1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2015 Nicira, Inc.
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
13 #include <net/genetlink.h>
14 #include <net/netfilter/nf_conntrack_core.h>
15 #include <net/netfilter/nf_conntrack_count.h>
16 #include <net/netfilter/nf_conntrack_helper.h>
17 #include <net/netfilter/nf_conntrack_labels.h>
18 #include <net/netfilter/nf_conntrack_seqadj.h>
19 #include <net/netfilter/nf_conntrack_timeout.h>
20 #include <net/netfilter/nf_conntrack_zones.h>
21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22 #include <net/ipv6_frag.h>
24 #if IS_ENABLED(CONFIG_NF_NAT)
25 #include <net/netfilter/nf_nat.h>
29 #include "conntrack.h"
31 #include "flow_netlink.h"
33 struct ovs_ct_len_tbl
{
38 /* Metadata mark for masked write to conntrack mark */
44 /* Metadata label for masked write to conntrack label. */
46 struct ovs_key_ct_labels value
;
47 struct ovs_key_ct_labels mask
;
51 OVS_CT_NAT
= 1 << 0, /* NAT for committed connections only. */
52 OVS_CT_SRC_NAT
= 1 << 1, /* Source NAT for NEW connections. */
53 OVS_CT_DST_NAT
= 1 << 2, /* Destination NAT for NEW connections. */
56 /* Conntrack action context for execution. */
57 struct ovs_conntrack_info
{
58 struct nf_conntrack_helper
*helper
;
59 struct nf_conntrack_zone zone
;
62 u8 nat
: 3; /* enum ovs_ct_nat */
64 u8 have_eventmask
: 1;
66 u32 eventmask
; /* Mask of 1 << IPCT_*. */
68 struct md_labels labels
;
69 char timeout
[CTNL_TIMEOUT_NAME_MAX
];
70 struct nf_ct_timeout
*nf_ct_timeout
;
71 #if IS_ENABLED(CONFIG_NF_NAT)
72 struct nf_nat_range2 range
; /* Only present for SRC NAT and DST NAT. */
76 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
77 #define OVS_CT_LIMIT_UNLIMITED 0
78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
79 #define CT_LIMIT_HASH_BUCKETS 512
80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled
);
83 /* Elements in ovs_ct_limit_info->limits hash table */
84 struct hlist_node hlist_node
;
90 struct ovs_ct_limit_info
{
92 struct hlist_head
*limits
;
93 struct nf_conncount_data
*data
;
96 static const struct nla_policy ct_limit_policy
[OVS_CT_LIMIT_ATTR_MAX
+ 1] = {
97 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT
] = { .type
= NLA_NESTED
, },
101 static bool labels_nonzero(const struct ovs_key_ct_labels
*labels
);
103 static void __ovs_ct_free_action(struct ovs_conntrack_info
*ct_info
);
105 static u16
key_to_nfproto(const struct sw_flow_key
*key
)
107 switch (ntohs(key
->eth
.type
)) {
113 return NFPROTO_UNSPEC
;
117 /* Map SKB connection state into the values used by flow definition. */
118 static u8
ovs_ct_get_state(enum ip_conntrack_info ctinfo
)
120 u8 ct_state
= OVS_CS_F_TRACKED
;
123 case IP_CT_ESTABLISHED_REPLY
:
124 case IP_CT_RELATED_REPLY
:
125 ct_state
|= OVS_CS_F_REPLY_DIR
;
132 case IP_CT_ESTABLISHED
:
133 case IP_CT_ESTABLISHED_REPLY
:
134 ct_state
|= OVS_CS_F_ESTABLISHED
;
137 case IP_CT_RELATED_REPLY
:
138 ct_state
|= OVS_CS_F_RELATED
;
141 ct_state
|= OVS_CS_F_NEW
;
150 static u32
ovs_ct_get_mark(const struct nf_conn
*ct
)
152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
153 return ct
? ct
->mark
: 0;
159 /* Guard against conntrack labels max size shrinking below 128 bits. */
160 #if NF_CT_LABELS_MAX_SIZE < 16
161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
164 static void ovs_ct_get_labels(const struct nf_conn
*ct
,
165 struct ovs_key_ct_labels
*labels
)
167 struct nf_conn_labels
*cl
= ct
? nf_ct_labels_find(ct
) : NULL
;
170 memcpy(labels
, cl
->bits
, OVS_CT_LABELS_LEN
);
172 memset(labels
, 0, OVS_CT_LABELS_LEN
);
175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key
*key
,
176 const struct nf_conntrack_tuple
*orig
,
179 key
->ct_orig_proto
= orig
->dst
.protonum
;
180 if (orig
->dst
.protonum
== icmp_proto
) {
181 key
->ct
.orig_tp
.src
= htons(orig
->dst
.u
.icmp
.type
);
182 key
->ct
.orig_tp
.dst
= htons(orig
->dst
.u
.icmp
.code
);
184 key
->ct
.orig_tp
.src
= orig
->src
.u
.all
;
185 key
->ct
.orig_tp
.dst
= orig
->dst
.u
.all
;
189 static void __ovs_ct_update_key(struct sw_flow_key
*key
, u8 state
,
190 const struct nf_conntrack_zone
*zone
,
191 const struct nf_conn
*ct
)
193 key
->ct_state
= state
;
194 key
->ct_zone
= zone
->id
;
195 key
->ct
.mark
= ovs_ct_get_mark(ct
);
196 ovs_ct_get_labels(ct
, &key
->ct
.labels
);
199 const struct nf_conntrack_tuple
*orig
;
201 /* Use the master if we have one. */
204 orig
= &ct
->tuplehash
[IP_CT_DIR_ORIGINAL
].tuple
;
206 /* IP version must match with the master connection. */
207 if (key
->eth
.type
== htons(ETH_P_IP
) &&
208 nf_ct_l3num(ct
) == NFPROTO_IPV4
) {
209 key
->ipv4
.ct_orig
.src
= orig
->src
.u3
.ip
;
210 key
->ipv4
.ct_orig
.dst
= orig
->dst
.u3
.ip
;
211 __ovs_ct_update_key_orig_tp(key
, orig
, IPPROTO_ICMP
);
213 } else if (key
->eth
.type
== htons(ETH_P_IPV6
) &&
214 !sw_flow_key_is_nd(key
) &&
215 nf_ct_l3num(ct
) == NFPROTO_IPV6
) {
216 key
->ipv6
.ct_orig
.src
= orig
->src
.u3
.in6
;
217 key
->ipv6
.ct_orig
.dst
= orig
->dst
.u3
.in6
;
218 __ovs_ct_update_key_orig_tp(key
, orig
, NEXTHDR_ICMP
);
222 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
223 * original direction key fields.
225 key
->ct_orig_proto
= 0;
228 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
229 * previously sent the packet to conntrack via the ct action. If
230 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
231 * initialized from the connection status.
233 static void ovs_ct_update_key(const struct sk_buff
*skb
,
234 const struct ovs_conntrack_info
*info
,
235 struct sw_flow_key
*key
, bool post_ct
,
238 const struct nf_conntrack_zone
*zone
= &nf_ct_zone_dflt
;
239 enum ip_conntrack_info ctinfo
;
243 ct
= nf_ct_get(skb
, &ctinfo
);
245 state
= ovs_ct_get_state(ctinfo
);
246 /* All unconfirmed entries are NEW connections. */
247 if (!nf_ct_is_confirmed(ct
))
248 state
|= OVS_CS_F_NEW
;
249 /* OVS persists the related flag for the duration of the
253 state
|= OVS_CS_F_RELATED
;
254 if (keep_nat_flags
) {
255 state
|= key
->ct_state
& OVS_CS_F_NAT_MASK
;
257 if (ct
->status
& IPS_SRC_NAT
)
258 state
|= OVS_CS_F_SRC_NAT
;
259 if (ct
->status
& IPS_DST_NAT
)
260 state
|= OVS_CS_F_DST_NAT
;
262 zone
= nf_ct_zone(ct
);
263 } else if (post_ct
) {
264 state
= OVS_CS_F_TRACKED
| OVS_CS_F_INVALID
;
268 __ovs_ct_update_key(key
, state
, zone
, ct
);
271 /* This is called to initialize CT key fields possibly coming in from the local
274 void ovs_ct_fill_key(const struct sk_buff
*skb
, struct sw_flow_key
*key
)
276 ovs_ct_update_key(skb
, NULL
, key
, false, false);
279 int ovs_ct_put_key(const struct sw_flow_key
*swkey
,
280 const struct sw_flow_key
*output
, struct sk_buff
*skb
)
282 if (nla_put_u32(skb
, OVS_KEY_ATTR_CT_STATE
, output
->ct_state
))
285 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES
) &&
286 nla_put_u16(skb
, OVS_KEY_ATTR_CT_ZONE
, output
->ct_zone
))
289 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK
) &&
290 nla_put_u32(skb
, OVS_KEY_ATTR_CT_MARK
, output
->ct
.mark
))
293 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS
) &&
294 nla_put(skb
, OVS_KEY_ATTR_CT_LABELS
, sizeof(output
->ct
.labels
),
298 if (swkey
->ct_orig_proto
) {
299 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
300 struct ovs_key_ct_tuple_ipv4 orig
;
302 memset(&orig
, 0, sizeof(orig
));
303 orig
.ipv4_src
= output
->ipv4
.ct_orig
.src
;
304 orig
.ipv4_dst
= output
->ipv4
.ct_orig
.dst
;
305 orig
.src_port
= output
->ct
.orig_tp
.src
;
306 orig
.dst_port
= output
->ct
.orig_tp
.dst
;
307 orig
.ipv4_proto
= output
->ct_orig_proto
;
309 if (nla_put(skb
, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4
,
310 sizeof(orig
), &orig
))
312 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
313 struct ovs_key_ct_tuple_ipv6 orig
;
315 memset(&orig
, 0, sizeof(orig
));
316 memcpy(orig
.ipv6_src
, output
->ipv6
.ct_orig
.src
.s6_addr32
,
317 sizeof(orig
.ipv6_src
));
318 memcpy(orig
.ipv6_dst
, output
->ipv6
.ct_orig
.dst
.s6_addr32
,
319 sizeof(orig
.ipv6_dst
));
320 orig
.src_port
= output
->ct
.orig_tp
.src
;
321 orig
.dst_port
= output
->ct
.orig_tp
.dst
;
322 orig
.ipv6_proto
= output
->ct_orig_proto
;
324 if (nla_put(skb
, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6
,
325 sizeof(orig
), &orig
))
333 static int ovs_ct_set_mark(struct nf_conn
*ct
, struct sw_flow_key
*key
,
334 u32 ct_mark
, u32 mask
)
336 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
339 new_mark
= ct_mark
| (ct
->mark
& ~(mask
));
340 if (ct
->mark
!= new_mark
) {
342 if (nf_ct_is_confirmed(ct
))
343 nf_conntrack_event_cache(IPCT_MARK
, ct
);
344 key
->ct
.mark
= new_mark
;
353 static struct nf_conn_labels
*ovs_ct_get_conn_labels(struct nf_conn
*ct
)
355 struct nf_conn_labels
*cl
;
357 cl
= nf_ct_labels_find(ct
);
359 nf_ct_labels_ext_add(ct
);
360 cl
= nf_ct_labels_find(ct
);
366 /* Initialize labels for a new, yet to be committed conntrack entry. Note that
367 * since the new connection is not yet confirmed, and thus no-one else has
368 * access to it's labels, we simply write them over.
