1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/pkt_sched.h>
69 #include <net/pkt_cls.h>
71 #include <net/flow_dissector.h>
73 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
74 #include <net/netfilter/nf_conntrack_core.h>
77 #define CAKE_SET_WAYS (8)
78 #define CAKE_MAX_TINS (8)
79 #define CAKE_QUEUES (1024)
80 #define CAKE_FLOW_MASK 63
81 #define CAKE_FLOW_NAT_FLAG 64
83 /* struct cobalt_params - contains codel and blue parameters
84 * @interval: codel initial drop rate
85 * @target: maximum persistent sojourn time & blue update rate
86 * @mtu_time: serialisation delay of maximum-size packet
87 * @p_inc: increment of blue drop probability (0.32 fxp)
88 * @p_dec: decrement of blue drop probability (0.32 fxp)
90 struct cobalt_params
{
98 /* struct cobalt_vars - contains codel and blue variables
99 * @count: codel dropping frequency
100 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
101 * @drop_next: time to drop next packet, or when we dropped last
102 * @blue_timer: Blue time to next drop
103 * @p_drop: BLUE drop probability (0.32 fxp)
104 * @dropping: set if in dropping state
105 * @ecn_marked: set if marked
120 CAKE_SET_SPARSE_WAIT
, /* counted in SPARSE, actually in BULK */
126 /* this stuff is all needed per-flow at dequeue time */
127 struct sk_buff
*head
;
128 struct sk_buff
*tail
;
129 struct list_head flowchain
;
132 struct cobalt_vars cvars
;
133 u16 srchost
; /* index into cake_host table */
136 }; /* please try to keep this structure <= 64 bytes */
141 u16 srchost_bulk_flow_count
;
142 u16 dsthost_bulk_flow_count
;
145 struct cake_heap_entry
{
149 struct cake_tin_data
{
150 struct cake_flow flows
[CAKE_QUEUES
];
151 u32 backlogs
[CAKE_QUEUES
];
152 u32 tags
[CAKE_QUEUES
]; /* for set association */
153 u16 overflow_idx
[CAKE_QUEUES
];
154 struct cake_host hosts
[CAKE_QUEUES
]; /* for triple isolation */
157 struct cobalt_params cparams
;
160 u16 sparse_flow_count
;
161 u16 decaying_flow_count
;
162 u16 unresponsive_flow_count
;
166 struct list_head new_flows
;
167 struct list_head old_flows
;
168 struct list_head decaying_flows
;
170 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
171 ktime_t time_next_packet
;
176 u16 tin_quantum_prio
;
177 u16 tin_quantum_band
;
188 /* moving averages */
193 /* hash function stats */
198 }; /* number of tins is small, so size of this struct doesn't matter much */
200 struct cake_sched_data
{
201 struct tcf_proto __rcu
*filter_list
; /* optional external classifier */
202 struct tcf_block
*block
;
203 struct cake_tin_data
*tins
;
205 struct cake_heap_entry overflow_heap
[CAKE_QUEUES
* CAKE_MAX_TINS
];
206 u16 overflow_timeout
;
217 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
219 ktime_t time_next_packet
;
220 ktime_t failsafe_next_packet
;
229 /* resource tracking */
233 u32 buffer_config_limit
;
235 /* indices for dequeue */
239 struct qdisc_watchdog watchdog
;
243 /* bandwidth capacity estimate */
244 ktime_t last_packet_time
;
245 ktime_t avg_window_begin
;
246 u64 avg_packet_interval
;
247 u64 avg_window_bytes
;
248 u64 avg_peak_bandwidth
;
249 ktime_t last_reconfig_time
;
251 /* packet length stats */
260 CAKE_FLAG_OVERHEAD
= BIT(0),
261 CAKE_FLAG_AUTORATE_INGRESS
= BIT(1),
262 CAKE_FLAG_INGRESS
= BIT(2),
263 CAKE_FLAG_WASH
= BIT(3),
264 CAKE_FLAG_SPLIT_GSO
= BIT(4)
267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
268 * obtain the best features of each. Codel is excellent on flows which
269 * respond to congestion signals in a TCP-like way. BLUE is more effective on
270 * unresponsive flows.
273 struct cobalt_skb_cb
{
274 ktime_t enqueue_time
;
278 static u64
us_to_ns(u64 us
)
280 return us
* NSEC_PER_USEC
;
283 static struct cobalt_skb_cb
*get_cobalt_cb(const struct sk_buff
*skb
)
285 qdisc_cb_private_validate(skb
, sizeof(struct cobalt_skb_cb
));
286 return (struct cobalt_skb_cb
*)qdisc_skb_cb(skb
)->data
;
289 static ktime_t
cobalt_get_enqueue_time(const struct sk_buff
*skb
)
291 return get_cobalt_cb(skb
)->enqueue_time
;
294 static void cobalt_set_enqueue_time(struct sk_buff
*skb
,
297 get_cobalt_cb(skb
)->enqueue_time
= now
;
300 static u16 quantum_div
[CAKE_QUEUES
+ 1] = {0};
302 /* Diffserv lookup tables */
304 static const u8 precedence
[] = {
305 0, 0, 0, 0, 0, 0, 0, 0,
306 1, 1, 1, 1, 1, 1, 1, 1,
307 2, 2, 2, 2, 2, 2, 2, 2,
308 3, 3, 3, 3, 3, 3, 3, 3,
309 4, 4, 4, 4, 4, 4, 4, 4,
310 5, 5, 5, 5, 5, 5, 5, 5,
311 6, 6, 6, 6, 6, 6, 6, 6,
312 7, 7, 7, 7, 7, 7, 7, 7,
315 static const u8 diffserv8
[] = {
316 2, 5, 1, 2, 4, 2, 2, 2,
317 0, 2, 1, 2, 1, 2, 1, 2,
318 5, 2, 4, 2, 4, 2, 4, 2,
319 3, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 3, 2, 3, 2, 3, 2,
321 6, 2, 2, 2, 6, 2, 6, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
323 7, 2, 2, 2, 2, 2, 2, 2,
326 static const u8 diffserv4
[] = {
327 0, 2, 0, 0, 2, 0, 0, 0,
328 1, 0, 0, 0, 0, 0, 0, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 2, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 2, 0, 2, 0, 2, 0,
332 3, 0, 0, 0, 3, 0, 3, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
334 3, 0, 0, 0, 0, 0, 0, 0,
337 static const u8 diffserv3
[] = {
338 0, 0, 0, 0, 2, 0, 0, 0,
339 1, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 0, 0, 0, 0,
343 0, 0, 0, 0, 2, 0, 2, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
345 2, 0, 0, 0, 0, 0, 0, 0,
348 static const u8 besteffort
[] = {
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
356 0, 0, 0, 0, 0, 0, 0, 0,
359 /* tin priority order for stats dumping */
361 static const u8 normal_order
[] = {0, 1, 2, 3, 4, 5, 6, 7};
362 static const u8 bulk_order
[] = {1, 0, 2, 3};
364 #define REC_INV_SQRT_CACHE (16)
365 static u32 cobalt_rec_inv_sqrt_cache
[REC_INV_SQRT_CACHE
] = {0};
367 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
368 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
370 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
373 static void cobalt_newton_step(struct cobalt_vars
*vars
)
375 u32 invsqrt
, invsqrt2
;
378 invsqrt
= vars
->rec_inv_sqrt
;
379 invsqrt2
= ((u64
)invsqrt
* invsqrt
) >> 32;
380 val
= (3LL << 32) - ((u64
)vars
->count
* invsqrt2
);
382 val
>>= 2; /* avoid overflow in following multiply */
383 val
= (val
* invsqrt
) >> (32 - 2 + 1);
385 vars
->rec_inv_sqrt
= val
;
388 static void cobalt_invsqrt(struct cobalt_vars
*vars
)
390 if (vars
->count
< REC_INV_SQRT_CACHE
)
391 vars
->rec_inv_sqrt
= cobalt_rec_inv_sqrt_cache
[vars
->count
];
393 cobalt_newton_step(vars
);
396 /* There is a big difference in timing between the accurate values placed in
397 * the cache and the approximations given by a single Newton step for small
398 * count values, particularly when stepping from count 1 to 2 or vice versa.
399 * Above 16, a single Newton step gives sufficient accuracy in either
400 * direction, given the precision stored.
402 * The magnitude of the error when stepping up to count 2 is such as to give
403 * the value that *should* have been produced at count 4.
406 static void cobalt_cache_init(void)
408 struct cobalt_vars v
;
410 memset(&v
, 0, sizeof(v
));
411 v
.rec_inv_sqrt
= ~0U;
412 cobalt_rec_inv_sqrt_cache
[0] = v
.rec_inv_sqrt
;
414 for (v
.count
= 1; v
.count
< REC_INV_SQRT_CACHE
; v
.count
++) {
415 cobalt_newton_step(&v
);
416 cobalt_newton_step(&v
);
417 cobalt_newton_step(&v
);
418 cobalt_newton_step(&v
);
420 cobalt_rec_inv_sqrt_cache
[v
.count
] = v
.rec_inv_sqrt
;
424 static void cobalt_vars_init(struct cobalt_vars
*vars
)
426 memset(vars
, 0, sizeof(*vars
));
428 if (!cobalt_rec_inv_sqrt_cache
[0]) {
430 cobalt_rec_inv_sqrt_cache
[0] = ~0;
434 /* CoDel control_law is t + interval/sqrt(count)
435 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
436 * both sqrt() and divide operation.
438 static ktime_t
cobalt_control(ktime_t t
,
442 return ktime_add_ns(t
, reciprocal_scale(interval
,
446 /* Call this when a packet had to be dropped due to queue overflow. Returns
447 * true if the BLUE state was quiescent before but active after this call.
449 static bool cobalt_queue_full(struct cobalt_vars
*vars
,
450 struct cobalt_params
*p
,
455 if (ktime_to_ns(ktime_sub(now
, vars
->blue_timer
)) > p
->target
) {
457 vars
->p_drop
+= p
->p_inc
;
458 if (vars
->p_drop
< p
->p_inc
)
460 vars
->blue_timer
= now
;
462 vars
->dropping
= true;
463 vars
->drop_next
= now
;
470 /* Call this when the queue was serviced but turned out to be empty. Returns
471 * true if the BLUE state was active before but quiescent after this call.
473 static bool cobalt_queue_empty(struct cobalt_vars
*vars
,
474 struct cobalt_params
*p
,
480 ktime_to_ns(ktime_sub(now
, vars
->blue_timer
)) > p
->target
) {
481 if (vars
->p_drop
< p
->p_dec
)
484 vars
->p_drop
-= p
->p_dec
;
485 vars
->blue_timer
= now
;
486 down
= !vars
->p_drop
;
488 vars
->dropping
= false;
490 if (vars
->count
&& ktime_to_ns(ktime_sub(now
, vars
->drop_next
)) >= 0) {
492 cobalt_invsqrt(vars
);
493 vars
->drop_next
= cobalt_control(vars
->drop_next
,
501 /* Call this with a freshly dequeued packet for possible congestion marking.
502 * Returns true as an instruction to drop the packet, false for delivery.
504 static bool cobalt_should_drop(struct cobalt_vars
*vars
,
505 struct cobalt_params
*p
,
510 bool next_due
, over_target
, drop
= false;
514 /* The 'schedule' variable records, in its sign, whether 'now' is before or
515 * after 'drop_next'. This allows 'drop_next' to be updated before the next
516 * scheduling decision is actually branched, without destroying that
517 * information. Similarly, the first 'schedule' value calculated is preserved
518 * in the boolean 'next_due'.
520 * As for 'drop_next', we take advantage of the fact that 'interval' is both
521 * the delay between first exceeding 'target' and the first signalling event,
522 * *and* the scaling factor for the signalling frequency. It's therefore very
523 * natural to use a single mechanism for both purposes, and eliminates a
524 * significant amount of reference Codel's spaghetti code. To help with this,
525 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
526 * as possible to 1.0 in fixed-point.
