2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_errortag.h"
35 #include "xfs_error.h"
37 #include "xfs_cksum.h"
38 #include "xfs_trans.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_icreate_item.h"
41 #include "xfs_icache.h"
42 #include "xfs_trace.h"
48 * Allocation group level functions.
51 xfs_ialloc_cluster_alignment(
54 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
55 mp
->m_sb
.sb_inoalignmt
>= xfs_icluster_size_fsb(mp
))
56 return mp
->m_sb
.sb_inoalignmt
;
61 * Lookup a record by ino in the btree given by cur.
65 struct xfs_btree_cur
*cur
, /* btree cursor */
66 xfs_agino_t ino
, /* starting inode of chunk */
67 xfs_lookup_t dir
, /* <=, >=, == */
68 int *stat
) /* success/failure */
70 cur
->bc_rec
.i
.ir_startino
= ino
;
71 cur
->bc_rec
.i
.ir_holemask
= 0;
72 cur
->bc_rec
.i
.ir_count
= 0;
73 cur
->bc_rec
.i
.ir_freecount
= 0;
74 cur
->bc_rec
.i
.ir_free
= 0;
75 return xfs_btree_lookup(cur
, dir
, stat
);
79 * Update the record referred to by cur to the value given.
80 * This either works (return 0) or gets an EFSCORRUPTED error.
82 STATIC
int /* error */
84 struct xfs_btree_cur
*cur
, /* btree cursor */
85 xfs_inobt_rec_incore_t
*irec
) /* btree record */
87 union xfs_btree_rec rec
;
89 rec
.inobt
.ir_startino
= cpu_to_be32(irec
->ir_startino
);
90 if (xfs_sb_version_hassparseinodes(&cur
->bc_mp
->m_sb
)) {
91 rec
.inobt
.ir_u
.sp
.ir_holemask
= cpu_to_be16(irec
->ir_holemask
);
92 rec
.inobt
.ir_u
.sp
.ir_count
= irec
->ir_count
;
93 rec
.inobt
.ir_u
.sp
.ir_freecount
= irec
->ir_freecount
;
95 /* ir_holemask/ir_count not supported on-disk */
96 rec
.inobt
.ir_u
.f
.ir_freecount
= cpu_to_be32(irec
->ir_freecount
);
98 rec
.inobt
.ir_free
= cpu_to_be64(irec
->ir_free
);
99 return xfs_btree_update(cur
, &rec
);
102 /* Convert on-disk btree record to incore inobt record. */
104 xfs_inobt_btrec_to_irec(
105 struct xfs_mount
*mp
,
106 union xfs_btree_rec
*rec
,
107 struct xfs_inobt_rec_incore
*irec
)
109 irec
->ir_startino
= be32_to_cpu(rec
->inobt
.ir_startino
);
110 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
)) {
111 irec
->ir_holemask
= be16_to_cpu(rec
->inobt
.ir_u
.sp
.ir_holemask
);
112 irec
->ir_count
= rec
->inobt
.ir_u
.sp
.ir_count
;
113 irec
->ir_freecount
= rec
->inobt
.ir_u
.sp
.ir_freecount
;
116 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
117 * values for full inode chunks.
119 irec
->ir_holemask
= XFS_INOBT_HOLEMASK_FULL
;
120 irec
->ir_count
= XFS_INODES_PER_CHUNK
;
122 be32_to_cpu(rec
->inobt
.ir_u
.f
.ir_freecount
);
124 irec
->ir_free
= be64_to_cpu(rec
->inobt
.ir_free
);
128 * Get the data from the pointed-to record.
132 struct xfs_btree_cur
*cur
,
133 struct xfs_inobt_rec_incore
*irec
,
136 union xfs_btree_rec
*rec
;
139 error
= xfs_btree_get_rec(cur
, &rec
, stat
);
140 if (error
|| *stat
== 0)
143 xfs_inobt_btrec_to_irec(cur
->bc_mp
, rec
, irec
);
149 * Insert a single inobt record. Cursor must already point to desired location.
152 xfs_inobt_insert_rec(
153 struct xfs_btree_cur
*cur
,
160 cur
->bc_rec
.i
.ir_holemask
= holemask
;
161 cur
->bc_rec
.i
.ir_count
= count
;
162 cur
->bc_rec
.i
.ir_freecount
= freecount
;
163 cur
->bc_rec
.i
.ir_free
= free
;
164 return xfs_btree_insert(cur
, stat
);
168 * Insert records describing a newly allocated inode chunk into the inobt.
172 struct xfs_mount
*mp
,
173 struct xfs_trans
*tp
,
174 struct xfs_buf
*agbp
,
179 struct xfs_btree_cur
*cur
;
180 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
181 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
186 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
188 for (thisino
= newino
;
189 thisino
< newino
+ newlen
;
190 thisino
+= XFS_INODES_PER_CHUNK
) {
191 error
= xfs_inobt_lookup(cur
, thisino
, XFS_LOOKUP_EQ
, &i
);
193 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
198 error
= xfs_inobt_insert_rec(cur
, XFS_INOBT_HOLEMASK_FULL
,
199 XFS_INODES_PER_CHUNK
,
200 XFS_INODES_PER_CHUNK
,
201 XFS_INOBT_ALL_FREE
, &i
);
203 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
209 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
215 * Verify that the number of free inodes in the AGI is correct.
219 xfs_check_agi_freecount(
220 struct xfs_btree_cur
*cur
,
223 if (cur
->bc_nlevels
== 1) {
224 xfs_inobt_rec_incore_t rec
;
229 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
234 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
239 freecount
+= rec
.ir_freecount
;
240 error
= xfs_btree_increment(cur
, 0, &i
);
246 if (!XFS_FORCED_SHUTDOWN(cur
->bc_mp
))
247 ASSERT(freecount
== be32_to_cpu(agi
->agi_freecount
));
252 #define xfs_check_agi_freecount(cur, agi) 0
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
262 xfs_ialloc_inode_init(
263 struct xfs_mount
*mp
,
264 struct xfs_trans
*tp
,
265 struct list_head
*buffer_list
,
269 xfs_agblock_t length
,
272 struct xfs_buf
*fbuf
;
273 struct xfs_dinode
*free
;
274 int nbufs
, blks_per_cluster
, inodes_per_cluster
;
281 * Loop over the new block(s), filling in the inodes. For small block
282 * sizes, manipulate the inodes in buffers which are multiples of the
285 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
286 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
287 nbufs
= length
/ blks_per_cluster
;
290 * Figure out what version number to use in the inodes we create. If
291 * the superblock version has caught up to the one that supports the new
292 * inode format, then use the new inode version. Otherwise use the old
293 * version so that old kernels will continue to be able to use the file
296 * For v3 inodes, we also need to write the inode number into the inode,
297 * so calculate the first inode number of the chunk here as
298 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
299 * across multiple filesystem blocks (such as a cluster) and so cannot
300 * be used in the cluster buffer loop below.
302 * Further, because we are writing the inode directly into the buffer
303 * and calculating a CRC on the entire inode, we have ot log the entire
304 * inode so that the entire range the CRC covers is present in the log.
305 * That means for v3 inode we log the entire buffer rather than just the
308 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
310 ino
= XFS_AGINO_TO_INO(mp
, agno
,
311 XFS_OFFBNO_TO_AGINO(mp
, agbno
, 0));
314 * log the initialisation that is about to take place as an
315 * logical operation. This means the transaction does not
316 * need to log the physical changes to the inode buffers as log
317 * recovery will know what initialisation is actually needed.
318 * Hence we only need to log the buffers as "ordered" buffers so
319 * they track in the AIL as if they were physically logged.
322 xfs_icreate_log(tp
, agno
, agbno
, icount
,
323 mp
->m_sb
.sb_inodesize
, length
, gen
);
327 for (j
= 0; j
< nbufs
; j
++) {
331 d
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
+ (j
* blks_per_cluster
));
332 fbuf
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, d
,
333 mp
->m_bsize
* blks_per_cluster
,
338 /* Initialize the inode buffers and log them appropriately. */
339 fbuf
->b_ops
= &xfs_inode_buf_ops
;
340 xfs_buf_zero(fbuf
, 0, BBTOB(fbuf
->b_length
));
341 for (i
= 0; i
< inodes_per_cluster
; i
++) {
342 int ioffset
= i
<< mp
->m_sb
.sb_inodelog
;
343 uint isize
= xfs_dinode_size(version
);
345 free
= xfs_make_iptr(mp
, fbuf
, i
);
346 free
->di_magic
= cpu_to_be16(XFS_DINODE_MAGIC
);
347 free
->di_version
= version
;
348 free
->di_gen
= cpu_to_be32(gen
);
349 free
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
352 free
->di_ino
= cpu_to_be64(ino
);
354 uuid_copy(&free
->di_uuid
,
355 &mp
->m_sb
.sb_meta_uuid
);
356 xfs_dinode_calc_crc(mp
, free
);
358 /* just log the inode core */
359 xfs_trans_log_buf(tp
, fbuf
, ioffset
,
360 ioffset
+ isize
- 1);
366 * Mark the buffer as an inode allocation buffer so it
367 * sticks in AIL at the point of this allocation
368 * transaction. This ensures the they are on disk before
369 * the tail of the log can be moved past this
370 * transaction (i.e. by preventing relogging from moving
371 * it forward in the log).