370 static int ovs_ct_init_labels(struct nf_conn
*ct
, struct sw_flow_key
*key
,
371 const struct ovs_key_ct_labels
*labels
,
372 const struct ovs_key_ct_labels
*mask
)
374 struct nf_conn_labels
*cl
, *master_cl
;
375 bool have_mask
= labels_nonzero(mask
);
377 /* Inherit master's labels to the related connection? */
378 master_cl
= ct
->master
? nf_ct_labels_find(ct
->master
) : NULL
;
380 if (!master_cl
&& !have_mask
)
381 return 0; /* Nothing to do. */
383 cl
= ovs_ct_get_conn_labels(ct
);
387 /* Inherit the master's labels, if any. */
392 u32
*dst
= (u32
*)cl
->bits
;
395 for (i
= 0; i
< OVS_CT_LABELS_LEN_32
; i
++)
396 dst
[i
] = (dst
[i
] & ~mask
->ct_labels_32
[i
]) |
397 (labels
->ct_labels_32
[i
]
398 & mask
->ct_labels_32
[i
]);
401 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
402 * IPCT_LABEL bit is set in the event cache.
404 nf_conntrack_event_cache(IPCT_LABEL
, ct
);
406 memcpy(&key
->ct
.labels
, cl
->bits
, OVS_CT_LABELS_LEN
);
411 static int ovs_ct_set_labels(struct nf_conn
*ct
, struct sw_flow_key
*key
,
412 const struct ovs_key_ct_labels
*labels
,
413 const struct ovs_key_ct_labels
*mask
)
415 struct nf_conn_labels
*cl
;
418 cl
= ovs_ct_get_conn_labels(ct
);
422 err
= nf_connlabels_replace(ct
, labels
->ct_labels_32
,
424 OVS_CT_LABELS_LEN_32
);
428 memcpy(&key
->ct
.labels
, cl
->bits
, OVS_CT_LABELS_LEN
);
433 /* 'skb' should already be pulled to nh_ofs. */
434 static int ovs_ct_helper(struct sk_buff
*skb
, u16 proto
)
436 const struct nf_conntrack_helper
*helper
;
437 const struct nf_conn_help
*help
;
438 enum ip_conntrack_info ctinfo
;
439 unsigned int protoff
;
443 ct
= nf_ct_get(skb
, &ctinfo
);
444 if (!ct
|| ctinfo
== IP_CT_RELATED_REPLY
)
447 help
= nfct_help(ct
);
451 helper
= rcu_dereference(help
->helper
);
457 protoff
= ip_hdrlen(skb
);
460 u8 nexthdr
= ipv6_hdr(skb
)->nexthdr
;
464 ofs
= ipv6_skip_exthdr(skb
, sizeof(struct ipv6hdr
), &nexthdr
,
466 if (ofs
< 0 || (frag_off
& htons(~0x7)) != 0) {
467 pr_debug("proto header not found\n");
474 WARN_ONCE(1, "helper invoked on non-IP family!");
478 err
= helper
->help(skb
, protoff
, ct
, ctinfo
);
479 if (err
!= NF_ACCEPT
)
482 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
483 * FTP with NAT) adusting the TCP payload size when mangling IP
484 * addresses and/or port numbers in the text-based control connection.
486 if (test_bit(IPS_SEQ_ADJUST_BIT
, &ct
->status
) &&
487 !nf_ct_seq_adjust(skb
, ct
, ctinfo
, protoff
))
492 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
493 * value if 'skb' is freed.
495 static int handle_fragments(struct net
*net
, struct sw_flow_key
*key
,
496 u16 zone
, struct sk_buff
*skb
)
498 struct ovs_skb_cb ovs_cb
= *OVS_CB(skb
);
501 if (key
->eth
.type
== htons(ETH_P_IP
)) {
502 enum ip_defrag_users user
= IP_DEFRAG_CONNTRACK_IN
+ zone
;
504 memset(IPCB(skb
), 0, sizeof(struct inet_skb_parm
));
505 err
= ip_defrag(net
, skb
, user
);
509 ovs_cb
.mru
= IPCB(skb
)->frag_max_size
;
510 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
511 } else if (key
->eth
.type
== htons(ETH_P_IPV6
)) {
512 enum ip6_defrag_users user
= IP6_DEFRAG_CONNTRACK_IN
+ zone
;
514 memset(IP6CB(skb
), 0, sizeof(struct inet6_skb_parm
));
515 err
= nf_ct_frag6_gather(net
, skb
, user
);
517 if (err
!= -EINPROGRESS
)
522 key
->ip
.proto
= ipv6_hdr(skb
)->nexthdr
;
523 ovs_cb
.mru
= IP6CB(skb
)->frag_max_size
;
527 return -EPFNOSUPPORT
;
530 /* The key extracted from the fragment that completed this datagram
531 * likely didn't have an L4 header, so regenerate it.
533 ovs_flow_key_update_l3l4(skb
, key
);
535 key
->ip
.frag
= OVS_FRAG_TYPE_NONE
;
538 *OVS_CB(skb
) = ovs_cb
;
543 static struct nf_conntrack_expect
*
544 ovs_ct_expect_find(struct net
*net
, const struct nf_conntrack_zone
*zone
,
545 u16 proto
, const struct sk_buff
*skb
)
547 struct nf_conntrack_tuple tuple
;
548 struct nf_conntrack_expect
*exp
;
550 if (!nf_ct_get_tuplepr(skb
, skb_network_offset(skb
), proto
, net
, &tuple
))
553 exp
= __nf_ct_expect_find(net
, zone
, &tuple
);
555 struct nf_conntrack_tuple_hash
*h
;
557 /* Delete existing conntrack entry, if it clashes with the
558 * expectation. This can happen since conntrack ALGs do not
559 * check for clashes between (new) expectations and existing
560 * conntrack entries. nf_conntrack_in() will check the
561 * expectations only if a conntrack entry can not be found,
562 * which can lead to OVS finding the expectation (here) in the
563 * init direction, but which will not be removed by the
564 * nf_conntrack_in() call, if a matching conntrack entry is
565 * found instead. In this case all init direction packets
566 * would be reported as new related packets, while reply
567 * direction packets would be reported as un-related
568 * established packets.
570 h
= nf_conntrack_find_get(net
, zone
, &tuple
);
572 struct nf_conn
*ct
= nf_ct_tuplehash_to_ctrack(h
);
574 nf_ct_delete(ct
, 0, 0);
575 nf_conntrack_put(&ct
->ct_general
);
582 /* This replicates logic from nf_conntrack_core.c that is not exported. */
583 static enum ip_conntrack_info
584 ovs_ct_get_info(const struct nf_conntrack_tuple_hash
*h
)
586 const struct nf_conn
*ct
= nf_ct_tuplehash_to_ctrack(h
);
588 if (NF_CT_DIRECTION(h
) == IP_CT_DIR_REPLY
)
589 return IP_CT_ESTABLISHED_REPLY
;
590 /* Once we've had two way comms, always ESTABLISHED. */
591 if (test_bit(IPS_SEEN_REPLY_BIT
, &ct
->status
))
592 return IP_CT_ESTABLISHED
;
593 if (test_bit(IPS_EXPECTED_BIT
, &ct
->status
))
594 return IP_CT_RELATED
;
598 /* Find an existing connection which this packet belongs to without
599 * re-attributing statistics or modifying the connection state. This allows an
600 * skb->_nfct lost due to an upcall to be recovered during actions execution.
602 * Must be called with rcu_read_lock.
604 * On success, populates skb->_nfct and returns the connection. Returns NULL
605 * if there is no existing entry.
