
->trans_lock
);
697 *async_transid
= trans
->transid
;
698 ret
= btrfs_commit_transaction_async(trans
, 1);
700 ret
= btrfs_commit_transaction(trans
);
702 ret
= btrfs_commit_transaction(trans
);
707 ret
= pending_snapshot
->error
;
711 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
715 inode
= btrfs_lookup_dentry(d_inode(dentry
->d_parent
), dentry
);
717 ret
= PTR_ERR(inode
);
721 d_instantiate(dentry
, inode
);
724 btrfs_subvolume_release_metadata(fs_info
, &pending_snapshot
->block_rsv
);
726 if (atomic_dec_and_test(&root
->will_be_snapshotted
))
727 wake_up_atomic_t(&root
->will_be_snapshotted
);
729 kfree(pending_snapshot
->root_item
);
730 btrfs_free_path(pending_snapshot
->path
);
731 kfree(pending_snapshot
);
736 /* copy of may_delete in fs/namei.c()
737 * Check whether we can remove a link victim from directory dir, check
738 * whether the type of victim is right.
739 * 1. We can't do it if dir is read-only (done in permission())
740 * 2. We should have write and exec permissions on dir
741 * 3. We can't remove anything from append-only dir
742 * 4. We can't do anything with immutable dir (done in permission())
743 * 5. If the sticky bit on dir is set we should either
744 * a. be owner of dir, or
745 * b. be owner of victim, or
746 * c. have CAP_FOWNER capability
747 * 6. If the victim is append-only or immutable we can't do anything with
748 * links pointing to it.
749 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
750 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
751 * 9. We can't remove a root or mountpoint.
752 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
753 * nfs_async_unlink().
756 static int btrfs_may_delete(struct inode
*dir
, struct dentry
*victim
, int isdir
)
760 if (d_really_is_negative(victim
))
763 BUG_ON(d_inode(victim
->d_parent
) != dir
);
764 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
766 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
771 if (check_sticky(dir
, d_inode(victim
)) || IS_APPEND(d_inode(victim
)) ||
772 IS_IMMUTABLE(d_inode(victim
)) || IS_SWAPFILE(d_inode(victim
)))
775 if (!d_is_dir(victim
))
779 } else if (d_is_dir(victim
))
783 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
788 /* copy of may_create in fs/namei.c() */
789 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
791 if (d_really_is_positive(child
))
795 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
799 * Create a new subvolume below @parent. This is largely modeled after
800 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
801 * inside this filesystem so it's quite a bit simpler.
803 static noinline
int btrfs_mksubvol(const struct path
*parent
,
804 const char *name
, int namelen
,
805 struct btrfs_root
*snap_src
,
806 u64
*async_transid
, bool readonly
,
807 struct btrfs_qgroup_inherit
*inherit
)
809 struct inode
*dir
= d_inode(parent
->dentry
);
810 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
811 struct dentry
*dentry
;
814 error
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
818 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
819 error
= PTR_ERR(dentry
);
823 error
= btrfs_may_create(dir
, dentry
);
828 * even if this name doesn't exist, we may get hash collisions.
829 * check for them now when we can safely fail
831 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
837 down_read(&fs_info
->subvol_sem
);
839 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
843 error
= create_snapshot(snap_src
, dir
, dentry
,
844 async_transid
, readonly
, inherit
);
846 error
= create_subvol(dir
, dentry
, name
, namelen
,
847 async_transid
, inherit
);
850 fsnotify_mkdir(dir
, dentry
);
852 up_read(&fs_info
->subvol_sem
);
861 * When we're defragging a range, we don't want to kick it off again
862 * if it is really just waiting for delalloc to send it down.
863 * If we find a nice big extent or delalloc range for the bytes in the
864 * file you want to defrag, we return 0 to let you know to skip this
867 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, u32 thresh
)
869 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
870 struct extent_map
*em
= NULL
;
871 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
874 read_lock(&em_tree
->lock
);
875 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_SIZE
);
876 read_unlock(&em_tree
->lock
);
879 end
= extent_map_end(em
);
881 if (end
- offset
> thresh
)
884 /* if we already have a nice delalloc here, just stop */
886 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
887 thresh
, EXTENT_DELALLOC
, 1);
894 * helper function to walk through a file and find extents
895 * newer than a specific transid, and smaller than thresh.
897 * This is used by the defragging code to find new and small
900 static int find_new_extents(struct btrfs_root
*root
,
901 struct inode
*inode
, u64 newer_than
,
902 u64
*off
, u32 thresh
)
904 struct btrfs_path
*path
;
905 struct btrfs_key min_key
;
906 struct extent_buffer
*leaf
;
907 struct btrfs_file_extent_item
*extent
;
910 u64 ino
= btrfs_ino(BTRFS_I(inode
));
912 path
= btrfs_alloc_path();
916 min_key
.objectid
= ino
;
917 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
918 min_key
.offset
= *off
;
921 ret
= btrfs_search_forward(root
, &min_key
, path
, newer_than
);
925 if (min_key
.objectid
!= ino
)
927 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
930 leaf
= path
->nodes
[0];
931 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
932 struct btrfs_file_extent_item
);
934 type
= btrfs_file_extent_type(leaf
, extent
);
935 if (type
== BTRFS_FILE_EXTENT_REG
&&
936 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
937 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
938 *off
= min_key
.offset
;
939 btrfs_free_path(path
);
944 if (path
->slots
[0] < btrfs_header_nritems(leaf
)) {
945 btrfs_item_key_to_cpu(leaf
, &min_key
, path
->slots
[0]);
949 if (min_key
.offset
== (u64
)-1)
953 btrfs_release_path(path
);
956 btrfs_free_path(path
);
960 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
962 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
963 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
964 struct extent_map
*em
;
968 * hopefully we have this extent in the tree already, try without
969 * the full extent lock
971 read_lock(&em_tree
->lock
);
972 em
= lookup_extent_mapping(em_tree
, start
, len
);
973 read_unlock(&em_tree
->lock
);
976 struct extent_state
*cached
= NULL
;
977 u64 end
= start
+ len
- 1;
979 /* get the big lock and read metadata off disk */
980 lock_extent_bits(io_tree
, start
, end
, &cached
);
981 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
982 unlock_extent_cached(io_tree
, start
, end
, &cached
, GFP_NOFS
);
991 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
993 struct extent_map
*next
;
996 /* this is the last extent */
997 if (em
->start
+ em
->len
>= i_size_read(inode
))
1000 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
1001 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
1003 else if ((em
->block_start
+ em
->block_len
== next
->block_start
) &&
1004 (em
->block_len
> SZ_128K
&& next
->block_len
> SZ_128K
))
1007 free_extent_map(next
);
1011 static int should_defrag_range(struct inode
*inode
, u64 start
, u32 thresh
,
1012 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
1015 struct extent_map
*em
;
1017 bool next_mergeable
= true;
1018 bool prev_mergeable
= true;
1021 * make sure that once we start defragging an extent, we keep on
1024 if (start
< *defrag_end
)
1029 em
= defrag_lookup_extent(inode
, start
);
1033 /* this will cover holes, and inline extents */
1034 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1040 prev_mergeable
= false;
1042 next_mergeable
= defrag_check_next_extent(inode
, em
);
1044 * we hit a real extent, if it is big or the next extent is not a
1045 * real extent, don't bother defragging it
1047 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
1048 (em
->len
>= thresh
|| (!next_mergeable
&& !prev_mergeable
)))
1052 * last_len ends up being a counter of how many bytes we've defragged.
1053 * every time we choose not to defrag an extent, we reset *last_len
1054 * so that the next tiny extent will force a defrag.
1056 * The end result of this is that tiny extents before a single big
1057 * extent will force at least part of that big extent to be defragged.
1060 *defrag_end
= extent_map_end(em
);
1063 *skip
= extent_map_end(em
);
1067 free_extent_map(em
);
1072 * it doesn't do much good to defrag one or two pages
1073 * at a time. This pulls in a nice chunk of pages
1074 * to COW and defrag.
1076 * It also makes sure the delalloc code has enough
1077 * dirty data to avoid making new small extents as part
1080 * It's a good idea to start RA on this range
1081 * before calling this.
1083 static int cluster_pages_for_defrag(struct inode
*inode
,
1084 struct page
**pages
,
1085 unsigned long start_index
,
1086 unsigned long num_pages
)
1088 unsigned long file_end
;
1089 u64 isize
= i_size_read(inode
);
1096 struct btrfs_ordered_extent
*ordered
;
1097 struct extent_state
*cached_state
= NULL
;
1098 struct extent_io_tree
*tree
;
1099 struct extent_changeset
*data_reserved
= NULL
;
1100 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1102 file_end
= (isize
- 1) >> PAGE_SHIFT
;
1103 if (!isize
|| start_index
> file_end
)
1106 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1108 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
1109 start_index
<< PAGE_SHIFT
,
1110 page_cnt
<< PAGE_SHIFT
);
1114 tree
= &BTRFS_I(inode
)->io_tree
;
1116 /* step one, lock all the pages */
1117 for (i
= 0; i
< page_cnt
; i
++) {
1120 page
= find_or_create_page(inode
->i_mapping
,
1121 start_index
+ i
, mask
);
1125 page_start
= page_offset(page
);
1126 page_end
= page_start
+ PAGE_SIZE
- 1;
1128 lock_extent_bits(tree
, page_start
, page_end
,
1130 ordered
= btrfs_lookup_ordered_extent(inode
,
1132 unlock_extent_cached(tree
, page_start
, page_end
,
1133 &cached_state
, GFP_NOFS
);
1138 btrfs_start_ordered_extent(inode
, ordered
, 1);
1139 btrfs_put_ordered_extent(ordered
);
1142 * we unlocked the page above, so we need check if
1143 * it was released or not.
1145 if (page
->mapping
!= inode
->i_mapping
) {
1152 if (!PageUptodate(page
)) {
1153 btrfs_readpage(NULL
, page
);
1155 if (!PageUptodate(page
)) {
1163 if (page
->mapping
!= inode
->i_mapping
) {
1175 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
))
1179 * so now we have a nice long stream of locked
1180 * and up to date pages, lets wait on them
1182 for (i
= 0; i
< i_done
; i
++)
1183 wait_on_page_writeback(pages
[i
]);
1185 page_start
= page_offset(pages
[0]);
1186 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_SIZE
;
1188 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1189 page_start
, page_end
- 1, &cached_state
);
1190 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1191 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1192 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1193 &cached_state
, GFP_NOFS
);
1195 if (i_done
!= page_cnt
) {
1196 spin_lock(&BTRFS_I(inode
)->lock
);
1197 BTRFS_I(inode
)->outstanding_extents
++;
1198 spin_unlock(&BTRFS_I(inode
)->lock
);
1199 btrfs_delalloc_release_space(inode
, data_reserved
,
1200 start_index
<< PAGE_SHIFT
,
1201 (page_cnt
- i_done
) << PAGE_SHIFT
);
1205 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1208 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1209 page_start
, page_end
- 1, &cached_state
,
1212 for (i
= 0; i
< i_done
; i
++) {
1213 clear_page_dirty_for_io(pages
[i
]);
1214 ClearPageChecked(pages
[i
]);
1215 set_page_extent_mapped(pages
[i
]);
1216 set_page_dirty(pages
[i
]);
1217 unlock_page(pages
[i
]);
1220 btrfs_delalloc_release_extents(BTRFS_I(inode
), page_cnt
<< PAGE_SHIFT
);
1221 extent_changeset_free(data_reserved
);
1224 for (i
= 0; i
< i_done
; i
++) {
1225 unlock_page(pages
[i
]);
1228 btrfs_delalloc_release_space(inode
, data_reserved
,
1229 start_index
<< PAGE_SHIFT
,
1230 page_cnt
<< PAGE_SHIFT
);
1231 btrfs_delalloc_release_extents(BTRFS_I(inode
), page_cnt
<< PAGE_SHIFT
);
1232 extent_changeset_free(data_reserved
);
1237 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1238 struct btrfs_ioctl_defrag_range_args
*range
,
1239 u64 newer_than
, unsigned long max_to_defrag
)
1241 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1242 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1243 struct file_ra_state
*ra
= NULL
;
1244 unsigned long last_index
;
1245 u64 isize
= i_size_read(inode
);
1249 u64 newer_off
= range
->start
;
1251 unsigned long ra_index
= 0;
1253 int defrag_count
= 0;
1254 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1255 u32 extent_thresh
= range
->extent_thresh
;
1256 unsigned long max_cluster
= SZ_256K
>> PAGE_SHIFT
;
1257 unsigned long cluster
= max_cluster
;
1258 u64 new_align
= ~((u64
)SZ_128K
- 1);
1259 struct page
**pages
= NULL
;
1260 bool do_compress
= range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
;
1265 if (range
->start
>= isize
)
1269 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1271 if (range
->compress_type
)
1272 compress_type
= range
->compress_type
;
1275 if (extent_thresh
== 0)
1276 extent_thresh
= SZ_256K
;
1279 * If we were not given a file, allocate a readahead context. As
1280 * readahead is just an optimization, defrag will work without it so
1281 * we don't error out.
1284 ra
= kzalloc(sizeof(*ra
), GFP_KERNEL
);
1286 file_ra_state_init(ra
, inode
->i_mapping
);
1291 pages
= kmalloc_array(max_cluster
, sizeof(struct page
*), GFP_KERNEL
);
1297 /* find the last page to defrag */
1298 if (range
->start
+ range
->len
> range
->start
) {
1299 last_index
= min_t(u64
, isize
- 1,
1300 range
->start
+ range
->len
- 1) >> PAGE_SHIFT
;
1302 last_index
= (isize
- 1) >> PAGE_SHIFT
;
1306 ret
= find_new_extents(root
, inode
, newer_than
,
1307 &newer_off
, SZ_64K
);
1309 range
->start
= newer_off
;
1311 * we always align our defrag to help keep
1312 * the extents in the file evenly spaced
1314 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1318 i
= range
->start
>> PAGE_SHIFT
;
1321 max_to_defrag
= last_index
- i
+ 1;
1324 * make writeback starts from i, so the defrag range can be
1325 * written sequentially.