529 sojourn
= ktime_to_ns(ktime_sub(now
, cobalt_get_enqueue_time(skb
)));
530 schedule
= ktime_sub(now
, vars
->drop_next
);
531 over_target
= sojourn
> p
->target
&&
532 sojourn
> p
->mtu_time
* bulk_flows
* 2 &&
533 sojourn
> p
->mtu_time
* 4;
534 next_due
= vars
->count
&& ktime_to_ns(schedule
) >= 0;
536 vars
->ecn_marked
= false;
539 if (!vars
->dropping
) {
540 vars
->dropping
= true;
541 vars
->drop_next
= cobalt_control(now
,
547 } else if (vars
->dropping
) {
548 vars
->dropping
= false;
551 if (next_due
&& vars
->dropping
) {
552 /* Use ECN mark if possible, otherwise drop */
553 drop
= !(vars
->ecn_marked
= INET_ECN_set_ce(skb
));
558 cobalt_invsqrt(vars
);
559 vars
->drop_next
= cobalt_control(vars
->drop_next
,
562 schedule
= ktime_sub(now
, vars
->drop_next
);
566 cobalt_invsqrt(vars
);
567 vars
->drop_next
= cobalt_control(vars
->drop_next
,
570 schedule
= ktime_sub(now
, vars
->drop_next
);
571 next_due
= vars
->count
&& ktime_to_ns(schedule
) >= 0;
575 /* Simple BLUE implementation. Lack of ECN is deliberate. */
577 drop
|= (prandom_u32() < vars
->p_drop
);
579 /* Overload the drop_next field as an activity timeout */
581 vars
->drop_next
= ktime_add_ns(now
, p
->interval
);
582 else if (ktime_to_ns(schedule
) > 0 && !drop
)
583 vars
->drop_next
= now
;
588 static void cake_update_flowkeys(struct flow_keys
*keys
,
589 const struct sk_buff
*skb
)
591 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
592 struct nf_conntrack_tuple tuple
= {};
593 bool rev
= !skb
->_nfct
;
595 if (skb_protocol(skb
, true) != htons(ETH_P_IP
))
598 if (!nf_ct_get_tuple_skb(&tuple
, skb
))
601 keys
->addrs
.v4addrs
.src
= rev
? tuple
.dst
.u3
.ip
: tuple
.src
.u3
.ip
;
602 keys
->addrs
.v4addrs
.dst
= rev
? tuple
.src
.u3
.ip
: tuple
.dst
.u3
.ip
;
604 if (keys
->ports
.ports
) {
605 keys
->ports
.src
= rev
? tuple
.dst
.u
.all
: tuple
.src
.u
.all
;
606 keys
->ports
.dst
= rev
? tuple
.src
.u
.all
: tuple
.dst
.u
.all
;
611 /* Cake has several subtle multiple bit settings. In these cases you
612 * would be matching triple isolate mode as well.
615 static bool cake_dsrc(int flow_mode
)
617 return (flow_mode
& CAKE_FLOW_DUAL_SRC
) == CAKE_FLOW_DUAL_SRC
;
620 static bool cake_ddst(int flow_mode
)
622 return (flow_mode
& CAKE_FLOW_DUAL_DST
) == CAKE_FLOW_DUAL_DST
;
625 static u32
cake_hash(struct cake_tin_data
*q
, const struct sk_buff
*skb
,
626 int flow_mode
, u16 flow_override
, u16 host_override
)
628 u32 flow_hash
= 0, srchost_hash
= 0, dsthost_hash
= 0;
629 u16 reduced_hash
, srchost_idx
, dsthost_idx
;
630 struct flow_keys keys
, host_keys
;
632 if (unlikely(flow_mode
== CAKE_FLOW_NONE
))
635 /* If both overrides are set we can skip packet dissection entirely */
636 if ((flow_override
|| !(flow_mode
& CAKE_FLOW_FLOWS
)) &&
637 (host_override
|| !(flow_mode
& CAKE_FLOW_HOSTS
)))
640 skb_flow_dissect_flow_keys(skb
, &keys
,
641 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL
);
643 if (flow_mode
& CAKE_FLOW_NAT_FLAG
)
644 cake_update_flowkeys(&keys
, skb
);
646 /* flow_hash_from_keys() sorts the addresses by value, so we have
647 * to preserve their order in a separate data structure to treat
648 * src and dst host addresses as independently selectable.
651 host_keys
.ports
.ports
= 0;
652 host_keys
.basic
.ip_proto
= 0;
653 host_keys
.keyid
.keyid
= 0;
654 host_keys
.tags
.flow_label
= 0;
656 switch (host_keys
.control
.addr_type
) {
657 case FLOW_DISSECTOR_KEY_IPV4_ADDRS
:
658 host_keys
.addrs
.v4addrs
.src
= 0;
659 dsthost_hash
= flow_hash_from_keys(&host_keys
);
660 host_keys
.addrs
.v4addrs
.src
= keys
.addrs
.v4addrs
.src
;
661 host_keys
.addrs
.v4addrs
.dst
= 0;
662 srchost_hash
= flow_hash_from_keys(&host_keys
);
665 case FLOW_DISSECTOR_KEY_IPV6_ADDRS
:
666 memset(&host_keys
.addrs
.v6addrs
.src
, 0,
667 sizeof(host_keys
.addrs
.v6addrs
.src
));
668 dsthost_hash
= flow_hash_from_keys(&host_keys
);
669 host_keys
.addrs
.v6addrs
.src
= keys
.addrs
.v6addrs
.src
;
670 memset(&host_keys
.addrs
.v6addrs
.dst
, 0,
671 sizeof(host_keys
.addrs
.v6addrs
.dst
));
672 srchost_hash
= flow_hash_from_keys(&host_keys
);
680 /* This *must* be after the above switch, since as a
681 * side-effect it sorts the src and dst addresses.
683 if (flow_mode
& CAKE_FLOW_FLOWS
)
684 flow_hash
= flow_hash_from_keys(&keys
);
688 flow_hash
= flow_override
- 1;
690 dsthost_hash
= host_override
- 1;
691 srchost_hash
= host_override
- 1;
694 if (!(flow_mode
& CAKE_FLOW_FLOWS
)) {
695 if (flow_mode
& CAKE_FLOW_SRC_IP
)
696 flow_hash
^= srchost_hash
;
698 if (flow_mode
& CAKE_FLOW_DST_IP
)
699 flow_hash
^= dsthost_hash
;
702 reduced_hash
= flow_hash
% CAKE_QUEUES
;
704 /* set-associative hashing */
705 /* fast path if no hash collision (direct lookup succeeds) */
706 if (likely(q
->tags
[reduced_hash
] == flow_hash
&&
707 q
->flows
[reduced_hash
].set
)) {
710 u32 inner_hash
= reduced_hash
% CAKE_SET_WAYS
;
711 u32 outer_hash
= reduced_hash
- inner_hash
;
712 bool allocate_src
= false;
713 bool allocate_dst
= false;
716 /* check if any active queue in the set is reserved for
719 for (i
= 0, k
= inner_hash
; i
< CAKE_SET_WAYS
;
720 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
721 if (q
->tags
[outer_hash
+ k
] == flow_hash
) {
725 if (!q
->flows
[outer_hash
+ k
].set
) {
726 /* need to increment host refcnts */
727 allocate_src
= cake_dsrc(flow_mode
);
728 allocate_dst
= cake_ddst(flow_mode
);
735 /* no queue is reserved for this flow, look for an
738 for (i
= 0; i
< CAKE_SET_WAYS
;
739 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
740 if (!q
->flows
[outer_hash
+ k
].set
) {
742 allocate_src
= cake_dsrc(flow_mode
);
743 allocate_dst
= cake_ddst(flow_mode
);
748 /* With no empty queues, default to the original
749 * queue, accept the collision, update the host tags.
752 if (q
->flows
[outer_hash
+ k
].set
== CAKE_SET_BULK
) {
753 q
->hosts
[q
->flows
[reduced_hash
].srchost
].srchost_bulk_flow_count
--;
754 q
->hosts
[q
->flows
[reduced_hash
].dsthost
].dsthost_bulk_flow_count
--;
756 allocate_src
= cake_dsrc(flow_mode
);
757 allocate_dst
= cake_ddst(flow_mode
);
759 /* reserve queue for future packets in same flow */
760 reduced_hash
= outer_hash
+ k
;
761 q
->tags
[reduced_hash
] = flow_hash
;
764 srchost_idx
= srchost_hash
% CAKE_QUEUES
;
765 inner_hash
= srchost_idx
% CAKE_SET_WAYS
;
766 outer_hash
= srchost_idx
- inner_hash
;
767 for (i
= 0, k
= inner_hash
; i
< CAKE_SET_WAYS
;
768 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
769 if (q
->hosts
[outer_hash
+ k
].srchost_tag
==
773 for (i
= 0; i
< CAKE_SET_WAYS
;
774 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
775 if (!q
->hosts
[outer_hash
+ k
].srchost_bulk_flow_count
)
778 q
->hosts
[outer_hash
+ k
].srchost_tag
= srchost_hash
;
780 srchost_idx
= outer_hash
+ k
;
781 if (q
->flows
[reduced_hash
].set
== CAKE_SET_BULK
)
782 q
->hosts
[srchost_idx
].srchost_bulk_flow_count
++;
783 q
->flows
[reduced_hash
].srchost
= srchost_idx
;
787 dsthost_idx
= dsthost_hash
% CAKE_QUEUES
;
788 inner_hash
= dsthost_idx
% CAKE_SET_WAYS
;
789 outer_hash
= dsthost_idx
- inner_hash
;
790 for (i
= 0, k
= inner_hash
; i
< CAKE_SET_WAYS
;
791 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
792 if (q
->hosts
[outer_hash
+ k
].dsthost_tag
==
796 for (i
= 0; i
< CAKE_SET_WAYS
;
797 i
++, k
= (k
+ 1) % CAKE_SET_WAYS
) {
798 if (!q
->hosts
[outer_hash
+ k
].dsthost_bulk_flow_count
)
801 q
->hosts
[outer_hash
+ k
].dsthost_tag
= dsthost_hash
;
803 dsthost_idx
= outer_hash
+ k
;
804 if (q
->flows
[reduced_hash
].set
== CAKE_SET_BULK
)
805 q
->hosts
[dsthost_idx
].dsthost_bulk_flow_count
++;
806 q
->flows
[reduced_hash
].dsthost
= dsthost_idx
;
813 /* helper functions : might be changed when/if skb use a standard list_head */
814 /* remove one skb from head of slot queue */
816 static struct sk_buff
*dequeue_head(struct cake_flow
*flow
)
818 struct sk_buff
*skb
= flow
->head
;
821 flow
->head
= skb
->next
;
822 skb_mark_not_on_list(skb
);
828 /* add skb to flow queue (tail add) */
830 static void flow_queue_add(struct cake_flow
*flow
, struct sk_buff
*skb
)
835 flow
->tail
->next
= skb
;
840 static struct iphdr
*cake_get_iphdr(const struct sk_buff
*skb
,
843 unsigned int offset
= skb_network_offset(skb
);
846 iph
= skb_header_pointer(skb
, offset
, sizeof(struct iphdr
), buf
);
851 if (iph
->version
== 4 && iph
->protocol
== IPPROTO_IPV6
)
852 return skb_header_pointer(skb
, offset
+ iph
->ihl
* 4,
853 sizeof(struct ipv6hdr
), buf
);
855 else if (iph
->version
== 4)
858 else if (iph
->version
== 6)
859 return skb_header_pointer(skb
, offset
, sizeof(struct ipv6hdr
),
865 static struct tcphdr
*cake_get_tcphdr(const struct sk_buff
*skb
,
866 void *buf
, unsigned int bufsize
)
868 unsigned int offset
= skb_network_offset(skb
);
869 const struct ipv6hdr
*ipv6h
;
870 const struct tcphdr
*tcph
;
871 const struct iphdr
*iph
;
872 struct ipv6hdr _ipv6h
;
875 ipv6h
= skb_header_pointer(skb
, offset
, sizeof(_ipv6h
), &_ipv6h
);
880 if (ipv6h
->version
== 4) {
881 iph
= (struct iphdr
*)ipv6h
;
882 offset
+= iph
->ihl
* 4;
884 /* special-case 6in4 tunnelling, as that is a common way to get
885 * v6 connectivity in the home
887 if (iph
->protocol
== IPPROTO_IPV6
) {
888 ipv6h
= skb_header_pointer(skb
, offset
,
889 sizeof(_ipv6h
), &_ipv6h
);
891 if (!ipv6h
|| ipv6h
->nexthdr
!= IPPROTO_TCP
)
894 offset
+= sizeof(struct ipv6hdr
);
896 } else if (iph
->protocol
!= IPPROTO_TCP
) {
900 } else if (ipv6h
->version
== 6) {
901 if (ipv6h
->nexthdr
!= IPPROTO_TCP
)
904 offset
+= sizeof(struct ipv6hdr
);
909 tcph
= skb_header_pointer(skb
, offset
, sizeof(_tcph
), &_tcph
);
913 return skb_header_pointer(skb
, offset
,
914 min(__tcp_hdrlen(tcph
), bufsize
), buf
);
917 static const void *cake_get_tcpopt(const struct tcphdr
*tcph
,
918 int code
, int *oplen
)
920 /* inspired by tcp_parse_options in tcp_input.c */
921 int length
= __tcp_hdrlen(tcph
) - sizeof(struct tcphdr
);
922 const u8
*ptr
= (const u8
*)(tcph
+ 1);
928 if (opcode
== TCPOPT_EOL
)
930 if (opcode
== TCPOPT_NOP
) {
935 if (opsize
< 2 || opsize
> length
)
938 if (opcode
== code
) {
950 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
951 * bytes than the other. In the case where both sequences ACKs bytes that the
952 * other doesn't, A is considered greater. DSACKs in A also makes A be
953 * considered greater.