607 static struct nf_conn
*
608 ovs_ct_find_existing(struct net
*net
, const struct nf_conntrack_zone
*zone
,
609 u8 l3num
, struct sk_buff
*skb
, bool natted
)
611 struct nf_conntrack_tuple tuple
;
612 struct nf_conntrack_tuple_hash
*h
;
615 if (!nf_ct_get_tuplepr(skb
, skb_network_offset(skb
), l3num
,
617 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
621 /* Must invert the tuple if skb has been transformed by NAT. */
623 struct nf_conntrack_tuple inverse
;
625 if (!nf_ct_invert_tuple(&inverse
, &tuple
)) {
626 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
632 /* look for tuple match */
633 h
= nf_conntrack_find_get(net
, zone
, &tuple
);
635 return NULL
; /* Not found. */
637 ct
= nf_ct_tuplehash_to_ctrack(h
);
639 /* Inverted packet tuple matches the reverse direction conntrack tuple,
640 * select the other tuplehash to get the right 'ctinfo' bits for this
644 h
= &ct
->tuplehash
[!h
->tuple
.dst
.dir
];
646 nf_ct_set(skb
, ct
, ovs_ct_get_info(h
));
651 struct nf_conn
*ovs_ct_executed(struct net
*net
,
652 const struct sw_flow_key
*key
,
653 const struct ovs_conntrack_info
*info
,
657 struct nf_conn
*ct
= NULL
;
659 /* If no ct, check if we have evidence that an existing conntrack entry
660 * might be found for this skb. This happens when we lose a skb->_nfct
661 * due to an upcall, or if the direction is being forced. If the
662 * connection was not confirmed, it is not cached and needs to be run
663 * through conntrack again.
665 *ct_executed
= (key
->ct_state
& OVS_CS_F_TRACKED
) &&
666 !(key
->ct_state
& OVS_CS_F_INVALID
) &&
667 (key
->ct_zone
== info
->zone
.id
);
669 if (*ct_executed
|| (!key
->ct_state
&& info
->force
)) {
670 ct
= ovs_ct_find_existing(net
, &info
->zone
, info
->family
, skb
,
678 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
679 static bool skb_nfct_cached(struct net
*net
,
680 const struct sw_flow_key
*key
,
681 const struct ovs_conntrack_info
*info
,
684 enum ip_conntrack_info ctinfo
;
686 bool ct_executed
= true;
688 ct
= nf_ct_get(skb
, &ctinfo
);
690 ct
= ovs_ct_executed(net
, key
, info
, skb
, &ct_executed
);
693 nf_ct_get(skb
, &ctinfo
);
697 if (!net_eq(net
, read_pnet(&ct
->ct_net
)))
699 if (!nf_ct_zone_equal_any(info
->ct
, nf_ct_zone(ct
)))
702 struct nf_conn_help
*help
;
704 help
= nf_ct_ext_find(ct
, NF_CT_EXT_HELPER
);
705 if (help
&& rcu_access_pointer(help
->helper
) != info
->helper
)
708 if (info
->nf_ct_timeout
) {
709 struct nf_conn_timeout
*timeout_ext
;
711 timeout_ext
= nf_ct_timeout_find(ct
);
712 if (!timeout_ext
|| info
->nf_ct_timeout
!=
713 rcu_dereference(timeout_ext
->timeout
))
716 /* Force conntrack entry direction to the current packet? */
717 if (info
->force
&& CTINFO2DIR(ctinfo
) != IP_CT_DIR_ORIGINAL
) {
718 /* Delete the conntrack entry if confirmed, else just release
721 if (nf_ct_is_confirmed(ct
))
722 nf_ct_delete(ct
, 0, 0);
724 nf_conntrack_put(&ct
->ct_general
);
725 nf_ct_set(skb
, NULL
, 0);
732 #if IS_ENABLED(CONFIG_NF_NAT)
733 /* Modelled after nf_nat_ipv[46]_fn().
734 * range is only used for new, uninitialized NAT state.
735 * Returns either NF_ACCEPT or NF_DROP.
737 static int ovs_ct_nat_execute(struct sk_buff
*skb
, struct nf_conn
*ct
,
738 enum ip_conntrack_info ctinfo
,
739 const struct nf_nat_range2
*range
,
740 enum nf_nat_manip_type maniptype
)
742 int hooknum
, nh_off
, err
= NF_ACCEPT
;
744 nh_off
= skb_network_offset(skb
);
745 skb_pull_rcsum(skb
, nh_off
);
747 /* See HOOK2MANIP(). */
748 if (maniptype
== NF_NAT_MANIP_SRC
)
749 hooknum
= NF_INET_LOCAL_IN
; /* Source NAT */
751 hooknum
= NF_INET_LOCAL_OUT
; /* Destination NAT */
755 case IP_CT_RELATED_REPLY
:
756 if (IS_ENABLED(CONFIG_NF_NAT
) &&
757 skb
->protocol
== htons(ETH_P_IP
) &&
758 ip_hdr(skb
)->protocol
== IPPROTO_ICMP
) {
759 if (!nf_nat_icmp_reply_translation(skb
, ct
, ctinfo
,
763 } else if (IS_ENABLED(CONFIG_IPV6
) &&
764 skb
->protocol
== htons(ETH_P_IPV6
)) {
766 u8 nexthdr
= ipv6_hdr(skb
)->nexthdr
;
767 int hdrlen
= ipv6_skip_exthdr(skb
,
768 sizeof(struct ipv6hdr
),
769 &nexthdr
, &frag_off
);
771 if (hdrlen
>= 0 && nexthdr
== IPPROTO_ICMPV6
) {
772 if (!nf_nat_icmpv6_reply_translation(skb
, ct
,
780 /* Non-ICMP, fall thru to initialize if needed. */
783 /* Seen it before? This can happen for loopback, retrans,
786 if (!nf_nat_initialized(ct
, maniptype
)) {
787 /* Initialize according to the NAT action. */
788 err
= (range
&& range
->flags
& NF_NAT_RANGE_MAP_IPS
)
789 /* Action is set up to establish a new
792 ? nf_nat_setup_info(ct
, range
, maniptype
)
793 : nf_nat_alloc_null_binding(ct
, hooknum
);
794 if (err
!= NF_ACCEPT
)
799 case IP_CT_ESTABLISHED
:
800 case IP_CT_ESTABLISHED_REPLY
:
808 err
= nf_nat_packet(ct
, ctinfo
, hooknum
, skb
);
810 skb_push(skb
, nh_off
);
811 skb_postpush_rcsum(skb
, skb
->data
, nh_off
);
816 static void ovs_nat_update_key(struct sw_flow_key
*key
,
817 const struct sk_buff
*skb
,
818 enum nf_nat_manip_type maniptype
)
820 if (maniptype
== NF_NAT_MANIP_SRC
) {
823 key
->ct_state
|= OVS_CS_F_SRC_NAT
;
824 if (key
->eth
.type
== htons(ETH_P_IP
))
825 key
->ipv4
.addr
.src
= ip_hdr(skb
)->saddr
;
826 else if (key
->eth
.type
== htons(ETH_P_IPV6
))
827 memcpy(&key
->ipv6
.addr
.src
, &ipv6_hdr(skb
)->saddr
,
828 sizeof(key
->ipv6
.addr
.src
));
832 if (key
->ip
.proto
== IPPROTO_UDP
)
833 src
= udp_hdr(skb
)->source
;
834 else if (key
->ip
.proto
== IPPROTO_TCP
)
835 src
= tcp_hdr(skb
)->source
;
836 else if (key
->ip
.proto
== IPPROTO_SCTP
)
837 src
= sctp_hdr(skb
)->source
;
845 key
->ct_state
|= OVS_CS_F_DST_NAT
;
846 if (key
->eth
.type
== htons(ETH_P_IP
))
847 key
->ipv4
.addr
.dst
= ip_hdr(skb
)->daddr
;
848 else if (key
->eth
.type
== htons(ETH_P_IPV6
))
849 memcpy(&key
->ipv6
.addr
.dst
, &ipv6_hdr(skb
)->daddr
,
850 sizeof(key
->ipv6
.addr
.dst
));
854 if (key
->ip
.proto
== IPPROTO_UDP
)
855 dst
= udp_hdr(skb
)->dest
;
856 else if (key
->ip
.proto
== IPPROTO_TCP
)
857 dst
= tcp_hdr(skb
)->dest
;
858 else if (key
->ip
.proto
== IPPROTO_SCTP
)
859 dst
= sctp_hdr(skb
)->dest
;
867 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
868 static int ovs_ct_nat(struct net
*net
, struct sw_flow_key
*key
,
869 const struct ovs_conntrack_info
*info
,
870 struct sk_buff
*skb
, struct nf_conn
*ct
,
871 enum ip_conntrack_info ctinfo
)
873 enum nf_nat_manip_type maniptype
;
876 /* Add NAT extension if not confirmed yet. */
877 if (!nf_ct_is_confirmed(ct
) && !nf_ct_nat_ext_add(ct
))
878 return NF_ACCEPT
; /* Can't NAT. */
880 /* Determine NAT type.
881 * Check if the NAT type can be deduced from the tracked connection.
882 * Make sure new expected connections (IP_CT_RELATED) are NATted only
885 if (info
->nat
& OVS_CT_NAT
&& ctinfo
!= IP_CT_NEW
&&
886 ct
->status
& IPS_NAT_MASK
&&
887 (ctinfo
!= IP_CT_RELATED
|| info
->commit
)) {
888 /* NAT an established or related connection like before. */
889 if (CTINFO2DIR(ctinfo
) == IP_CT_DIR_REPLY
)
890 /* This is the REPLY direction for a connection
891 * for which NAT was applied in the forward
892 * direction. Do the reverse NAT.