373 xfs_trans_inode_alloc_buf(tp
, fbuf
);
376 * Mark the buffer as ordered so that they are
377 * not physically logged in the transaction but
378 * still tracked in the AIL as part of the
379 * transaction and pin the log appropriately.
381 xfs_trans_ordered_buf(tp
, fbuf
);
384 fbuf
->b_flags
|= XBF_DONE
;
385 xfs_buf_delwri_queue(fbuf
, buffer_list
);
393 * Align startino and allocmask for a recently allocated sparse chunk such that
394 * they are fit for insertion (or merge) into the on-disk inode btrees.
398 * When enabled, sparse inode support increases the inode alignment from cluster
399 * size to inode chunk size. This means that the minimum range between two
400 * non-adjacent inode records in the inobt is large enough for a full inode
401 * record. This allows for cluster sized, cluster aligned block allocation
402 * without need to worry about whether the resulting inode record overlaps with
403 * another record in the tree. Without this basic rule, we would have to deal
404 * with the consequences of overlap by potentially undoing recent allocations in
405 * the inode allocation codepath.
407 * Because of this alignment rule (which is enforced on mount), there are two
408 * inobt possibilities for newly allocated sparse chunks. One is that the
409 * aligned inode record for the chunk covers a range of inodes not already
410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
411 * other is that a record already exists at the aligned startino that considers
412 * the newly allocated range as sparse. In the latter case, record content is
413 * merged in hope that sparse inode chunks fill to full chunks over time.
416 xfs_align_sparse_ino(
417 struct xfs_mount
*mp
,
418 xfs_agino_t
*startino
,
425 agbno
= XFS_AGINO_TO_AGBNO(mp
, *startino
);
426 mod
= agbno
% mp
->m_sb
.sb_inoalignmt
;
430 /* calculate the inode offset and align startino */
431 offset
= mod
<< mp
->m_sb
.sb_inopblog
;
435 * Since startino has been aligned down, left shift allocmask such that
436 * it continues to represent the same physical inodes relative to the
439 *allocmask
<<= offset
/ XFS_INODES_PER_HOLEMASK_BIT
;
443 * Determine whether the source inode record can merge into the target. Both
444 * records must be sparse, the inode ranges must match and there must be no
445 * allocation overlap between the records.
448 __xfs_inobt_can_merge(
449 struct xfs_inobt_rec_incore
*trec
, /* tgt record */
450 struct xfs_inobt_rec_incore
*srec
) /* src record */
455 /* records must cover the same inode range */
456 if (trec
->ir_startino
!= srec
->ir_startino
)
459 /* both records must be sparse */
460 if (!xfs_inobt_issparse(trec
->ir_holemask
) ||
461 !xfs_inobt_issparse(srec
->ir_holemask
))
464 /* both records must track some inodes */
465 if (!trec
->ir_count
|| !srec
->ir_count
)
468 /* can't exceed capacity of a full record */
469 if (trec
->ir_count
+ srec
->ir_count
> XFS_INODES_PER_CHUNK
)
472 /* verify there is no allocation overlap */
473 talloc
= xfs_inobt_irec_to_allocmask(trec
);
474 salloc
= xfs_inobt_irec_to_allocmask(srec
);
482 * Merge the source inode record into the target. The caller must call
483 * __xfs_inobt_can_merge() to ensure the merge is valid.
486 __xfs_inobt_rec_merge(
487 struct xfs_inobt_rec_incore
*trec
, /* target */
488 struct xfs_inobt_rec_incore
*srec
) /* src */
490 ASSERT(trec
->ir_startino
== srec
->ir_startino
);
492 /* combine the counts */
493 trec
->ir_count
+= srec
->ir_count
;
494 trec
->ir_freecount
+= srec
->ir_freecount
;
497 * Merge the holemask and free mask. For both fields, 0 bits refer to
498 * allocated inodes. We combine the allocated ranges with bitwise AND.
500 trec
->ir_holemask
&= srec
->ir_holemask
;
501 trec
->ir_free
&= srec
->ir_free
;
505 * Insert a new sparse inode chunk into the associated inode btree. The inode
506 * record for the sparse chunk is pre-aligned to a startino that should match
507 * any pre-existing sparse inode record in the tree. This allows sparse chunks
510 * This function supports two modes of handling preexisting records depending on
511 * the merge flag. If merge is true, the provided record is merged with the
512 * existing record and updated in place. The merged record is returned in nrec.
513 * If merge is false, an existing record is replaced with the provided record.
514 * If no preexisting record exists, the provided record is always inserted.
516 * It is considered corruption if a merge is requested and not possible. Given
517 * the sparse inode alignment constraints, this should never happen.
520 xfs_inobt_insert_sprec(
521 struct xfs_mount
*mp
,
522 struct xfs_trans
*tp
,
523 struct xfs_buf
*agbp
,
525 struct xfs_inobt_rec_incore
*nrec
, /* in/out: new/merged rec. */
526 bool merge
) /* merge or replace */
528 struct xfs_btree_cur
*cur
;
529 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
530 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
533 struct xfs_inobt_rec_incore rec
;
535 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
537 /* the new record is pre-aligned so we know where to look */
538 error
= xfs_inobt_lookup(cur
, nrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
541 /* if nothing there, insert a new record and return */
543 error
= xfs_inobt_insert_rec(cur
, nrec
->ir_holemask
,
544 nrec
->ir_count
, nrec
->ir_freecount
,
548 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
554 * A record exists at this startino. Merge or replace the record
555 * depending on what we've been asked to do.
558 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
561 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
562 XFS_WANT_CORRUPTED_GOTO(mp
,
563 rec
.ir_startino
== nrec
->ir_startino
,
567 * This should never fail. If we have coexisting records that
568 * cannot merge, something is seriously wrong.
570 XFS_WANT_CORRUPTED_GOTO(mp
, __xfs_inobt_can_merge(nrec
, &rec
),
573 trace_xfs_irec_merge_pre(mp
, agno
, rec
.ir_startino
,
574 rec
.ir_holemask
, nrec
->ir_startino
,
577 /* merge to nrec to output the updated record */
578 __xfs_inobt_rec_merge(nrec
, &rec
);
580 trace_xfs_irec_merge_post(mp
, agno
, nrec
->ir_startino
,
583 error
= xfs_inobt_rec_check_count(mp
, nrec
);
588 error
= xfs_inobt_update(cur
, nrec
);
593 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
596 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
601 * Allocate new inodes in the allocation group specified by agbp.
602 * Return 0 for success, else error code.
604 STATIC
int /* error code or 0 */
606 xfs_trans_t
*tp
, /* transaction pointer */
607 xfs_buf_t
*agbp
, /* alloc group buffer */
610 xfs_agi_t
*agi
; /* allocation group header */
611 xfs_alloc_arg_t args
; /* allocation argument structure */
614 xfs_agino_t newino
; /* new first inode's number */
615 xfs_agino_t newlen
; /* new number of inodes */
616 int isaligned
= 0; /* inode allocation at stripe unit */
618 uint16_t allocmask
= (uint16_t) -1; /* init. to full chunk */
619 struct xfs_inobt_rec_incore rec
;
620 struct xfs_perag
*pag
;
623 memset(&args
, 0, sizeof(args
));
625 args
.mp
= tp
->t_mountp
;
626 args
.fsbno
= NULLFSBLOCK
;
627 xfs_rmap_ag_owner(&args
.oinfo
, XFS_RMAP_OWN_INODES
);
630 /* randomly do sparse inode allocations */
631 if (xfs_sb_version_hassparseinodes(&tp
->t_mountp
->m_sb
) &&
632 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
)
633 do_sparse
= prandom_u32() & 1;
637 * Locking will ensure that we don't have two callers in here
640 newlen
= args
.mp
->m_ialloc_inos
;
641 if (args
.mp
->m_maxicount
&&
642 percpu_counter_read_positive(&args
.mp
->m_icount
) + newlen
>
643 args
.mp
->m_maxicount
)
645 args
.minlen
= args
.maxlen
= args
.mp
->m_ialloc_blks
;
647 * First try to allocate inodes contiguous with the last-allocated
648 * chunk of inodes. If the filesystem is striped, this will fill
649 * an entire stripe unit with inodes.
651 agi
= XFS_BUF_TO_AGI(agbp
);
652 newino
= be32_to_cpu(agi
->agi_newino
);
653 agno
= be32_to_cpu(agi
->agi_seqno
);
654 args
.agbno
= XFS_AGINO_TO_AGBNO(args
.mp
, newino
) +
655 args
.mp
->m_ialloc_blks
;
658 if (likely(newino
!= NULLAGINO
&&
659 (args
.agbno
< be32_to_cpu(agi
->agi_length
)))) {
660 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
661 args
.type
= XFS_ALLOCTYPE_THIS_BNO
;
665 * We need to take into account alignment here to ensure that
666 * we don't modify the free list if we fail to have an exact
667 * block. If we don't have an exact match, and every oher
668 * attempt allocation attempt fails, we'll end up cancelling
669 * a dirty transaction and shutting down.