955 * @return -1, 0 or 1 as normal compare functions
957 static int cake_tcph_sack_compare(const struct tcphdr
*tcph_a
,
958 const struct tcphdr
*tcph_b
)
960 const struct tcp_sack_block_wire
*sack_a
, *sack_b
;
961 u32 ack_seq_a
= ntohl(tcph_a
->ack_seq
);
962 u32 bytes_a
= 0, bytes_b
= 0;
963 int oplen_a
, oplen_b
;
966 sack_a
= cake_get_tcpopt(tcph_a
, TCPOPT_SACK
, &oplen_a
);
967 sack_b
= cake_get_tcpopt(tcph_b
, TCPOPT_SACK
, &oplen_b
);
969 /* pointers point to option contents */
970 oplen_a
-= TCPOLEN_SACK_BASE
;
971 oplen_b
-= TCPOLEN_SACK_BASE
;
973 if (sack_a
&& oplen_a
>= sizeof(*sack_a
) &&
974 (!sack_b
|| oplen_b
< sizeof(*sack_b
)))
976 else if (sack_b
&& oplen_b
>= sizeof(*sack_b
) &&
977 (!sack_a
|| oplen_a
< sizeof(*sack_a
)))
979 else if ((!sack_a
|| oplen_a
< sizeof(*sack_a
)) &&
980 (!sack_b
|| oplen_b
< sizeof(*sack_b
)))
983 while (oplen_a
>= sizeof(*sack_a
)) {
984 const struct tcp_sack_block_wire
*sack_tmp
= sack_b
;
985 u32 start_a
= get_unaligned_be32(&sack_a
->start_seq
);
986 u32 end_a
= get_unaligned_be32(&sack_a
->end_seq
);
987 int oplen_tmp
= oplen_b
;
990 /* DSACK; always considered greater to prevent dropping */
991 if (before(start_a
, ack_seq_a
))
994 bytes_a
+= end_a
- start_a
;
996 while (oplen_tmp
>= sizeof(*sack_tmp
)) {
997 u32 start_b
= get_unaligned_be32(&sack_tmp
->start_seq
);
998 u32 end_b
= get_unaligned_be32(&sack_tmp
->end_seq
);
1000 /* first time through we count the total size */
1002 bytes_b
+= end_b
- start_b
;
1004 if (!after(start_b
, start_a
) && !before(end_b
, end_a
)) {
1009 oplen_tmp
-= sizeof(*sack_tmp
);
1016 oplen_a
-= sizeof(*sack_a
);
1021 /* If we made it this far, all ranges SACKed by A are covered by B, so
1022 * either the SACKs are equal, or B SACKs more bytes.
1024 return bytes_b
> bytes_a
? 1 : 0;
1027 static void cake_tcph_get_tstamp(const struct tcphdr
*tcph
,
1028 u32
*tsval
, u32
*tsecr
)
1033 ptr
= cake_get_tcpopt(tcph
, TCPOPT_TIMESTAMP
, &opsize
);
1035 if (ptr
&& opsize
== TCPOLEN_TIMESTAMP
) {
1036 *tsval
= get_unaligned_be32(ptr
);
1037 *tsecr
= get_unaligned_be32(ptr
+ 4);
1041 static bool cake_tcph_may_drop(const struct tcphdr
*tcph
,
1042 u32 tstamp_new
, u32 tsecr_new
)
1044 /* inspired by tcp_parse_options in tcp_input.c */
1045 int length
= __tcp_hdrlen(tcph
) - sizeof(struct tcphdr
);
1046 const u8
*ptr
= (const u8
*)(tcph
+ 1);
1049 /* 3 reserved flags must be unset to avoid future breakage
1051 * ECE/CWR are handled separately
1052 * All other flags URG/PSH/RST/SYN/FIN must be unset
1053 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1054 * 0x00C00000 = CWR/ECE (handled separately)
1055 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1057 if (((tcp_flag_word(tcph
) &
1058 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK
))
1061 while (length
> 0) {
1062 int opcode
= *ptr
++;
1065 if (opcode
== TCPOPT_EOL
)
1067 if (opcode
== TCPOPT_NOP
) {
1072 if (opsize
< 2 || opsize
> length
)
1076 case TCPOPT_MD5SIG
: /* doesn't influence state */
1079 case TCPOPT_SACK
: /* stricter checking performed later */
1080 if (opsize
% 8 != 2)
1084 case TCPOPT_TIMESTAMP
:
1085 /* only drop timestamps lower than new */
1086 if (opsize
!= TCPOLEN_TIMESTAMP
)
1088 tstamp
= get_unaligned_be32(ptr
);
1089 tsecr
= get_unaligned_be32(ptr
+ 4);
1090 if (after(tstamp
, tstamp_new
) ||
1091 after(tsecr
, tsecr_new
))
1095 case TCPOPT_MSS
: /* these should only be set on SYN */
1097 case TCPOPT_SACK_PERM
:
1098 case TCPOPT_FASTOPEN
:
1100 default: /* don't drop if any unknown options are present */
1111 static struct sk_buff
*cake_ack_filter(struct cake_sched_data
*q
,
1112 struct cake_flow
*flow
)
1114 bool aggressive
= q
->ack_filter
== CAKE_ACK_AGGRESSIVE
;
1115 struct sk_buff
*elig_ack
= NULL
, *elig_ack_prev
= NULL
;
1116 struct sk_buff
*skb_check
, *skb_prev
= NULL
;
1117 const struct ipv6hdr
*ipv6h
, *ipv6h_check
;
1118 unsigned char _tcph
[64], _tcph_check
[64];
1119 const struct tcphdr
*tcph
, *tcph_check
;
1120 const struct iphdr
*iph
, *iph_check
;
1121 struct ipv6hdr _iph
, _iph_check
;
1122 const struct sk_buff
*skb
;
1123 int seglen
, num_found
= 0;
1124 u32 tstamp
= 0, tsecr
= 0;
1125 __be32 elig_flags
= 0;
1128 /* no other possible ACKs to filter */
1129 if (flow
->head
== flow
->tail
)
1133 tcph
= cake_get_tcphdr(skb
, _tcph
, sizeof(_tcph
));
1134 iph
= cake_get_iphdr(skb
, &_iph
);
1138 cake_tcph_get_tstamp(tcph
, &tstamp
, &tsecr
);
1140 /* the 'triggering' packet need only have the ACK flag set.
1141 * also check that SYN is not set, as there won't be any previous ACKs.
1143 if ((tcp_flag_word(tcph
) &
1144 (TCP_FLAG_ACK
| TCP_FLAG_SYN
)) != TCP_FLAG_ACK
)
1147 /* the 'triggering' ACK is at the tail of the queue, we have already
1148 * returned if it is the only packet in the flow. loop through the rest
1149 * of the queue looking for pure ACKs with the same 5-tuple as the
1152 for (skb_check
= flow
->head
;
1153 skb_check
&& skb_check
!= skb
;
1154 skb_prev
= skb_check
, skb_check
= skb_check
->next
) {
1155 iph_check
= cake_get_iphdr(skb_check
, &_iph_check
);
1156 tcph_check
= cake_get_tcphdr(skb_check
, &_tcph_check
,
1157 sizeof(_tcph_check
));
1159 /* only TCP packets with matching 5-tuple are eligible, and only
1162 if (!tcph_check
|| iph
->version
!= iph_check
->version
||
1163 tcph_check
->source
!= tcph
->source
||
1164 tcph_check
->dest
!= tcph
->dest
)
1167 if (iph_check
->version
== 4) {
1168 if (iph_check
->saddr
!= iph
->saddr
||
1169 iph_check
->daddr
!= iph
->daddr
)
1172 seglen
= ntohs(iph_check
->tot_len
) -
1173 (4 * iph_check
->ihl
);
1174 } else if (iph_check
->version
== 6) {
1175 ipv6h
= (struct ipv6hdr
*)iph
;
1176 ipv6h_check
= (struct ipv6hdr
*)iph_check
;
1178 if (ipv6_addr_cmp(&ipv6h_check
->saddr
, &ipv6h
->saddr
) ||
1179 ipv6_addr_cmp(&ipv6h_check
->daddr
, &ipv6h
->daddr
))
1182 seglen
= ntohs(ipv6h_check
->payload_len
);
1184 WARN_ON(1); /* shouldn't happen */
1188 /* If the ECE/CWR flags changed from the previous eligible
1189 * packet in the same flow, we should no longer be dropping that
1190 * previous packet as this would lose information.
1192 if (elig_ack
&& (tcp_flag_word(tcph_check
) &
1193 (TCP_FLAG_ECE
| TCP_FLAG_CWR
)) != elig_flags
) {
1195 elig_ack_prev
= NULL
;
1199 /* Check TCP options and flags, don't drop ACKs with segment
1200 * data, and don't drop ACKs with a higher cumulative ACK
1201 * counter than the triggering packet. Check ACK seqno here to
1202 * avoid parsing SACK options of packets we are going to exclude
1205 if (!cake_tcph_may_drop(tcph_check
, tstamp
, tsecr
) ||
1206 (seglen
- __tcp_hdrlen(tcph_check
)) != 0 ||
1207 after(ntohl(tcph_check
->ack_seq
), ntohl(tcph
->ack_seq
)))
1210 /* Check SACK options. The triggering packet must SACK more data
1211 * than the ACK under consideration, or SACK the same range but
1212 * have a larger cumulative ACK counter. The latter is a
1213 * pathological case, but is contained in the following check
1214 * anyway, just to be safe.