1327 if (i
< inode
->i_mapping
->writeback_index
)
1328 inode
->i_mapping
->writeback_index
= i
;
1330 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1331 (i
< DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
))) {
1333 * make sure we stop running if someone unmounts
1336 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
))
1339 if (btrfs_defrag_cancelled(fs_info
)) {
1340 btrfs_debug(fs_info
, "defrag_file cancelled");
1345 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_SHIFT
,
1346 extent_thresh
, &last_len
, &skip
,
1347 &defrag_end
, do_compress
)){
1350 * the should_defrag function tells us how much to skip
1351 * bump our counter by the suggested amount
1353 next
= DIV_ROUND_UP(skip
, PAGE_SIZE
);
1354 i
= max(i
+ 1, next
);
1359 cluster
= (PAGE_ALIGN(defrag_end
) >>
1361 cluster
= min(cluster
, max_cluster
);
1363 cluster
= max_cluster
;
1366 if (i
+ cluster
> ra_index
) {
1367 ra_index
= max(i
, ra_index
);
1369 page_cache_sync_readahead(inode
->i_mapping
, ra
,
1370 file
, ra_index
, cluster
);
1371 ra_index
+= cluster
;
1376 BTRFS_I(inode
)->defrag_compress
= compress_type
;
1377 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1379 inode_unlock(inode
);
1383 defrag_count
+= ret
;
1384 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1385 inode_unlock(inode
);
1388 if (newer_off
== (u64
)-1)
1394 newer_off
= max(newer_off
+ 1,
1395 (u64
)i
<< PAGE_SHIFT
);
1397 ret
= find_new_extents(root
, inode
, newer_than
,
1398 &newer_off
, SZ_64K
);
1400 range
->start
= newer_off
;
1401 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1408 last_len
+= ret
<< PAGE_SHIFT
;
1416 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
)) {
1417 filemap_flush(inode
->i_mapping
);
1418 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1419 &BTRFS_I(inode
)->runtime_flags
))
1420 filemap_flush(inode
->i_mapping
);
1423 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1424 btrfs_set_fs_incompat(fs_info
, COMPRESS_LZO
);
1425 } else if (range
->compress_type
== BTRFS_COMPRESS_ZSTD
) {
1426 btrfs_set_fs_incompat(fs_info
, COMPRESS_ZSTD
);
1434 BTRFS_I(inode
)->defrag_compress
= BTRFS_COMPRESS_NONE
;
1435 inode_unlock(inode
);
1443 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1446 struct inode
*inode
= file_inode(file
);
1447 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1451 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1452 struct btrfs_ioctl_vol_args
*vol_args
;
1453 struct btrfs_trans_handle
*trans
;
1454 struct btrfs_device
*device
= NULL
;
1457 char *devstr
= NULL
;
1461 if (!capable(CAP_SYS_ADMIN
))
1464 ret
= mnt_want_write_file(file
);
1468 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
1469 mnt_drop_write_file(file
);
1470 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1473 mutex_lock(&fs_info
->volume_mutex
);
1474 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1475 if (IS_ERR(vol_args
)) {
1476 ret
= PTR_ERR(vol_args
);
1480 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1482 sizestr
= vol_args
->name
;
1483 devstr
= strchr(sizestr
, ':');
1485 sizestr
= devstr
+ 1;
1487 devstr
= vol_args
->name
;
1488 ret
= kstrtoull(devstr
, 10, &devid
);
1495 btrfs_info(fs_info
, "resizing devid %llu", devid
);
1498 device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
1500 btrfs_info(fs_info
, "resizer unable to find device %llu",
1506 if (!device
->writeable
) {
1508 "resizer unable to apply on readonly device %llu",
1514 if (!strcmp(sizestr
, "max"))
1515 new_size
= device
->bdev
->bd_inode
->i_size
;
1517 if (sizestr
[0] == '-') {
1520 } else if (sizestr
[0] == '+') {
1524 new_size
= memparse(sizestr
, &retptr
);
1525 if (*retptr
!= '\0' || new_size
== 0) {
1531 if (device
->is_tgtdev_for_dev_replace
) {
1536 old_size
= btrfs_device_get_total_bytes(device
);
1539 if (new_size
> old_size
) {
1543 new_size
= old_size
- new_size
;
1544 } else if (mod
> 0) {
1545 if (new_size
> ULLONG_MAX
- old_size
) {
1549 new_size
= old_size
+ new_size
;
1552 if (new_size
< SZ_256M
) {
1556 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1561 new_size
= round_down(new_size
, fs_info
->sectorsize
);
1563 btrfs_info_in_rcu(fs_info
, "new size for %s is %llu",
1564 rcu_str_deref(device
->name
), new_size
);
1566 if (new_size
> old_size
) {
1567 trans
= btrfs_start_transaction(root
, 0);
1568 if (IS_ERR(trans
)) {
1569 ret
= PTR_ERR(trans
);
1572 ret
= btrfs_grow_device(trans
, device
, new_size
);
1573 btrfs_commit_transaction(trans
);
1574 } else if (new_size
< old_size
) {
1575 ret
= btrfs_shrink_device(device
, new_size
);
1576 } /* equal, nothing need to do */
1581 mutex_unlock(&fs_info
->volume_mutex
);
1582 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
1583 mnt_drop_write_file(file
);
1587 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1588 const char *name
, unsigned long fd
, int subvol
,
1589 u64
*transid
, bool readonly
,
1590 struct btrfs_qgroup_inherit
*inherit
)
1595 if (!S_ISDIR(file_inode(file
)->i_mode
))
1598 ret
= mnt_want_write_file(file
);
1602 namelen
= strlen(name
);
1603 if (strchr(name
, '/')) {
1605 goto out_drop_write
;
1608 if (name
[0] == '.' &&
1609 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1611 goto out_drop_write
;
1615 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1616 NULL
, transid
, readonly
, inherit
);
1618 struct fd src
= fdget(fd
);
1619 struct inode
*src_inode
;
1622 goto out_drop_write
;
1625 src_inode
= file_inode(src
.file
);
1626 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1627 btrfs_info(BTRFS_I(file_inode(file
))->root
->fs_info
,
1628 "Snapshot src from another FS");
1630 } else if (!inode_owner_or_capable(src_inode
)) {
1632 * Subvolume creation is not restricted, but snapshots
1633 * are limited to own subvolumes only
1637 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1638 BTRFS_I(src_inode
)->root
,
1639 transid
, readonly
, inherit
);
1644 mnt_drop_write_file(file
);
1649 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1650 void __user
*arg
, int subvol
)
1652 struct btrfs_ioctl_vol_args
*vol_args
;
1655 if (!S_ISDIR(file_inode(file
)->i_mode
))
1658 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1659 if (IS_ERR(vol_args
))
1660 return PTR_ERR(vol_args
);
1661 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1663 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1664 vol_args
->fd
, subvol
,
1671 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1672 void __user
*arg
, int subvol
)
1674 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1678 bool readonly
= false;
1679 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1681 if (!S_ISDIR(file_inode(file
)->i_mode
))
1684 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1685 if (IS_ERR(vol_args
))
1686 return PTR_ERR(vol_args
);
1687 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1689 if (vol_args
->flags
&
1690 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1691 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1696 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1698 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1700 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1701 if (vol_args
->size
> PAGE_SIZE
) {
1705 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1706 if (IS_ERR(inherit
)) {
1707 ret
= PTR_ERR(inherit
);
1712 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1713 vol_args
->fd
, subvol
, ptr
,
1718 if (ptr
&& copy_to_user(arg
+
1719 offsetof(struct btrfs_ioctl_vol_args_v2
,
1731 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1734 struct inode
*inode
= file_inode(file
);
1735 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1736 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1740 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
)
1743 down_read(&fs_info
->subvol_sem
);
1744 if (btrfs_root_readonly(root
))
1745 flags
|= BTRFS_SUBVOL_RDONLY
;
1746 up_read(&fs_info
->subvol_sem
);
1748 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1754 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1757 struct inode
*inode
= file_inode(file
);
1758 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1759 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1760 struct btrfs_trans_handle
*trans
;
1765 if (!inode_owner_or_capable(inode
))
1768 ret
= mnt_want_write_file(file
);
1772 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
1774 goto out_drop_write
;
1777 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1779 goto out_drop_write
;
1782 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1784 goto out_drop_write
;
1787 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1789 goto out_drop_write
;
1792 down_write(&fs_info
->subvol_sem
);
1795 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1798 root_flags
= btrfs_root_flags(&root
->root_item
);
1799 if (flags
& BTRFS_SUBVOL_RDONLY
) {
1800 btrfs_set_root_flags(&root
->root_item
,
1801 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1804 * Block RO -> RW transition if this subvolume is involved in
1807 spin_lock(&root
->root_item_lock
);
1808 if (root
->send_in_progress
== 0) {
1809 btrfs_set_root_flags(&root
->root_item
,
1810 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1811 spin_unlock(&root
->root_item_lock
);
1813 spin_unlock(&root
->root_item_lock
);
1815 "Attempt to set subvolume %llu read-write during send",
1816 root
->root_key
.objectid
);
1822 trans
= btrfs_start_transaction(root
, 1);
1823 if (IS_ERR(trans
)) {
1824 ret
= PTR_ERR(trans
);
1828 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
1829 &root
->root_key
, &root
->root_item
);
1831 btrfs_end_transaction(trans
);
1835 ret
= btrfs_commit_transaction(trans
);
1839 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1841 up_write(&fs_info
->subvol_sem
);
1843 mnt_drop_write_file(file
);
1849 * helper to check if the subvolume references other subvolumes
1851 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1853 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1854 struct btrfs_path
*path
;
1855 struct btrfs_dir_item
*di
;
1856 struct btrfs_key key
;
1860 path
= btrfs_alloc_path();
1864 /* Make sure this root isn't set as the default subvol */
1865 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
1866 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
1867 dir_id
, "default", 7, 0);
1868 if (di
&& !IS_ERR(di
)) {
1869 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1870 if (key
.objectid
== root
->root_key
.objectid
) {
1873 "deleting default subvolume %llu is not allowed",
1877 btrfs_release_path(path
);
1880 key
.objectid
= root
->root_key
.objectid
;
1881 key
.type
= BTRFS_ROOT_REF_KEY
;
1882 key
.offset
= (u64
)-1;
1884 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1890 if (path
->slots
[0] > 0) {
1892 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1893 if (key
.objectid
== root
->root_key
.objectid
&&
1894 key
.type
== BTRFS_ROOT_REF_KEY
)
1898 btrfs_free_path(path
);
1902 static noinline
int key_in_sk(struct btrfs_key
*key
,
1903 struct btrfs_ioctl_search_key
*sk
)
1905 struct btrfs_key test
;
1908 test
.objectid
= sk
->min_objectid
;
1909 test
.type
= sk
->min_type
;
1910 test
.offset
= sk
->min_offset
;
1912 ret
= btrfs_comp_cpu_keys(key
, &test
);
1916 test
.objectid
= sk
->max_objectid
;
1917 test
.type
= sk
->max_type
;
1918 test
.offset
= sk
->max_offset
;
1920 ret
= btrfs_comp_cpu_keys(key
, &test
);
1926 static noinline
int copy_to_sk(struct btrfs_path
*path
,
1927 struct btrfs_key
*key
,
1928 struct btrfs_ioctl_search_key
*sk
,
1931 unsigned long *sk_offset
,
1935 struct extent_buffer
*leaf
;
1936 struct btrfs_ioctl_search_header sh
;
1937 struct btrfs_key test
;
1938 unsigned long item_off
;
1939 unsigned long item_len
;
1945 leaf
= path
->nodes
[0];
1946 slot
= path
->slots
[0];
1947 nritems
= btrfs_header_nritems(leaf
);
1949 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1953 found_transid
= btrfs_header_generation(leaf
);
1955 for (i
= slot
; i
< nritems
; i
++) {
1956 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1957 item_len
= btrfs_item_size_nr(leaf
, i
);
1959 btrfs_item_key_to_cpu(leaf
, key
, i
);
1960 if (!key_in_sk(key
, sk
))
1963 if (sizeof(sh
) + item_len
> *buf_size
) {
1970 * return one empty item back for v1, which does not
1974 *buf_size
= sizeof(sh
) + item_len
;
1979 if (sizeof(sh
) + item_len
+ *sk_offset
> *buf_size
) {
1984 sh
.objectid
= key
->objectid
;
1985 sh
.offset
= key
->offset
;
1986 sh
.type
= key
->type
;
1988 sh
.transid
= found_transid
;
1990 /* copy search result header */
1991 if (copy_to_user(ubuf
+ *sk_offset
, &sh
, sizeof(sh
))) {
1996 *sk_offset
+= sizeof(sh
);
1999 char __user
*up
= ubuf
+ *sk_offset
;
2001 if (read_extent_buffer_to_user(leaf
, up
,
2002 item_off
, item_len
)) {
2007 *sk_offset
+= item_len
;
2011 if (ret
) /* -EOVERFLOW from above */
2014 if (*num_found
>= sk
->nr_items
) {
2021 test
.objectid
= sk
->max_objectid
;
2022 test
.type
= sk
->max_type
;
2023 test
.offset
= sk
->max_offset
;
2024 if (btrfs_comp_cpu_keys(key
, &test
) >= 0)
2026 else if (key
->offset
< (u64
)-1)
2028 else if (key
->type
< (u8
)-1) {
2031 } else if (key
->objectid
< (u64
)-1) {
2039 * 0: all items from this leaf copied, continue with next
2040 * 1: * more items can be copied, but unused buffer is too small
2041 * * all items were found
2042 * Either way, it will stops the loop which iterates to the next
2044 * -EOVERFLOW: item was to large for buffer
2045 * -EFAULT: could not copy extent buffer back to userspace
2050 static noinline
int search_ioctl(struct inode
*inode
,
2051 struct btrfs_ioctl_search_key
*sk
,
2055 struct btrfs_fs_info
*info
= btrfs_sb(inode
->i_sb
);
2056 struct btrfs_root
*root
;
2057 struct btrfs_key key
;
2058 struct btrfs_path
*path
;
2061 unsigned long sk_offset
= 0;
2063 if (*buf_size
< sizeof(struct btrfs_ioctl_search_header
)) {
2064 *buf_size
= sizeof(struct btrfs_ioctl_search_header
);
2068 path
= btrfs_alloc_path();
2072 if (sk
->tree_id
== 0) {
2073 /* search the root of the inode that was passed */
2074 root
= BTRFS_I(inode
)->root
;
2076 key
.objectid
= sk
->tree_id
;
2077 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2078 key
.offset
= (u64
)-1;
2079 root
= btrfs_read_fs_root_no_name(info
, &key
);
2081 btrfs_free_path(path
);
2086 key
.objectid
= sk
->min_objectid
;
2087 key
.type
= sk
->min_type
;
2088 key
.offset
= sk
->min_offset
;
2091 ret
= btrfs_search_forward(root
, &key
, path
, sk
->min_transid
);
2097 ret
= copy_to_sk(path
, &key
, sk
, buf_size
, ubuf
,
2098 &sk_offset
, &num_found
);
2099 btrfs_release_path(path
);
2107 sk
->nr_items
= num_found
;
2108 btrfs_free_path(path
);
2112 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
2115 struct btrfs_ioctl_search_args __user
*uargs
;
2116 struct btrfs_ioctl_search_key sk
;
2117 struct inode
*inode
;
2121 if (!capable(CAP_SYS_ADMIN
))
2124 uargs
= (struct btrfs_ioctl_search_args __user
*)argp
;
2126 if (copy_from_user(&sk
, &uargs
->key
, sizeof(sk
)))
2129 buf_size
= sizeof(uargs
->buf
);
2131 inode
= file_inode(file
);
2132 ret
= search_ioctl(inode
, &sk
, &buf_size
, uargs
->buf
);
2135 * In the origin implementation an overflow is handled by returning a
2136 * search header with a len of zero, so reset ret.