671 * For an exact allocation, alignment must be 1,
672 * however we need to take cluster alignment into account when
673 * fixing up the freelist. Use the minalignslop field to
674 * indicate that extra blocks might be required for alignment,
675 * but not to use them in the actual exact allocation.
678 args
.minalignslop
= xfs_ialloc_cluster_alignment(args
.mp
) - 1;
680 /* Allow space for the inode btree to split. */
681 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
682 if ((error
= xfs_alloc_vextent(&args
)))
686 * This request might have dirtied the transaction if the AG can
687 * satisfy the request, but the exact block was not available.
688 * If the allocation did fail, subsequent requests will relax
689 * the exact agbno requirement and increase the alignment
690 * instead. It is critical that the total size of the request
691 * (len + alignment + slop) does not increase from this point
692 * on, so reset minalignslop to ensure it is not included in
693 * subsequent requests.
695 args
.minalignslop
= 0;
698 if (unlikely(args
.fsbno
== NULLFSBLOCK
)) {
700 * Set the alignment for the allocation.
701 * If stripe alignment is turned on then align at stripe unit
703 * If the cluster size is smaller than a filesystem block
704 * then we're doing I/O for inodes in filesystem block size
705 * pieces, so don't need alignment anyway.
708 if (args
.mp
->m_sinoalign
) {
709 ASSERT(!(args
.mp
->m_flags
& XFS_MOUNT_NOALIGN
));
710 args
.alignment
= args
.mp
->m_dalign
;
713 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
715 * Need to figure out where to allocate the inode blocks.
716 * Ideally they should be spaced out through the a.g.
717 * For now, just allocate blocks up front.
719 args
.agbno
= be32_to_cpu(agi
->agi_root
);
720 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
722 * Allocate a fixed-size extent of inodes.
724 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
727 * Allow space for the inode btree to split.
729 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
730 if ((error
= xfs_alloc_vextent(&args
)))
735 * If stripe alignment is turned on, then try again with cluster
738 if (isaligned
&& args
.fsbno
== NULLFSBLOCK
) {
739 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
740 args
.agbno
= be32_to_cpu(agi
->agi_root
);
741 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
742 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
743 if ((error
= xfs_alloc_vextent(&args
)))
748 * Finally, try a sparse allocation if the filesystem supports it and
749 * the sparse allocation length is smaller than a full chunk.
751 if (xfs_sb_version_hassparseinodes(&args
.mp
->m_sb
) &&
752 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
&&
753 args
.fsbno
== NULLFSBLOCK
) {
755 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
756 args
.agbno
= be32_to_cpu(agi
->agi_root
);
757 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
758 args
.alignment
= args
.mp
->m_sb
.sb_spino_align
;
761 args
.minlen
= args
.mp
->m_ialloc_min_blks
;
762 args
.maxlen
= args
.minlen
;
765 * The inode record will be aligned to full chunk size. We must
766 * prevent sparse allocation from AG boundaries that result in
767 * invalid inode records, such as records that start at agbno 0
768 * or extend beyond the AG.
770 * Set min agbno to the first aligned, non-zero agbno and max to
771 * the last aligned agbno that is at least one full chunk from
774 args
.min_agbno
= args
.mp
->m_sb
.sb_inoalignmt
;
775 args
.max_agbno
= round_down(args
.mp
->m_sb
.sb_agblocks
,
776 args
.mp
->m_sb
.sb_inoalignmt
) -
777 args
.mp
->m_ialloc_blks
;
779 error
= xfs_alloc_vextent(&args
);
783 newlen
= args
.len
<< args
.mp
->m_sb
.sb_inopblog
;
784 ASSERT(newlen
<= XFS_INODES_PER_CHUNK
);
785 allocmask
= (1 << (newlen
/ XFS_INODES_PER_HOLEMASK_BIT
)) - 1;
788 if (args
.fsbno
== NULLFSBLOCK
) {
792 ASSERT(args
.len
== args
.minlen
);
795 * Stamp and write the inode buffers.
797 * Seed the new inode cluster with a random generation number. This
798 * prevents short-term reuse of generation numbers if a chunk is
799 * freed and then immediately reallocated. We use random numbers
800 * rather than a linear progression to prevent the next generation
801 * number from being easily guessable.
803 error
= xfs_ialloc_inode_init(args
.mp
, tp
, NULL
, newlen
, agno
,
804 args
.agbno
, args
.len
, prandom_u32());
809 * Convert the results.
811 newino
= XFS_OFFBNO_TO_AGINO(args
.mp
, args
.agbno
, 0);
813 if (xfs_inobt_issparse(~allocmask
)) {
815 * We've allocated a sparse chunk. Align the startino and mask.
817 xfs_align_sparse_ino(args
.mp
, &newino
, &allocmask
);
819 rec
.ir_startino
= newino
;
820 rec
.ir_holemask
= ~allocmask
;
821 rec
.ir_count
= newlen
;
822 rec
.ir_freecount
= newlen
;
823 rec
.ir_free
= XFS_INOBT_ALL_FREE
;
826 * Insert the sparse record into the inobt and allow for a merge
827 * if necessary. If a merge does occur, rec is updated to the
830 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
, XFS_BTNUM_INO
,
832 if (error
== -EFSCORRUPTED
) {
834 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
835 XFS_AGINO_TO_INO(args
.mp
, agno
,
837 rec
.ir_holemask
, rec
.ir_count
);
838 xfs_force_shutdown(args
.mp
, SHUTDOWN_CORRUPT_INCORE
);
844 * We can't merge the part we've just allocated as for the inobt
845 * due to finobt semantics. The original record may or may not
846 * exist independent of whether physical inodes exist in this
849 * We must update the finobt record based on the inobt record.
850 * rec contains the fully merged and up to date inobt record
851 * from the previous call. Set merge false to replace any
852 * existing record with this one.
854 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
855 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
,
856 XFS_BTNUM_FINO
, &rec
,
862 /* full chunk - insert new records to both btrees */
863 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
, newlen
,
868 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
869 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
,
870 newlen
, XFS_BTNUM_FINO
);
877 * Update AGI counts and newino.
879 be32_add_cpu(&agi
->agi_count
, newlen
);
880 be32_add_cpu(&agi
->agi_freecount
, newlen
);
881 pag
= xfs_perag_get(args
.mp
, agno
);
882 pag
->pagi_freecount
+= newlen
;
884 agi
->agi_newino
= cpu_to_be32(newino
);
887 * Log allocation group header fields
889 xfs_ialloc_log_agi(tp
, agbp
,
890 XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
| XFS_AGI_NEWINO
);
892 * Modify/log superblock values for inode count and inode free count.
894 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, (long)newlen
);
895 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, (long)newlen
);
900 STATIC xfs_agnumber_t
906 spin_lock(&mp
->m_agirotor_lock
);
907 agno
= mp
->m_agirotor
;
908 if (++mp
->m_agirotor
>= mp
->m_maxagi
)
910 spin_unlock(&mp
->m_agirotor_lock
);
916 * Select an allocation group to look for a free inode in, based on the parent
917 * inode and the mode. Return the allocation group buffer.
919 STATIC xfs_agnumber_t
920 xfs_ialloc_ag_select(
921 xfs_trans_t
*tp
, /* transaction pointer */
922 xfs_ino_t parent
, /* parent directory inode number */
923 umode_t mode
) /* bits set to indicate file type */
925 xfs_agnumber_t agcount
; /* number of ag's in the filesystem */
926 xfs_agnumber_t agno
; /* current ag number */
927 int flags
; /* alloc buffer locking flags */
928 xfs_extlen_t ineed
; /* blocks needed for inode allocation */
929 xfs_extlen_t longest
= 0; /* longest extent available */
930 xfs_mount_t
*mp
; /* mount point structure */
931 int needspace
; /* file mode implies space allocated */
932 xfs_perag_t
*pag
; /* per allocation group data */
933 xfs_agnumber_t pagno
; /* parent (starting) ag number */
937 * Files of these types need at least one block if length > 0
938 * (and they won't fit in the inode, but that's hard to figure out).
940 needspace
= S_ISDIR(mode
) || S_ISREG(mode
) || S_ISLNK(mode
);
942 agcount
= mp
->m_maxagi
;
944 pagno
= xfs_ialloc_next_ag(mp
);
946 pagno
= XFS_INO_TO_AGNO(mp
, parent
);
947 if (pagno
>= agcount
)
951 ASSERT(pagno
< agcount
);
954 * Loop through allocation groups, looking for one with a little
955 * free space in it. Note we don't look for free inodes, exactly.
956 * Instead, we include whether there is a need to allocate inodes
957 * to mean that blocks must be allocated for them,
958 * if none are currently free.