894 maniptype
= ct
->status
& IPS_SRC_NAT
895 ? NF_NAT_MANIP_DST
: NF_NAT_MANIP_SRC
;
897 maniptype
= ct
->status
& IPS_SRC_NAT
898 ? NF_NAT_MANIP_SRC
: NF_NAT_MANIP_DST
;
899 } else if (info
->nat
& OVS_CT_SRC_NAT
) {
900 maniptype
= NF_NAT_MANIP_SRC
;
901 } else if (info
->nat
& OVS_CT_DST_NAT
) {
902 maniptype
= NF_NAT_MANIP_DST
;
904 return NF_ACCEPT
; /* Connection is not NATed. */
906 err
= ovs_ct_nat_execute(skb
, ct
, ctinfo
, &info
->range
, maniptype
);
908 if (err
== NF_ACCEPT
&&
909 ct
->status
& IPS_SRC_NAT
&& ct
->status
& IPS_DST_NAT
) {
910 if (maniptype
== NF_NAT_MANIP_SRC
)
911 maniptype
= NF_NAT_MANIP_DST
;
913 maniptype
= NF_NAT_MANIP_SRC
;
915 err
= ovs_ct_nat_execute(skb
, ct
, ctinfo
, &info
->range
,
919 /* Mark NAT done if successful and update the flow key. */
920 if (err
== NF_ACCEPT
)
921 ovs_nat_update_key(key
, skb
, maniptype
);
925 #else /* !CONFIG_NF_NAT */
926 static int ovs_ct_nat(struct net
*net
, struct sw_flow_key
*key
,
927 const struct ovs_conntrack_info
*info
,
928 struct sk_buff
*skb
, struct nf_conn
*ct
,
929 enum ip_conntrack_info ctinfo
)
935 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
936 * not done already. Update key with new CT state after passing the packet
938 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
939 * set to NULL and 0 will be returned.
941 static int __ovs_ct_lookup(struct net
*net
, struct sw_flow_key
*key
,
942 const struct ovs_conntrack_info
*info
,
945 /* If we are recirculating packets to match on conntrack fields and
946 * committing with a separate conntrack action, then we don't need to
947 * actually run the packet through conntrack twice unless it's for a
950 bool cached
= skb_nfct_cached(net
, key
, info
, skb
);
951 enum ip_conntrack_info ctinfo
;
955 struct nf_hook_state state
= {
956 .hook
= NF_INET_PRE_ROUTING
,
960 struct nf_conn
*tmpl
= info
->ct
;
963 /* Associate skb with specified zone. */
966 nf_conntrack_put(skb_nfct(skb
));
967 nf_conntrack_get(&tmpl
->ct_general
);
968 nf_ct_set(skb
, tmpl
, IP_CT_NEW
);
971 err
= nf_conntrack_in(skb
, &state
);
972 if (err
!= NF_ACCEPT
)
975 /* Clear CT state NAT flags to mark that we have not yet done
976 * NAT after the nf_conntrack_in() call. We can actually clear
977 * the whole state, as it will be re-initialized below.
981 /* Update the key, but keep the NAT flags. */
982 ovs_ct_update_key(skb
, info
, key
, true, true);
985 ct
= nf_ct_get(skb
, &ctinfo
);
987 /* Packets starting a new connection must be NATted before the
988 * helper, so that the helper knows about the NAT. We enforce
989 * this by delaying both NAT and helper calls for unconfirmed
990 * connections until the committing CT action. For later
991 * packets NAT and Helper may be called in either order.
993 * NAT will be done only if the CT action has NAT, and only
994 * once per packet (per zone), as guarded by the NAT bits in
997 if (info
->nat
&& !(key
->ct_state
& OVS_CS_F_NAT_MASK
) &&
998 (nf_ct_is_confirmed(ct
) || info
->commit
) &&
999 ovs_ct_nat(net
, key
, info
, skb
, ct
, ctinfo
) != NF_ACCEPT
) {
1003 /* Userspace may decide to perform a ct lookup without a helper
1004 * specified followed by a (recirculate and) commit with one.
1005 * Therefore, for unconfirmed connections which we will commit,
1006 * we need to attach the helper here.
1008 if (!nf_ct_is_confirmed(ct
) && info
->commit
&&
1009 info
->helper
&& !nfct_help(ct
)) {
1010 int err
= __nf_ct_try_assign_helper(ct
, info
->ct
,
1015 /* helper installed, add seqadj if NAT is required */
1016 if (info
->nat
&& !nfct_seqadj(ct
)) {
1017 if (!nfct_seqadj_ext_add(ct
))
1022 /* Call the helper only if:
1023 * - nf_conntrack_in() was executed above ("!cached") for a
1024 * confirmed connection, or
1025 * - When committing an unconfirmed connection.
1027 if ((nf_ct_is_confirmed(ct
) ? !cached
: info
->commit
) &&
1028 ovs_ct_helper(skb
, info
->family
) != NF_ACCEPT
) {
1036 /* Lookup connection and read fields into key. */
1037 static int ovs_ct_lookup(struct net
*net
, struct sw_flow_key
*key
,
1038 const struct ovs_conntrack_info
*info
,
1039 struct sk_buff
*skb
)
1041 struct nf_conntrack_expect
*exp
;
1043 /* If we pass an expected packet through nf_conntrack_in() the
1044 * expectation is typically removed, but the packet could still be
1045 * lost in upcall processing. To prevent this from happening we
1046 * perform an explicit expectation lookup. Expected connections are
1047 * always new, and will be passed through conntrack only when they are
1048 * committed, as it is OK to remove the expectation at that time.
1050 exp
= ovs_ct_expect_find(net
, &info
->zone
, info
->family
, skb
);
1054 /* NOTE: New connections are NATted and Helped only when
1055 * committed, so we are not calling into NAT here.
1057 state
= OVS_CS_F_TRACKED
| OVS_CS_F_NEW
| OVS_CS_F_RELATED
;
1058 __ovs_ct_update_key(key
, state
, &info
->zone
, exp
->master
);
1063 err
= __ovs_ct_lookup(net
, key
, info
, skb
);
1067 ct
= (struct nf_conn
*)skb_nfct(skb
);
1069 nf_ct_deliver_cached_events(ct
);
1075 static bool labels_nonzero(const struct ovs_key_ct_labels
*labels
)
1079 for (i
= 0; i
< OVS_CT_LABELS_LEN_32
; i
++)
1080 if (labels
->ct_labels_32
[i
])
1086 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1087 static struct hlist_head
*ct_limit_hash_bucket(
1088 const struct ovs_ct_limit_info
*info
, u16 zone
)
1090 return &info
->limits
[zone
& (CT_LIMIT_HASH_BUCKETS
- 1)];
1093 /* Call with ovs_mutex */
1094 static void ct_limit_set(const struct ovs_ct_limit_info
*info
,
1095 struct ovs_ct_limit
*new_ct_limit
)
1097 struct ovs_ct_limit
*ct_limit
;
1098 struct hlist_head
*head
;
1100 head
= ct_limit_hash_bucket(info
, new_ct_limit
->zone
);
1101 hlist_for_each_entry_rcu(ct_limit
, head
, hlist_node
) {
1102 if (ct_limit
->zone
== new_ct_limit
->zone
) {
1103 hlist_replace_rcu(&ct_limit
->hlist_node
,
1104 &new_ct_limit
->hlist_node
);
1105 kfree_rcu(ct_limit
, rcu
);
1110 hlist_add_head_rcu(&new_ct_limit
->hlist_node
, head
);
1113 /* Call with ovs_mutex */
1114 static void ct_limit_del(const struct ovs_ct_limit_info
*info
, u16 zone
)
1116 struct ovs_ct_limit
*ct_limit
;
1117 struct hlist_head
*head
;
1118 struct hlist_node
*n
;
1120 head
= ct_limit_hash_bucket(info
, zone
);
1121 hlist_for_each_entry_safe(ct_limit
, n
, head
, hlist_node
) {
1122 if (ct_limit
->zone
== zone
) {
1123 hlist_del_rcu(&ct_limit
->hlist_node
);
1124 kfree_rcu(ct_limit
, rcu
);
1130 /* Call with RCU read lock */
1131 static u32
ct_limit_get(const struct ovs_ct_limit_info
*info
, u16 zone
)
1133 struct ovs_ct_limit
*ct_limit
;
1134 struct hlist_head
*head
;
1136 head
= ct_limit_hash_bucket(info
, zone
);
1137 hlist_for_each_entry_rcu(ct_limit
, head
, hlist_node
) {
1138 if (ct_limit
->zone
== zone
)
1139 return ct_limit
->limit
;
1142 return info
->default_limit
;
1145 static int ovs_ct_check_limit(struct net
*net
,
1146 const struct ovs_conntrack_info
*info
,
1147 const struct nf_conntrack_tuple
*tuple
)
1149 struct ovs_net
*ovs_net
= net_generic(net
, ovs_net_id
);
1150 const struct ovs_ct_limit_info
*ct_limit_info
= ovs_net
->ct_limit_info
;
1151 u32 per_zone_limit
, connections
;
1154 conncount_key
= info
->zone
.id
;
1156 per_zone_limit
= ct_limit_get(ct_limit_info
, info
->zone
.id
);
1157 if (per_zone_limit
== OVS_CT_LIMIT_UNLIMITED
)
1160 connections
= nf_conncount_count(net
, ct_limit_info
->data
,
1161 &conncount_key
, tuple
, &info
->zone
);
1162 if (connections
> per_zone_limit
)
1169 /* Lookup connection and confirm if unconfirmed. */
1170 static int ovs_ct_commit(struct net
*net
, struct sw_flow_key
*key
,
1171 const struct ovs_conntrack_info
*info
,
1172 struct sk_buff
*skb
)
1174 enum ip_conntrack_info ctinfo
;
1178 err
= __ovs_ct_lookup(net
, key
, info
, skb
);
1182 /* The connection could be invalid, in which case this is a no-op.*/
1183 ct
= nf_ct_get(skb
, &ctinfo
);
1187 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1188 if (static_branch_unlikely(&ovs_ct_limit_enabled
)) {
1189 if (!nf_ct_is_confirmed(ct
)) {
1190 err
= ovs_ct_check_limit(net
, info
,
1191 &ct
->tuplehash
[IP_CT_DIR_ORIGINAL
].tuple
);
1193 net_warn_ratelimited("openvswitch: zone: %u "
1194 "exceeds conntrack limit\n",
1202 /* Set the conntrack event mask if given. NEW and DELETE events have
1203 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1204 * typically would receive many kinds of updates. Setting the event
1205 * mask allows those events to be filtered. The set event mask will
1206 * remain in effect for the lifetime of the connection unless changed
1207 * by a further CT action with both the commit flag and the eventmask
1209 if (info
->have_eventmask
) {
1210 struct nf_conntrack_ecache
*cache
= nf_ct_ecache_find(ct
);
1213 cache
->ctmask
= info
->eventmask
;
1216 /* Apply changes before confirming the connection so that the initial
1217 * conntrack NEW netlink event carries the values given in the CT
1220 if (info
->mark
.mask
) {
1221 err
= ovs_ct_set_mark(ct
, key
, info
->mark
.value
,
1226 if (!nf_ct_is_confirmed(ct
)) {
1227 err
= ovs_ct_init_labels(ct
, key
, &info
->labels
.value
,
1228 &info
->labels
.mask
);
1231 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS
) &&
1232 labels_nonzero(&info
->labels
.mask
)) {
1233 err
= ovs_ct_set_labels(ct
, key
, &info
->labels
.value
,
1234 &info
->labels
.mask
);
1238 /* This will take care of sending queued events even if the connection
1239 * is already confirmed.