2138 if (ret
== -EOVERFLOW
)
2141 if (ret
== 0 && copy_to_user(&uargs
->key
, &sk
, sizeof(sk
)))
2146 static noinline
int btrfs_ioctl_tree_search_v2(struct file
*file
,
2149 struct btrfs_ioctl_search_args_v2 __user
*uarg
;
2150 struct btrfs_ioctl_search_args_v2 args
;
2151 struct inode
*inode
;
2154 const size_t buf_limit
= SZ_16M
;
2156 if (!capable(CAP_SYS_ADMIN
))
2159 /* copy search header and buffer size */
2160 uarg
= (struct btrfs_ioctl_search_args_v2 __user
*)argp
;
2161 if (copy_from_user(&args
, uarg
, sizeof(args
)))
2164 buf_size
= args
.buf_size
;
2166 /* limit result size to 16MB */
2167 if (buf_size
> buf_limit
)
2168 buf_size
= buf_limit
;
2170 inode
= file_inode(file
);
2171 ret
= search_ioctl(inode
, &args
.key
, &buf_size
,
2172 (char __user
*)(&uarg
->buf
[0]));
2173 if (ret
== 0 && copy_to_user(&uarg
->key
, &args
.key
, sizeof(args
.key
)))
2175 else if (ret
== -EOVERFLOW
&&
2176 copy_to_user(&uarg
->buf_size
, &buf_size
, sizeof(buf_size
)))
2183 * Search INODE_REFs to identify path name of 'dirid' directory
2184 * in a 'tree_id' tree. and sets path name to 'name'.
2186 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
2187 u64 tree_id
, u64 dirid
, char *name
)
2189 struct btrfs_root
*root
;
2190 struct btrfs_key key
;
2196 struct btrfs_inode_ref
*iref
;
2197 struct extent_buffer
*l
;
2198 struct btrfs_path
*path
;
2200 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2205 path
= btrfs_alloc_path();
2209 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
- 1];
2211 key
.objectid
= tree_id
;
2212 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2213 key
.offset
= (u64
)-1;
2214 root
= btrfs_read_fs_root_no_name(info
, &key
);
2216 btrfs_err(info
, "could not find root %llu", tree_id
);
2221 key
.objectid
= dirid
;
2222 key
.type
= BTRFS_INODE_REF_KEY
;
2223 key
.offset
= (u64
)-1;
2226 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2230 ret
= btrfs_previous_item(root
, path
, dirid
,
2231 BTRFS_INODE_REF_KEY
);
2241 slot
= path
->slots
[0];
2242 btrfs_item_key_to_cpu(l
, &key
, slot
);
2244 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2245 len
= btrfs_inode_ref_name_len(l
, iref
);
2247 total_len
+= len
+ 1;
2249 ret
= -ENAMETOOLONG
;
2254 read_extent_buffer(l
, ptr
, (unsigned long)(iref
+ 1), len
);
2256 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2259 btrfs_release_path(path
);
2260 key
.objectid
= key
.offset
;
2261 key
.offset
= (u64
)-1;
2262 dirid
= key
.objectid
;
2264 memmove(name
, ptr
, total_len
);
2265 name
[total_len
] = '\0';
2268 btrfs_free_path(path
);
2272 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2275 struct btrfs_ioctl_ino_lookup_args
*args
;
2276 struct inode
*inode
;
2279 args
= memdup_user(argp
, sizeof(*args
));
2281 return PTR_ERR(args
);
2283 inode
= file_inode(file
);
2286 * Unprivileged query to obtain the containing subvolume root id. The
2287 * path is reset so it's consistent with btrfs_search_path_in_tree.
2289 if (args
->treeid
== 0)
2290 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2292 if (args
->objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2297 if (!capable(CAP_SYS_ADMIN
)) {
2302 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2303 args
->treeid
, args
->objectid
,
2307 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2314 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2317 struct dentry
*parent
= file
->f_path
.dentry
;
2318 struct btrfs_fs_info
*fs_info
= btrfs_sb(parent
->d_sb
);
2319 struct dentry
*dentry
;
2320 struct inode
*dir
= d_inode(parent
);
2321 struct inode
*inode
;
2322 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2323 struct btrfs_root
*dest
= NULL
;
2324 struct btrfs_ioctl_vol_args
*vol_args
;
2325 struct btrfs_trans_handle
*trans
;
2326 struct btrfs_block_rsv block_rsv
;
2328 u64 qgroup_reserved
;
2333 if (!S_ISDIR(dir
->i_mode
))
2336 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2337 if (IS_ERR(vol_args
))
2338 return PTR_ERR(vol_args
);
2340 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2341 namelen
= strlen(vol_args
->name
);
2342 if (strchr(vol_args
->name
, '/') ||
2343 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2348 err
= mnt_want_write_file(file
);
2353 err
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
2355 goto out_drop_write
;
2356 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2357 if (IS_ERR(dentry
)) {
2358 err
= PTR_ERR(dentry
);
2359 goto out_unlock_dir
;
2362 if (d_really_is_negative(dentry
)) {
2367 inode
= d_inode(dentry
);
2368 dest
= BTRFS_I(inode
)->root
;
2369 if (!capable(CAP_SYS_ADMIN
)) {
2371 * Regular user. Only allow this with a special mount
2372 * option, when the user has write+exec access to the
2373 * subvol root, and when rmdir(2) would have been
2376 * Note that this is _not_ check that the subvol is
2377 * empty or doesn't contain data that we wouldn't
2378 * otherwise be able to delete.
2380 * Users who want to delete empty subvols should try
2384 if (!btrfs_test_opt(fs_info
, USER_SUBVOL_RM_ALLOWED
))
2388 * Do not allow deletion if the parent dir is the same
2389 * as the dir to be deleted. That means the ioctl
2390 * must be called on the dentry referencing the root
2391 * of the subvol, not a random directory contained
2398 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2403 /* check if subvolume may be deleted by a user */
2404 err
= btrfs_may_delete(dir
, dentry
, 1);
2408 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
2416 * Don't allow to delete a subvolume with send in progress. This is
2417 * inside the i_mutex so the error handling that has to drop the bit
2418 * again is not run concurrently.
2420 spin_lock(&dest
->root_item_lock
);
2421 root_flags
= btrfs_root_flags(&dest
->root_item
);
2422 if (dest
->send_in_progress
== 0) {
2423 btrfs_set_root_flags(&dest
->root_item
,
2424 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
2425 spin_unlock(&dest
->root_item_lock
);
2427 spin_unlock(&dest
->root_item_lock
);
2429 "Attempt to delete subvolume %llu during send",
2430 dest
->root_key
.objectid
);
2432 goto out_unlock_inode
;
2435 down_write(&fs_info
->subvol_sem
);
2437 err
= may_destroy_subvol(dest
);
2441 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2443 * One for dir inode, two for dir entries, two for root
2446 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2447 5, &qgroup_reserved
, true);
2451 trans
= btrfs_start_transaction(root
, 0);
2452 if (IS_ERR(trans
)) {
2453 err
= PTR_ERR(trans
);
2456 trans
->block_rsv
= &block_rsv
;
2457 trans
->bytes_reserved
= block_rsv
.size
;
2459 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
2461 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2462 dest
->root_key
.objectid
,
2463 dentry
->d_name
.name
,
2464 dentry
->d_name
.len
);
2467 btrfs_abort_transaction(trans
, ret
);
2471 btrfs_record_root_in_trans(trans
, dest
);
2473 memset(&dest
->root_item
.drop_progress
, 0,
2474 sizeof(dest
->root_item
.drop_progress
));
2475 dest
->root_item
.drop_level
= 0;
2476 btrfs_set_root_refs(&dest
->root_item
, 0);
2478 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
2479 ret
= btrfs_insert_orphan_item(trans
,
2481 dest
->root_key
.objectid
);
2483 btrfs_abort_transaction(trans
, ret
);
2489 ret
= btrfs_uuid_tree_rem(trans
, fs_info
, dest
->root_item
.uuid
,
2490 BTRFS_UUID_KEY_SUBVOL
,
2491 dest
->root_key
.objectid
);
2492 if (ret
&& ret
!= -ENOENT
) {
2493 btrfs_abort_transaction(trans
, ret
);
2497 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
2498 ret
= btrfs_uuid_tree_rem(trans
, fs_info
,
2499 dest
->root_item
.received_uuid
,
2500 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
2501 dest
->root_key
.objectid
);
2502 if (ret
&& ret
!= -ENOENT
) {
2503 btrfs_abort_transaction(trans
, ret
);
2510 trans
->block_rsv
= NULL
;
2511 trans
->bytes_reserved
= 0;
2512 ret
= btrfs_end_transaction(trans
);
2515 inode
->i_flags
|= S_DEAD
;
2517 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
2519 up_write(&fs_info
->subvol_sem
);
2521 spin_lock(&dest
->root_item_lock
);
2522 root_flags
= btrfs_root_flags(&dest
->root_item
);
2523 btrfs_set_root_flags(&dest
->root_item
,
2524 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
2525 spin_unlock(&dest
->root_item_lock
);
2528 inode_unlock(inode
);
2530 d_invalidate(dentry
);
2531 btrfs_invalidate_inodes(dest
);
2533 ASSERT(dest
->send_in_progress
== 0);
2536 if (dest
->ino_cache_inode
) {
2537 iput(dest
->ino_cache_inode
);
2538 dest
->ino_cache_inode
= NULL
;
2546 mnt_drop_write_file(file
);
2552 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2554 struct inode
*inode
= file_inode(file
);
2555 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2556 struct btrfs_ioctl_defrag_range_args
*range
;
2559 ret
= mnt_want_write_file(file
);
2563 if (btrfs_root_readonly(root
)) {
2568 switch (inode
->i_mode
& S_IFMT
) {
2570 if (!capable(CAP_SYS_ADMIN
)) {
2574 ret
= btrfs_defrag_root(root
);
2577 if (!(file
->f_mode
& FMODE_WRITE
)) {
2582 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2589 if (copy_from_user(range
, argp
,
2595 /* compression requires us to start the IO */
2596 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2597 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2598 range
->extent_thresh
= (u32
)-1;
2601 /* the rest are all set to zero by kzalloc */
2602 range
->len
= (u64
)-1;
2604 ret
= btrfs_defrag_file(file_inode(file
), file
,
2614 mnt_drop_write_file(file
);
2618 static long btrfs_ioctl_add_dev(struct btrfs_fs_info
*fs_info
, void __user
*arg
)
2620 struct btrfs_ioctl_vol_args
*vol_args
;
2623 if (!capable(CAP_SYS_ADMIN
))
2626 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
))
2627 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2629 mutex_lock(&fs_info
->volume_mutex
);
2630 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2631 if (IS_ERR(vol_args
)) {
2632 ret
= PTR_ERR(vol_args
);
2636 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2637 ret
= btrfs_init_new_device(fs_info
, vol_args
->name
);
2640 btrfs_info(fs_info
, "disk added %s", vol_args
->name
);
2644 mutex_unlock(&fs_info
->volume_mutex
);
2645 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
2649 static long btrfs_ioctl_rm_dev_v2(struct file
*file
, void __user
*arg
)
2651 struct inode
*inode
= file_inode(file
);
2652 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2653 struct btrfs_ioctl_vol_args_v2
*vol_args
;
2656 if (!capable(CAP_SYS_ADMIN
))
2659 ret
= mnt_want_write_file(file
);
2663 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2664 if (IS_ERR(vol_args
)) {
2665 ret
= PTR_ERR(vol_args
);
2669 /* Check for compatibility reject unknown flags */
2670 if (vol_args
->flags
& ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED
)
2673 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
2674 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2678 mutex_lock(&fs_info
->volume_mutex
);
2679 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
) {
2680 ret
= btrfs_rm_device(fs_info
, NULL
, vol_args
->devid
);
2682 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
2683 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
2685 mutex_unlock(&fs_info
->volume_mutex
);
2686 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
2689 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
)
2690 btrfs_info(fs_info
, "device deleted: id %llu",
2693 btrfs_info(fs_info
, "device deleted: %s",
2699 mnt_drop_write_file(file
);
2703 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2705 struct inode
*inode
= file_inode(file
);
2706 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2707 struct btrfs_ioctl_vol_args
*vol_args
;
2710 if (!capable(CAP_SYS_ADMIN
))
2713 ret
= mnt_want_write_file(file
);
2717 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
2718 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2719 goto out_drop_write
;
2722 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2723 if (IS_ERR(vol_args
)) {
2724 ret
= PTR_ERR(vol_args
);
2728 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2729 mutex_lock(&fs_info
->volume_mutex
);
2730 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
2731 mutex_unlock(&fs_info
->volume_mutex
);
2734 btrfs_info(fs_info
, "disk deleted %s", vol_args
->name
);
2737 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
2739 mnt_drop_write_file(file
);
2744 static long btrfs_ioctl_fs_info(struct btrfs_fs_info
*fs_info
,
2747 struct btrfs_ioctl_fs_info_args
*fi_args
;
2748 struct btrfs_device
*device
;
2749 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2752 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2756 mutex_lock(&fs_devices
->device_list_mutex
);
2757 fi_args
->num_devices
= fs_devices
->num_devices
;
2758 memcpy(&fi_args
->fsid
, fs_info
->fsid
, sizeof(fi_args
->fsid
));
2760 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
2761 if (device
->devid
> fi_args
->max_id
)
2762 fi_args
->max_id
= device
->devid
;
2764 mutex_unlock(&fs_devices
->device_list_mutex
);
2766 fi_args
->nodesize
= fs_info
->nodesize
;
2767 fi_args
->sectorsize
= fs_info
->sectorsize
;
2768 fi_args
->clone_alignment
= fs_info
->sectorsize
;
2770 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2777 static long btrfs_ioctl_dev_info(struct btrfs_fs_info
*fs_info
,
2780 struct btrfs_ioctl_dev_info_args
*di_args
;
2781 struct btrfs_device
*dev
;
2782 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2784 char *s_uuid
= NULL
;
2786 di_args
= memdup_user(arg
, sizeof(*di_args
));
2787 if (IS_ERR(di_args
))
2788 return PTR_ERR(di_args
);
2790 if (!btrfs_is_empty_uuid(di_args
->uuid
))
2791 s_uuid
= di_args
->uuid
;
2793 mutex_lock(&fs_devices
->device_list_mutex
);
2794 dev
= btrfs_find_device(fs_info
, di_args
->devid
, s_uuid
, NULL
);
2801 di_args
->devid
= dev
->devid
;
2802 di_args
->bytes_used
= btrfs_device_get_bytes_used(dev
);
2803 di_args
->total_bytes
= btrfs_device_get_total_bytes(dev
);
2804 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2806 struct rcu_string
*name
;
2809 name
= rcu_dereference(dev
->name
);
2810 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2812 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2814 di_args
->path
[0] = '\0';
2818 mutex_unlock(&fs_devices
->device_list_mutex
);
2819 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2826 static struct page
*extent_same_get_page(struct inode
*inode
, pgoff_t index
)
2830 page
= grab_cache_page(inode
->i_mapping
, index
);
2832 return ERR_PTR(-ENOMEM
);
2834 if (!PageUptodate(page
)) {
2837 ret
= btrfs_readpage(NULL
, page
);
2839 return ERR_PTR(ret
);
2841 if (!PageUptodate(page
)) {
2844 return ERR_PTR(-EIO
);
2846 if (page
->mapping
!= inode
->i_mapping
) {
2849 return ERR_PTR(-EAGAIN
);
2856 static int gather_extent_pages(struct inode
*inode
, struct page
**pages
,
2857 int num_pages
, u64 off
)
2860 pgoff_t index
= off
>> PAGE_SHIFT
;
2862 for (i
= 0; i
< num_pages
; i
++) {
2864 pages
[i
] = extent_same_get_page(inode
, index
+ i
);
2865 if (IS_ERR(pages
[i
])) {
2866 int err
= PTR_ERR(pages
[i
]);
2877 static int lock_extent_range(struct inode
*inode
, u64 off
, u64 len
,
2878 bool retry_range_locking
)
2881 * Do any pending delalloc/csum calculations on inode, one way or
2882 * another, and lock file content.