961 flags
= XFS_ALLOC_FLAG_TRYLOCK
;
963 pag
= xfs_perag_get(mp
, agno
);
964 if (!pag
->pagi_inodeok
) {
965 xfs_ialloc_next_ag(mp
);
969 if (!pag
->pagi_init
) {
970 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
975 if (pag
->pagi_freecount
) {
980 if (!pag
->pagf_init
) {
981 error
= xfs_alloc_pagf_init(mp
, tp
, agno
, flags
);
987 * Check that there is enough free space for the file plus a
988 * chunk of inodes if we need to allocate some. If this is the
989 * first pass across the AGs, take into account the potential
990 * space needed for alignment of inode chunks when checking the
991 * longest contiguous free space in the AG - this prevents us
992 * from getting ENOSPC because we have free space larger than
993 * m_ialloc_blks but alignment constraints prevent us from using
996 * If we can't find an AG with space for full alignment slack to
997 * be taken into account, we must be near ENOSPC in all AGs.
998 * Hence we don't include alignment for the second pass and so
999 * if we fail allocation due to alignment issues then it is most
1000 * likely a real ENOSPC condition.
1002 ineed
= mp
->m_ialloc_min_blks
;
1003 if (flags
&& ineed
> 1)
1004 ineed
+= xfs_ialloc_cluster_alignment(mp
);
1005 longest
= pag
->pagf_longest
;
1007 longest
= pag
->pagf_flcount
> 0;
1009 if (pag
->pagf_freeblks
>= needspace
+ ineed
&&
1017 * No point in iterating over the rest, if we're shutting
1020 if (XFS_FORCED_SHUTDOWN(mp
))
1021 return NULLAGNUMBER
;
1023 if (agno
>= agcount
)
1025 if (agno
== pagno
) {
1027 return NULLAGNUMBER
;
1034 * Try to retrieve the next record to the left/right from the current one.
1037 xfs_ialloc_next_rec(
1038 struct xfs_btree_cur
*cur
,
1039 xfs_inobt_rec_incore_t
*rec
,
1047 error
= xfs_btree_decrement(cur
, 0, &i
);
1049 error
= xfs_btree_increment(cur
, 0, &i
);
1055 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1058 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1066 struct xfs_btree_cur
*cur
,
1068 xfs_inobt_rec_incore_t
*rec
,
1074 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_EQ
, &i
);
1079 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1082 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1089 * Return the offset of the first free inode in the record. If the inode chunk
1090 * is sparsely allocated, we convert the record holemask to inode granularity
1091 * and mask off the unallocated regions from the inode free mask.
1094 xfs_inobt_first_free_inode(
1095 struct xfs_inobt_rec_incore
*rec
)
1097 xfs_inofree_t realfree
;
1099 /* if there are no holes, return the first available offset */
1100 if (!xfs_inobt_issparse(rec
->ir_holemask
))
1101 return xfs_lowbit64(rec
->ir_free
);
1103 realfree
= xfs_inobt_irec_to_allocmask(rec
);
1104 realfree
&= rec
->ir_free
;
1106 return xfs_lowbit64(realfree
);
1110 * Allocate an inode using the inobt-only algorithm.
1113 xfs_dialloc_ag_inobt(
1114 struct xfs_trans
*tp
,
1115 struct xfs_buf
*agbp
,
1119 struct xfs_mount
*mp
= tp
->t_mountp
;
1120 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1121 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1122 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1123 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1124 struct xfs_perag
*pag
;
1125 struct xfs_btree_cur
*cur
, *tcur
;
1126 struct xfs_inobt_rec_incore rec
, trec
;
1131 int searchdistance
= 10;
1133 pag
= xfs_perag_get(mp
, agno
);
1135 ASSERT(pag
->pagi_init
);
1136 ASSERT(pag
->pagi_inodeok
);
1137 ASSERT(pag
->pagi_freecount
> 0);
1140 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1142 * If pagino is 0 (this is the root inode allocation) use newino.
1143 * This must work because we've just allocated some.
1146 pagino
= be32_to_cpu(agi
->agi_newino
);
1148 error
= xfs_check_agi_freecount(cur
, agi
);
1153 * If in the same AG as the parent, try to get near the parent.
1155 if (pagno
== agno
) {
1156 int doneleft
; /* done, to the left */
1157 int doneright
; /* done, to the right */
1159 error
= xfs_inobt_lookup(cur
, pagino
, XFS_LOOKUP_LE
, &i
);
1162 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1164 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1167 XFS_WANT_CORRUPTED_GOTO(mp
, j
== 1, error0
);
1169 if (rec
.ir_freecount
> 0) {
1171 * Found a free inode in the same chunk
1172 * as the parent, done.
1179 * In the same AG as parent, but parent's chunk is full.
1182 /* duplicate the cursor, search left & right simultaneously */
1183 error
= xfs_btree_dup_cursor(cur
, &tcur
);
1188 * Skip to last blocks looked up if same parent inode.
1190 if (pagino
!= NULLAGINO
&&
1191 pag
->pagl_pagino
== pagino
&&
1192 pag
->pagl_leftrec
!= NULLAGINO
&&
1193 pag
->pagl_rightrec
!= NULLAGINO
) {
1194 error
= xfs_ialloc_get_rec(tcur
, pag
->pagl_leftrec
,
1199 error
= xfs_ialloc_get_rec(cur
, pag
->pagl_rightrec
,
1204 /* search left with tcur, back up 1 record */
1205 error
= xfs_ialloc_next_rec(tcur
, &trec
, &doneleft
, 1);
1209 /* search right with cur, go forward 1 record. */
1210 error
= xfs_ialloc_next_rec(cur
, &rec
, &doneright
, 0);
1216 * Loop until we find an inode chunk with a free inode.
1218 while (--searchdistance
> 0 && (!doneleft
|| !doneright
)) {
1219 int useleft
; /* using left inode chunk this time */
1221 /* figure out the closer block if both are valid. */
1222 if (!doneleft
&& !doneright
) {
1224 (trec
.ir_startino
+ XFS_INODES_PER_CHUNK
- 1) <
1225 rec
.ir_startino
- pagino
;
1227 useleft
= !doneleft
;
1230 /* free inodes to the left? */
1231 if (useleft
&& trec
.ir_freecount
) {
1232 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1235 pag
->pagl_leftrec
= trec
.ir_startino
;
1236 pag
->pagl_rightrec
= rec
.ir_startino
;
1237 pag
->pagl_pagino
= pagino
;
1242 /* free inodes to the right? */
1243 if (!useleft
&& rec
.ir_freecount
) {
1244 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1246 pag
->pagl_leftrec
= trec
.ir_startino
;
1247 pag
->pagl_rightrec
= rec
.ir_startino
;
1248 pag
->pagl_pagino
= pagino
;
1252 /* get next record to check */
1254 error
= xfs_ialloc_next_rec(tcur
, &trec
,
1257 error
= xfs_ialloc_next_rec(cur
, &rec
,
1264 if (searchdistance
<= 0) {
1266 * Not in range - save last search
1267 * location and allocate a new inode
1269 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1270 pag
->pagl_leftrec
= trec
.ir_startino
;
1271 pag
->pagl_rightrec
= rec
.ir_startino
;
1272 pag
->pagl_pagino
= pagino
;
1276 * We've reached the end of the btree. because
1277 * we are only searching a small chunk of the
1278 * btree each search, there is obviously free
1279 * inodes closer to the parent inode than we
1280 * are now. restart the search again.
1282 pag
->pagl_pagino
= NULLAGINO
;
1283 pag
->pagl_leftrec
= NULLAGINO
;
1284 pag
->pagl_rightrec
= NULLAGINO
;
1285 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1286 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1292 * In a different AG from the parent.
1293 * See if the most recently allocated block has any free.
1295 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1296 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1302 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1306 if (j
== 1 && rec
.ir_freecount
> 0) {
1308 * The last chunk allocated in the group
1309 * still has a free inode.
1317 * None left in the last group, search the whole AG
1319 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1322 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1325 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1328 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1329 if (rec
.ir_freecount
> 0)
1331 error
= xfs_btree_increment(cur
, 0, &i
);
1334 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1338 offset
= xfs_inobt_first_free_inode(&rec
);
1339 ASSERT(offset
>= 0);
1340 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1341 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1342 XFS_INODES_PER_CHUNK
) == 0);
1343 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1344 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1346 error
= xfs_inobt_update(cur
, &rec
);
1349 be32_add_cpu(&agi
->agi_freecount
, -1);
1350 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1351 pag
->pagi_freecount
--;
1353 error
= xfs_check_agi_freecount(cur
, agi
);
1357 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1358 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1363 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
1365 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1371 * Use the free inode btree to allocate an inode based on distance from the
1372 * parent. Note that the provided cursor may be deleted and replaced.
1375 xfs_dialloc_ag_finobt_near(
1377 struct xfs_btree_cur
**ocur
,
1378 struct xfs_inobt_rec_incore
*rec
)
1380 struct xfs_btree_cur
*lcur
= *ocur
; /* left search cursor */
1381 struct xfs_btree_cur
*rcur
; /* right search cursor */
1382 struct xfs_inobt_rec_incore rrec
;
1386 error
= xfs_inobt_lookup(lcur
, pagino
, XFS_LOOKUP_LE
, &i
);
1391 error
= xfs_inobt_get_rec(lcur
, rec
, &i
);
1394 XFS_WANT_CORRUPTED_RETURN(lcur
->bc_mp
, i
== 1);
1397 * See if we've landed in the parent inode record. The finobt
1398 * only tracks chunks with at least one free inode, so record
1399 * existence is enough.