1241 if (nf_conntrack_confirm(skb
) != NF_ACCEPT
)
1247 /* Trim the skb to the length specified by the IP/IPv6 header,
1248 * removing any trailing lower-layer padding. This prepares the skb
1249 * for higher-layer processing that assumes skb->len excludes padding
1250 * (such as nf_ip_checksum). The caller needs to pull the skb to the
1251 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1253 static int ovs_skb_network_trim(struct sk_buff
*skb
)
1258 switch (skb
->protocol
) {
1259 case htons(ETH_P_IP
):
1260 len
= ntohs(ip_hdr(skb
)->tot_len
);
1262 case htons(ETH_P_IPV6
):
1263 len
= sizeof(struct ipv6hdr
)
1264 + ntohs(ipv6_hdr(skb
)->payload_len
);
1270 err
= pskb_trim_rcsum(skb
, len
);
1277 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1278 * value if 'skb' is freed.
1280 int ovs_ct_execute(struct net
*net
, struct sk_buff
*skb
,
1281 struct sw_flow_key
*key
,
1282 const struct ovs_conntrack_info
*info
)
1287 /* The conntrack module expects to be working at L3. */
1288 nh_ofs
= skb_network_offset(skb
);
1289 skb_pull_rcsum(skb
, nh_ofs
);
1291 err
= ovs_skb_network_trim(skb
);
1295 if (key
->ip
.frag
!= OVS_FRAG_TYPE_NONE
) {
1296 err
= handle_fragments(net
, key
, info
->zone
.id
, skb
);
1302 err
= ovs_ct_commit(net
, key
, info
, skb
);
1304 err
= ovs_ct_lookup(net
, key
, info
, skb
);
1306 skb_push(skb
, nh_ofs
);
1307 skb_postpush_rcsum(skb
, skb
->data
, nh_ofs
);
1313 int ovs_ct_clear(struct sk_buff
*skb
, struct sw_flow_key
*key
)
1315 if (skb_nfct(skb
)) {
1316 nf_conntrack_put(skb_nfct(skb
));
1317 nf_ct_set(skb
, NULL
, IP_CT_UNTRACKED
);
1318 ovs_ct_fill_key(skb
, key
);
1324 static int ovs_ct_add_helper(struct ovs_conntrack_info
*info
, const char *name
,
1325 const struct sw_flow_key
*key
, bool log
)
1327 struct nf_conntrack_helper
*helper
;
1328 struct nf_conn_help
*help
;
1331 helper
= nf_conntrack_helper_try_module_get(name
, info
->family
,
1334 OVS_NLERR(log
, "Unknown helper \"%s\"", name
);
1338 help
= nf_ct_helper_ext_add(info
->ct
, GFP_KERNEL
);
1340 nf_conntrack_helper_put(helper
);
1344 #if IS_ENABLED(CONFIG_NF_NAT)
1346 ret
= nf_nat_helper_try_module_get(name
, info
->family
,
1349 nf_conntrack_helper_put(helper
);
1350 OVS_NLERR(log
, "Failed to load \"%s\" NAT helper, error: %d",
1356 rcu_assign_pointer(help
->helper
, helper
);
1357 info
->helper
= helper
;
1361 #if IS_ENABLED(CONFIG_NF_NAT)
1362 static int parse_nat(const struct nlattr
*attr
,
1363 struct ovs_conntrack_info
*info
, bool log
)
1367 bool have_ip_max
= false;
1368 bool have_proto_max
= false;
1369 bool ip_vers
= (info
->family
== NFPROTO_IPV6
);
1371 nla_for_each_nested(a
, attr
, rem
) {
1372 static const int ovs_nat_attr_lens
[OVS_NAT_ATTR_MAX
+ 1][2] = {
1373 [OVS_NAT_ATTR_SRC
] = {0, 0},
1374 [OVS_NAT_ATTR_DST
] = {0, 0},
1375 [OVS_NAT_ATTR_IP_MIN
] = {sizeof(struct in_addr
),
1376 sizeof(struct in6_addr
)},
1377 [OVS_NAT_ATTR_IP_MAX
] = {sizeof(struct in_addr
),
1378 sizeof(struct in6_addr
)},
1379 [OVS_NAT_ATTR_PROTO_MIN
] = {sizeof(u16
), sizeof(u16
)},
1380 [OVS_NAT_ATTR_PROTO_MAX
] = {sizeof(u16
), sizeof(u16
)},
1381 [OVS_NAT_ATTR_PERSISTENT
] = {0, 0},
1382 [OVS_NAT_ATTR_PROTO_HASH
] = {0, 0},
1383 [OVS_NAT_ATTR_PROTO_RANDOM
] = {0, 0},
1385 int type
= nla_type(a
);
1387 if (type
> OVS_NAT_ATTR_MAX
) {
1388 OVS_NLERR(log
, "Unknown NAT attribute (type=%d, max=%d)",
1389 type
, OVS_NAT_ATTR_MAX
);
1393 if (nla_len(a
) != ovs_nat_attr_lens
[type
][ip_vers
]) {
1394 OVS_NLERR(log
, "NAT attribute type %d has unexpected length (%d != %d)",
1396 ovs_nat_attr_lens
[type
][ip_vers
]);
1401 case OVS_NAT_ATTR_SRC
:
1402 case OVS_NAT_ATTR_DST
:
1404 OVS_NLERR(log
, "Only one type of NAT may be specified");
1407 info
->nat
|= OVS_CT_NAT
;
1408 info
->nat
|= ((type
== OVS_NAT_ATTR_SRC
)
1409 ? OVS_CT_SRC_NAT
: OVS_CT_DST_NAT
);
1412 case OVS_NAT_ATTR_IP_MIN
:
1413 nla_memcpy(&info
->range
.min_addr
, a
,
1414 sizeof(info
->range
.min_addr
));
1415 info
->range
.flags
|= NF_NAT_RANGE_MAP_IPS
;
1418 case OVS_NAT_ATTR_IP_MAX
:
1420 nla_memcpy(&info
->range
.max_addr
, a
,
1421 sizeof(info
->range
.max_addr
));
1422 info
->range
.flags
|= NF_NAT_RANGE_MAP_IPS
;
1425 case OVS_NAT_ATTR_PROTO_MIN
:
1426 info
->range
.min_proto
.all
= htons(nla_get_u16(a
));
1427 info
->range
.flags
|= NF_NAT_RANGE_PROTO_SPECIFIED
;
1430 case OVS_NAT_ATTR_PROTO_MAX
:
1431 have_proto_max
= true;
1432 info
->range
.max_proto
.all
= htons(nla_get_u16(a
));
1433 info
->range
.flags
|= NF_NAT_RANGE_PROTO_SPECIFIED
;
1436 case OVS_NAT_ATTR_PERSISTENT
:
1437 info
->range
.flags
|= NF_NAT_RANGE_PERSISTENT
;
1440 case OVS_NAT_ATTR_PROTO_HASH
:
1441 info
->range
.flags
|= NF_NAT_RANGE_PROTO_RANDOM
;
1444 case OVS_NAT_ATTR_PROTO_RANDOM
:
1445 info
->range
.flags
|= NF_NAT_RANGE_PROTO_RANDOM_FULLY
;
1449 OVS_NLERR(log
, "Unknown nat attribute (%d)", type
);
1455 OVS_NLERR(log
, "NAT attribute has %d unknown bytes", rem
);
1459 /* Do not allow flags if no type is given. */
1460 if (info
->range
.flags
) {
1462 "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1466 info
->nat
= OVS_CT_NAT
; /* NAT existing connections. */
1467 } else if (!info
->commit
) {
1469 "NAT attributes may be specified only when CT COMMIT flag is also specified."