2883 * The locking order is:
2886 * 2) range in the inode's io tree
2889 struct btrfs_ordered_extent
*ordered
;
2890 lock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2891 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2894 ordered
->file_offset
+ ordered
->len
<= off
||
2895 ordered
->file_offset
>= off
+ len
) &&
2896 !test_range_bit(&BTRFS_I(inode
)->io_tree
, off
,
2897 off
+ len
- 1, EXTENT_DELALLOC
, 0, NULL
)) {
2899 btrfs_put_ordered_extent(ordered
);
2902 unlock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2904 btrfs_put_ordered_extent(ordered
);
2905 if (!retry_range_locking
)
2907 btrfs_wait_ordered_range(inode
, off
, len
);
2912 static void btrfs_double_inode_unlock(struct inode
*inode1
, struct inode
*inode2
)
2914 inode_unlock(inode1
);
2915 inode_unlock(inode2
);
2918 static void btrfs_double_inode_lock(struct inode
*inode1
, struct inode
*inode2
)
2920 if (inode1
< inode2
)
2921 swap(inode1
, inode2
);
2923 inode_lock_nested(inode1
, I_MUTEX_PARENT
);
2924 inode_lock_nested(inode2
, I_MUTEX_CHILD
);
2927 static void btrfs_double_extent_unlock(struct inode
*inode1
, u64 loff1
,
2928 struct inode
*inode2
, u64 loff2
, u64 len
)
2930 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
2931 unlock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
2934 static int btrfs_double_extent_lock(struct inode
*inode1
, u64 loff1
,
2935 struct inode
*inode2
, u64 loff2
, u64 len
,
2936 bool retry_range_locking
)
2940 if (inode1
< inode2
) {
2941 swap(inode1
, inode2
);
2944 ret
= lock_extent_range(inode1
, loff1
, len
, retry_range_locking
);
2947 ret
= lock_extent_range(inode2
, loff2
, len
, retry_range_locking
);
2949 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
,
2956 struct page
**src_pages
;
2957 struct page
**dst_pages
;
2960 static void btrfs_cmp_data_free(struct cmp_pages
*cmp
)
2965 for (i
= 0; i
< cmp
->num_pages
; i
++) {
2966 pg
= cmp
->src_pages
[i
];
2971 pg
= cmp
->dst_pages
[i
];
2977 kfree(cmp
->src_pages
);
2978 kfree(cmp
->dst_pages
);
2981 static int btrfs_cmp_data_prepare(struct inode
*src
, u64 loff
,
2982 struct inode
*dst
, u64 dst_loff
,
2983 u64 len
, struct cmp_pages
*cmp
)
2986 int num_pages
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
2987 struct page
**src_pgarr
, **dst_pgarr
;
2990 * We must gather up all the pages before we initiate our
2991 * extent locking. We use an array for the page pointers. Size
2992 * of the array is bounded by len, which is in turn bounded by
2993 * BTRFS_MAX_DEDUPE_LEN.
2995 src_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
2996 dst_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
2997 if (!src_pgarr
|| !dst_pgarr
) {
3002 cmp
->num_pages
= num_pages
;
3003 cmp
->src_pages
= src_pgarr
;
3004 cmp
->dst_pages
= dst_pgarr
;
3007 * If deduping ranges in the same inode, locking rules make it mandatory
3008 * to always lock pages in ascending order to avoid deadlocks with
3009 * concurrent tasks (such as starting writeback/delalloc).
3011 if (src
== dst
&& dst_loff
< loff
) {
3012 swap(src_pgarr
, dst_pgarr
);
3013 swap(loff
, dst_loff
);
3016 ret
= gather_extent_pages(src
, src_pgarr
, cmp
->num_pages
, loff
);
3020 ret
= gather_extent_pages(dst
, dst_pgarr
, cmp
->num_pages
, dst_loff
);
3024 btrfs_cmp_data_free(cmp
);
3028 static int btrfs_cmp_data(u64 len
, struct cmp_pages
*cmp
)
3032 struct page
*src_page
, *dst_page
;
3033 unsigned int cmp_len
= PAGE_SIZE
;
3034 void *addr
, *dst_addr
;
3038 if (len
< PAGE_SIZE
)
3041 BUG_ON(i
>= cmp
->num_pages
);
3043 src_page
= cmp
->src_pages
[i
];
3044 dst_page
= cmp
->dst_pages
[i
];
3045 ASSERT(PageLocked(src_page
));
3046 ASSERT(PageLocked(dst_page
));
3048 addr
= kmap_atomic(src_page
);
3049 dst_addr
= kmap_atomic(dst_page
);
3051 flush_dcache_page(src_page
);
3052 flush_dcache_page(dst_page
);
3054 if (memcmp(addr
, dst_addr
, cmp_len
))
3057 kunmap_atomic(addr
);
3058 kunmap_atomic(dst_addr
);
3070 static int extent_same_check_offsets(struct inode
*inode
, u64 off
, u64
*plen
,
3074 u64 bs
= BTRFS_I(inode
)->root
->fs_info
->sb
->s_blocksize
;
3076 if (off
+ olen
> inode
->i_size
|| off
+ olen
< off
)
3079 /* if we extend to eof, continue to block boundary */
3080 if (off
+ len
== inode
->i_size
)
3081 *plen
= len
= ALIGN(inode
->i_size
, bs
) - off
;
3083 /* Check that we are block aligned - btrfs_clone() requires this */
3084 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
))
3090 static int btrfs_extent_same(struct inode
*src
, u64 loff
, u64 olen
,
3091 struct inode
*dst
, u64 dst_loff
)
3095 struct cmp_pages cmp
;
3096 bool same_inode
= (src
== dst
);
3097 u64 same_lock_start
= 0;
3098 u64 same_lock_len
= 0;
3106 btrfs_double_inode_lock(src
, dst
);
3108 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3112 ret
= extent_same_check_offsets(dst
, dst_loff
, &len
, olen
);
3118 * Single inode case wants the same checks, except we
3119 * don't want our length pushed out past i_size as
3120 * comparing that data range makes no sense.
3122 * extent_same_check_offsets() will do this for an
3123 * unaligned length at i_size, so catch it here and
3124 * reject the request.
3126 * This effectively means we require aligned extents
3127 * for the single-inode case, whereas the other cases
3128 * allow an unaligned length so long as it ends at
3136 /* Check for overlapping ranges */
3137 if (dst_loff
+ len
> loff
&& dst_loff
< loff
+ len
) {
3142 same_lock_start
= min_t(u64
, loff
, dst_loff
);
3143 same_lock_len
= max_t(u64
, loff
, dst_loff
) + len
- same_lock_start
;
3146 /* don't make the dst file partly checksummed */
3147 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3148 (BTRFS_I(dst
)->flags
& BTRFS_INODE_NODATASUM
)) {
3154 ret
= btrfs_cmp_data_prepare(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3159 ret
= lock_extent_range(src
, same_lock_start
, same_lock_len
,
3162 ret
= btrfs_double_extent_lock(src
, loff
, dst
, dst_loff
, len
,
3165 * If one of the inodes has dirty pages in the respective range or
3166 * ordered extents, we need to flush dellaloc and wait for all ordered
3167 * extents in the range. We must unlock the pages and the ranges in the
3168 * io trees to avoid deadlocks when flushing delalloc (requires locking
3169 * pages) and when waiting for ordered extents to complete (they require
3172 if (ret
== -EAGAIN
) {
3174 * Ranges in the io trees already unlocked. Now unlock all
3175 * pages before waiting for all IO to complete.
3177 btrfs_cmp_data_free(&cmp
);
3179 btrfs_wait_ordered_range(src
, same_lock_start
,
3182 btrfs_wait_ordered_range(src
, loff
, len
);
3183 btrfs_wait_ordered_range(dst
, dst_loff
, len
);
3189 /* ranges in the io trees already unlocked */
3190 btrfs_cmp_data_free(&cmp
);
3194 /* pass original length for comparison so we stay within i_size */
3195 ret
= btrfs_cmp_data(olen
, &cmp
);
3197 ret
= btrfs_clone(src
, dst
, loff
, olen
, len
, dst_loff
, 1);
3200 unlock_extent(&BTRFS_I(src
)->io_tree
, same_lock_start
,
3201 same_lock_start
+ same_lock_len
- 1);
3203 btrfs_double_extent_unlock(src
, loff
, dst
, dst_loff
, len
);
3205 btrfs_cmp_data_free(&cmp
);
3210 btrfs_double_inode_unlock(src
, dst
);
3215 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3217 ssize_t
btrfs_dedupe_file_range(struct file
*src_file
, u64 loff
, u64 olen
,
3218 struct file
*dst_file
, u64 dst_loff
)
3220 struct inode
*src
= file_inode(src_file
);
3221 struct inode
*dst
= file_inode(dst_file
);
3222 u64 bs
= BTRFS_I(src
)->root
->fs_info
->sb
->s_blocksize
;
3225 if (olen
> BTRFS_MAX_DEDUPE_LEN
)
3226 olen
= BTRFS_MAX_DEDUPE_LEN
;
3228 if (WARN_ON_ONCE(bs
< PAGE_SIZE
)) {
3230 * Btrfs does not support blocksize < page_size. As a
3231 * result, btrfs_cmp_data() won't correctly handle
3232 * this situation without an update.
3237 res
= btrfs_extent_same(src
, loff
, olen
, dst
, dst_loff
);
3243 static int clone_finish_inode_update(struct btrfs_trans_handle
*trans
,
3244 struct inode
*inode
,
3250 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3253 inode_inc_iversion(inode
);
3254 if (!no_time_update
)
3255 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
3257 * We round up to the block size at eof when determining which
3258 * extents to clone above, but shouldn't round up the file size.
3260 if (endoff
> destoff
+ olen
)
3261 endoff
= destoff
+ olen
;
3262 if (endoff
> inode
->i_size
)
3263 btrfs_i_size_write(BTRFS_I(inode
), endoff
);
3265 ret
= btrfs_update_inode(trans
, root
, inode
);
3267 btrfs_abort_transaction(trans
, ret
);
3268 btrfs_end_transaction(trans
);
3271 ret
= btrfs_end_transaction(trans
);
3276 static void clone_update_extent_map(struct btrfs_inode
*inode
,
3277 const struct btrfs_trans_handle
*trans
,
3278 const struct btrfs_path
*path
,
3279 const u64 hole_offset
,
3282 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
3283 struct extent_map
*em
;
3286 em
= alloc_extent_map();
3288 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
3293 struct btrfs_file_extent_item
*fi
;
3295 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3296 struct btrfs_file_extent_item
);
3297 btrfs_extent_item_to_extent_map(inode
, path
, fi
, false, em
);
3298 em
->generation
= -1;
3299 if (btrfs_file_extent_type(path
->nodes
[0], fi
) ==
3300 BTRFS_FILE_EXTENT_INLINE
)
3301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3302 &inode
->runtime_flags
);
3304 em
->start
= hole_offset
;
3306 em
->ram_bytes
= em
->len
;
3307 em
->orig_start
= hole_offset
;
3308 em
->block_start
= EXTENT_MAP_HOLE
;
3310 em
->orig_block_len
= 0;
3311 em
->compress_type
= BTRFS_COMPRESS_NONE
;
3312 em
->generation
= trans
->transid
;
3316 write_lock(&em_tree
->lock
);
3317 ret
= add_extent_mapping(em_tree
, em
, 1);
3318 write_unlock(&em_tree
->lock
);
3319 if (ret
!= -EEXIST
) {
3320 free_extent_map(em
);
3323 btrfs_drop_extent_cache(inode
, em
->start
,
3324 em
->start
+ em
->len
- 1, 0);
3328 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
3332 * Make sure we do not end up inserting an inline extent into a file that has
3333 * already other (non-inline) extents. If a file has an inline extent it can
3334 * not have any other extents and the (single) inline extent must start at the
3335 * file offset 0. Failing to respect these rules will lead to file corruption,
3336 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3338 * We can have extents that have been already written to disk or we can have
3339 * dirty ranges still in delalloc, in which case the extent maps and items are
3340 * created only when we run delalloc, and the delalloc ranges might fall outside
3341 * the range we are currently locking in the inode's io tree. So we check the
3342 * inode's i_size because of that (i_size updates are done while holding the
3343 * i_mutex, which we are holding here).