1216 sack_comp
= cake_tcph_sack_compare(tcph_check
, tcph
);
1218 if (sack_comp
< 0 ||
1219 (ntohl(tcph_check
->ack_seq
) == ntohl(tcph
->ack_seq
) &&
1223 /* At this point we have found an eligible pure ACK to drop; if
1224 * we are in aggressive mode, we are done. Otherwise, keep
1225 * searching unless this is the second eligible ACK we
1228 * Since we want to drop ACK closest to the head of the queue,
1229 * save the first eligible ACK we find, even if we need to loop
1233 elig_ack
= skb_check
;
1234 elig_ack_prev
= skb_prev
;
1235 elig_flags
= (tcp_flag_word(tcph_check
)
1236 & (TCP_FLAG_ECE
| TCP_FLAG_CWR
));
1239 if (num_found
++ > 0)
1243 /* We made it through the queue without finding two eligible ACKs . If
1244 * we found a single eligible ACK we can drop it in aggressive mode if
1245 * we can guarantee that this does not interfere with ECN flag
1246 * information. We ensure this by dropping it only if the enqueued
1247 * packet is consecutive with the eligible ACK, and their flags match.
1249 if (elig_ack
&& aggressive
&& elig_ack
->next
== skb
&&
1250 (elig_flags
== (tcp_flag_word(tcph
) &
1251 (TCP_FLAG_ECE
| TCP_FLAG_CWR
))))
1258 elig_ack_prev
->next
= elig_ack
->next
;
1260 flow
->head
= elig_ack
->next
;
1262 skb_mark_not_on_list(elig_ack
);
1267 static u64
cake_ewma(u64 avg
, u64 sample
, u32 shift
)
1269 avg
-= avg
>> shift
;
1270 avg
+= sample
>> shift
;
1274 static u32
cake_calc_overhead(struct cake_sched_data
*q
, u32 len
, u32 off
)
1276 if (q
->rate_flags
& CAKE_FLAG_OVERHEAD
)
1279 if (q
->max_netlen
< len
)
1280 q
->max_netlen
= len
;
1281 if (q
->min_netlen
> len
)
1282 q
->min_netlen
= len
;
1284 len
+= q
->rate_overhead
;
1286 if (len
< q
->rate_mpu
)
1289 if (q
->atm_mode
== CAKE_ATM_ATM
) {
1293 } else if (q
->atm_mode
== CAKE_ATM_PTM
) {
1294 /* Add one byte per 64 bytes or part thereof.
1295 * This is conservative and easier to calculate than the
1298 len
+= (len
+ 63) / 64;
1301 if (q
->max_adjlen
< len
)
1302 q
->max_adjlen
= len
;
1303 if (q
->min_adjlen
> len
)
1304 q
->min_adjlen
= len
;
1309 static u32
cake_overhead(struct cake_sched_data
*q
, const struct sk_buff
*skb
)
1311 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1312 unsigned int hdr_len
, last_len
= 0;
1313 u32 off
= skb_network_offset(skb
);
1314 u32 len
= qdisc_pkt_len(skb
);
1317 q
->avg_netoff
= cake_ewma(q
->avg_netoff
, off
<< 16, 8);
1319 if (!shinfo
->gso_size
)
1320 return cake_calc_overhead(q
, len
, off
);
1322 /* borrowed from qdisc_pkt_len_init() */
1323 hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
1325 /* + transport layer */
1326 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
|
1328 const struct tcphdr
*th
;
1329 struct tcphdr _tcphdr
;
1331 th
= skb_header_pointer(skb
, skb_transport_offset(skb
),
1332 sizeof(_tcphdr
), &_tcphdr
);
1334 hdr_len
+= __tcp_hdrlen(th
);
1336 struct udphdr _udphdr
;
1338 if (skb_header_pointer(skb
, skb_transport_offset(skb
),
1339 sizeof(_udphdr
), &_udphdr
))
1340 hdr_len
+= sizeof(struct udphdr
);
1343 if (unlikely(shinfo
->gso_type
& SKB_GSO_DODGY
))
1344 segs
= DIV_ROUND_UP(skb
->len
- hdr_len
,
1347 segs
= shinfo
->gso_segs
;
1349 len
= shinfo
->gso_size
+ hdr_len
;
1350 last_len
= skb
->len
- shinfo
->gso_size
* (segs
- 1);
1352 return (cake_calc_overhead(q
, len
, off
) * (segs
- 1) +
1353 cake_calc_overhead(q
, last_len
, off
));
1356 static void cake_heap_swap(struct cake_sched_data
*q
, u16 i
, u16 j
)
1358 struct cake_heap_entry ii
= q
->overflow_heap
[i
];
1359 struct cake_heap_entry jj
= q
->overflow_heap
[j
];
1361 q
->overflow_heap
[i
] = jj
;
1362 q
->overflow_heap
[j
] = ii
;
1364 q
->tins
[ii
.t
].overflow_idx
[ii
.b
] = j
;
1365 q
->tins
[jj
.t
].overflow_idx
[jj
.b
] = i
;
1368 static u32
cake_heap_get_backlog(const struct cake_sched_data
*q
, u16 i
)
1370 struct cake_heap_entry ii
= q
->overflow_heap
[i
];
1372 return q
->tins
[ii
.t
].backlogs
[ii
.b
];
1375 static void cake_heapify(struct cake_sched_data
*q
, u16 i
)
1377 static const u32 a
= CAKE_MAX_TINS
* CAKE_QUEUES
;
1378 u32 mb
= cake_heap_get_backlog(q
, i
);
1386 u32 lb
= cake_heap_get_backlog(q
, l
);
1395 u32 rb
= cake_heap_get_backlog(q
, r
);
1404 cake_heap_swap(q
, i
, m
);
1412 static void cake_heapify_up(struct cake_sched_data
*q
, u16 i
)
1414 while (i
> 0 && i
< CAKE_MAX_TINS
* CAKE_QUEUES
) {
1415 u16 p
= (i
- 1) >> 1;
1416 u32 ib
= cake_heap_get_backlog(q
, i
);
1417 u32 pb
= cake_heap_get_backlog(q
, p
);
1420 cake_heap_swap(q
, i
, p
);
1428 static int cake_advance_shaper(struct cake_sched_data
*q
,
1429 struct cake_tin_data
*b
,
1430 struct sk_buff
*skb
,
1431 ktime_t now
, bool drop
)
1433 u32 len
= get_cobalt_cb(skb
)->adjusted_len
;
1435 /* charge packet bandwidth to this tin
1436 * and to the global shaper.
1439 u64 tin_dur
= (len
* b
->tin_rate_ns
) >> b
->tin_rate_shft
;
1440 u64 global_dur
= (len
* q
->rate_ns
) >> q
->rate_shft
;
1441 u64 failsafe_dur
= global_dur
+ (global_dur
>> 1);
1443 if (ktime_before(b
->time_next_packet
, now
))
1444 b
->time_next_packet
= ktime_add_ns(b
->time_next_packet
,
1447 else if (ktime_before(b
->time_next_packet
,
1448 ktime_add_ns(now
, tin_dur
)))
1449 b
->time_next_packet
= ktime_add_ns(now
, tin_dur
);
1451 q
->time_next_packet
= ktime_add_ns(q
->time_next_packet
,
1454 q
->failsafe_next_packet
= \
1455 ktime_add_ns(q
->failsafe_next_packet
,
1461 static unsigned int cake_drop(struct Qdisc
*sch
, struct sk_buff
**to_free
)
1463 struct cake_sched_data
*q
= qdisc_priv(sch
);
1464 ktime_t now
= ktime_get();
1465 u32 idx
= 0, tin
= 0, len
;
1466 struct cake_heap_entry qq
;
1467 struct cake_tin_data
*b
;
1468 struct cake_flow
*flow
;
1469 struct sk_buff
*skb
;
1471 if (!q
->overflow_timeout
) {
1473 /* Build fresh max-heap */
1474 for (i
= CAKE_MAX_TINS
* CAKE_QUEUES
/ 2; i
>= 0; i
--)
1477 q
->overflow_timeout
= 65535;
1479 /* select longest queue for pruning */
1480 qq
= q
->overflow_heap
[0];
1485 flow
= &b
->flows
[idx
];
1486 skb
= dequeue_head(flow
);
1487 if (unlikely(!skb
)) {
1488 /* heap has gone wrong, rebuild it next time */
1489 q
->overflow_timeout
= 0;
1490 return idx
+ (tin
<< 16);
1493 if (cobalt_queue_full(&flow
->cvars
, &b
->cparams
, now
))
1494 b
->unresponsive_flow_count
++;
1496 len
= qdisc_pkt_len(skb
);
1497 q
->buffer_used
-= skb
->truesize
;
1498 b
->backlogs
[idx
] -= len
;
1499 b
->tin_backlog
-= len
;
1500 sch
->qstats
.backlog
-= len
;
1501 qdisc_tree_reduce_backlog(sch
, 1, len
);
1505 sch
->qstats
.drops
++;
1507 if (q
->rate_flags
& CAKE_FLAG_INGRESS
)
1508 cake_advance_shaper(q
, b
, skb
, now
, true);
1510 __qdisc_drop(skb
, to_free
);
1515 return idx
+ (tin
<< 16);
1518 static u8
cake_handle_diffserv(struct sk_buff
*skb
, bool wash
)
1520 const int offset
= skb_network_offset(skb
);
1524 switch (skb_protocol(skb
, true)) {
1525 case htons(ETH_P_IP
):
1526 buf
= skb_header_pointer(skb
, offset
, sizeof(buf_
), &buf_
);
1530 /* ToS is in the second byte of iphdr */
1531 dscp
= ipv4_get_dsfield((struct iphdr
*)buf
) >> 2;
1534 const int wlen
= offset
+ sizeof(struct iphdr
);
1536 if (!pskb_may_pull(skb
, wlen
) ||
1537 skb_try_make_writable(skb
, wlen
))
1540 ipv4_change_dsfield(ip_hdr(skb
), INET_ECN_MASK
, 0);
1545 case htons(ETH_P_IPV6
):
1546 buf
= skb_header_pointer(skb
, offset
, sizeof(buf_
), &buf_
);
1550 /* Traffic class is in the first and second bytes of ipv6hdr */
1551 dscp
= ipv6_get_dsfield((struct ipv6hdr
*)buf
) >> 2;
1554 const int wlen
= offset
+ sizeof(struct ipv6hdr
);
1556 if (!pskb_may_pull(skb
, wlen
) ||
1557 skb_try_make_writable(skb
, wlen
))
1560 ipv6_change_dsfield(ipv6_hdr(skb
), INET_ECN_MASK
, 0);
1565 case htons(ETH_P_ARP
):
1566 return 0x38; /* CS7 - Net Control */
1569 /* If there is no Diffserv field, treat as best-effort */
1574 static struct cake_tin_data
*cake_select_tin(struct Qdisc
*sch
,
1575 struct sk_buff
*skb
)
1577 struct cake_sched_data
*q
= qdisc_priv(sch
);
1582 /* Tin selection: Default to diffserv-based selection, allow overriding
1583 * using firewall marks or skb->priority. Call DSCP parsing early if
1584 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1586 mark
= (skb
->mark
& q
->fwmark_mask
) >> q
->fwmark_shft
;
1587 wash
= !!(q
->rate_flags
& CAKE_FLAG_WASH
);
1589 dscp
= cake_handle_diffserv(skb
, wash
);
1591 if (q
->tin_mode
== CAKE_DIFFSERV_BESTEFFORT
)
1594 else if (mark
&& mark
<= q
->tin_cnt
)
1595 tin
= q
->tin_order
[mark
- 1];
1597 else if (TC_H_MAJ(skb
->priority
) == sch
->handle
&&
1598 TC_H_MIN(skb
->priority
) > 0 &&
1599 TC_H_MIN(skb
->priority
) <= q
->tin_cnt
)
1600 tin
= q
->tin_order
[TC_H_MIN(skb
->priority
) - 1];
1604 dscp
= cake_handle_diffserv(skb
, wash
);
1605 tin