1473 /* Allow missing IP_MAX. */
1474 if (info
->range
.flags
& NF_NAT_RANGE_MAP_IPS
&& !have_ip_max
) {
1475 memcpy(&info
->range
.max_addr
, &info
->range
.min_addr
,
1476 sizeof(info
->range
.max_addr
));
1478 /* Allow missing PROTO_MAX. */
1479 if (info
->range
.flags
& NF_NAT_RANGE_PROTO_SPECIFIED
&&
1481 info
->range
.max_proto
.all
= info
->range
.min_proto
.all
;
1487 static const struct ovs_ct_len_tbl ovs_ct_attr_lens
[OVS_CT_ATTR_MAX
+ 1] = {
1488 [OVS_CT_ATTR_COMMIT
] = { .minlen
= 0, .maxlen
= 0 },
1489 [OVS_CT_ATTR_FORCE_COMMIT
] = { .minlen
= 0, .maxlen
= 0 },
1490 [OVS_CT_ATTR_ZONE
] = { .minlen
= sizeof(u16
),
1491 .maxlen
= sizeof(u16
) },
1492 [OVS_CT_ATTR_MARK
] = { .minlen
= sizeof(struct md_mark
),
1493 .maxlen
= sizeof(struct md_mark
) },
1494 [OVS_CT_ATTR_LABELS
] = { .minlen
= sizeof(struct md_labels
),
1495 .maxlen
= sizeof(struct md_labels
) },
1496 [OVS_CT_ATTR_HELPER
] = { .minlen
= 1,
1497 .maxlen
= NF_CT_HELPER_NAME_LEN
},
1498 #if IS_ENABLED(CONFIG_NF_NAT)
1499 /* NAT length is checked when parsing the nested attributes. */
1500 [OVS_CT_ATTR_NAT
] = { .minlen
= 0, .maxlen
= INT_MAX
},
1502 [OVS_CT_ATTR_EVENTMASK
] = { .minlen
= sizeof(u32
),
1503 .maxlen
= sizeof(u32
) },
1504 [OVS_CT_ATTR_TIMEOUT
] = { .minlen
= 1,
1505 .maxlen
= CTNL_TIMEOUT_NAME_MAX
},
1508 static int parse_ct(const struct nlattr
*attr
, struct ovs_conntrack_info
*info
,
1509 const char **helper
, bool log
)
1514 nla_for_each_nested(a
, attr
, rem
) {
1515 int type
= nla_type(a
);
1519 if (type
> OVS_CT_ATTR_MAX
) {
1521 "Unknown conntrack attr (type=%d, max=%d)",
1522 type
, OVS_CT_ATTR_MAX
);
1526 maxlen
= ovs_ct_attr_lens
[type
].maxlen
;
1527 minlen
= ovs_ct_attr_lens
[type
].minlen
;
1528 if (nla_len(a
) < minlen
|| nla_len(a
) > maxlen
) {
1530 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1531 type
, nla_len(a
), maxlen
);
1536 case OVS_CT_ATTR_FORCE_COMMIT
:
1539 case OVS_CT_ATTR_COMMIT
:
1540 info
->commit
= true;
1542 #ifdef CONFIG_NF_CONNTRACK_ZONES
1543 case OVS_CT_ATTR_ZONE
:
1544 info
->zone
.id
= nla_get_u16(a
);
1547 #ifdef CONFIG_NF_CONNTRACK_MARK
1548 case OVS_CT_ATTR_MARK
: {
1549 struct md_mark
*mark
= nla_data(a
);
1552 OVS_NLERR(log
, "ct_mark mask cannot be 0");
1559 #ifdef CONFIG_NF_CONNTRACK_LABELS
1560 case OVS_CT_ATTR_LABELS
: {
1561 struct md_labels
*labels
= nla_data(a
);
1563 if (!labels_nonzero(&labels
->mask
)) {
1564 OVS_NLERR(log
, "ct_labels mask cannot be 0");
1567 info
->labels
= *labels
;
1571 case OVS_CT_ATTR_HELPER
:
1572 *helper
= nla_data(a
);
1573 if (!memchr(*helper
, '\0', nla_len(a
))) {
1574 OVS_NLERR(log
, "Invalid conntrack helper");
1578 #if IS_ENABLED(CONFIG_NF_NAT)
1579 case OVS_CT_ATTR_NAT
: {
1580 int err
= parse_nat(a
, info
, log
);
1587 case OVS_CT_ATTR_EVENTMASK
:
1588 info
->have_eventmask
= true;
1589 info
->eventmask
= nla_get_u32(a
);
1591 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1592 case OVS_CT_ATTR_TIMEOUT
:
1593 memcpy(info
->timeout
, nla_data(a
), nla_len(a
));
1594 if (!memchr(info
->timeout
, '\0', nla_len(a
))) {
1595 OVS_NLERR(log
, "Invalid conntrack timeout");
1602 OVS_NLERR(log
, "Unknown conntrack attr (%d)",
1608 #ifdef CONFIG_NF_CONNTRACK_MARK
1609 if (!info
->commit
&& info
->mark
.mask
) {
1611 "Setting conntrack mark requires 'commit' flag.");
1615 #ifdef CONFIG_NF_CONNTRACK_LABELS
1616 if (!info
->commit
&& labels_nonzero(&info
->labels
.mask
)) {
1618 "Setting conntrack labels requires 'commit' flag.");
1623 OVS_NLERR(log
, "Conntrack attr has %d unknown bytes", rem
);
1630 bool ovs_ct_verify(struct net
*net
, enum ovs_key_attr attr
)
1632 if (attr
== OVS_KEY_ATTR_CT_STATE
)
1634 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES
) &&
1635 attr
== OVS_KEY_ATTR_CT_ZONE
)
1637 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK
) &&
1638 attr
== OVS_KEY_ATTR_CT_MARK
)
1640 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS
) &&
1641 attr
== OVS_KEY_ATTR_CT_LABELS
) {
1642 struct ovs_net
*ovs_net
= net_generic(net
, ovs_net_id
);
1644 return ovs_net
->xt_label
;
1650 int ovs_ct_copy_action(struct net
*net
, const struct nlattr
*attr
,
1651 const struct sw_flow_key
*key
,
1652 struct sw_flow_actions
**sfa
, bool log
)
1654 struct ovs_conntrack_info ct_info
;
1655 const char *helper
= NULL
;
1659 family
= key_to_nfproto(key
);
1660 if (family
== NFPROTO_UNSPEC
) {
1661 OVS_NLERR(log
, "ct family unspecified");
1665 memset(&ct_info
, 0, sizeof(ct_info
));
1666 ct_info
.family
= family
;
1668 nf_ct_zone_init(&ct_info
.zone
, NF_CT_DEFAULT_ZONE_ID
,
1669 NF_CT_DEFAULT_ZONE_DIR
, 0);
1671 err
= parse_ct(attr
, &ct_info
, &helper
, log
);
1675 /* Set up template for tracking connections in specific zones. */
1676 ct_info
.ct
= nf_ct_tmpl_alloc(net
, &ct_info
.zone
, GFP_KERNEL
);
1678 OVS_NLERR(log
, "Failed to allocate conntrack template");
1682 if (ct_info
.timeout
[0]) {
1683 if (nf_ct_set_timeout(net
, ct_info
.ct
, family
, key
->ip
.proto
,
1685 pr_info_ratelimited("Failed to associated timeout "
1686 "policy `%s'\n", ct_info
.timeout
);
1688 ct_info
.nf_ct_timeout
= rcu_dereference(
1689 nf_ct_timeout_find(ct_info
.ct
)->timeout
);
1694 err
= ovs_ct_add_helper(&ct_info
, helper
, key
, log
);
1699 err
= ovs_nla_add_action(sfa
, OVS_ACTION_ATTR_CT
, &ct_info
,
1700 sizeof(ct_info
), log
);
1704 __set_bit(IPS_CONFIRMED_BIT
, &ct_info
.ct
->status
);
1705 nf_conntrack_get(&ct_info
.ct
->ct_general
);
1708 __ovs_ct_free_action(&ct_info
);
1712 #if IS_ENABLED(CONFIG_NF_NAT)
1713 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info
*info
,
1714 struct sk_buff
*skb
)
1716 struct nlattr
*start
;
1718 start
= nla_nest_start_noflag(skb
, OVS_CT_ATTR_NAT
);
1722 if (info
->nat
& OVS_CT_SRC_NAT
) {
1723 if (nla_put_flag(skb
, OVS_NAT_ATTR_SRC
))
1725 } else if (info
->nat
& OVS_CT_DST_NAT
) {
1726 if (nla_put_flag(skb
, OVS_NAT_ATTR_DST
))
1732 if (info
->range
.flags
& NF_NAT_RANGE_MAP_IPS
) {
1733 if (IS_ENABLED(CONFIG_NF_NAT
) &&
1734 info
->family
== NFPROTO_IPV4
) {
1735 if (nla_put_in_addr(skb
, OVS_NAT_ATTR_IP_MIN
,
1736 info
->range
.min_addr
.ip
) ||
1737 (info
->range
.max_addr
.ip
1738 != info
->range
.min_addr
.ip
&&
1739 (nla_put_in_addr(skb
, OVS_NAT_ATTR_IP_MAX
,
1740 info
->range
.max_addr
.ip
))))
1742 } else if (IS_ENABLED(CONFIG_IPV6
) &&
1743 info
->family
== NFPROTO_IPV6
) {
1744 if (nla_put_in6_addr(skb
, OVS_NAT_ATTR_IP_MIN
,
1745 &info
->range
.min_addr
.in6
) ||
1746 (memcmp(&info
->range
.max_addr
.in6
,
1747 &info
->range
.min_addr
.in6
,
1748 sizeof(info
->range
.max_addr
.in6
)) &&
1749 (nla_put_in6_addr(skb