3344 * We also check to see if the inode has a size not greater than "datal" but has
3345 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3346 * protected against such concurrent fallocate calls by the i_mutex).
3348 * If the file has no extents but a size greater than datal, do not allow the
3349 * copy because we would need turn the inline extent into a non-inline one (even
3350 * with NO_HOLES enabled). If we find our destination inode only has one inline
3351 * extent, just overwrite it with the source inline extent if its size is less
3352 * than the source extent's size, or we could copy the source inline extent's
3353 * data into the destination inode's inline extent if the later is greater then
3356 static int clone_copy_inline_extent(struct inode
*dst
,
3357 struct btrfs_trans_handle
*trans
,
3358 struct btrfs_path
*path
,
3359 struct btrfs_key
*new_key
,
3360 const u64 drop_start
,
3366 struct btrfs_fs_info
*fs_info
= btrfs_sb(dst
->i_sb
);
3367 struct btrfs_root
*root
= BTRFS_I(dst
)->root
;
3368 const u64 aligned_end
= ALIGN(new_key
->offset
+ datal
,
3369 fs_info
->sectorsize
);
3371 struct btrfs_key key
;
3373 if (new_key
->offset
> 0)
3376 key
.objectid
= btrfs_ino(BTRFS_I(dst
));
3377 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3379 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3382 } else if (ret
> 0) {
3383 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
3384 ret
= btrfs_next_leaf(root
, path
);
3388 goto copy_inline_extent
;
3390 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3391 if (key
.objectid
== btrfs_ino(BTRFS_I(dst
)) &&
3392 key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3393 ASSERT(key
.offset
> 0);
3396 } else if (i_size_read(dst
) <= datal
) {
3397 struct btrfs_file_extent_item
*ei
;
3401 * If the file size is <= datal, make sure there are no other
3402 * extents following (can happen do to an fallocate call with
3403 * the flag FALLOC_FL_KEEP_SIZE).
3405 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3406 struct btrfs_file_extent_item
);
3408 * If it's an inline extent, it can not have other extents
3411 if (btrfs_file_extent_type(path
->nodes
[0], ei
) ==
3412 BTRFS_FILE_EXTENT_INLINE
)
3413 goto copy_inline_extent
;
3415 ext_len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3416 if (ext_len
> aligned_end
)
3419 ret
= btrfs_next_item(root
, path
);
3422 } else if (ret
== 0) {
3423 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3425 if (key
.objectid
== btrfs_ino(BTRFS_I(dst
)) &&
3426 key
.type
== BTRFS_EXTENT_DATA_KEY
)
3433 * We have no extent items, or we have an extent at offset 0 which may
3434 * or may not be inlined. All these cases are dealt the same way.
3436 if (i_size_read(dst
) > datal
) {
3438 * If the destination inode has an inline extent...
3439 * This would require copying the data from the source inline
3440 * extent into the beginning of the destination's inline extent.
3441 * But this is really complex, both extents can be compressed
3442 * or just one of them, which would require decompressing and
3443 * re-compressing data (which could increase the new compressed
3444 * size, not allowing the compressed data to fit anymore in an
3446 * So just don't support this case for now (it should be rare,
3447 * we are not really saving space when cloning inline extents).
3452 btrfs_release_path(path
);
3453 ret
= btrfs_drop_extents(trans
, root
, dst
, drop_start
, aligned_end
, 1);
3456 ret
= btrfs_insert_empty_item(trans
, root
, path
, new_key
, size
);
3461 const u32 start
= btrfs_file_extent_calc_inline_size(0);
3463 memmove(inline_data
+ start
, inline_data
+ start
+ skip
, datal
);
3466 write_extent_buffer(path
->nodes
[0], inline_data
,
3467 btrfs_item_ptr_offset(path
->nodes
[0],
3470 inode_add_bytes(dst
, datal
);
3476 * btrfs_clone() - clone a range from inode file to another
3478 * @src: Inode to clone from
3479 * @inode: Inode to clone to
3480 * @off: Offset within source to start clone from
3481 * @olen: Original length, passed by user, of range to clone
3482 * @olen_aligned: Block-aligned value of olen
3483 * @destoff: Offset within @inode to start clone
3484 * @no_time_update: Whether to update mtime/ctime on the target inode
3486 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
3487 const u64 off
, const u64 olen
, const u64 olen_aligned
,
3488 const u64 destoff
, int no_time_update
)
3490 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3491 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3492 struct btrfs_path
*path
= NULL
;
3493 struct extent_buffer
*leaf
;
3494 struct btrfs_trans_handle
*trans
;
3496 struct btrfs_key key
;
3500 const u64 len
= olen_aligned
;
3501 u64 last_dest_end
= destoff
;
3504 buf
= kvmalloc(fs_info
->nodesize
, GFP_KERNEL
);
3508 path
= btrfs_alloc_path();
3514 path
->reada
= READA_FORWARD
;
3516 key
.objectid
= btrfs_ino(BTRFS_I(src
));
3517 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3521 u64 next_key_min_offset
= key
.offset
+ 1;
3524 * note the key will change type as we walk through the
3527 path
->leave_spinning
= 1;
3528 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
3533 * First search, if no extent item that starts at offset off was
3534 * found but the previous item is an extent item, it's possible
3535 * it might overlap our target range, therefore process it.
3537 if (key
.offset
== off
&& ret
> 0 && path
->slots
[0] > 0) {
3538 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3539 path
->slots
[0] - 1);
3540 if (key
.type
== BTRFS_EXTENT_DATA_KEY
)
3544 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3546 if (path
->slots
[0] >= nritems
) {
3547 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
3552 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3554 leaf
= path
->nodes
[0];
3555 slot
= path
->slots
[0];
3557 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3558 if (key
.type
> BTRFS_EXTENT_DATA_KEY
||
3559 key
.objectid
!= btrfs_ino(BTRFS_I(src
)))
3562 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3563 struct btrfs_file_extent_item
*extent
;
3566 struct btrfs_key new_key
;
3567 u64 disko
= 0, diskl
= 0;
3568 u64 datao
= 0, datal
= 0;
3572 extent
= btrfs_item_ptr(leaf
, slot
,
3573 struct btrfs_file_extent_item
);
3574 comp
= btrfs_file_extent_compression(leaf
, extent
);
3575 type
= btrfs_file_extent_type(leaf
, extent
);
3576 if (type
== BTRFS_FILE_EXTENT_REG
||
3577 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3578 disko
= btrfs_file_extent_disk_bytenr(leaf
,
3580 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
3582 datao
= btrfs_file_extent_offset(leaf
, extent
);
3583 datal
= btrfs_file_extent_num_bytes(leaf
,
3585 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3586 /* take upper bound, may be compressed */
3587 datal
= btrfs_file_extent_ram_bytes(leaf
,
3592 * The first search might have left us at an extent
3593 * item that ends before our target range's start, can
3594 * happen if we have holes and NO_HOLES feature enabled.
3596 if (key
.offset
+ datal
<= off
) {
3599 } else if (key
.offset
>= off
+ len
) {
3602 next_key_min_offset
= key
.offset
+ datal
;
3603 size
= btrfs_item_size_nr(leaf
, slot
);
3604 read_extent_buffer(leaf
, buf
,
3605 btrfs_item_ptr_offset(leaf
, slot
),
3608 btrfs_release_path(path
);
3609 path
->leave_spinning
= 0;
3611 memcpy(&new_key
, &key
, sizeof(new_key
));
3612 new_key
.objectid
= btrfs_ino(BTRFS_I(inode
));
3613 if (off
<= key
.offset
)
3614 new_key
.offset
= key
.offset
+ destoff
- off
;
3616 new_key
.offset
= destoff
;
3619 * Deal with a hole that doesn't have an extent item
3620 * that represents it (NO_HOLES feature enabled).
3621 * This hole is either in the middle of the cloning
3622 * range or at the beginning (fully overlaps it or
3623 * partially overlaps it).
3625 if (new_key
.offset
!= last_dest_end
)
3626 drop_start
= last_dest_end
;
3628 drop_start
= new_key
.offset
;
3631 * 1 - adjusting old extent (we may have to split it)
3632 * 1 - add new extent
3635 trans
= btrfs_start_transaction(root
, 3);
3636 if (IS_ERR(trans
)) {
3637 ret
= PTR_ERR(trans
);
3641 if (type
== BTRFS_FILE_EXTENT_REG
||
3642 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3644 * a | --- range to clone ---| b
3645 * | ------------- extent ------------- |
3648 /* subtract range b */
3649 if (key
.offset
+ datal
> off
+ len
)
3650 datal
= off
+ len
- key
.offset
;
3652 /* subtract range a */
3653 if (off
> key
.offset
) {
3654 datao
+= off
- key
.offset
;
3655 datal
-= off
- key
.offset
;
3658 ret
= btrfs_drop_extents(trans
, root
, inode
,
3660 new_key
.offset
+ datal
,
3663 if (ret
!= -EOPNOTSUPP
)
3664 btrfs_abort_transaction(trans
,
3666 btrfs_end_transaction(trans
);
3670 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3673 btrfs_abort_transaction(trans
, ret
);
3674 btrfs_end_transaction(trans
);
3678 leaf
= path
->nodes
[0];
3679 slot
= path
->slots
[0];
3680 write_extent_buffer(leaf
, buf
,
3681 btrfs_item_ptr_offset(leaf
, slot
),
3684 extent
= btrfs_item_ptr(leaf
, slot
,
3685 struct btrfs_file_extent_item
);
3687 /* disko == 0 means it's a hole */
3691 btrfs_set_file_extent_offset(leaf
, extent
,
3693 btrfs_set_file_extent_num_bytes(leaf
, extent
,
3697 inode_add_bytes(inode
, datal
);
3698 ret
= btrfs_inc_extent_ref(trans
,
3701 root
->root_key
.objectid
,
3702 btrfs_ino(BTRFS_I(inode
)),
3703 new_key
.offset
- datao
);
3705 btrfs_abort_transaction(trans
,
3707 btrfs_end_transaction(trans
);
3712 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3716 if (off
> key
.offset
) {
3717 skip
= off
- key
.offset
;
3718 new_key
.offset
+= skip
;
3721 if (key
.offset
+ datal
> off
+ len
)
3722 trim
= key
.offset
+ datal
- (off
+ len
);
3724 if (comp
&& (skip
|| trim
)) {
3726 btrfs_end_transaction(trans
);
3729 size
-= skip
+ trim
;
3730 datal
-= skip
+ trim
;
3732 ret
= clone_copy_inline_extent(inode
,
3739 if (ret
!= -EOPNOTSUPP
)
3740 btrfs_abort_transaction(trans
,
3742 btrfs_end_transaction(trans
);
3745 leaf
= path
->nodes
[0];
3746 slot
= path
->slots
[0];
3749 /* If we have an implicit hole (NO_HOLES feature). */
3750 if (drop_start
< new_key
.offset
)
3751 clone_update_extent_map(BTRFS_I(inode
), trans
,
3753 new_key
.offset
- drop_start
);
3755 clone_update_extent_map(BTRFS_I(inode
), trans
,
3758 btrfs_mark_buffer_dirty(leaf
);
3759 btrfs_release_path(path
);
3761 last_dest_end
= ALIGN(new_key
.offset
+ datal
,
3762 fs_info
->sectorsize
);
3763 ret
= clone_finish_inode_update(trans
, inode
,
3769 if (new_key
.offset
+ datal
>= destoff
+ len
)
3772 btrfs_release_path(path
);
3773 key
.offset
= next_key_min_offset
;
3775 if (fatal_signal_pending(current
)) {
3782 if (last_dest_end
< destoff
+ len
) {
3784 * We have an implicit hole (NO_HOLES feature is enabled) that
3785 * fully or partially overlaps our cloning range at its end.
3787 btrfs_release_path(path
);
3790 * 1 - remove extent(s)
3793 trans
= btrfs_start_transaction(root
, 2);
3794 if (IS_ERR(trans
)) {
3795 ret
= PTR_ERR(trans
);
3798 ret
= btrfs_drop_extents(trans
, root
, inode
,
3799 last_dest_end
, destoff
+ len
, 1);
3801 if (ret
!= -EOPNOTSUPP
)
3802 btrfs_abort_transaction(trans
, ret
);
3803 btrfs_end_transaction(trans
);
3806 clone_update_extent_map(BTRFS_I(inode
), trans
, NULL
,
3808 destoff
+ len
- last_dest_end
);
3809 ret
= clone_finish_inode_update(trans
, inode
, destoff
+ len
,
3810 destoff
, olen
, no_time_update
);
3814 btrfs_free_path(path
);
3819 static noinline
int btrfs_clone_files(struct file
*file
, struct file
*file_src
,
3820 u64 off
, u64 olen
, u64 destoff
)
3822 struct inode
*inode
= file_inode(file
);
3823 struct inode
*src
= file_inode(file_src
);
3824 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3825 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3828 u64 bs
= fs_info
->sb
->s_blocksize
;
3829 int same_inode
= src
== inode
;
3833 * - split compressed inline extents. annoying: we need to
3834 * decompress into destination's address_space (the file offset
3835 * may change, so source mapping won't do), then recompress (or
3836 * otherwise reinsert) a subrange.
3838 * - split destination inode's inline extents. The inline extents can
3839 * be either compressed or non-compressed.
3842 if (btrfs_root_readonly(root
))
3845 if (file_src
->f_path
.mnt
!= file
->f_path
.mnt
||
3846 src
->i_sb
!= inode
->i_sb
)
3849 /* don't make the dst file partly checksummed */
3850 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3851 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
3854 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
3858 btrfs_double_inode_lock(src
, inode
);
3863 /* determine range to clone */
3865 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
3868 olen
= len
= src
->i_size
- off
;
3869 /* if we extend to eof, continue to block boundary */
3870 if (off
+ len
== src
->i_size
)
3871 len
= ALIGN(src
->i_size
, bs
) - off
;
3878 /* verify the end result is block aligned */
3879 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
3880 !IS_ALIGNED(destoff
, bs
))
3883 /* verify if ranges are overlapped within the same file */
3885 if (destoff
+ len
> off
&& destoff
< off
+ len
)
3889 if (destoff
> inode
->i_size
) {
3890 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
3896 * Lock the target range too. Right after we replace the file extent
3897 * items in the fs tree (which now point to the cloned data), we might
3898 * have a worker replace them with extent items relative to a write
3899 * operation that was issued before this clone operation (i.e. confront
3900 * with inode.c:btrfs_finish_ordered_io).