= q
->tin_index
[dscp
];
1607 if (unlikely(tin
>= q
->tin_cnt
))
1611 return &q
->tins
[tin
];
1614 static u32
cake_classify(struct Qdisc
*sch
, struct cake_tin_data
**t
,
1615 struct sk_buff
*skb
, int flow_mode
, int *qerr
)
1617 struct cake_sched_data
*q
= qdisc_priv(sch
);
1618 struct tcf_proto
*filter
;
1619 struct tcf_result res
;
1620 u16 flow
= 0, host
= 0;
1623 filter
= rcu_dereference_bh(q
->filter_list
);
1627 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
1628 result
= tcf_classify(skb
, filter
, &res
, false);
1631 #ifdef CONFIG_NET_CLS_ACT
1636 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
1642 if (TC_H_MIN(res
.classid
) <= CAKE_QUEUES
)
1643 flow
= TC_H_MIN(res
.classid
);
1644 if (TC_H_MAJ(res
.classid
) <= (CAKE_QUEUES
<< 16))
1645 host
= TC_H_MAJ(res
.classid
) >> 16;
1648 *t
= cake_select_tin(sch
, skb
);
1649 return cake_hash(*t
, skb
, flow_mode
, flow
, host
) + 1;
1652 static void cake_reconfigure(struct Qdisc
*sch
);
1654 static s32
cake_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
,
1655 struct sk_buff
**to_free
)
1657 struct cake_sched_data
*q
= qdisc_priv(sch
);
1658 int len
= qdisc_pkt_len(skb
);
1659 int uninitialized_var(ret
);
1660 struct sk_buff
*ack
= NULL
;
1661 ktime_t now
= ktime_get();
1662 struct cake_tin_data
*b
;
1663 struct cake_flow
*flow
;
1666 /* choose flow to insert into */
1667 idx
= cake_classify(sch
, &b
, skb
, q
->flow_mode
, &ret
);
1669 if (ret
& __NET_XMIT_BYPASS
)
1670 qdisc_qstats_drop(sch
);
1671 __qdisc_drop(skb
, to_free
);
1675 flow
= &b
->flows
[idx
];
1677 /* ensure shaper state isn't stale */
1678 if (!b
->tin_backlog
) {
1679 if (ktime_before(b
->time_next_packet
, now
))
1680 b
->time_next_packet
= now
;
1683 if (ktime_before(q
->time_next_packet
, now
)) {
1684 q
->failsafe_next_packet
= now
;
1685 q
->time_next_packet
= now
;
1686 } else if (ktime_after(q
->time_next_packet
, now
) &&
1687 ktime_after(q
->failsafe_next_packet
, now
)) {
1689 min(ktime_to_ns(q
->time_next_packet
),
1691 q
->failsafe_next_packet
));
1692 sch
->qstats
.overlimits
++;
1693 qdisc_watchdog_schedule_ns(&q
->watchdog
, next
);
1698 if (unlikely(len
> b
->max_skblen
))
1699 b
->max_skblen
= len
;
1701 if (skb_is_gso(skb
) && q
->rate_flags
& CAKE_FLAG_SPLIT_GSO
) {
1702 struct sk_buff
*segs
, *nskb
;
1703 netdev_features_t features
= netif_skb_features(skb
);
1704 unsigned int slen
= 0, numsegs
= 0;
1706 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
1707 if (IS_ERR_OR_NULL(segs
))
1708 return qdisc_drop(skb
, sch
, to_free
);
1712 skb_mark_not_on_list(segs
);
1713 qdisc_skb_cb(segs
)->pkt_len
= segs
->len
;
1714 cobalt_set_enqueue_time(segs
, now
);
1715 get_cobalt_cb(segs
)->adjusted_len
= cake_overhead(q
,
1717 flow_queue_add(flow
, segs
);
1722 q
->buffer_used
+= segs
->truesize
;
1729 b
->backlogs
[idx
] += slen
;
1730 b
->tin_backlog
+= slen
;
1731 sch
->qstats
.backlog
+= slen
;
1732 q
->avg_window_bytes
+= slen
;
1734 qdisc_tree_reduce_backlog(sch
, 1-numsegs
, len
-slen
);
1738 cobalt_set_enqueue_time(skb
, now
);
1739 get_cobalt_cb(skb
)->adjusted_len
= cake_overhead(q
, skb
);
1740 flow_queue_add(flow
, skb
);
1743 ack
= cake_ack_filter(q
, flow
);
1747 sch
->qstats
.drops
++;
1748 b
->bytes
+= qdisc_pkt_len(ack
);
1749 len
-= qdisc_pkt_len(ack
);
1750 q
->buffer_used
+= skb
->truesize
- ack
->truesize
;
1751 if (q
->rate_flags
& CAKE_FLAG_INGRESS
)
1752 cake_advance_shaper(q
, b
, ack
, now
, true);
1754 qdisc_tree_reduce_backlog(sch
, 1, qdisc_pkt_len(ack
));
1758 q
->buffer_used
+= skb
->truesize
;
1764 b
->backlogs
[idx
] += len
;
1765 b
->tin_backlog
+= len
;
1766 sch
->qstats
.backlog
+= len
;
1767 q
->avg_window_bytes
+= len
;
1770 if (q
->overflow_timeout
)
1771 cake_heapify_up(q
, b
->overflow_idx
[idx
]);
1773 /* incoming bandwidth capacity estimate */
1774 if (q
->rate_flags
& CAKE_FLAG_AUTORATE_INGRESS
) {
1775 u64 packet_interval
= \
1776 ktime_to_ns(ktime_sub(now
, q
->last_packet_time
));
1778 if (packet_interval
> NSEC_PER_SEC
)
1779 packet_interval
= NSEC_PER_SEC
;
1781 /* filter out short-term bursts, eg. wifi aggregation */
1782 q
->avg_packet_interval
= \
1783 cake_ewma(q
->avg_packet_interval
,
1785 (packet_interval
> q
->avg_packet_interval
?
1788 q
->last_packet_time
= now
;
1790 if (packet_interval
> q
->avg_packet_interval
) {
1791 u64 window_interval
= \
1792 ktime_to_ns(ktime_sub(now
,
1793 q
->avg_window_begin
));
1794 u64 b
= q
->avg_window_bytes
* (u64
)NSEC_PER_SEC
;
1796 b
= div64_u64(b
, window_interval
);
1797 q
->avg_peak_bandwidth
=
1798 cake_ewma(q
->avg_peak_bandwidth
, b
,
1799 b
> q
->avg_peak_bandwidth
? 2 : 8);
1800 q
->avg_window_bytes
= 0;
1801 q
->avg_window_begin
= now
;
1803 if (ktime_after(now
,
1804 ktime_add_ms(q
->last_reconfig_time
,
1806 q
->rate_bps
= (q
->avg_peak_bandwidth
* 15) >> 4;
1807 cake_reconfigure(sch
);
1811 q
->avg_window_bytes
= 0;
1812 q
->last_packet_time
= now
;
1816 if (!flow
->set
|| flow
->set
== CAKE_SET_DECAYING
) {
1817 struct cake_host
*srchost
= &b
->hosts
[flow
->srchost
];
1818 struct cake_host
*dsthost
= &b
->hosts
[flow
->dsthost
];
1822 list_add_tail(&flow
->flowchain
, &b
->new_flows
);
1824 b
->decaying_flow_count
--;
1825 list_move_tail(&flow
->flowchain
, &b
->new_flows
);
1827 flow
->set
= CAKE_SET_SPARSE
;
1828 b
->sparse_flow_count
++;
1830 if (cake_dsrc(q
->flow_mode
))
1831 host_load
= max(host_load
, srchost
->srchost_bulk_flow_count
);
1833 if (cake_ddst(q
->flow_mode
))
1834 host_load
= max(host_load
, dsthost
->dsthost_bulk_flow_count
);
1836 flow
->deficit
= (b
->flow_quantum
*
1837 quantum_div
[host_load
]) >> 16;
1838 } else if (flow
->set
== CAKE_SET_SPARSE_WAIT
) {
1839 struct cake_host
*srchost
= &b
->hosts
[flow
->srchost
];
1840 struct cake_host
*dsthost
= &b
->hosts
[flow
->dsthost
];
1842 /* this flow was empty, accounted as a sparse flow, but actually
1843 * in the bulk rotation.
1845 flow
->set
= CAKE_SET_BULK
;
1846 b
->sparse_flow_count
--;
1847 b
->bulk_flow_count
++;
1849 if (cake_dsrc(q
->flow_mode
))
1850 srchost
->srchost_bulk_flow_count
++;
1852 if (cake_ddst(q
->flow_mode
))
1853 dsthost
->dsthost_bulk_flow_count
++;
1857 if (q
->buffer_used
> q
->buffer_max_used
)
1858 q
->buffer_max_used
= q
->buffer_used
;
1860 if (q
->buffer_used
> q
->buffer_limit
) {
1863 while (q
->buffer_used
> q
->buffer_limit
) {
1865 cake_drop(sch
, to_free
);
1867 b
->drop_overlimit
+= dropped
;
1869 return NET_XMIT_SUCCESS
;
1872 static struct sk_buff
*cake_dequeue_one(struct Qdisc
*sch
)
1874 struct cake_sched_data
*q
= qdisc_priv(sch
);
1875 struct cake_tin_data
*b
= &q
->tins
[q
->cur_tin
];
1876 struct cake_flow
*flow
= &b
->flows
[q
->cur_flow
];
1877 struct sk_buff
*skb
= NULL
;
1881 skb
= dequeue_head(flow
);
1882 len
= qdisc_pkt_len(skb
);
1883 b
->backlogs
[q
->cur_flow
] -= len
;
1884 b
->tin_backlog
-= len
;
1885 sch
->qstats
.backlog
-= len
;
1886 q
->buffer_used
-= skb
->truesize
;
1889 if (q
->overflow_timeout
)
1890 cake_heapify(q
, b
->overflow_idx
[q
->cur_flow
]);
1895 /* Discard leftover packets from a tin no longer in use. */
1896 static void cake_clear_tin(struct Qdisc
*sch
, u16 tin
)
1898 struct cake_sched_data
*q
= qdisc_priv(sch
);
1899 struct sk_buff
*skb
;
1902 for (q
->cur_flow
= 0; q
->cur_flow
< CAKE_QUEUES
; q
->cur_flow
++)
1903 while (!!(skb
= cake_dequeue_one(sch
)))
1907 static struct sk_buff
*cake_dequeue(struct Qdisc
*sch
)
1909 struct cake_sched_data
*q
= qdisc_priv(sch
);
1910 struct cake_tin_data
*b
= &q
->tins
[q
->cur_tin
];
1911 struct cake_host
*srchost
, *dsthost
;
1912 ktime_t now
= ktime_get();
1913 struct cake_flow
*flow
;
1914 struct list_head
*head
;
1915 bool first_flow
= true;
1916 struct sk_buff
*skb
;
1925 /* global hard shaper */
1926 if (ktime_after(q
->time_next_packet
, now
) &&
1927 ktime_after(q
->failsafe_next_packet
, now
)) {
1928 u64 next
= min(ktime_to_ns(q
->time_next_packet
),
1929 ktime_to_ns(q
->failsafe_next_packet
));
1931 sch
->qstats
.overlimits
++;
1932 qdisc_watchdog_schedule_ns(&q
->watchdog
, next
);
1936 /* Choose a class to work on. */
1938 /* In unlimited mode, can't rely on shaper timings, just balance
1941 bool wrapped
= false, empty
= true;
1943 while (b
->tin_deficit
< 0 ||
1944 !(b
->sparse_flow_count
+ b
->bulk_flow_count
)) {
1945 if (b
->tin_deficit
<= 0)
1946 b
->tin_deficit
+= b
->tin_quantum_band
;
1947 if (b
->sparse_flow_count
+ b
->bulk_flow_count
)
1952 if (q
->cur_tin
>= q
->tin_cnt
) {
1957 /* It's possible for q->qlen to be
1958 * nonzero when we actually have no
1969 /* In shaped mode, choose:
1970 * - Highest-priority tin with queue and meeting schedule, or
1971 * - The earliest-scheduled tin with queue.