, OVS_NAT_ATTR_IP_MAX
,
1750 &info
->range
.max_addr
.in6
))))
1756 if (info
->range
.flags
& NF_NAT_RANGE_PROTO_SPECIFIED
&&
1757 (nla_put_u16(skb
, OVS_NAT_ATTR_PROTO_MIN
,
1758 ntohs(info
->range
.min_proto
.all
)) ||
1759 (info
->range
.max_proto
.all
!= info
->range
.min_proto
.all
&&
1760 nla_put_u16(skb
, OVS_NAT_ATTR_PROTO_MAX
,
1761 ntohs(info
->range
.max_proto
.all
)))))
1764 if (info
->range
.flags
& NF_NAT_RANGE_PERSISTENT
&&
1765 nla_put_flag(skb
, OVS_NAT_ATTR_PERSISTENT
))
1767 if (info
->range
.flags
& NF_NAT_RANGE_PROTO_RANDOM
&&
1768 nla_put_flag(skb
, OVS_NAT_ATTR_PROTO_HASH
))
1770 if (info
->range
.flags
& NF_NAT_RANGE_PROTO_RANDOM_FULLY
&&
1771 nla_put_flag(skb
, OVS_NAT_ATTR_PROTO_RANDOM
))
1774 nla_nest_end(skb
, start
);
1780 int ovs_ct_action_to_attr(const struct ovs_conntrack_info
*ct_info
,
1781 struct sk_buff
*skb
)
1783 struct nlattr
*start
;
1785 start
= nla_nest_start_noflag(skb
, OVS_ACTION_ATTR_CT
);
1789 if (ct_info
->commit
&& nla_put_flag(skb
, ct_info
->force
1790 ? OVS_CT_ATTR_FORCE_COMMIT
1791 : OVS_CT_ATTR_COMMIT
))
1793 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES
) &&
1794 nla_put_u16(skb
, OVS_CT_ATTR_ZONE
, ct_info
->zone
.id
))
1796 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK
) && ct_info
->mark
.mask
&&
1797 nla_put(skb
, OVS_CT_ATTR_MARK
, sizeof(ct_info
->mark
),
1800 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS
) &&
1801 labels_nonzero(&ct_info
->labels
.mask
) &&
1802 nla_put(skb
, OVS_CT_ATTR_LABELS
, sizeof(ct_info
->labels
),
1805 if (ct_info
->helper
) {
1806 if (nla_put_string(skb
, OVS_CT_ATTR_HELPER
,
1807 ct_info
->helper
->name
))
1810 if (ct_info
->have_eventmask
&&
1811 nla_put_u32(skb
, OVS_CT_ATTR_EVENTMASK
, ct_info
->eventmask
))
1813 if (ct_info
->timeout
[0]) {
1814 if (nla_put_string(skb
, OVS_CT_ATTR_TIMEOUT
, ct_info
->timeout
))
1818 #if IS_ENABLED(CONFIG_NF_NAT)
1819 if (ct_info
->nat
&& !ovs_ct_nat_to_attr(ct_info
, skb
))
1822 nla_nest_end(skb
, start
);
1827 void ovs_ct_free_action(const struct nlattr
*a
)
1829 struct ovs_conntrack_info
*ct_info
= nla_data(a
);
1831 __ovs_ct_free_action(ct_info
);
1834 static void __ovs_ct_free_action(struct ovs_conntrack_info
*ct_info
)
1836 if (ct_info
->helper
) {
1837 #if IS_ENABLED(CONFIG_NF_NAT)
1839 nf_nat_helper_put(ct_info
->helper
);
1841 nf_conntrack_helper_put(ct_info
->helper
);
1844 if (ct_info
->timeout
[0])
1845 nf_ct_destroy_timeout(ct_info
->ct
);
1846 nf_ct_tmpl_free(ct_info
->ct
);
1850 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1851 static int ovs_ct_limit_init(struct net
*net
, struct ovs_net
*ovs_net
)
1855 ovs_net
->ct_limit_info
= kmalloc(sizeof(*ovs_net
->ct_limit_info
),
1857 if (!ovs_net
->ct_limit_info
)
1860 ovs_net
->ct_limit_info
->default_limit
= OVS_CT_LIMIT_DEFAULT
;
1861 ovs_net
->ct_limit_info
->limits
=
1862 kmalloc_array(CT_LIMIT_HASH_BUCKETS
, sizeof(struct hlist_head
),
1864 if (!ovs_net
->ct_limit_info
->limits
) {
1865 kfree(ovs_net
->ct_limit_info
);
1869 for (i
= 0; i
< CT_LIMIT_HASH_BUCKETS
; i
++)
1870 INIT_HLIST_HEAD(&ovs_net
->ct_limit_info
->limits
[i
]);
1872 ovs_net
->ct_limit_info
->data
=
1873 nf_conncount_init(net
, NFPROTO_INET
, sizeof(u32
));
1875 if (IS_ERR(ovs_net
->ct_limit_info
->data
)) {
1876 err
= PTR_ERR(ovs_net
->ct_limit_info
->data
);
1877 kfree(ovs_net
->ct_limit_info
->limits
);
1878 kfree(ovs_net
->ct_limit_info
);
1879 pr_err("openvswitch: failed to init nf_conncount %d\n", err
);
1885 static void ovs_ct_limit_exit(struct net
*net
, struct ovs_net
*ovs_net
)
1887 const struct ovs_ct_limit_info
*info
= ovs_net
->ct_limit_info
;
1890 nf_conncount_destroy(net
, NFPROTO_INET
, info
->data
);
1891 for (i
= 0; i
< CT_LIMIT_HASH_BUCKETS
; ++i
) {
1892 struct hlist_head
*head
= &info
->limits
[i
];
1893 struct ovs_ct_limit
*ct_limit
;
1895 hlist_for_each_entry_rcu(ct_limit
, head
, hlist_node
,
1896 lockdep_ovsl_is_held())
1897 kfree_rcu(ct_limit
, rcu
);
1899 kfree(ovs_net
->ct_limit_info
->limits
);
1900 kfree(ovs_net
->ct_limit_info
);
1903 static struct sk_buff
*
1904 ovs_ct_limit_cmd_reply_start(struct genl_info
*info
, u8 cmd
,
1905 struct ovs_header
**ovs_reply_header
)
1907 struct ovs_header
*ovs_header
= info
->userhdr
;
1908 struct sk_buff
*skb
;
1910 skb
= genlmsg_new(NLMSG_DEFAULT_SIZE
, GFP_KERNEL
);
1912 return ERR_PTR(-ENOMEM
);
1914 *ovs_reply_header
= genlmsg_put(skb
, info
->snd_portid
,
1916 &dp_ct_limit_genl_family
, 0, cmd
);
1918 if (!*ovs_reply_header
) {
1920 return ERR_PTR(-EMSGSIZE
);
1922 (*ovs_reply_header
)->dp_ifindex
= ovs_header
->dp_ifindex
;
1927 static bool check_zone_id(int zone_id
, u16
*pzone
)
1929 if (zone_id
>= 0 && zone_id
<= 65535) {
1930 *pzone
= (u16
)zone_id
;
1936 static int ovs_ct_limit_set_zone_limit(struct nlattr
*nla_zone_limit
,
1937 struct ovs_ct_limit_info
*info
)
1939 struct ovs_zone_limit
*zone_limit
;
1943 rem
= NLA_ALIGN(nla_len(nla_zone_limit
));
1944 zone_limit
= (struct ovs_zone_limit
*)nla_data(nla_zone_limit
);
1946 while (rem
>= sizeof(*zone_limit
)) {
1947 if (unlikely(zone_limit
->zone_id
==
1948 OVS_ZONE_LIMIT_DEFAULT_ZONE
)) {
1950 info
->default_limit
= zone_limit
->limit
;
1952 } else if (unlikely(!check_zone_id(
1953 zone_limit
->zone_id
, &zone
))) {
1954 OVS_NLERR(true, "zone id is out of range");
1956 struct ovs_ct_limit
*ct_limit
;
1958 ct_limit
= kmalloc(sizeof(*ct_limit
), GFP_KERNEL
);
1962 ct_limit
->zone
= zone
;
1963 ct_limit
->limit
= zone_limit
->limit
;
1966 ct_limit_set(info
, ct_limit
);
1969 rem
-= NLA_ALIGN(sizeof(*zone_limit
));
1970 zone_limit
= (struct ovs_zone_limit
*)((u8
*)zone_limit
+
1971 NLA_ALIGN(sizeof(*zone_limit
)));
1975 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem
);
1980 static int ovs_ct_limit_del_zone_limit(struct nlattr
*nla_zone_limit
,
1981 struct ovs_ct_limit_info
*info
)
1983 struct ovs_zone_limit
*zone_limit
;
1987 rem
= NLA_ALIGN(nla_len(nla_zone_limit
));
1988 zone_limit
= (struct ovs_zone_limit
*)nla_data(nla_zone_limit
);
1990 while (rem
>= sizeof(*zone_limit
)) {
1991 if (unlikely(zone_limit
->zone_id
==
1992 OVS_ZONE_LIMIT_DEFAULT_ZONE
)) {
1994 info
->default_limit
= OVS_CT_LIMIT_DEFAULT
;
1996 } else if (unlikely(!check_zone_id(
1997 zone_limit
->zone_id
, &zone
))) {
1998 OVS_NLERR(true, "zone id is out of range");
2001 ct_limit_del(info
, zone
);
2004 rem
-= NLA_ALIGN(sizeof(*zone_limit
));
2005 zone_limit
= (struct ovs_zone_limit
*)((u8
*)zone_limit
+
2006 NLA_ALIGN(sizeof(*zone_limit
)));
2010 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem
);