3903 u64 lock_start
= min_t(u64
, off
, destoff
);
3904 u64 lock_len
= max_t(u64
, off
, destoff
) + len
- lock_start
;
3906 ret
= lock_extent_range(src
, lock_start
, lock_len
, true);
3908 ret
= btrfs_double_extent_lock(src
, off
, inode
, destoff
, len
,
3913 /* ranges in the io trees already unlocked */
3917 ret
= btrfs_clone(src
, inode
, off
, olen
, len
, destoff
, 0);
3920 u64 lock_start
= min_t(u64
, off
, destoff
);
3921 u64 lock_end
= max_t(u64
, off
, destoff
) + len
- 1;
3923 unlock_extent(&BTRFS_I(src
)->io_tree
, lock_start
, lock_end
);
3925 btrfs_double_extent_unlock(src
, off
, inode
, destoff
, len
);
3928 * Truncate page cache pages so that future reads will see the cloned
3929 * data immediately and not the previous data.
3931 truncate_inode_pages_range(&inode
->i_data
,
3932 round_down(destoff
, PAGE_SIZE
),
3933 round_up(destoff
+ len
, PAGE_SIZE
) - 1);
3936 btrfs_double_inode_unlock(src
, inode
);
3942 int btrfs_clone_file_range(struct file
*src_file
, loff_t off
,
3943 struct file
*dst_file
, loff_t destoff
, u64 len
)
3945 return btrfs_clone_files(dst_file
, src_file
, off
, len
, destoff
);
3949 * there are many ways the trans_start and trans_end ioctls can lead
3950 * to deadlocks. They should only be used by applications that
3951 * basically own the machine, and have a very in depth understanding
3952 * of all the possible deadlocks and enospc problems.
3954 static long btrfs_ioctl_trans_start(struct file
*file
)
3956 struct inode
*inode
= file_inode(file
);
3957 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3958 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3959 struct btrfs_trans_handle
*trans
;
3960 struct btrfs_file_private
*private;
3962 static bool warned
= false;
3965 if (!capable(CAP_SYS_ADMIN
))
3970 "Userspace transaction mechanism is considered "
3971 "deprecated and slated to be removed in 4.17. "
3972 "If you have a valid use case please "
3973 "speak up on the mailing list");
3979 private = file
->private_data
;
3980 if (private && private->trans
)
3983 private = kzalloc(sizeof(struct btrfs_file_private
),
3987 file
->private_data
= private;
3991 if (btrfs_root_readonly(root
))
3994 ret
= mnt_want_write_file(file
);
3998 atomic_inc(&fs_info
->open_ioctl_trans
);
4001 trans
= btrfs_start_ioctl_transaction(root
);
4005 private->trans
= trans
;
4009 atomic_dec(&fs_info
->open_ioctl_trans
);
4010 mnt_drop_write_file(file
);
4015 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
4017 struct inode
*inode
= file_inode(file
);
4018 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4019 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4020 struct btrfs_root
*new_root
;
4021 struct btrfs_dir_item
*di
;
4022 struct btrfs_trans_handle
*trans
;
4023 struct btrfs_path
*path
;
4024 struct btrfs_key location
;
4025 struct btrfs_disk_key disk_key
;
4030 if (!capable(CAP_SYS_ADMIN
))
4033 ret
= mnt_want_write_file(file
);
4037 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
4043 objectid
= BTRFS_FS_TREE_OBJECTID
;
4045 location
.objectid
= objectid
;
4046 location
.type
= BTRFS_ROOT_ITEM_KEY
;
4047 location
.offset
= (u64
)-1;
4049 new_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
4050 if (IS_ERR(new_root
)) {
4051 ret
= PTR_ERR(new_root
);
4054 if (!is_fstree(new_root
->objectid
)) {
4059 path
= btrfs_alloc_path();
4064 path
->leave_spinning
= 1;
4066 trans
= btrfs_start_transaction(root
, 1);
4067 if (IS_ERR(trans
)) {
4068 btrfs_free_path(path
);
4069 ret
= PTR_ERR(trans
);
4073 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
4074 di
= btrfs_lookup_dir_item(trans
, fs_info
->tree_root
, path
,
4075 dir_id
, "default", 7, 1);
4076 if (IS_ERR_OR_NULL(di
)) {
4077 btrfs_free_path(path
);
4078 btrfs_end_transaction(trans
);
4080 "Umm, you don't have the default diritem, this isn't going to work");
4085 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
4086 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
4087 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4088 btrfs_free_path(path
);
4090 btrfs_set_fs_incompat(fs_info
, DEFAULT_SUBVOL
);
4091 btrfs_end_transaction(trans
);
4093 mnt_drop_write_file(file
);
4097 void btrfs_get_block_group_info(struct list_head
*groups_list
,
4098 struct btrfs_ioctl_space_info
*space
)
4100 struct btrfs_block_group_cache
*block_group
;
4102 space
->total_bytes
= 0;
4103 space
->used_bytes
= 0;
4105 list_for_each_entry(block_group
, groups_list
, list
) {
4106 space
->flags
= block_group
->flags
;
4107 space
->total_bytes
+= block_group
->key
.offset
;
4108 space
->used_bytes
+=
4109 btrfs_block_group_used(&block_group
->item
);
4113 static long btrfs_ioctl_space_info(struct btrfs_fs_info
*fs_info
,
4116 struct btrfs_ioctl_space_args space_args
;
4117 struct btrfs_ioctl_space_info space
;
4118 struct btrfs_ioctl_space_info
*dest
;
4119 struct btrfs_ioctl_space_info
*dest_orig
;
4120 struct btrfs_ioctl_space_info __user
*user_dest
;
4121 struct btrfs_space_info
*info
;
4122 static const u64 types
[] = {
4123 BTRFS_BLOCK_GROUP_DATA
,
4124 BTRFS_BLOCK_GROUP_SYSTEM
,
4125 BTRFS_BLOCK_GROUP_METADATA
,
4126 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
4134 if (copy_from_user(&space_args
,
4135 (struct btrfs_ioctl_space_args __user
*)arg
,
4136 sizeof(space_args
)))
4139 for (i
= 0; i
< num_types
; i
++) {
4140 struct btrfs_space_info
*tmp
;
4144 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
4146 if (tmp
->flags
== types
[i
]) {
4156 down_read(&info
->groups_sem
);
4157 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4158 if (!list_empty(&info
->block_groups
[c
]))
4161 up_read(&info
->groups_sem
);
4165 * Global block reserve, exported as a space_info
4169 /* space_slots == 0 means they are asking for a count */
4170 if (space_args
.space_slots
== 0) {
4171 space_args
.total_spaces
= slot_count
;
4175 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
4177 alloc_size
= sizeof(*dest
) * slot_count
;
4179 /* we generally have at most 6 or so space infos, one for each raid
4180 * level. So, a whole page should be more than enough for everyone
4182 if (alloc_size
> PAGE_SIZE
)
4185 space_args
.total_spaces
= 0;
4186 dest
= kmalloc(alloc_size
, GFP_KERNEL
);
4191 /* now we have a buffer to copy into */
4192 for (i
= 0; i
< num_types
; i
++) {
4193 struct btrfs_space_info
*tmp
;
4200 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
4202 if (tmp
->flags
== types
[i
]) {
4211 down_read(&info
->groups_sem
);
4212 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4213 if (!list_empty(&info
->block_groups
[c
])) {
4214 btrfs_get_block_group_info(
4215 &info
->block_groups
[c
], &space
);
4216 memcpy(dest
, &space
, sizeof(space
));
4218 space_args
.total_spaces
++;
4224 up_read(&info
->groups_sem
);
4228 * Add global block reserve
4231 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4233 spin_lock(&block_rsv
->lock
);
4234 space
.total_bytes
= block_rsv
->size
;
4235 space
.used_bytes
= block_rsv
->size
- block_rsv
->reserved
;
4236 spin_unlock(&block_rsv
->lock
);
4237 space
.flags
= BTRFS_SPACE_INFO_GLOBAL_RSV
;
4238 memcpy(dest
, &space
, sizeof(space
));
4239 space_args
.total_spaces
++;
4242 user_dest
= (struct btrfs_ioctl_space_info __user
*)
4243 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
4245 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
4250 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
4257 * there are many ways the trans_start and trans_end ioctls can lead
4258 * to deadlocks. They should only be used by applications that
4259 * basically own the machine, and have a very in depth understanding
4260 * of all the possible deadlocks and enospc problems.
4262 long btrfs_ioctl_trans_end(struct file
*file
)
4264 struct inode
*inode
= file_inode(file
);
4265 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4266 struct btrfs_file_private
*private = file
->private_data
;
4268 if (!private || !private->trans
)
4271 btrfs_end_transaction(private->trans
);
4272 private->trans
= NULL
;
4274 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4276 mnt_drop_write_file(file
);
4280 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
4283 struct btrfs_trans_handle
*trans
;
4287 trans
= btrfs_attach_transaction_barrier(root
);
4288 if (IS_ERR(trans
)) {
4289 if (PTR_ERR(trans
) != -ENOENT
)
4290 return PTR_ERR(trans
);
4292 /* No running transaction, don't bother */
4293 transid
= root
->fs_info
->last_trans_committed
;
4296 transid
= trans
->transid
;
4297 ret
= btrfs_commit_transaction_async(trans
, 0);
4299 btrfs_end_transaction(trans
);
4304 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
4309 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_fs_info
*fs_info
,
4315 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
4318 transid
= 0; /* current trans */
4320 return btrfs_wait_for_commit(fs_info
, transid
);
4323 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
4325 struct btrfs_fs_info
*fs_info
= btrfs_sb(file_inode(file
)->i_sb
);
4326 struct btrfs_ioctl_scrub_args
*sa
;
4329 if (!capable(CAP_SYS_ADMIN
))
4332 sa
= memdup_user(arg
, sizeof(*sa
));
4336 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
4337 ret
= mnt_want_write_file(file
);
4342 ret
= btrfs_scrub_dev(fs_info
, sa
->devid
, sa
->start
, sa
->end
,
4343 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
4346 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4349 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
4350 mnt_drop_write_file(file
);
4356 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4358 if (!capable(CAP_SYS_ADMIN
))
4361 return btrfs_scrub_cancel(fs_info
);
4364 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info
*fs_info
,
4367 struct btrfs_ioctl_scrub_args
*sa
;
4370 if (!capable(CAP_SYS_ADMIN
))
4373 sa
= memdup_user(arg
, sizeof(*sa
));
4377 ret
= btrfs_scrub_progress(fs_info
, sa
->devid
, &sa
->progress
);
4379 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4386 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info
*fs_info
,
4389 struct btrfs_ioctl_get_dev_stats
*sa
;
4392 sa
= memdup_user(arg
, sizeof(*sa
));
4396 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
4401 ret
= btrfs_get_dev_stats(fs_info
, sa
);
4403 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4410 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info
*fs_info
,
4413 struct btrfs_ioctl_dev_replace_args
*p
;
4416 if (!capable(CAP_SYS_ADMIN
))
4419 p
= memdup_user(arg
, sizeof(*p
));
4424 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
4425 if (sb_rdonly(fs_info
->sb
)) {
4429 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
4430 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4432 ret
= btrfs_dev_replace_by_ioctl(fs_info
, p
);
4433 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4436 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
4437 btrfs_dev_replace_status(fs_info
, p
);
4440 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
4441 ret
= btrfs_dev_replace_cancel(fs_info
, p
);
4448 if (copy_to_user(arg
, p
, sizeof(*p
)))
4455 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
4461 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
4462 struct inode_fs_paths
*ipath
= NULL
;
4463 struct btrfs_path
*path
;
4465 if (!capable(CAP_DAC_READ_SEARCH
))
4468 path
= btrfs_alloc_path();
4474 ipa
= memdup_user(arg
, sizeof(*ipa
));
4481 size
= min_t(u32
, ipa
->size
, 4096);
4482 ipath
= init_ipath(size
, root
, path
);
4483 if (IS_ERR(ipath
)) {
4484 ret
= PTR_ERR(ipath
);
4489 ret
= paths_from_inode(ipa
->inum
, ipath
);
4493 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
4494 rel_ptr
= ipath
->fspath
->val
[i
] -
4495 (u64
)(unsigned long)ipath
->fspath
->val
;
4496 ipath
->fspath
->val
[i
] = rel_ptr
;
4499 ret
= copy_to_user((void __user
*)(unsigned long)ipa
->fspath
,
4500 ipath
->fspath
, size
);
4507 btrfs_free_path(path
);
4514 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4516 struct btrfs_data_container
*inodes
= ctx
;
4517 const size_t c
= 3 * sizeof(u64
);
4519 if (inodes
->bytes_left
>= c
) {
4520 inodes
->bytes_left
-= c
;
4521 inodes
->val
[inodes
->elem_cnt
] = inum
;
4522 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
4523 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
4524 inodes
->elem_cnt
+= 3;
4526 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
4527 inodes
->bytes_left
= 0;
4528 inodes
->elem_missed
+= 3;
4534 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info
*fs_info
,
4535 void __user
*arg
, int version
)
4539 struct btrfs_ioctl_logical_ino_args
*loi
;
4540 struct btrfs_data_container
*inodes
= NULL
;
4541 struct btrfs_path
*path
= NULL
;
4544 if (!capable(CAP_SYS_ADMIN
))
4547 loi
= memdup_user(arg
, sizeof(*loi
));
4549 return PTR_ERR(loi
);
4552 ignore_offset
= false;
4553 size
= min_t(u32
, loi
->size
, SZ_64K
);
4555 /* All reserved bits must be 0 for now */
4556 if (memchr_inv(loi
->reserved
, 0, sizeof(loi
->reserved
))) {
4560 /* Only accept flags we have defined so far */
4561 if (loi
->flags
& ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET
)) {
4565 ignore_offset
= loi
->flags
& BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET
;
4566 size
= min_t(u32
, loi
->size
, SZ_16M
);
4569 path
= btrfs_alloc_path();
4575 inodes
= init_data_container(size
);
4576 if (IS_ERR(inodes
)) {
4577 ret
= PTR_ERR(inodes
);
4582 ret
= iterate_inodes_from_logical(loi
->logical
, fs_info
, path
,
4583 build_ino_list
, inodes
, ignore_offset
);
4589 ret
= copy_to_user((void __user
*)(unsigned long)loi
->inodes
, inodes
,
4595 btrfs_free_path(path
);
4603 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
4604 struct btrfs_ioctl_balance_args
*bargs
)
4606 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4608 bargs
->flags
= bctl
->flags
;
4610 if (atomic_read(&fs_info
->balance_running
))
4611 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
4612 if (atomic_read(&fs_info
->balance_pause_req
))
4613 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
4614 if (atomic_read(&fs_info
->balance_cancel_req
))
4615 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
4617 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
4618 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
4619 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
4622 spin_lock(&fs_info
->balance_lock
);
4623 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4624 spin_unlock(&fs_info
->balance_lock
);
4626 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4630 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
4632 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4633 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4634 struct btrfs_ioctl_balance_args
*bargs
;
4635 struct btrfs_balance_control
*bctl
;
4636 bool need_unlock
; /* for mut. excl. ops lock */
4639 if (!capable(CAP_SYS_ADMIN
))
4642 ret
= mnt_want_write_file(file
);
4647 if (!test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
4648 mutex_lock(&fs_info
->volume_mutex
);
4649 mutex_lock(&fs_info
->balance_mutex
);
4655 * mut. excl. ops lock is locked. Three possibilities:
4656 * (1) some other op is running
4657 * (2) balance is running
4658 * (3) balance is paused -- special case (think resume)
4660 mutex_lock(&fs_info
->balance_mutex
);
4661 if (fs_info
->balance_ctl
) {
4662 /* this is either (2) or (3) */
4663 if (!atomic_read(&fs_info
->balance_running
)) {
4664 mutex_unlock(&fs_info
->balance_mutex
);
4665 if (!mutex_trylock(&fs_info
->volume_mutex
))
4667 mutex_lock(&fs_info
->balance_mutex
);
4669 if (fs_info
->balance_ctl
&&
4670 !atomic_read(&fs_info
->balance_running
)) {
4672 need_unlock
= false;
4676 mutex_unlock(&fs_info
->balance_mutex
);
4677 mutex_unlock(&fs_info
->volume_mutex
);
4681 mutex_unlock(&fs_info
->balance_mutex
);
4687 mutex_unlock(&fs_info
->balance_mutex
);
4688 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4693 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
));
4696 bargs
= memdup_user(arg
, sizeof(*bargs
));
4697 if (IS_ERR(bargs
)) {
4698 ret
= PTR_ERR(bargs
);
4702 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
4703 if (!fs_info
->balance_ctl
) {
4708 bctl
= fs_info
->balance_ctl
;
4709 spin_lock(&fs_info
->balance_lock
);
4710 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4711 spin_unlock(&fs_info
->balance_lock
);
4719 if (fs_info
->balance_ctl
) {
4724 bctl
= kzalloc(sizeof(*bctl
), GFP_KERNEL
);
4730 bctl
->fs_info
= fs_info
;
4732 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
4733 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
4734 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
4736 bctl
->flags
= bargs
->flags
;
4738 /* balance everything - no filters */
4739 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
4742 if (bctl
->flags
& ~(BTRFS_BALANCE_ARGS_MASK
| BTRFS_BALANCE_TYPE_MASK
)) {
4749 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4750 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4751 * or, if restriper was paused all the way until unmount, in
4752 * free_fs_info. The flag is cleared in __cancel_balance.