1973 ktime_t best_time
= KTIME_MAX
;
1974 int tin
, best_tin
= 0;
1976 for (tin
= 0; tin
< q
->tin_cnt
; tin
++) {
1978 if ((b
->sparse_flow_count
+ b
->bulk_flow_count
) > 0) {
1979 ktime_t time_to_pkt
= \
1980 ktime_sub(b
->time_next_packet
, now
);
1982 if (ktime_to_ns(time_to_pkt
) <= 0 ||
1983 ktime_compare(time_to_pkt
,
1985 best_time
= time_to_pkt
;
1991 q
->cur_tin
= best_tin
;
1992 b
= q
->tins
+ best_tin
;
1994 /* No point in going further if no packets to deliver. */
1995 if (unlikely(!(b
->sparse_flow_count
+ b
->bulk_flow_count
)))
2000 /* service this class */
2001 head
= &b
->decaying_flows
;
2002 if (!first_flow
|| list_empty(head
)) {
2003 head
= &b
->new_flows
;
2004 if (list_empty(head
)) {
2005 head
= &b
->old_flows
;
2006 if (unlikely(list_empty(head
))) {
2007 head
= &b
->decaying_flows
;
2008 if (unlikely(list_empty(head
)))
2013 flow
= list_first_entry(head
, struct cake_flow
, flowchain
);
2014 q
->cur_flow
= flow
- b
->flows
;
2017 /* triple isolation (modified DRR++) */
2018 srchost
= &b
->hosts
[flow
->srchost
];
2019 dsthost
= &b
->hosts
[flow
->dsthost
];
2022 /* flow isolation (DRR++) */
2023 if (flow
->deficit
<= 0) {
2024 /* Keep all flows with deficits out of the sparse and decaying
2025 * rotations. No non-empty flow can go into the decaying
2026 * rotation, so they can't get deficits
2028 if (flow
->set
== CAKE_SET_SPARSE
) {
2030 b
->sparse_flow_count
--;
2031 b
->bulk_flow_count
++;
2033 if (cake_dsrc(q
->flow_mode
))
2034 srchost
->srchost_bulk_flow_count
++;
2036 if (cake_ddst(q
->flow_mode
))
2037 dsthost
->dsthost_bulk_flow_count
++;
2039 flow
->set
= CAKE_SET_BULK
;
2041 /* we've moved it to the bulk rotation for
2042 * correct deficit accounting but we still want
2043 * to count it as a sparse flow, not a bulk one.
2045 flow
->set
= CAKE_SET_SPARSE_WAIT
;
2049 if (cake_dsrc(q
->flow_mode
))
2050 host_load
= max(host_load
, srchost
->srchost_bulk_flow_count
);
2052 if (cake_ddst(q
->flow_mode
))
2053 host_load
= max(host_load
, dsthost
->dsthost_bulk_flow_count
);
2055 WARN_ON(host_load
> CAKE_QUEUES
);
2057 /* The shifted prandom_u32() is a way to apply dithering to
2058 * avoid accumulating roundoff errors
2060 flow
->deficit
+= (b
->flow_quantum
* quantum_div
[host_load
] +
2061 (prandom_u32() >> 16)) >> 16;
2062 list_move_tail(&flow
->flowchain
, &b
->old_flows
);
2067 /* Retrieve a packet via the AQM */
2069 skb
= cake_dequeue_one(sch
);
2071 /* this queue was actually empty */
2072 if (cobalt_queue_empty(&flow
->cvars
, &b
->cparams
, now
))
2073 b
->unresponsive_flow_count
--;
2075 if (flow
->cvars
.p_drop
|| flow
->cvars
.count
||
2076 ktime_before(now
, flow
->cvars
.drop_next
)) {
2077 /* keep in the flowchain until the state has
2080 list_move_tail(&flow
->flowchain
,
2081 &b
->decaying_flows
);
2082 if (flow
->set
== CAKE_SET_BULK
) {
2083 b
->bulk_flow_count
--;
2085 if (cake_dsrc(q
->flow_mode
))
2086 srchost
->srchost_bulk_flow_count
--;
2088 if (cake_ddst(q
->flow_mode
))
2089 dsthost
->dsthost_bulk_flow_count
--;
2091 b
->decaying_flow_count
++;
2092 } else if (flow
->set
== CAKE_SET_SPARSE
||
2093 flow
->set
== CAKE_SET_SPARSE_WAIT
) {
2094 b
->sparse_flow_count
--;
2095 b
->decaying_flow_count
++;
2097 flow
->set
= CAKE_SET_DECAYING
;
2099 /* remove empty queue from the flowchain */
2100 list_del_init(&flow
->flowchain
);
2101 if (flow
->set
== CAKE_SET_SPARSE
||
2102 flow
->set
== CAKE_SET_SPARSE_WAIT
)
2103 b
->sparse_flow_count
--;
2104 else if (flow
->set
== CAKE_SET_BULK
) {
2105 b
->bulk_flow_count
--;
2107 if (cake_dsrc(q
->flow_mode
))
2108 srchost
->srchost_bulk_flow_count
--;
2110 if (cake_ddst(q
->flow_mode
))
2111 dsthost
->dsthost_bulk_flow_count
--;
2114 b
->decaying_flow_count
--;
2116 flow
->set
= CAKE_SET_NONE
;
2121 /* Last packet in queue may be marked, shouldn't be dropped */
2122 if (!cobalt_should_drop(&flow
->cvars
, &b
->cparams
, now
, skb
,
2123 (b
->bulk_flow_count
*
2125 CAKE_FLAG_INGRESS
))) ||
2129 /* drop this packet, get another one */
2130 if (q
->rate_flags
& CAKE_FLAG_INGRESS
) {
2131 len
= cake_advance_shaper(q
, b
, skb
,
2133 flow
->deficit
-= len
;
2134 b
->tin_deficit
-= len
;
2138 qdisc_tree_reduce_backlog(sch
, 1, qdisc_pkt_len(skb
));
2139 qdisc_qstats_drop(sch
);
2141 if (q
->rate_flags
& CAKE_FLAG_INGRESS
)
2145 b
->tin_ecn_mark
+= !!flow
->cvars
.ecn_marked
;
2146 qdisc_bstats_update(sch
, skb
);
2148 /* collect delay stats */
2149 delay
= ktime_to_ns(ktime_sub(now
, cobalt_get_enqueue_time(skb
)));
2150 b
->avge_delay
= cake_ewma(b
->avge_delay
, delay
, 8);
2151 b
->peak_delay
= cake_ewma(b
->peak_delay
, delay
,
2152 delay
> b
->peak_delay
? 2 : 8);
2153 b
->base_delay
= cake_ewma(b
->base_delay
, delay
,
2154 delay
< b
->base_delay
? 2 : 8);
2156 len
= cake_advance_shaper(q
, b
, skb
, now
, false);
2157 flow
->deficit
-= len
;
2158 b
->tin_deficit
-= len
;
2160 if (ktime_after(q
->time_next_packet
, now
) && sch
->q
.qlen
) {
2161 u64 next
= min(ktime_to_ns(q
->time_next_packet
),
2162 ktime_to_ns(q
->failsafe_next_packet
));
2164 qdisc_watchdog_schedule_ns(&q
->watchdog
, next
);
2165 } else if (!sch
->q
.qlen
) {
2168 for (i
= 0; i
< q
->tin_cnt
; i
++) {
2169 if (q
->tins
[i
].decaying_flow_count
) {
2172 q
->tins
[i
].cparams
.target
);
2174 qdisc_watchdog_schedule_ns(&q
->watchdog
,
2181 if (q
->overflow_timeout
)
2182 q
->overflow_timeout
--;
2187 static void cake_reset(struct Qdisc
*sch
)
2191 for (c
= 0; c
< CAKE_MAX_TINS
; c
++)
2192 cake_clear_tin(sch
, c
);
2195 static const struct nla_policy cake_policy
[TCA_CAKE_MAX
+ 1] = {
2196 [TCA_CAKE_BASE_RATE64
] = { .type
= NLA_U64
},
2197 [TCA_CAKE_DIFFSERV_MODE
] = { .type
= NLA_U32
},
2198 [TCA_CAKE_ATM
] = { .type
= NLA_U32
},
2199 [TCA_CAKE_FLOW_MODE
] = { .type
= NLA_U32
},
2200 [TCA_CAKE_OVERHEAD
] = { .type
= NLA_S32
},
2201 [TCA_CAKE_RTT
] = { .type
= NLA_U32
},
2202 [TCA_CAKE_TARGET
] = { .type
= NLA_U32
},
2203 [TCA_CAKE_AUTORATE
] = { .type
= NLA_U32
},
2204 [TCA_CAKE_MEMORY
] = { .type
= NLA_U32
},
2205 [TCA_CAKE_NAT
] = { .type
= NLA_U32
},
2206 [TCA_CAKE_RAW
] = { .type
= NLA_U32
},
2207 [TCA_CAKE_WASH
] = { .type
= NLA_U32
},
2208 [TCA_CAKE_MPU
] = { .type
= NLA_U32
},
2209 [TCA_CAKE_INGRESS
] = { .type
= NLA_U32
},
2210 [TCA_CAKE_ACK_FILTER
] = { .type
= NLA_U32
},
2211 [TCA_CAKE_SPLIT_GSO
] = { .type
= NLA_U32
},
2212 [TCA_CAKE_FWMARK
] = { .type
= NLA_U32
},
2215 static void cake_set_rate(struct cake_tin_data
*b
, u64 rate
, u32 mtu
,
2216 u64 target_ns
, u64 rtt_est_ns
)
2218 /* convert byte-rate into time-per-byte
2219 * so it will always unwedge in reasonable time.
2221 static const u64 MIN_RATE
= 64;
2222 u32 byte_target
= mtu
;
2227 b
->flow_quantum
= 1514;
2229 b
->flow_quantum
= max(min(rate
>> 12, 1514ULL), 300ULL);
2231 rate_ns
= ((u64
)NSEC_PER_SEC
) << rate_shft
;
2232 rate_ns
= div64_u64(rate_ns
, max(MIN_RATE
, rate
));
2233 while (!!(rate_ns
>> 34)) {
2237 } /* else unlimited, ie. zero delay */
2239 b
->tin_rate_bps
= rate
;
2240 b
->tin_rate_ns
= rate_ns
;
2241 b
->tin_rate_shft
= rate_shft
;
2243 byte_target_ns
= (byte_target
* rate_ns
) >> rate_shft
;
2245 b
->cparams
.target
= max((byte_target_ns
* 3) / 2, target_ns
);
2246 b
->cparams
.interval
= max(rtt_est_ns
+
2247 b
->cparams
.target
- target_ns
,
2248 b
->cparams
.target
* 2);
2249 b
->cparams
.mtu_time
= byte_target_ns
;
2250 b
->cparams
.p_inc
= 1 << 24; /* 1/256 */
2251 b
->cparams
.p_dec
= 1 << 20; /* 1/4096 */
2254 static int cake_config_besteffort(struct Qdisc
*sch
)
2256 struct cake_sched_data
*q
= qdisc_priv(sch
);
2257 struct cake_tin_data
*b
= &q
->tins
[0];
2258 u32 mtu
= psched_mtu(qdisc_dev(sch
));
2259 u64 rate
= q
->rate_bps
;
2263 q
->tin_index
= besteffort
;
2264 q
->tin_order
= normal_order
;
2266 cake_set_rate(b
, rate
, mtu
,
2267 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2268 b
->tin_quantum_band
= 65535;
2269 b
->tin_quantum_prio
= 65535;
2274 static int cake_config_precedence(struct Qdisc
*sch
)
2276 /* convert high-level (user visible) parameters into internal format */
2277 struct cake_sched_data
*q
= qdisc_priv(sch
);
2278 u32 mtu
= psched_mtu(qdisc_dev(sch
));
2279 u64 rate
= q
->rate_bps
;
2285 q
->tin_index
= precedence
;
2286 q
->tin_order
= normal_order
;
2288 for (i
= 0; i
< q
->tin_cnt
; i
++) {
2289 struct cake_tin_data
*b
= &q
->tins
[i
];
2291 cake_set_rate(b
, rate
, mtu
, us_to_ns(q
->target
),
2292 us_to_ns(q
->interval
));
2294 b
->tin_quantum_prio
= max_t(u16
, 1U, quantum1
);
2295 b
->tin_quantum_band
= max_t(u16
, 1U, quantum2
);
2297 /* calculate next class's parameters */
2311 /* List of known Diffserv codepoints:
2313 * Least Effort (CS1)
2315 * Max Reliability & LLT "Lo" (TOS1)
2316 * Max Throughput (TOS2)
2319 * Assured Forwarding 1 (AF1x) - x3
2320 * Assured Forwarding 2 (AF2x) - x3
2321 * Assured Forwarding 3 (AF3x) - x3
2322 * Assured Forwarding 4 (AF4x) - x3
2323 * Precedence Class 2 (CS2)
2324 * Precedence Class 3 (CS3)
2325 * Precedence Class 4 (CS4)
2326 * Precedence Class 5 (CS5)
2327 * Precedence Class 6 (CS6)
2328 * Precedence Class 7 (CS7)
2330 * Expedited Forwarding (EF)
2332 * Total 25 codepoints.