1401 if (pagino
>= rec
->ir_startino
&&
1402 pagino
< (rec
->ir_startino
+ XFS_INODES_PER_CHUNK
))
1406 error
= xfs_btree_dup_cursor(lcur
, &rcur
);
1410 error
= xfs_inobt_lookup(rcur
, pagino
, XFS_LOOKUP_GE
, &j
);
1414 error
= xfs_inobt_get_rec(rcur
, &rrec
, &j
);
1417 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, j
== 1, error_rcur
);
1420 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, i
== 1 || j
== 1, error_rcur
);
1421 if (i
== 1 && j
== 1) {
1423 * Both the left and right records are valid. Choose the closer
1424 * inode chunk to the target.
1426 if ((pagino
- rec
->ir_startino
+ XFS_INODES_PER_CHUNK
- 1) >
1427 (rrec
.ir_startino
- pagino
)) {
1429 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1432 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1434 } else if (j
== 1) {
1435 /* only the right record is valid */
1437 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1439 } else if (i
== 1) {
1440 /* only the left record is valid */
1441 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1447 xfs_btree_del_cursor(rcur
, XFS_BTREE_ERROR
);
1452 * Use the free inode btree to find a free inode based on a newino hint. If
1453 * the hint is NULL, find the first free inode in the AG.
1456 xfs_dialloc_ag_finobt_newino(
1457 struct xfs_agi
*agi
,
1458 struct xfs_btree_cur
*cur
,
1459 struct xfs_inobt_rec_incore
*rec
)
1464 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1465 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1470 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1473 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1479 * Find the first inode available in the AG.
1481 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1484 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1486 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1489 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1495 * Update the inobt based on a modification made to the finobt. Also ensure that
1496 * the records from both trees are equivalent post-modification.
1499 xfs_dialloc_ag_update_inobt(
1500 struct xfs_btree_cur
*cur
, /* inobt cursor */
1501 struct xfs_inobt_rec_incore
*frec
, /* finobt record */
1502 int offset
) /* inode offset */
1504 struct xfs_inobt_rec_incore rec
;
1508 error
= xfs_inobt_lookup(cur
, frec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
1511 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1513 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1516 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1517 ASSERT((XFS_AGINO_TO_OFFSET(cur
->bc_mp
, rec
.ir_startino
) %
1518 XFS_INODES_PER_CHUNK
) == 0);
1520 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1523 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, (rec
.ir_free
== frec
->ir_free
) &&
1524 (rec
.ir_freecount
== frec
->ir_freecount
));
1526 return xfs_inobt_update(cur
, &rec
);
1530 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1531 * back to the inobt search algorithm.
1533 * The caller selected an AG for us, and made sure that free inodes are
1538 struct xfs_trans
*tp
,
1539 struct xfs_buf
*agbp
,
1543 struct xfs_mount
*mp
= tp
->t_mountp
;
1544 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1545 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1546 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1547 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1548 struct xfs_perag
*pag
;
1549 struct xfs_btree_cur
*cur
; /* finobt cursor */
1550 struct xfs_btree_cur
*icur
; /* inobt cursor */
1551 struct xfs_inobt_rec_incore rec
;
1557 if (!xfs_sb_version_hasfinobt(&mp
->m_sb
))
1558 return xfs_dialloc_ag_inobt(tp
, agbp
, parent
, inop
);
1560 pag
= xfs_perag_get(mp
, agno
);
1563 * If pagino is 0 (this is the root inode allocation) use newino.
1564 * This must work because we've just allocated some.
1567 pagino
= be32_to_cpu(agi
->agi_newino
);
1569 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
1571 error
= xfs_check_agi_freecount(cur
, agi
);
1576 * The search algorithm depends on whether we're in the same AG as the
1577 * parent. If so, find the closest available inode to the parent. If
1578 * not, consider the agi hint or find the first free inode in the AG.
1581 error
= xfs_dialloc_ag_finobt_near(pagino
, &cur
, &rec
);
1583 error
= xfs_dialloc_ag_finobt_newino(agi
, cur
, &rec
);
1587 offset
= xfs_inobt_first_free_inode(&rec
);
1588 ASSERT(offset
>= 0);
1589 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1590 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1591 XFS_INODES_PER_CHUNK
) == 0);
1592 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1595 * Modify or remove the finobt record.
1597 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1599 if (rec
.ir_freecount
)
1600 error
= xfs_inobt_update(cur
, &rec
);
1602 error
= xfs_btree_delete(cur
, &i
);
1607 * The finobt has now been updated appropriately. We haven't updated the
1608 * agi and superblock yet, so we can create an inobt cursor and validate
1609 * the original freecount. If all is well, make the equivalent update to
1610 * the inobt using the finobt record and offset information.
1612 icur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1614 error
= xfs_check_agi_freecount(icur
, agi
);
1618 error
= xfs_dialloc_ag_update_inobt(icur
, &rec
, offset
);
1623 * Both trees have now been updated. We must update the perag and
1624 * superblock before we can check the freecount for each btree.
1626 be32_add_cpu(&agi
->agi_freecount
, -1);
1627 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1628 pag
->pagi_freecount
--;
1630 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1632 error
= xfs_check_agi_freecount(icur
, agi
);
1635 error
= xfs_check_agi_freecount(cur
, agi
);
1639 xfs_btree_del_cursor(icur
, XFS_BTREE_NOERROR
);
1640 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1646 xfs_btree_del_cursor(icur
, XFS_BTREE_ERROR
);
1648 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1654 * Allocate an inode on disk.
1656 * Mode is used to tell whether the new inode will need space, and whether it
1659 * This function is designed to be called twice if it has to do an allocation
1660 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1661 * If an inode is available without having to performn an allocation, an inode
1662 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1663 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1664 * The caller should then commit the current transaction, allocate a
1665 * new transaction, and call xfs_dialloc() again, passing in the previous value
1666 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1667 * buffer is locked across the two calls, the second call is guaranteed to have
1668 * a free inode available.
1670 * Once we successfully pick an inode its number is returned and the on-disk
1671 * data structures are updated. The inode itself is not read in, since doing so
1672 * would break ordering constraints with xfs_reclaim.
1676 struct xfs_trans
*tp
,
1679 struct xfs_buf
**IO_agbp
,
1682 struct xfs_mount
*mp
= tp
->t_mountp
;
1683 struct xfs_buf
*agbp
;
1684 xfs_agnumber_t agno
;
1688 xfs_agnumber_t start_agno
;
1689 struct xfs_perag
*pag
;
1694 * If the caller passes in a pointer to the AGI buffer,
1695 * continue where we left off before. In this case, we
1696 * know that the allocation group has free inodes.
1703 * We do not have an agbp, so select an initial allocation
1704 * group for inode allocation.
1706 start_agno
= xfs_ialloc_ag_select(tp
, parent
, mode
);
1707 if (start_agno
== NULLAGNUMBER
) {
1713 * If we have already hit the ceiling of inode blocks then clear
1714 * okalloc so we scan all available agi structures for a free
1717 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1718 * which will sacrifice the preciseness but improve the performance.
1720 if (mp
->m_maxicount
&&
1721 percpu_counter_read_positive(&mp
->m_icount
) + mp
->m_ialloc_inos
1722 > mp
->m_maxicount
) {
1728 * Loop until we find an allocation group that either has free inodes
1729 * or in which we can allocate some inodes. Iterate through the
1730 * allocation groups upward, wrapping at the end.
1734 pag
= xfs_perag_get(mp
, agno
);
1735 if (!pag
->pagi_inodeok
) {
1736 xfs_ialloc_next_ag(mp
);
1740 if (!pag
->pagi_init
) {
1741 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
1747 * Do a first racy fast path check if this AG is usable.
1749 if (!pag
->pagi_freecount
&& !okalloc
)
1753 * Then read in the AGI buffer and recheck with the AGI buffer
1756 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
1760 if (pag
->pagi_freecount
) {
1766 goto nextag_relse_buffer
;
1769 error
= xfs_ialloc_ag_alloc(tp
, agbp
, &ialloced
);
1771 xfs_trans_brelse(tp
, agbp
);
1773 if (error
!= -ENOSPC
)
1783 * We successfully allocated some inodes, return
1784 * the current context to the caller so that it
1785 * can commit the current transaction and call
1786 * us again where we left off.