4754 need_unlock
= false;
4756 ret
= btrfs_balance(bctl
, bargs
);
4760 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4769 mutex_unlock(&fs_info
->balance_mutex
);
4770 mutex_unlock(&fs_info
->volume_mutex
);
4772 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4774 mnt_drop_write_file(file
);
4778 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info
*fs_info
, int cmd
)
4780 if (!capable(CAP_SYS_ADMIN
))
4784 case BTRFS_BALANCE_CTL_PAUSE
:
4785 return btrfs_pause_balance(fs_info
);
4786 case BTRFS_BALANCE_CTL_CANCEL
:
4787 return btrfs_cancel_balance(fs_info
);
4793 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info
*fs_info
,
4796 struct btrfs_ioctl_balance_args
*bargs
;
4799 if (!capable(CAP_SYS_ADMIN
))
4802 mutex_lock(&fs_info
->balance_mutex
);
4803 if (!fs_info
->balance_ctl
) {
4808 bargs
= kzalloc(sizeof(*bargs
), GFP_KERNEL
);
4814 update_ioctl_balance_args(fs_info
, 1, bargs
);
4816 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4821 mutex_unlock(&fs_info
->balance_mutex
);
4825 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4827 struct inode
*inode
= file_inode(file
);
4828 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4829 struct btrfs_ioctl_quota_ctl_args
*sa
;
4830 struct btrfs_trans_handle
*trans
= NULL
;
4834 if (!capable(CAP_SYS_ADMIN
))
4837 ret
= mnt_want_write_file(file
);
4841 sa
= memdup_user(arg
, sizeof(*sa
));
4847 down_write(&fs_info
->subvol_sem
);
4848 trans
= btrfs_start_transaction(fs_info
->tree_root
, 2);
4849 if (IS_ERR(trans
)) {
4850 ret
= PTR_ERR(trans
);
4855 case BTRFS_QUOTA_CTL_ENABLE
:
4856 ret
= btrfs_quota_enable(trans
, fs_info
);
4858 case BTRFS_QUOTA_CTL_DISABLE
:
4859 ret
= btrfs_quota_disable(trans
, fs_info
);
4866 err
= btrfs_commit_transaction(trans
);
4871 up_write(&fs_info
->subvol_sem
);
4873 mnt_drop_write_file(file
);
4877 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4879 struct inode
*inode
= file_inode(file
);
4880 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4881 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4882 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4883 struct btrfs_trans_handle
*trans
;
4887 if (!capable(CAP_SYS_ADMIN
))
4890 ret
= mnt_want_write_file(file
);
4894 sa
= memdup_user(arg
, sizeof(*sa
));
4900 trans
= btrfs_join_transaction(root
);
4901 if (IS_ERR(trans
)) {
4902 ret
= PTR_ERR(trans
);
4907 ret
= btrfs_add_qgroup_relation(trans
, fs_info
,
4910 ret
= btrfs_del_qgroup_relation(trans
, fs_info
,
4914 /* update qgroup status and info */
4915 err
= btrfs_run_qgroups(trans
, fs_info
);
4917 btrfs_handle_fs_error(fs_info
, err
,
4918 "failed to update qgroup status and info");
4919 err
= btrfs_end_transaction(trans
);
4926 mnt_drop_write_file(file
);
4930 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4932 struct inode
*inode
= file_inode(file
);
4933 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4934 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4935 struct btrfs_ioctl_qgroup_create_args
*sa
;
4936 struct btrfs_trans_handle
*trans
;
4940 if (!capable(CAP_SYS_ADMIN
))
4943 ret
= mnt_want_write_file(file
);
4947 sa
= memdup_user(arg
, sizeof(*sa
));
4953 if (!sa
->qgroupid
) {
4958 trans
= btrfs_join_transaction(root
);
4959 if (IS_ERR(trans
)) {
4960 ret
= PTR_ERR(trans
);
4965 ret
= btrfs_create_qgroup(trans
, fs_info
, sa
->qgroupid
);
4967 ret
= btrfs_remove_qgroup(trans
, fs_info
, sa
->qgroupid
);
4970 err
= btrfs_end_transaction(trans
);
4977 mnt_drop_write_file(file
);
4981 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4983 struct inode
*inode
= file_inode(file
);
4984 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4985 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4986 struct btrfs_ioctl_qgroup_limit_args
*sa
;
4987 struct btrfs_trans_handle
*trans
;
4992 if (!capable(CAP_SYS_ADMIN
))
4995 ret
= mnt_want_write_file(file
);
4999 sa
= memdup_user(arg
, sizeof(*sa
));
5005 trans
= btrfs_join_transaction(root
);
5006 if (IS_ERR(trans
)) {
5007 ret
= PTR_ERR(trans
);
5011 qgroupid
= sa
->qgroupid
;
5013 /* take the current subvol as qgroup */
5014 qgroupid
= root
->root_key
.objectid
;
5017 ret
= btrfs_limit_qgroup(trans
, fs_info
, qgroupid
, &sa
->lim
);
5019 err
= btrfs_end_transaction(trans
);
5026 mnt_drop_write_file(file
);
5030 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
5032 struct inode
*inode
= file_inode(file
);
5033 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5034 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5037 if (!capable(CAP_SYS_ADMIN
))
5040 ret
= mnt_want_write_file(file
);
5044 qsa
= memdup_user(arg
, sizeof(*qsa
));
5055 ret
= btrfs_qgroup_rescan(fs_info
);
5060 mnt_drop_write_file(file
);
5064 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
5066 struct inode
*inode
= file_inode(file
);
5067 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5068 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5071 if (!capable(CAP_SYS_ADMIN
))
5074 qsa
= kzalloc(sizeof(*qsa
), GFP_KERNEL
);
5078 if (fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
5080 qsa
->progress
= fs_info
->qgroup_rescan_progress
.objectid
;
5083 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
5090 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
5092 struct inode
*inode
= file_inode(file
);
5093 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5095 if (!capable(CAP_SYS_ADMIN
))
5098 return btrfs_qgroup_wait_for_completion(fs_info
, true);
5101 static long _btrfs_ioctl_set_received_subvol(struct file
*file
,
5102 struct btrfs_ioctl_received_subvol_args
*sa
)
5104 struct inode
*inode
= file_inode(file
);
5105 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5106 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5107 struct btrfs_root_item
*root_item
= &root
->root_item
;
5108 struct btrfs_trans_handle
*trans
;
5109 struct timespec ct
= current_time(inode
);
5111 int received_uuid_changed
;
5113 if (!inode_owner_or_capable(inode
))
5116 ret
= mnt_want_write_file(file
);
5120 down_write(&fs_info
->subvol_sem
);
5122 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
5127 if (btrfs_root_readonly(root
)) {
5134 * 2 - uuid items (received uuid + subvol uuid)
5136 trans
= btrfs_start_transaction(root
, 3);
5137 if (IS_ERR(trans
)) {
5138 ret
= PTR_ERR(trans
);
5143 sa
->rtransid
= trans
->transid
;
5144 sa
->rtime
.sec
= ct
.tv_sec
;
5145 sa
->rtime
.nsec
= ct
.tv_nsec
;
5147 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
5149 if (received_uuid_changed
&&
5150 !btrfs_is_empty_uuid(root_item
->received_uuid
))
5151 btrfs_uuid_tree_rem(trans
, fs_info
, root_item
->received_uuid
,
5152 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5153 root
->root_key
.objectid
);
5154 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
5155 btrfs_set_root_stransid(root_item
, sa
->stransid
);
5156 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
5157 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
5158 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
5159 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
5160 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
5162 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
5163 &root
->root_key
, &root
->root_item
);
5165 btrfs_end_transaction(trans
);
5168 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
5169 ret
= btrfs_uuid_tree_add(trans
, fs_info
, sa
->uuid
,
5170 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5171 root
->root_key
.objectid
);
5172 if (ret
< 0 && ret
!= -EEXIST
) {
5173 btrfs_abort_transaction(trans
, ret
);
5174 btrfs_end_transaction(trans
);
5178 ret
= btrfs_commit_transaction(trans
);
5180 up_write(&fs_info
->subvol_sem
);
5181 mnt_drop_write_file(file
);
5186 static long btrfs_ioctl_set_received_subvol_32(struct file
*file
,
5189 struct btrfs_ioctl_received_subvol_args_32
*args32
= NULL
;
5190 struct btrfs_ioctl_received_subvol_args
*args64
= NULL
;
5193 args32
= memdup_user(arg
, sizeof(*args32
));
5195 return PTR_ERR(args32
);
5197 args64
= kmalloc(sizeof(*args64
), GFP_KERNEL
);
5203 memcpy(args64
->uuid
, args32
->uuid
, BTRFS_UUID_SIZE
);
5204 args64
->stransid
= args32
->stransid
;
5205 args64
->rtransid
= args32
->rtransid
;
5206 args64
->stime
.sec
= args32
->stime
.sec
;
5207 args64
->stime
.nsec
= args32
->stime
.nsec
;
5208 args64
->rtime
.sec
= args32
->rtime
.sec
;
5209 args64
->rtime
.nsec
= args32
->rtime
.nsec
;
5210 args64
->flags
= args32
->flags
;
5212 ret
= _btrfs_ioctl_set_received_subvol(file
, args64
);
5216 memcpy(args32
->uuid
, args64
->uuid
, BTRFS_UUID_SIZE
);
5217 args32
->stransid
= args64
->stransid
;
5218 args32
->rtransid
= args64
->rtransid
;
5219 args32
->stime
.sec
= args64
->stime
.sec
;
5220 args32
->stime
.nsec
= args64
->stime
.nsec
;
5221 args32
->rtime
.sec
= args64
->rtime
.sec
;
5222 args32
->rtime
.nsec
= args64
->rtime
.nsec
;
5223 args32
->flags
= args64
->flags
;
5225 ret
= copy_to_user(arg
, args32
, sizeof(*args32
));
5236 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
5239 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
5242 sa
= memdup_user(arg
, sizeof(*sa
));
5246 ret
= _btrfs_ioctl_set_received_subvol(file
, sa
);
5251 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
5260 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
5262 struct inode
*inode
= file_inode(file
);
5263 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5266 char label
[BTRFS_LABEL_SIZE
];
5268 spin_lock(&fs_info
->super_lock
);
5269 memcpy(label
, fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
5270 spin_unlock(&fs_info
->super_lock
);
5272 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
5274 if (len
== BTRFS_LABEL_SIZE
) {
5276 "label is too long, return the first %zu bytes",
5280 ret
= copy_to_user(arg
, label
, len
);
5282 return ret
? -EFAULT
: 0;
5285 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
5287 struct inode
*inode
= file_inode(file
);
5288 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5289 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5290 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5291 struct btrfs_trans_handle
*trans
;
5292 char label
[BTRFS_LABEL_SIZE
];
5295 if (!capable(CAP_SYS_ADMIN
))
5298 if (copy_from_user(label
, arg
, sizeof(label
)))
5301 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
5303 "unable to set label with more than %d bytes",
5304 BTRFS_LABEL_SIZE
- 1);
5308 ret
= mnt_want_write_file(file
);
5312 trans
= btrfs_start_transaction(root
, 0);
5313 if (IS_ERR(trans
)) {
5314 ret
= PTR_ERR(trans
);
5318 spin_lock(&fs_info
->super_lock
);
5319 strcpy(super_block
->label
, label
);
5320 spin_unlock(&fs_info
->super_lock
);
5321 ret
= btrfs_commit_transaction(trans
);
5324 mnt_drop_write_file(file
);
5328 #define INIT_FEATURE_FLAGS(suffix) \
5329 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5330 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5331 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5333 int btrfs_ioctl_get_supported_features(void __user
*arg
)