2335 /* List of traffic classes in RFC 4594:
2336 * (roughly descending order of contended priority)
2337 * (roughly ascending order of uncontended throughput)
2339 * Network Control (CS6,CS7) - routing traffic
2340 * Telephony (EF,VA) - aka. VoIP streams
2341 * Signalling (CS5) - VoIP setup
2342 * Multimedia Conferencing (AF4x) - aka. video calls
2343 * Realtime Interactive (CS4) - eg. games
2344 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2345 * Broadcast Video (CS3)
2346 * Low Latency Data (AF2x,TOS4) - eg. database
2347 * Ops, Admin, Management (CS2,TOS1) - eg. ssh
2348 * Standard Service (CS0 & unrecognised codepoints)
2349 * High Throughput Data (AF1x,TOS2) - eg. web traffic
2350 * Low Priority Data (CS1) - eg. BitTorrent
2352 * Total 12 traffic classes.
2355 static int cake_config_diffserv8(struct Qdisc
*sch
)
2357 /* Pruned list of traffic classes for typical applications:
2359 * Network Control (CS6, CS7)
2360 * Minimum Latency (EF, VA, CS5, CS4)
2361 * Interactive Shell (CS2, TOS1)
2362 * Low Latency Transactions (AF2x, TOS4)
2363 * Video Streaming (AF4x, AF3x, CS3)
2364 * Bog Standard (CS0 etc.)
2365 * High Throughput (AF1x, TOS2)
2366 * Background Traffic (CS1)
2368 * Total 8 traffic classes.
2371 struct cake_sched_data
*q
= qdisc_priv(sch
);
2372 u32 mtu
= psched_mtu(qdisc_dev(sch
));
2373 u64 rate
= q
->rate_bps
;
2380 /* codepoint to class mapping */
2381 q
->tin_index
= diffserv8
;
2382 q
->tin_order
= normal_order
;
2384 /* class characteristics */
2385 for (i
= 0; i
< q
->tin_cnt
; i
++) {
2386 struct cake_tin_data
*b
= &q
->tins
[i
];
2388 cake_set_rate(b
, rate
, mtu
, us_to_ns(q
->target
),
2389 us_to_ns(q
->interval
));
2391 b
->tin_quantum_prio
= max_t(u16
, 1U, quantum1
);
2392 b
->tin_quantum_band
= max_t(u16
, 1U, quantum2
);
2394 /* calculate next class's parameters */
2408 static int cake_config_diffserv4(struct Qdisc
*sch
)
2410 /* Further pruned list of traffic classes for four-class system:
2412 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2413 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
2414 * Best Effort (CS0, AF1x, TOS2, and those not specified)
2415 * Background Traffic (CS1)
2417 * Total 4 traffic classes.
2420 struct cake_sched_data
*q
= qdisc_priv(sch
);
2421 u32 mtu
= psched_mtu(qdisc_dev(sch
));
2422 u64 rate
= q
->rate_bps
;
2427 /* codepoint to class mapping */
2428 q
->tin_index
= diffserv4
;
2429 q
->tin_order
= bulk_order
;
2431 /* class characteristics */
2432 cake_set_rate(&q
->tins
[0], rate
, mtu
,
2433 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2434 cake_set_rate(&q
->tins
[1], rate
>> 4, mtu
,
2435 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2436 cake_set_rate(&q
->tins
[2], rate
>> 1, mtu
,
2437 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2438 cake_set_rate(&q
->tins
[3], rate
>> 2, mtu
,
2439 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2441 /* priority weights */
2442 q
->tins
[0].tin_quantum_prio
= quantum
;
2443 q
->tins
[1].tin_quantum_prio
= quantum
>> 4;
2444 q
->tins
[2].tin_quantum_prio
= quantum
<< 2;
2445 q
->tins
[3].tin_quantum_prio
= quantum
<< 4;
2447 /* bandwidth-sharing weights */
2448 q
->tins
[0].tin_quantum_band
= quantum
;
2449 q
->tins
[1].tin_quantum_band
= quantum
>> 4;
2450 q
->tins
[2].tin_quantum_band
= quantum
>> 1;
2451 q
->tins
[3].tin_quantum_band
= quantum
>> 2;
2456 static int cake_config_diffserv3(struct Qdisc
*sch
)
2458 /* Simplified Diffserv structure with 3 tins.
2459 * Low Priority (CS1)
2461 * Latency Sensitive (TOS4, VA, EF, CS6, CS7)
2463 struct cake_sched_data
*q
= qdisc_priv(sch
);
2464 u32 mtu
= psched_mtu(qdisc_dev(sch
));
2465 u64 rate
= q
->rate_bps
;
2470 /* codepoint to class mapping */
2471 q
->tin_index
= diffserv3
;
2472 q
->tin_order
= bulk_order
;
2474 /* class characteristics */
2475 cake_set_rate(&q
->tins
[0], rate
, mtu
,
2476 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2477 cake_set_rate(&q
->tins
[1], rate
>> 4, mtu
,
2478 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2479 cake_set_rate(&q
->tins
[2], rate
>> 2, mtu
,
2480 us_to_ns(q
->target
), us_to_ns(q
->interval
));
2482 /* priority weights */
2483 q
->tins
[0].tin_quantum_prio
= quantum
;
2484 q
->tins
[1].tin_quantum_prio
= quantum
>> 4;
2485 q
->tins
[2].tin_quantum_prio
= quantum
<< 4;
2487 /* bandwidth-sharing weights */
2488 q
->tins
[0].tin_quantum_band
= quantum
;
2489 q
->tins
[1].tin_quantum_band
= quantum
>> 4;
2490 q
->tins
[2].tin_quantum_band
= quantum
>> 2;
2495 static void cake_reconfigure(struct Qdisc
*sch
)
2497 struct cake_sched_data
*q
= qdisc_priv(sch
);
2500 switch (q
->tin_mode
) {
2501 case CAKE_DIFFSERV_BESTEFFORT
:
2502 ft
= cake_config_besteffort(sch
);
2505 case CAKE_DIFFSERV_PRECEDENCE
:
2506 ft
= cake_config_precedence(sch
);
2509 case CAKE_DIFFSERV_DIFFSERV8
:
2510 ft
= cake_config_diffserv8(sch
);
2513 case CAKE_DIFFSERV_DIFFSERV4
:
2514 ft
= cake_config_diffserv4(sch
);
2517 case CAKE_DIFFSERV_DIFFSERV3
:
2519 ft
= cake_config_diffserv3(sch
);
2523 for (c
= q
->tin_cnt
; c
< CAKE_MAX_TINS
; c
++) {
2524 cake_clear_tin(sch
, c
);
2525 q
->tins
[c
].cparams
.mtu_time
= q
->tins
[ft
].cparams
.mtu_time
;
2528 q
->rate_ns
= q
->tins
[ft
].tin_rate_ns
;
2529 q
->rate_shft
= q
->tins
[ft
].tin_rate_shft
;
2531 if (q
->buffer_config_limit
) {
2532 q
->buffer_limit
= q
->buffer_config_limit
;
2533 } else if (q
->rate_bps
) {
2534 u64 t
= q
->rate_bps
* q
->interval
;
2536 do_div(t
, USEC_PER_SEC
/ 4);
2537 q
->buffer_limit
= max_t(u32
, t
, 4U << 20);
2539 q
->buffer_limit
= ~0;
2542 sch
->flags
&= ~TCQ_F_CAN_BYPASS
;
2544 q
->buffer_limit
= min(q
->buffer_limit
,
2545 max(sch
->limit
* psched_mtu(qdisc_dev(sch
)),
2546 q
->buffer_config_limit
));
2549 static int cake_change(struct Qdisc
*sch
, struct nlattr
*opt
,
2550 struct netlink_ext_ack
*extack
)
2552 struct cake_sched_data
*q
= qdisc_priv(sch
);
2553 struct nlattr
*tb
[TCA_CAKE_MAX
+ 1];
2559 err
= nla_parse_nested_deprecated(tb
, TCA_CAKE_MAX
, opt
, cake_policy
,
2564 if (tb
[TCA_CAKE_NAT
]) {
2565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2566 q
->flow_mode
&= ~CAKE_FLOW_NAT_FLAG
;
2567 q
->flow_mode
|= CAKE_FLOW_NAT_FLAG
*
2568 !!nla_get_u32(tb
[TCA_CAKE_NAT
]);
2570 NL_SET_ERR_MSG_ATTR(extack
, tb
[TCA_CAKE_NAT
],
2571 "No conntrack support in kernel");
2576 if (tb
[TCA_CAKE_BASE_RATE64
])
2577 q
->rate_bps
= nla_get_u64(tb
[TCA_CAKE_BASE_RATE64
]);
2579 if (tb
[TCA_CAKE_DIFFSERV_MODE
])
2580 q
->tin_mode
= nla_get_u32(tb
[TCA_CAKE_DIFFSERV_MODE
]);
2582 if (tb
[TCA_CAKE_WASH
]) {
2583 if (!!nla_get_u32(tb
[TCA_CAKE_WASH
]))
2584 q
->rate_flags
|= CAKE_FLAG_WASH
;
2586 q
->rate_flags
&= ~CAKE_FLAG_WASH
;
2589 if (tb
[TCA_CAKE_FLOW_MODE
])
2590 q
->flow_mode
= ((q
->flow_mode
& CAKE_FLOW_NAT_FLAG
) |
2591 (nla_get_u32(tb
[TCA_CAKE_FLOW_MODE
]) &
2594 if (tb
[TCA_CAKE_ATM
])
2595 q
->atm_mode
= nla_get_u32(tb
[TCA_CAKE_ATM
]);
2597 if (tb
[TCA_CAKE_OVERHEAD
]) {
2598 q
->rate_overhead
= nla_get_s32(tb
[TCA_CAKE_OVERHEAD
]);
2599 q
->rate_flags
|= CAKE_FLAG_OVERHEAD
;
2607 if (tb
[TCA_CAKE_RAW
]) {
2608 q
->rate_flags
&= ~CAKE_FLAG_OVERHEAD
;
2616 if (tb
[TCA_CAKE_MPU
])
2617 q
->rate_mpu
= nla_get_u32(tb
[TCA_CAKE_MPU
]);
2619 if (tb
[TCA_CAKE_RTT
]) {
2620 q
->interval
= nla_get_u32(tb
[TCA_CAKE_RTT
]);
2626 if (tb
[TCA_CAKE_TARGET
]) {
2627 q
->target
= nla_get_u32(tb
[TCA_CAKE_TARGET
]);
2633 if (tb
[TCA_CAKE_AUTORATE
]) {
2634 if (!!nla_get_u32(tb
[TCA_CAKE_AUTORATE
]))
2635 q
->rate_flags
|= CAKE_FLAG_AUTORATE_INGRESS
;
2637 q
->rate_flags
&= ~CAKE_FLAG_AUTORATE_INGRESS
;
2640 if (tb