2015 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info
*info
,
2016 struct sk_buff
*reply
)
2018 struct ovs_zone_limit zone_limit
;
2021 zone_limit
.zone_id
= OVS_ZONE_LIMIT_DEFAULT_ZONE
;
2022 zone_limit
.limit
= info
->default_limit
;
2023 err
= nla_put_nohdr(reply
, sizeof(zone_limit
), &zone_limit
);
2030 static int __ovs_ct_limit_get_zone_limit(struct net
*net
,
2031 struct nf_conncount_data
*data
,
2032 u16 zone_id
, u32 limit
,
2033 struct sk_buff
*reply
)
2035 struct nf_conntrack_zone ct_zone
;
2036 struct ovs_zone_limit zone_limit
;
2037 u32 conncount_key
= zone_id
;
2039 zone_limit
.zone_id
= zone_id
;
2040 zone_limit
.limit
= limit
;
2041 nf_ct_zone_init(&ct_zone
, zone_id
, NF_CT_DEFAULT_ZONE_DIR
, 0);
2043 zone_limit
.count
= nf_conncount_count(net
, data
, &conncount_key
, NULL
,
2045 return nla_put_nohdr(reply
, sizeof(zone_limit
), &zone_limit
);
2048 static int ovs_ct_limit_get_zone_limit(struct net
*net
,
2049 struct nlattr
*nla_zone_limit
,
2050 struct ovs_ct_limit_info
*info
,
2051 struct sk_buff
*reply
)
2053 struct ovs_zone_limit
*zone_limit
;
2058 rem
= NLA_ALIGN(nla_len(nla_zone_limit
));
2059 zone_limit
= (struct ovs_zone_limit
*)nla_data(nla_zone_limit
);
2061 while (rem
>= sizeof(*zone_limit
)) {
2062 if (unlikely(zone_limit
->zone_id
==
2063 OVS_ZONE_LIMIT_DEFAULT_ZONE
)) {
2064 err
= ovs_ct_limit_get_default_limit(info
, reply
);
2067 } else if (unlikely(!check_zone_id(zone_limit
->zone_id
,
2069 OVS_NLERR(true, "zone id is out of range");
2072 limit
= ct_limit_get(info
, zone
);
2075 err
= __ovs_ct_limit_get_zone_limit(
2076 net
, info
->data
, zone
, limit
, reply
);
2080 rem
-= NLA_ALIGN(sizeof(*zone_limit
));
2081 zone_limit
= (struct ovs_zone_limit
*)((u8
*)zone_limit
+
2082 NLA_ALIGN(sizeof(*zone_limit
)));
2086 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem
);
2091 static int ovs_ct_limit_get_all_zone_limit(struct net
*net
,
2092 struct ovs_ct_limit_info
*info
,
2093 struct sk_buff
*reply
)
2095 struct ovs_ct_limit
*ct_limit
;
2096 struct hlist_head
*head
;
2099 err
= ovs_ct_limit_get_default_limit(info
, reply
);
2104 for (i
= 0; i
< CT_LIMIT_HASH_BUCKETS
; ++i
) {
2105 head
= &info
->limits
[i
];
2106 hlist_for_each_entry_rcu(ct_limit
, head
, hlist_node
) {
2107 err
= __ovs_ct_limit_get_zone_limit(net
, info
->data
,
2108 ct_limit
->zone
, ct_limit
->limit
, reply
);
2119 static int ovs_ct_limit_cmd_set(struct sk_buff
*skb
, struct genl_info
*info
)
2121 struct nlattr
**a
= info
->attrs
;
2122 struct sk_buff
*reply
;
2123 struct ovs_header
*ovs_reply_header
;
2124 struct ovs_net
*ovs_net
= net_generic(sock_net(skb
->sk
), ovs_net_id
);
2125 struct ovs_ct_limit_info
*ct_limit_info
= ovs_net
->ct_limit_info
;
2128 reply
= ovs_ct_limit_cmd_reply_start(info
, OVS_CT_LIMIT_CMD_SET
,
2131 return PTR_ERR(reply
);
2133 if (!a
[OVS_CT_LIMIT_ATTR_ZONE_LIMIT
]) {
2138 err
= ovs_ct_limit_set_zone_limit(a
[OVS_CT_LIMIT_ATTR_ZONE_LIMIT
],
2143 static_branch_enable(&ovs_ct_limit_enabled
);
2145 genlmsg_end(reply
, ovs_reply_header
);
2146 return genlmsg_reply(reply
, info
);
2153 static int ovs_ct_limit_cmd_del(struct sk_buff
*skb
, struct genl_info
*info
)
2155 struct nlattr
**a
= info
->attrs
;
2156 struct sk_buff
*reply
;
2157 struct ovs_header
*ovs_reply_header
;
2158 struct ovs_net
*ovs_net
= net_generic(sock_net(skb
->sk
), ovs_net_id
);
2159 struct ovs_ct_limit_info
*ct_limit_info
= ovs_net
->ct_limit_info
;
2162 reply
= ovs_ct_limit_cmd_reply_start(info
, OVS_CT_LIMIT_CMD_DEL
,
2165 return PTR_ERR(reply
);
2167 if (!a
[OVS_CT_LIMIT_ATTR_ZONE_LIMIT
]) {
2172 err
= ovs_ct_limit_del_zone_limit(a
[OVS_CT_LIMIT_ATTR_ZONE_LIMIT
],
2177 genlmsg_end(reply
, ovs_reply_header
);
2178 return genlmsg_reply(reply
, info
);
2185 static int ovs_ct_limit_cmd_get(struct sk_buff
*skb
, struct genl_info
*info
)
2187 struct nlattr
**a
= info
->attrs
;
2188 struct nlattr
*nla_reply
;
2189 struct sk_buff
*reply
;
2190 struct ovs_header
*ovs_reply_header
;
2191 struct net
*net
= sock_net(skb
->sk
);
2192 struct ovs_net
*ovs_net
= net_generic(net
, ovs_net_id
);
2193 struct ovs_ct_limit_info
*ct_limit_info
= ovs_net
->ct_limit_info
;
2196 reply
= ovs_ct_limit_cmd_reply_start(info
, OVS_CT_LIMIT_CMD_GET
,
2199 return PTR_ERR(reply
);
2201 nla_reply
= nla_nest_start_noflag(reply
, OVS_CT_LIMIT_ATTR_ZONE_LIMIT
);
2207 if (a
[OVS_CT_LIMIT_ATTR_ZONE_LIMIT
]) {
2208 err
= ovs_ct_limit_get_zone_limit(
2209 net
, a
[OVS_CT_LIMIT_ATTR_ZONE_LIMIT
], ct_limit_info
,
2214 err
= ovs_ct_limit_get_all_zone_limit(net
, ct_limit_info
,
2220 nla_nest_end(reply
, nla_reply
);
2221 genlmsg_end(reply
, ovs_reply_header
);
2222 return genlmsg_reply(reply
, info
);
2229 static struct genl_ops ct_limit_genl_ops
[] = {
2230 { .cmd
= OVS_CT_LIMIT_CMD_SET
,
2231 .validate
= GENL_DONT_VALIDATE_STRICT
| GENL_DONT_VALIDATE_DUMP
,
2232 .flags
= GENL_ADMIN_PERM
, /* Requires CAP_NET_ADMIN
2234 .doit
= ovs_ct_limit_cmd_set
,
2236 { .cmd
= OVS_CT_LIMIT_CMD_DEL
,
2237 .validate
= GENL_DONT_VALIDATE_STRICT
| GENL_DONT_VALIDATE_DUMP
,
2238 .flags
= GENL_ADMIN_PERM
, /* Requires CAP_NET_ADMIN
2240 .doit
= ovs_ct_limit_cmd_del
,
2242 { .cmd
= OVS_CT_LIMIT_CMD_GET
,
2243 .validate
= GENL_DONT_VALIDATE_STRICT
| GENL_DONT_VALIDATE_DUMP
,
2244 .flags
= 0, /* OK for unprivileged users. */
2245 .doit
= ovs_ct_limit_cmd_get
,
2249 static const struct genl_multicast_group ovs_ct_limit_multicast_group
= {
2250 .name
= OVS_CT_LIMIT_MCGROUP
,
2253 struct genl_family dp_ct_limit_genl_family __ro_after_init
= {
2254 .hdrsize
= sizeof(struct ovs_header
),
2255 .name
= OVS_CT_LIMIT_FAMILY
,
2256 .version
= OVS_CT_LIMIT_VERSION
,
2257 .maxattr
= OVS_CT_LIMIT_ATTR_MAX
,
2258 .policy
= ct_limit_policy
,
2260 .parallel_ops
= true,
2261 .ops
= ct_limit_genl_ops
,
2262 .n_ops
= ARRAY_SIZE(ct_limit_genl_ops
),
2263 .mcgrps
= &ovs_ct_limit_multicast_group
,
2265 .module
= THIS_MODULE
,
2269 int ovs_ct_init(struct net
*net
)
2271 unsigned int n_bits
= sizeof(struct ovs_key_ct_labels
) * BITS_PER_BYTE
;
2272 struct ovs_net
*ovs_net
= net_generic(net
, ovs_net_id
);
2274 if (nf_connlabels_get(net
, n_bits
- 1)) {
2275 ovs_net
->xt_label
= false;
2276 OVS_NLERR(true, "Failed to set connlabel length");
2278 ovs_net
->xt_label
= true;
2281 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2282 return ovs_ct_limit_init(net
, ovs_net
);
2288 void ovs_ct_exit(struct net
*net
)
2290 struct ovs_net
*ovs_net
= net_generic(net
, ovs_net_id
);
2292 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2293 ovs_ct_limit_exit(net
, ovs_net
);
2296 if (ovs_net
->xt_label
)
2297 nf_connlabels_put(net
);