5335 static const struct btrfs_ioctl_feature_flags features
[3] = {
5336 INIT_FEATURE_FLAGS(SUPP
),
5337 INIT_FEATURE_FLAGS(SAFE_SET
),
5338 INIT_FEATURE_FLAGS(SAFE_CLEAR
)
5341 if (copy_to_user(arg
, &features
, sizeof(features
)))
5347 static int btrfs_ioctl_get_features(struct file
*file
, void __user
*arg
)
5349 struct inode
*inode
= file_inode(file
);
5350 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5351 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5352 struct btrfs_ioctl_feature_flags features
;
5354 features
.compat_flags
= btrfs_super_compat_flags(super_block
);
5355 features
.compat_ro_flags
= btrfs_super_compat_ro_flags(super_block
);
5356 features
.incompat_flags
= btrfs_super_incompat_flags(super_block
);
5358 if (copy_to_user(arg
, &features
, sizeof(features
)))
5364 static int check_feature_bits(struct btrfs_fs_info
*fs_info
,
5365 enum btrfs_feature_set set
,
5366 u64 change_mask
, u64 flags
, u64 supported_flags
,
5367 u64 safe_set
, u64 safe_clear
)
5369 const char *type
= btrfs_feature_set_names
[set
];
5371 u64 disallowed
, unsupported
;
5372 u64 set_mask
= flags
& change_mask
;
5373 u64 clear_mask
= ~flags
& change_mask
;
5375 unsupported
= set_mask
& ~supported_flags
;
5377 names
= btrfs_printable_features(set
, unsupported
);
5380 "this kernel does not support the %s feature bit%s",
5381 names
, strchr(names
, ',') ? "s" : "");
5385 "this kernel does not support %s bits 0x%llx",
5390 disallowed
= set_mask
& ~safe_set
;
5392 names
= btrfs_printable_features(set
, disallowed
);
5395 "can't set the %s feature bit%s while mounted",
5396 names
, strchr(names
, ',') ? "s" : "");
5400 "can't set %s bits 0x%llx while mounted",
5405 disallowed
= clear_mask
& ~safe_clear
;
5407 names
= btrfs_printable_features(set
, disallowed
);
5410 "can't clear the %s feature bit%s while mounted",
5411 names
, strchr(names
, ',') ? "s" : "");
5415 "can't clear %s bits 0x%llx while mounted",
5423 #define check_feature(fs_info, change_mask, flags, mask_base) \
5424 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5425 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5426 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5427 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5429 static int btrfs_ioctl_set_features(struct file
*file
, void __user
*arg
)
5431 struct inode
*inode
= file_inode(file
);
5432 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5433 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5434 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5435 struct btrfs_ioctl_feature_flags flags
[2];
5436 struct btrfs_trans_handle
*trans
;
5440 if (!capable(CAP_SYS_ADMIN
))
5443 if (copy_from_user(flags
, arg
, sizeof(flags
)))
5447 if (!flags
[0].compat_flags
&& !flags
[0].compat_ro_flags
&&
5448 !flags
[0].incompat_flags
)
5451 ret
= check_feature(fs_info
, flags
[0].compat_flags
,
5452 flags
[1].compat_flags
, COMPAT
);
5456 ret
= check_feature(fs_info
, flags
[0].compat_ro_flags
,
5457 flags
[1].compat_ro_flags
, COMPAT_RO
);
5461 ret
= check_feature(fs_info
, flags
[0].incompat_flags
,
5462 flags
[1].incompat_flags
, INCOMPAT
);
5466 ret
= mnt_want_write_file(file
);
5470 trans
= btrfs_start_transaction(root
, 0);
5471 if (IS_ERR(trans
)) {
5472 ret
= PTR_ERR(trans
);
5473 goto out_drop_write
;
5476 spin_lock(&fs_info
->super_lock
);
5477 newflags
= btrfs_super_compat_flags(super_block
);
5478 newflags
|= flags
[0].compat_flags
& flags
[1].compat_flags
;
5479 newflags
&= ~(flags
[0].compat_flags
& ~flags
[1].compat_flags
);
5480 btrfs_set_super_compat_flags(super_block
, newflags
);
5482 newflags
= btrfs_super_compat_ro_flags(super_block
);
5483 newflags
|= flags
[0].compat_ro_flags
& flags
[1].compat_ro_flags
;
5484 newflags
&= ~(flags
[0].compat_ro_flags
& ~flags
[1].compat_ro_flags
);
5485 btrfs_set_super_compat_ro_flags(super_block
, newflags
);
5487 newflags
= btrfs_super_incompat_flags(super_block
);
5488 newflags
|= flags
[0].incompat_flags
& flags
[1].incompat_flags
;
5489 newflags
&= ~(flags
[0].incompat_flags
& ~flags
[1].incompat_flags
);
5490 btrfs_set_super_incompat_flags(super_block
, newflags
);
5491 spin_unlock(&fs_info
->super_lock
);
5493 ret
= btrfs_commit_transaction(trans
);
5495 mnt_drop_write_file(file
);
5500 static int _btrfs_ioctl_send(struct file
*file
, void __user
*argp
, bool compat
)
5502 struct btrfs_ioctl_send_args
*arg
;
5506 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5507 struct btrfs_ioctl_send_args_32 args32
;
5509 ret
= copy_from_user(&args32
, argp
, sizeof(args32
));
5512 arg
= kzalloc(sizeof(*arg
), GFP_KERNEL
);
5515 arg
->send_fd
= args32
.send_fd
;
5516 arg
->clone_sources_count
= args32
.clone_sources_count
;
5517 arg
->clone_sources
= compat_ptr(args32
.clone_sources
);
5518 arg
->parent_root
= args32
.parent_root
;
5519 arg
->flags
= args32
.flags
;
5520 memcpy(arg
->reserved
, args32
.reserved
,
5521 sizeof(args32
.reserved
));
5526 arg
= memdup_user(argp
, sizeof(*arg
));
5528 return PTR_ERR(arg
);
5530 ret
= btrfs_ioctl_send(file
, arg
);
5535 long btrfs_ioctl(struct file
*file
, unsigned int
5536 cmd
, unsigned long arg
)
5538 struct inode
*inode
= file_inode(file
);
5539 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5540 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5541 void __user
*argp
= (void __user
*)arg
;
5544 case FS_IOC_GETFLAGS
:
5545 return btrfs_ioctl_getflags(file
, argp
);
5546 case FS_IOC_SETFLAGS
:
5547 return btrfs_ioctl_setflags(file
, argp
);
5548 case FS_IOC_GETVERSION
:
5549 return btrfs_ioctl_getversion(file
, argp
);
5551 return btrfs_ioctl_fitrim(file
, argp
);
5552 case BTRFS_IOC_SNAP_CREATE
:
5553 return btrfs_ioctl_snap_create(file
, argp
, 0);
5554 case BTRFS_IOC_SNAP_CREATE_V2
:
5555 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
5556 case BTRFS_IOC_SUBVOL_CREATE
:
5557 return btrfs_ioctl_snap_create(file
, argp
, 1);
5558 case BTRFS_IOC_SUBVOL_CREATE_V2
:
5559 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
5560 case BTRFS_IOC_SNAP_DESTROY
:
5561 return btrfs_ioctl_snap_destroy(file
, argp
);
5562 case BTRFS_IOC_SUBVOL_GETFLAGS
:
5563 return btrfs_ioctl_subvol_getflags(file
, argp
);
5564 case BTRFS_IOC_SUBVOL_SETFLAGS
:
5565 return btrfs_ioctl_subvol_setflags(file
, argp
);
5566 case BTRFS_IOC_DEFAULT_SUBVOL
:
5567 return btrfs_ioctl_default_subvol(file
, argp
);
5568 case BTRFS_IOC_DEFRAG
:
5569 return btrfs_ioctl_defrag(file
, NULL
);
5570 case BTRFS_IOC_DEFRAG_RANGE
:
5571 return btrfs_ioctl_defrag(file
, argp
);
5572 case BTRFS_IOC_RESIZE
:
5573 return btrfs_ioctl_resize(file
, argp
);
5574 case BTRFS_IOC_ADD_DEV
:
5575 return btrfs_ioctl_add_dev(fs_info
, argp
);
5576 case BTRFS_IOC_RM_DEV
:
5577 return btrfs_ioctl_rm_dev(file
, argp
);
5578 case BTRFS_IOC_RM_DEV_V2
:
5579 return btrfs_ioctl_rm_dev_v2(file
, argp
);
5580 case BTRFS_IOC_FS_INFO
:
5581 return btrfs_ioctl_fs_info(fs_info
, argp
);
5582 case BTRFS_IOC_DEV_INFO
:
5583 return btrfs_ioctl_dev_info(fs_info
, argp
);
5584 case BTRFS_IOC_BALANCE
:
5585 return btrfs_ioctl_balance(file
, NULL
);
5586 case BTRFS_IOC_TRANS_START
:
5587 return btrfs_ioctl_trans_start(file
);
5588 case BTRFS_IOC_TRANS_END
:
5589 return btrfs_ioctl_trans_end(file
);
5590 case BTRFS_IOC_TREE_SEARCH
:
5591 return btrfs_ioctl_tree_search(file
, argp
);
5592 case BTRFS_IOC_TREE_SEARCH_V2
:
5593 return btrfs_ioctl_tree_search_v2(file
, argp
);
5594 case BTRFS_IOC_INO_LOOKUP
:
5595 return btrfs_ioctl_ino_lookup(file
, argp
);
5596 case BTRFS_IOC_INO_PATHS
:
5597 return btrfs_ioctl_ino_to_path(root
, argp
);
5598 case BTRFS_IOC_LOGICAL_INO
:
5599 return btrfs_ioctl_logical_to_ino(fs_info
, argp
, 1);
5600 case BTRFS_IOC_LOGICAL_INO_V2
:
5601 return btrfs_ioctl_logical_to_ino(fs_info
, argp
, 2);
5602 case BTRFS_IOC_SPACE_INFO
:
5603 return btrfs_ioctl_space_info(fs_info
, argp
);
5604 case BTRFS_IOC_SYNC
: {
5607 ret
= btrfs_start_delalloc_roots(fs_info
, 0, -1);
5610 ret
= btrfs_sync_fs(inode
->i_sb
, 1);
5612 * The transaction thread may want to do more work,
5613 * namely it pokes the cleaner kthread that will start
5614 * processing uncleaned subvols.
5616 wake_up_process(fs_info
->transaction_kthread
);
5619 case BTRFS_IOC_START_SYNC
:
5620 return btrfs_ioctl_start_sync(root
, argp
);
5621 case BTRFS_IOC_WAIT_SYNC
:
5622 return btrfs_ioctl_wait_sync(fs_info
, argp
);
5623 case BTRFS_IOC_SCRUB
:
5624 return btrfs_ioctl_scrub(file
, argp
);
5625 case BTRFS_IOC_SCRUB_CANCEL
:
5626 return btrfs_ioctl_scrub_cancel(fs_info
);
5627 case BTRFS_IOC_SCRUB_PROGRESS
:
5628 return btrfs_ioctl_scrub_progress(fs_info
, argp
);
5629 case BTRFS_IOC_BALANCE_V2
:
5630 return btrfs_ioctl_balance(file
, argp
);
5631 case BTRFS_IOC_BALANCE_CTL
:
5632 return btrfs_ioctl_balance_ctl(fs_info
, arg
);
5633 case BTRFS_IOC_BALANCE_PROGRESS
:
5634 return btrfs_ioctl_balance_progress(fs_info
, argp
);
5635 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
5636 return btrfs_ioctl_set_received_subvol(file
, argp
);
5638 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32
:
5639 return btrfs_ioctl_set_received_subvol_32(file
, argp
);
5641 case BTRFS_IOC_SEND
:
5642 return _btrfs_ioctl_send(file
, argp
, false);
5643 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5644 case BTRFS_IOC_SEND_32
:
5645 return _btrfs_ioctl_send(file
, argp
, true);
5647 case BTRFS_IOC_GET_DEV_STATS
:
5648 return btrfs_ioctl_get_dev_stats(fs_info
, argp
);
5649 case BTRFS_IOC_QUOTA_CTL
:
5650 return btrfs_ioctl_quota_ctl(file
, argp
);
5651 case BTRFS_IOC_QGROUP_ASSIGN
:
5652 return btrfs_ioctl_qgroup_assign(file
, argp
);
5653 case BTRFS_IOC_QGROUP_CREATE
:
5654 return btrfs_ioctl_qgroup_create(file
, argp
);
5655 case BTRFS_IOC_QGROUP_LIMIT
:
5656 return btrfs_ioctl_qgroup_limit(file
, argp
);
5657 case BTRFS_IOC_QUOTA_RESCAN
:
5658 return btrfs_ioctl_quota_rescan(file
, argp
);
5659 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
5660 return btrfs_ioctl_quota_rescan_status(file
, argp
);
5661 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
5662 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
5663 case BTRFS_IOC_DEV_REPLACE
:
5664 return btrfs_ioctl_dev_replace(fs_info
, argp
);
5665 case BTRFS_IOC_GET_FSLABEL
:
5666 return btrfs_ioctl_get_fslabel(file
, argp
);
5667 case BTRFS_IOC_SET_FSLABEL
:
5668 return btrfs_ioctl_set_fslabel(file
, argp
);
5669 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
5670 return btrfs_ioctl_get_supported_features(argp
);
5671 case BTRFS_IOC_GET_FEATURES
:
5672 return btrfs_ioctl_get_features(file
, argp
);
5673 case BTRFS_IOC_SET_FEATURES
:
5674 return btrfs_ioctl_set_features(file
, argp
);
5680 #ifdef CONFIG_COMPAT
5681 long btrfs_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5684 * These all access 32-bit values anyway so no further
5685 * handling is necessary.
5688 case FS_IOC32_GETFLAGS
:
5689 cmd
= FS_IOC_GETFLAGS
;
5691 case FS_IOC32_SETFLAGS
:
5692 cmd
= FS_IOC_SETFLAGS
;
5694 case FS_IOC32_GETVERSION
:
5695 cmd
= FS_IOC_GETVERSION
;
5699 return btrfs_ioctl(file
, cmd
, (unsigned long) compat_ptr(arg
));