1788 ASSERT(pag
->pagi_freecount
> 0);
1796 nextag_relse_buffer
:
1797 xfs_trans_brelse(tp
, agbp
);
1800 if (++agno
== mp
->m_sb
.sb_agcount
)
1802 if (agno
== start_agno
) {
1804 return noroom
? -ENOSPC
: 0;
1810 return xfs_dialloc_ag(tp
, agbp
, parent
, inop
);
1817 * Free the blocks of an inode chunk. We must consider that the inode chunk
1818 * might be sparse and only free the regions that are allocated as part of the
1822 xfs_difree_inode_chunk(
1823 struct xfs_mount
*mp
,
1824 xfs_agnumber_t agno
,
1825 struct xfs_inobt_rec_incore
*rec
,
1826 struct xfs_defer_ops
*dfops
)
1828 xfs_agblock_t sagbno
= XFS_AGINO_TO_AGBNO(mp
, rec
->ir_startino
);
1829 int startidx
, endidx
;
1831 xfs_agblock_t agbno
;
1833 struct xfs_owner_info oinfo
;
1834 DECLARE_BITMAP(holemask
, XFS_INOBT_HOLEMASK_BITS
);
1835 xfs_rmap_ag_owner(&oinfo
, XFS_RMAP_OWN_INODES
);
1837 if (!xfs_inobt_issparse(rec
->ir_holemask
)) {
1838 /* not sparse, calculate extent info directly */
1839 xfs_bmap_add_free(mp
, dfops
, XFS_AGB_TO_FSB(mp
, agno
, sagbno
),
1840 mp
->m_ialloc_blks
, &oinfo
);
1844 /* holemask is only 16-bits (fits in an unsigned long) */
1845 ASSERT(sizeof(rec
->ir_holemask
) <= sizeof(holemask
[0]));
1846 holemask
[0] = rec
->ir_holemask
;
1849 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1850 * holemask and convert the start/end index of each range to an extent.
1851 * We start with the start and end index both pointing at the first 0 in
1854 startidx
= endidx
= find_first_zero_bit(holemask
,
1855 XFS_INOBT_HOLEMASK_BITS
);
1856 nextbit
= startidx
+ 1;
1857 while (startidx
< XFS_INOBT_HOLEMASK_BITS
) {
1858 nextbit
= find_next_zero_bit(holemask
, XFS_INOBT_HOLEMASK_BITS
,
1861 * If the next zero bit is contiguous, update the end index of
1862 * the current range and continue.
1864 if (nextbit
!= XFS_INOBT_HOLEMASK_BITS
&&
1865 nextbit
== endidx
+ 1) {
1871 * nextbit is not contiguous with the current end index. Convert
1872 * the current start/end to an extent and add it to the free
1875 agbno
= sagbno
+ (startidx
* XFS_INODES_PER_HOLEMASK_BIT
) /
1876 mp
->m_sb
.sb_inopblock
;
1877 contigblk
= ((endidx
- startidx
+ 1) *
1878 XFS_INODES_PER_HOLEMASK_BIT
) /
1879 mp
->m_sb
.sb_inopblock
;
1881 ASSERT(agbno
% mp
->m_sb
.sb_spino_align
== 0);
1882 ASSERT(contigblk
% mp
->m_sb
.sb_spino_align
== 0);
1883 xfs_bmap_add_free(mp
, dfops
, XFS_AGB_TO_FSB(mp
, agno
, agbno
),
1886 /* reset range to current bit and carry on... */
1887 startidx
= endidx
= nextbit
;
1896 struct xfs_mount
*mp
,
1897 struct xfs_trans
*tp
,
1898 struct xfs_buf
*agbp
,
1900 struct xfs_defer_ops
*dfops
,
1901 struct xfs_icluster
*xic
,
1902 struct xfs_inobt_rec_incore
*orec
)
1904 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1905 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1906 struct xfs_perag
*pag
;
1907 struct xfs_btree_cur
*cur
;
1908 struct xfs_inobt_rec_incore rec
;
1914 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
1915 ASSERT(XFS_AGINO_TO_AGBNO(mp
, agino
) < be32_to_cpu(agi
->agi_length
));
1918 * Initialize the cursor.
1920 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1922 error
= xfs_check_agi_freecount(cur
, agi
);
1927 * Look for the entry describing this inode.
1929 if ((error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
))) {
1930 xfs_warn(mp
, "%s: xfs_inobt_lookup() returned error %d.",
1934 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1935 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1937 xfs_warn(mp
, "%s: xfs_inobt_get_rec() returned error %d.",
1941 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1943 * Get the offset in the inode chunk.
1945 off
= agino
- rec
.ir_startino
;
1946 ASSERT(off
>= 0 && off
< XFS_INODES_PER_CHUNK
);
1947 ASSERT(!(rec
.ir_free
& XFS_INOBT_MASK(off
)));
1949 * Mark the inode free & increment the count.
1951 rec
.ir_free
|= XFS_INOBT_MASK(off
);
1955 * When an inode chunk is free, it becomes eligible for removal. Don't
1956 * remove the chunk if the block size is large enough for multiple inode
1957 * chunks (that might not be free).
1959 if (!(mp
->m_flags
& XFS_MOUNT_IKEEP
) &&
1960 rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
1961 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
) {
1962 xic
->deleted
= true;
1963 xic
->first_ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
);
1964 xic
->alloc
= xfs_inobt_irec_to_allocmask(&rec
);
1967 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 * AGI and Superblock inode counts, and mark the disk space
1969 * to be freed when the transaction is committed.
1971 ilen
= rec
.ir_freecount
;
1972 be32_add_cpu(&agi
->agi_count
, -ilen
);
1973 be32_add_cpu(&agi
->agi_freecount
, -(ilen
- 1));
1974 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
);
1975 pag
= xfs_perag_get(mp
, agno
);
1976 pag
->pagi_freecount
-= ilen
- 1;
1978 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, -ilen
);
1979 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -(ilen
- 1));
1981 if ((error
= xfs_btree_delete(cur
, &i
))) {
1982 xfs_warn(mp
, "%s: xfs_btree_delete returned error %d.",
1987 xfs_difree_inode_chunk(mp
, agno
, &rec
, dfops
);
1989 xic
->deleted
= false;
1991 error
= xfs_inobt_update(cur
, &rec
);
1993 xfs_warn(mp
, "%s: xfs_inobt_update returned error %d.",
1999 * Change the inode free counts and log the ag/sb changes.
2001 be32_add_cpu(&agi
->agi_freecount
, 1);
2002 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
2003 pag
= xfs_perag_get(mp
, agno
);
2004 pag
->pagi_freecount
++;
2006 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, 1);
2009 error
= xfs_check_agi_freecount(cur
, agi
);
2014 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2018 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2023 * Free an inode in the free inode btree.
2027 struct xfs_mount
*mp
,
2028 struct xfs_trans
*tp
,
2029 struct xfs_buf
*agbp
,
2031 struct xfs_inobt_rec_incore
*ibtrec
) /* inobt record */
2033 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
2034 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
2035 struct xfs_btree_cur
*cur
;
2036 struct xfs_inobt_rec_incore rec
;
2037 int offset
= agino
- ibtrec
->ir_startino
;
2041 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
2043 error
= xfs_inobt_lookup(cur
, ibtrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
2048 * If the record does not exist in the finobt, we must have just
2049 * freed an inode in a previously fully allocated chunk. If not,
2050 * something is out of sync.
2052 XFS_WANT_CORRUPTED_GOTO(mp
, ibtrec
->ir_freecount
== 1, error
);
2054 error
= xfs_inobt_insert_rec(cur
, ibtrec
->ir_holemask
,
2056 ibtrec
->ir_freecount
,
2057 ibtrec
->ir_free
, &i
);
2066 * Read and update the existing record. We could just copy the ibtrec
2067 * across here, but that would defeat the purpose of having redundant
2068 * metadata. By making the modifications independently, we can catch
2069 * corruptions that we wouldn't see if we just copied from one record
2072 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2075 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
2077 rec
.ir_free
|= XFS_INOBT_MASK(offset
);
2080 XFS_WANT_CORRUPTED_GOTO(mp
, (rec
.ir_free
== ibtrec
->ir_free
) &&
2081 (rec
.ir_freecount
== ibtrec
->ir_freecount
),
2085 * The content of inobt records should always match between the inobt
2086 * and finobt. The lifecycle of records in the finobt is different from
2087 * the inobt in that the finobt only tracks records with at least one
2088 * free inode. Hence, if all of the inodes are free and we aren't
2089 * keeping inode chunks permanently on disk, remove the record.
2090 * Otherwise, update the record with the new information.
2092 * Note that we currently can't free chunks when the block size is large
2093 * enough for multiple chunks. Leave the finobt record to remain in sync
2096 if (rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
2097 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
&&
2098 !(mp
->m_flags
& XFS_MOUNT_IKEEP
)) {
2099 error
= xfs_btree_delete(cur
, &i
);
2104 error
= xfs_inobt_update(cur
, &rec
);
2110 error
= xfs_check_agi_freecount(cur
, agi
);
2114 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2118 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2123 * Free disk inode. Carefully avoids touching the incore inode, all
2124 * manipulations incore are the caller's responsibility.
2125 * The on-disk inode is not changed by this operation, only the
2126 * btree (free inode mask) is changed.
2130 struct xfs_trans
*tp
, /* transaction pointer */
2131 xfs_ino_t inode
, /* inode to be freed */
2132 struct xfs_defer_ops
*dfops
, /* extents to free */
2133 struct xfs_icluster
*xic
) /* cluster info if deleted */
2136 xfs_agblock_t agbno
; /* block number containing inode */
2137 struct xfs_buf
*agbp
; /* buffer for allocation group header */
2138 xfs_agino_t agino
; /* allocation group inode number */
2139 xfs_agnumber_t agno
; /* allocation group number */
2140 int error
; /* error return value */
2141 struct xfs_mount
*mp
; /* mount structure for filesystem */
2142 struct xfs_inobt_rec_incore rec
;/* btree record */
2147 * Break up inode number into its components.
2149 agno
= XFS_INO_TO_AGNO(mp
, inode
);
2150 if (agno
>= mp
->m_sb
.sb_agcount
) {
2151 xfs_warn(mp
, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2152 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2156 agino
= XFS_INO_TO_AGINO(mp
, inode
);
2157 if (inode
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2158 xfs_warn(mp
, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2159 __func__
, (unsigned long long)inode
,
2160 (unsigned long long)XFS_AGINO_TO_INO(mp
, agno
, agino
));
2164 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2165 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2166 xfs_warn(mp
, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2167 __func__
, agbno
, mp
->m_sb
.sb_agblocks
);
2172 * Get the allocation group header.
2174 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2176 xfs_warn(mp
, "%s: xfs_ialloc_read_agi() returned error %d.",
2182 * Fix up the inode allocation btree.
2184 error
= xfs_difree_inobt(mp
, tp
, agbp
, agino
, dfops
, xic
, &rec
);
2189 * Fix up the free inode btree.
2191 if (xfs_sb_version_hasfinobt(&mp
->m_sb
)) {
2192 error
= xfs_difree_finobt(mp
, tp
, agbp
, agino
, &rec
);
2205 struct xfs_mount
*mp
,
2206 struct xfs_trans
*tp
,
2207 xfs_agnumber_t agno
,
2209 xfs_agblock_t agbno
,
2210 xfs_agblock_t
*chunk_agbno
,
2211 xfs_agblock_t
*offset_agbno
,
2214 struct xfs_inobt_rec_incore rec
;
2215 struct xfs_btree_cur
*cur
;
2216 struct xfs_buf
*agbp
;
2220 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2223 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2224 __func__
, error
, agno
);
2229 * Lookup the inode record for the given agino. If the record cannot be
2230 * found, then it's an invalid inode number and we should abort. Once
2231 * we have a record, we need to ensure it contains the inode number
2232 * we are looking up.
2234 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
2235 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
);
2238 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2239 if (!error
&& i
== 0)
2243 xfs_trans_brelse(tp
, agbp
);
2244 xfs_btree_del_cursor(cur
, error
? XFS_BTREE_ERROR
: XFS_BTREE_NOERROR
);
2248 /* check that the returned record contains the required inode */
2249 if (rec
.ir_startino
> agino
||
2250 rec
.ir_startino
+ mp
->m_ialloc_inos
<= agino
)
2253 /* for untrusted inodes check it is allocated first */
2254 if ((flags
& XFS_IGET_UNTRUSTED
) &&
2255 (rec
.ir_free
& XFS_INOBT_MASK(agino
- rec
.ir_startino
)))
2258 *chunk_agbno
= XFS_AGINO_TO_AGBNO(mp
, rec
.ir_startino
);
2259 *offset_agbno
= agbno
- *chunk_agbno
;
2264 * Return the location of the inode in imap, for mapping it into a buffer.
2268 xfs_mount_t
*mp
, /* file system mount structure */
2269 xfs_trans_t
*tp
, /* transaction pointer */
2270 xfs_ino_t ino
, /* inode to locate */
2271 struct xfs_imap
*imap
, /* location map structure */
2272 uint flags
) /* flags for inode btree lookup */
2274 xfs_agblock_t agbno
; /* block number of inode in the alloc group */
2275 xfs_agino_t agino
; /* inode number within alloc group */
2276 xfs_agnumber_t agno
; /* allocation group number */
2277 int blks_per_cluster
; /* num blocks per inode cluster */
2278 xfs_agblock_t chunk_agbno
; /* first block in inode chunk */
2279 xfs_agblock_t cluster_agbno
; /* first block in inode cluster */
2280 int error
; /* error code */
2281 int offset
; /* index of inode in its buffer */
2282 xfs_agblock_t offset_agbno
; /* blks from chunk start to inode */
2284 ASSERT(ino
!= NULLFSINO
);
2287 * Split up the inode number into its parts.
2289 agno
= XFS_INO_TO_AGNO(mp
, ino
);
2290 agino
= XFS_INO_TO_AGINO(mp
, ino
);
2291 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2292 if (agno
>= mp
->m_sb
.sb_agcount
|| agbno
>= mp
->m_sb
.sb_agblocks
||
2293 ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2296 * Don't output diagnostic information for untrusted inodes
2297 * as they can be invalid without implying corruption.
2299 if (flags
& XFS_IGET_UNTRUSTED
)
2301 if (agno
>= mp
->m_sb
.sb_agcount
) {
2303 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2304 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2306 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2308 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2309 __func__
, (unsigned long long)agbno
,
2310 (unsigned long)mp
->m_sb
.sb_agblocks
);
2312 if (ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2314 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2316 XFS_AGINO_TO_INO(mp
, agno
, agino
));
2323 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2326 * For bulkstat and handle lookups, we have an untrusted inode number
2327 * that we have to verify is valid. We cannot do this just by reading
2328 * the inode buffer as it may have been unlinked and removed leaving
2329 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 * in all cases where an untrusted inode number is passed.
2332 if (flags
& XFS_IGET_UNTRUSTED
) {
2333 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2334 &chunk_agbno
, &offset_agbno
, flags
);
2341 * If the inode cluster size is the same as the blocksize or
2342 * smaller we get to the buffer by simple arithmetics.
2344 if (blks_per_cluster
== 1) {
2345 offset
= XFS_INO_TO_OFFSET(mp
, ino
);
2346 ASSERT(offset
< mp
->m_sb
.sb_inopblock
);
2348 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
);
2349 imap
->im_len
= XFS_FSB_TO_BB(mp
, 1);
2350 imap
->im_boffset
= (unsigned short)(offset
<<
2351 mp
->m_sb
.sb_inodelog
);
2356 * If the inode chunks are aligned then use simple maths to
2357 * find the location. Otherwise we have to do a btree
2358 * lookup to find the location.
2360 if (mp
->m_inoalign_mask
) {
2361 offset_agbno
= agbno
& mp
->m_inoalign_mask
;
2362 chunk_agbno
= agbno
- offset_agbno
;
2364 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2365 &chunk_agbno
, &offset_agbno
, flags
);
2371 ASSERT(agbno
>= chunk_agbno
);
2372 cluster_agbno
= chunk_agbno
+
2373 ((offset_agbno
/ blks_per_cluster
) * blks_per_cluster
);
2374 offset
= ((agbno
- cluster_agbno
) * mp
->m_sb
.sb_inopblock
) +
2375 XFS_INO_TO_OFFSET(mp
, ino
);
2377 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, cluster_agbno
);
2378 imap
->im_len
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
2379 imap
->im_boffset
= (unsigned short)(offset
<< mp
->m_sb
.sb_inodelog
);
2382 * If the inode number maps to a block outside the bounds
2383 * of the file system then return NULL rather than calling
2384 * read_buf and panicing when we get an error from the
2387 if ((imap
->im_blkno
+ imap
->im_len
) >
2388 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
2390 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391 __func__
, (unsigned long long) imap
->im_blkno
,
2392 (unsigned long long) imap
->im_len
,
2393 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
2400 * Compute and fill in value of m_in_maxlevels.
2403 xfs_ialloc_compute_maxlevels(
2404 xfs_mount_t
*mp
) /* file system mount structure */
2408 inodes
= (1LL << XFS_INO_AGINO_BITS(mp
)) >> XFS_INODES_PER_CHUNK_LOG
;
2409 mp
->m_in_maxlevels
= xfs_btree_compute_maxlevels(mp
, mp
->m_inobt_mnr
,
2414 * Log specified fields for the ag hdr (inode section). The growth of the agi
2415 * structure over time requires that we interpret the buffer as two logical
2416 * regions delineated by the end of the unlinked list. This is due to the size
2417 * of the hash table and its location in the middle of the agi.
2419 * For example, a request to log a field before agi_unlinked and a field after
2420 * agi_unlinked could cause us to log the entire hash table and use an excessive
2421 * amount of log space. To avoid this behavior, log the region up through
2422 * agi_unlinked in one call and the region after agi_unlinked through the end of
2423 * the structure in another.
2427 xfs_trans_t
*tp
, /* transaction pointer */
2428 xfs_buf_t
*bp
, /* allocation group header buffer */
2429 int fields
) /* bitmask of fields to log */
2431 int first
; /* first byte number */
2432 int last
; /* last byte number */
2433 static const short offsets
[] = { /* field starting offsets */
2434 /* keep in sync with bit definitions */
2435 offsetof(xfs_agi_t
, agi_magicnum
),
2436 offsetof(xfs_agi_t
, agi_versionnum
),
2437 offsetof(xfs_agi_t
, agi_seqno
),
2438 offsetof(xfs_agi_t
, agi_length
),
2439 offsetof(xfs_agi_t
, agi_count
),
2440 offsetof(xfs_agi_t
, agi_root
),
2441 offsetof(xfs_agi_t
, agi_level
),
2442 offsetof(xfs_agi_t
, agi_freecount
),
2443 offsetof(xfs_agi_t
, agi_newino
),
2444 offsetof(xfs_agi_t
, agi_dirino
),
2445 offsetof(xfs_agi_t
, agi_unlinked
),
2446 offsetof(xfs_agi_t
, agi_free_root
),
2447 offsetof(xfs_agi_t
, agi_free_level
),
2451 xfs_agi_t
*agi
; /* allocation group header */
2453 agi
= XFS_BUF_TO_AGI(bp
);
2454 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
2458 * Compute byte offsets for the first and last fields in the first
2459 * region and log the agi buffer. This only logs up through
2462 if (fields
& XFS_AGI_ALL_BITS_R1
) {
2463 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R1
,
2465 xfs_trans_log_buf(tp
, bp
, first
, last
);
2469 * Mask off the bits in the first region and calculate the first and
2470 * last field offsets for any bits in the second region.
2472 fields
&= ~XFS_AGI_ALL_BITS_R1
;
2474 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R2
,
2476 xfs_trans_log_buf(tp
, bp
, first
, last
);
2482 xfs_check_agi_unlinked(
2483 struct xfs_agi
*agi
)
2487 for (i
= 0; i
< XFS_AGI_UNLINKED_BUCKETS
; i
++)
2488 ASSERT(agi
->agi_unlinked
[i
]);
2491 #define xfs_check_agi_unlinked(agi)
2498 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2499 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(bp
);
2501 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
2502 if (!uuid_equal(&agi
->agi_uuid
, &mp
->m_sb
.sb_meta_uuid
))
2504 if (!xfs_log_check_lsn(mp
,
2505 be64_to_cpu(XFS_BUF_TO_AGI(bp
)->agi_lsn
)))
2510 * Validate the magic number of the agi block.
2512 if (agi
->agi_magicnum
!= cpu_to_be32(XFS_AGI_MAGIC
))
2514 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
)))
2517 if (be32_to_cpu(agi
->agi_level
) < 1 ||
2518 be32_to_cpu(agi
->agi_level
) > XFS_BTREE_MAXLEVELS
)
2521 if (xfs_sb_version_hasfinobt(&mp
->m_sb
) &&
2522 (be32_to_cpu(agi
->agi_free_level
) < 1 ||
2523 be32_to_cpu(agi
->agi_free_level
) > XFS_BTREE_MAXLEVELS
))
2527 * during growfs operations, the perag is not fully initialised,
2528 * so we can't use it for any useful checking. growfs ensures we can't
2529 * use it by using uncached buffers that don't have the perag attached
2530 * so we can detect and avoid this problem.
2532 if (bp
->b_pag
&& be32_to_cpu(agi
->agi_seqno
) != bp
->b_pag
->pag_agno
)
2535 xfs_check_agi_unlinked(agi
);
2540 xfs_agi_read_verify(
2543 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2545 if (xfs_sb_version_hascrc(&mp
->m_sb
) &&
2546 !xfs_buf_verify_cksum(bp
, XFS_AGI_CRC_OFF
))
2547 xfs_buf_ioerror(bp
, -EFSBADCRC
);
2548 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp
), mp
,
2549 XFS_ERRTAG_IALLOC_READ_AGI
))
2550 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
2553 xfs_verifier_error(bp
);
2557 xfs_agi_write_verify(
2560 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2561 struct xfs_buf_log_item
*bip
= bp
->b_fspriv
;
2563 if (!xfs_agi_verify(bp
)) {
2564 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
2565 xfs_verifier_error(bp
);
2569 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2573 XFS_BUF_TO_AGI(bp
)->agi_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
2574 xfs_buf_update_cksum(bp
, XFS_AGI_CRC_OFF
);
2577 const struct xfs_buf_ops xfs_agi_buf_ops
= {
2579 .verify_read
= xfs_agi_read_verify
,
2580 .verify_write
= xfs_agi_write_verify
,
2584 * Read in the allocation group header (inode allocation section)
2588 struct xfs_mount
*mp
, /* file system mount structure */
2589 struct xfs_trans
*tp
, /* transaction pointer */
2590 xfs_agnumber_t agno
, /* allocation group number */
2591 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2595 trace_xfs_read_agi(mp
, agno
);
2597 ASSERT(agno
!= NULLAGNUMBER
);
2598 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
,
2599 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)),
2600 XFS_FSS_TO_BB(mp
, 1), 0, bpp
, &xfs_agi_buf_ops
);
2604 xfs_trans_buf_set_type(tp
, *bpp
, XFS_BLFT_AGI_BUF
);
2606 xfs_buf_set_ref(*bpp
, XFS_AGI_REF
);
2611 xfs_ialloc_read_agi(
2612 struct xfs_mount
*mp
, /* file system mount structure */
2613 struct xfs_trans
*tp
, /* transaction pointer */
2614 xfs_agnumber_t agno
, /* allocation group number */
2615 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2617 struct xfs_agi
*agi
; /* allocation group header */
2618 struct xfs_perag
*pag
; /* per allocation group data */
2621 trace_xfs_ialloc_read_agi(mp
, agno
);
2623 error
= xfs_read_agi(mp
, tp
, agno
, bpp
);
2627 agi
= XFS_BUF_TO_AGI(*bpp
);
2628 pag
= xfs_perag_get(mp
, agno
);
2629 if (!pag
->pagi_init
) {
2630 pag
->pagi_freecount
= be32_to_cpu(agi
->agi_freecount
);
2631 pag
->pagi_count
= be32_to_cpu(agi
->agi_count
);
2636 * It's possible for these to be out of sync if
2637 * we are in the middle of a forced shutdown.
2639 ASSERT(pag
->pagi_freecount
== be32_to_cpu(agi
->agi_freecount
) ||
2640 XFS_FORCED_SHUTDOWN(mp
));
2646 * Read in the agi to initialise the per-ag data in the mount structure
2649 xfs_ialloc_pagi_init(
2650 xfs_mount_t
*mp
, /* file system mount structure */
2651 xfs_trans_t
*tp
, /* transaction pointer */
2652 xfs_agnumber_t agno
) /* allocation group number */
2654 xfs_buf_t
*bp
= NULL
;
2657 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &bp
);
2661 xfs_trans_brelse(tp
, bp
);
2665 /* Calculate the first and last possible inode number in an AG. */
2667 xfs_ialloc_agino_range(
2668 struct xfs_mount
*mp
,
2669 xfs_agnumber_t agno
,
2676 eoag
= xfs_ag_block_count(mp
, agno
);
2679 * Calculate the first inode, which will be in the first
2680 * cluster-aligned block after the AGFL.
2682 bno
= round_up(XFS_AGFL_BLOCK(mp
) + 1,
2683 xfs_ialloc_cluster_alignment(mp
));
2684 *first
= XFS_OFFBNO_TO_AGINO(mp
, bno
, 0);
2687 * Calculate the last inode, which will be at the end of the
2688 * last (aligned) cluster that can be allocated in the AG.
2690 bno
= round_down(eoag
, xfs_ialloc_cluster_alignment(mp
));
2691 *last
= XFS_OFFBNO_TO_AGINO(mp
, bno
, 0) - 1;
2695 * Verify that an AG inode number pointer neither points outside the AG
2696 * nor points at static metadata.
2700 struct xfs_mount
*mp
,
2701 xfs_agnumber_t agno
,
2707 xfs_ialloc_agino_range(mp
, agno
, &first
, &last
);
2708 return agino
>= first
&& agino
<= last
;
2712 * Verify that an FS inode number pointer neither points outside the
2713 * filesystem nor points at static AG metadata.
2717 struct xfs_mount
*mp
,
2720 xfs_agnumber_t agno
= XFS_INO_TO_AGNO(mp
, ino
);
2721 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
2723 if (agno
>= mp
->m_sb
.sb_agcount
)
2725 if (XFS_AGINO_TO_INO(mp
, agno
, agino
) != ino
)
2727 return xfs_verify_agino(mp
, agno
, agino
);
2730 /* Is this an internal inode number? */
2733 struct xfs_mount
*mp
,
2736 return ino
== mp
->m_sb
.sb_rbmino
|| ino
== mp
->m_sb
.sb_rsumino
||
2737 (xfs_sb_version_hasquota(&mp
->m_sb
) &&
2738 xfs_is_quota_inode(&mp
->m_sb
, ino
));
2742 * Verify that a directory entry's inode number doesn't point at an internal
2743 * inode, empty space, or static AG metadata.
2747 struct xfs_mount
*mp
,
2750 if (xfs_internal_inum(mp
, ino
))
2752 return xfs_verify_ino(mp
, ino
);