[TCA_CAKE_INGRESS
]) {
2641 if (!!nla_get_u32(tb
[TCA_CAKE_INGRESS
]))
2642 q
->rate_flags
|= CAKE_FLAG_INGRESS
;
2644 q
->rate_flags
&= ~CAKE_FLAG_INGRESS
;
2647 if (tb
[TCA_CAKE_ACK_FILTER
])
2648 q
->ack_filter
= nla_get_u32(tb
[TCA_CAKE_ACK_FILTER
]);
2650 if (tb
[TCA_CAKE_MEMORY
])
2651 q
->buffer_config_limit
= nla_get_u32(tb
[TCA_CAKE_MEMORY
]);
2653 if (tb
[TCA_CAKE_SPLIT_GSO
]) {
2654 if (!!nla_get_u32(tb
[TCA_CAKE_SPLIT_GSO
]))
2655 q
->rate_flags
|= CAKE_FLAG_SPLIT_GSO
;
2657 q
->rate_flags
&= ~CAKE_FLAG_SPLIT_GSO
;
2660 if (tb
[TCA_CAKE_FWMARK
]) {
2661 q
->fwmark_mask
= nla_get_u32(tb
[TCA_CAKE_FWMARK
]);
2662 q
->fwmark_shft
= q
->fwmark_mask
? __ffs(q
->fwmark_mask
) : 0;
2667 cake_reconfigure(sch
);
2668 sch_tree_unlock(sch
);
2674 static void cake_destroy(struct Qdisc
*sch
)
2676 struct cake_sched_data
*q
= qdisc_priv(sch
);
2678 qdisc_watchdog_cancel(&q
->watchdog
);
2679 tcf_block_put(q
->block
);
2683 static int cake_init(struct Qdisc
*sch
, struct nlattr
*opt
,
2684 struct netlink_ext_ack
*extack
)
2686 struct cake_sched_data
*q
= qdisc_priv(sch
);
2690 q
->tin_mode
= CAKE_DIFFSERV_DIFFSERV3
;
2691 q
->flow_mode
= CAKE_FLOW_TRIPLE
;
2693 q
->rate_bps
= 0; /* unlimited by default */
2695 q
->interval
= 100000; /* 100ms default */
2696 q
->target
= 5000; /* 5ms: codel RFC argues
2697 * for 5 to 10% of interval
2699 q
->rate_flags
|= CAKE_FLAG_SPLIT_GSO
;
2703 qdisc_watchdog_init(&q
->watchdog
, sch
);
2706 err
= cake_change(sch
, opt
, extack
);
2712 err
= tcf_block_get(&q
->block
, &q
->filter_list
, sch
, extack
);
2716 quantum_div
[0] = ~0;
2717 for (i
= 1; i
<= CAKE_QUEUES
; i
++)
2718 quantum_div
[i
] = 65535 / i
;
2720 q
->tins
= kvcalloc(CAKE_MAX_TINS
, sizeof(struct cake_tin_data
),
2725 for (i
= 0; i
< CAKE_MAX_TINS
; i
++) {
2726 struct cake_tin_data
*b
= q
->tins
+ i
;
2728 INIT_LIST_HEAD(&b
->new_flows
);
2729 INIT_LIST_HEAD(&b
->old_flows
);
2730 INIT_LIST_HEAD(&b
->decaying_flows
);
2731 b
->sparse_flow_count
= 0;
2732 b
->bulk_flow_count
= 0;
2733 b
->decaying_flow_count
= 0;
2735 for (j
= 0; j
< CAKE_QUEUES
; j
++) {
2736 struct cake_flow
*flow
= b
->flows
+ j
;
2737 u32 k
= j
* CAKE_MAX_TINS
+ i
;
2739 INIT_LIST_HEAD(&flow
->flowchain
);
2740 cobalt_vars_init(&flow
->cvars
);
2742 q
->overflow_heap
[k
].t
= i
;
2743 q
->overflow_heap
[k
].b
= j
;
2744 b
->overflow_idx
[j
] = k
;
2748 cake_reconfigure(sch
);
2749 q
->avg_peak_bandwidth
= q
->rate_bps
;
2759 static int cake_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
2761 struct cake_sched_data
*q
= qdisc_priv(sch
);
2762 struct nlattr
*opts
;
2764 opts
= nla_nest_start_noflag(skb
, TCA_OPTIONS
);
2766 goto nla_put_failure
;
2768 if (nla_put_u64_64bit(skb
, TCA_CAKE_BASE_RATE64
, q
->rate_bps
,
2770 goto nla_put_failure
;
2772 if (nla_put_u32(skb
, TCA_CAKE_FLOW_MODE
,
2773 q
->flow_mode
& CAKE_FLOW_MASK
))
2774 goto nla_put_failure
;
2776 if (nla_put_u32(skb
, TCA_CAKE_RTT
, q
->interval
))
2777 goto nla_put_failure
;
2779 if (nla_put_u32(skb
, TCA_CAKE_TARGET
, q
->target
))
2780 goto nla_put_failure
;
2782 if (nla_put_u32(skb
, TCA_CAKE_MEMORY
, q
->buffer_config_limit
))
2783 goto nla_put_failure
;
2785 if (nla_put_u32(skb
, TCA_CAKE_AUTORATE
,
2786 !!(q
->rate_flags
& CAKE_FLAG_AUTORATE_INGRESS
)))
2787 goto nla_put_failure
;
2789 if (nla_put_u32(skb
, TCA_CAKE_INGRESS
,
2790 !!(q
->rate_flags
& CAKE_FLAG_INGRESS
)))
2791 goto nla_put_failure
;
2793 if (nla_put_u32(skb
, TCA_CAKE_ACK_FILTER
, q
->ack_filter
))
2794 goto nla_put_failure
;
2796 if (nla_put_u32(skb
, TCA_CAKE_NAT
,
2797 !!(q
->flow_mode
& CAKE_FLOW_NAT_FLAG
)))
2798 goto nla_put_failure
;
2800 if (nla_put_u32(skb
, TCA_CAKE_DIFFSERV_MODE
, q
->tin_mode
))
2801 goto nla_put_failure
;
2803 if (nla_put_u32(skb
, TCA_CAKE_WASH
,
2804 !!(q
->rate_flags
& CAKE_FLAG_WASH
)))
2805 goto nla_put_failure
;
2807 if (nla_put_u32(skb
, TCA_CAKE_OVERHEAD
, q
->rate_overhead
))
2808 goto nla_put_failure
;
2810 if (!(q
->rate_flags
& CAKE_FLAG_OVERHEAD
))
2811 if (nla_put_u32(skb
, TCA_CAKE_RAW
, 0))
2812 goto nla_put_failure
;
2814 if (nla_put_u32(skb
, TCA_CAKE_ATM
, q
->atm_mode
))
2815 goto nla_put_failure
;
2817 if (nla_put_u32(skb
, TCA_CAKE_MPU
, q
->rate_mpu
))
2818 goto nla_put_failure
;
2820 if (nla_put_u32(skb
, TCA_CAKE_SPLIT_GSO
,
2821 !!(q
->rate_flags
& CAKE_FLAG_SPLIT_GSO
)))
2822 goto nla_put_failure
;
2824 if (nla_put_u32(skb
, TCA_CAKE_FWMARK
, q
->fwmark_mask
))
2825 goto nla_put_failure
;
2827 return nla_nest_end(skb
, opts
);
2833 static int cake_dump_stats(struct Qdisc
*sch
, struct gnet_dump
*d
)
2835 struct nlattr
*stats
= nla_nest_start_noflag(d
->skb
, TCA_STATS_APP
);
2836 struct cake_sched_data
*q
= qdisc_priv(sch
);
2837 struct nlattr
*tstats
, *ts
;
2843 #define PUT_STAT_U32(attr, data) do { \
2844 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2845 goto nla_put_failure; \
2847 #define PUT_STAT_U64(attr, data) do { \
2848 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2849 data, TCA_CAKE_STATS_PAD)) \
2850 goto nla_put_failure; \
2853 PUT_STAT_U64(CAPACITY_ESTIMATE64
, q
->avg_peak_bandwidth
);
2854 PUT_STAT_U32(MEMORY_LIMIT
, q
->buffer_limit
);
2855 PUT_STAT_U32(MEMORY_USED
, q
->buffer_max_used
);
2856 PUT_STAT_U32(AVG_NETOFF
, ((q
->avg_netoff
+ 0x8000) >> 16));
2857 PUT_STAT_U32(MAX_NETLEN
, q
->max_netlen
);
2858 PUT_STAT_U32(MAX_ADJLEN
, q
->max_adjlen
);
2859 PUT_STAT_U32(MIN_NETLEN
, q
->min_netlen
);
2860 PUT_STAT_U32(MIN_ADJLEN
, q
->min_adjlen
);
2865 tstats
= nla_nest_start_noflag(d
->skb
, TCA_CAKE_STATS_TIN_STATS
);
2867 goto nla_put_failure
;
2869 #define PUT_TSTAT_U32(attr, data) do { \
2870 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2871 goto nla_put_failure; \
2873 #define PUT_TSTAT_U64(attr, data) do { \
2874 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2875 data, TCA_CAKE_TIN_STATS_PAD)) \
2876 goto nla_put_failure; \
2879 for (i
= 0; i
< q
->tin_cnt
; i
++) {
2880 struct cake_tin_data
*b
= &q
->tins
[q
->tin_order
[i
]];
2882 ts
= nla_nest_start_noflag(d
->skb
, i
+ 1);
2884 goto nla_put_failure
;
2886 PUT_TSTAT_U64(THRESHOLD_RATE64
, b
->tin_rate_bps
);
2887 PUT_TSTAT_U64(SENT_BYTES64
, b
->bytes
);
2888 PUT_TSTAT_U32(BACKLOG_BYTES
, b
->tin_backlog
);
2890 PUT_TSTAT_U32(TARGET_US
,
2891 ktime_to_us(ns_to_ktime(b
->cparams
.target
)));
2892 PUT_TSTAT_U32(INTERVAL_US
,
2893 ktime_to_us(ns_to_ktime(b
->cparams
.interval
)));
2895 PUT_TSTAT_U32(SENT_PACKETS
, b
->packets
);
2896 PUT_TSTAT_U32(DROPPED_PACKETS
, b
->tin_dropped
);
2897 PUT_TSTAT_U32(ECN_MARKED_PACKETS
, b
->tin_ecn_mark
);
2898 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS
, b
->ack_drops
);
2900 PUT_TSTAT_U32(PEAK_DELAY_US
,
2901 ktime_to_us(ns_to_ktime(b
->peak_delay
)));
2902 PUT_TSTAT_U32(AVG_DELAY_US
,
2903 ktime_to_us(ns_to_ktime(b
->avge_delay
)));
2904 PUT_TSTAT_U32(BASE_DELAY_US
,
2905 ktime_to_us(ns_to_ktime(b
->base_delay
)));
2907 PUT_TSTAT_U32(WAY_INDIRECT_HITS
, b
->way_hits
);
2908 PUT_TSTAT_U32(WAY_MISSES
, b
->way_misses
);
2909 PUT_TSTAT_U32(WAY_COLLISIONS
, b
->way_collisions
);
2911 PUT_TSTAT_U32(SPARSE_FLOWS
, b
->sparse_flow_count
+
2912 b
->decaying_flow_count
);
2913 PUT_TSTAT_U32(BULK_FLOWS
, b
->bulk_flow_count
);
2914 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS
, b
->unresponsive_flow_count
);
2915 PUT_TSTAT_U32(MAX_SKBLEN
, b
->max_skblen
);
2917 PUT_TSTAT_U32(FLOW_QUANTUM
, b
->flow_quantum
);
2918 nla_nest_end(d
->skb
, ts
);
2921 #undef PUT_TSTAT_U32
2922 #undef PUT_TSTAT_U64
2924 nla_nest_end(d
->skb
, tstats
);
2925 return nla_nest_end(d
->skb
, stats
);
2928 nla_nest_cancel(d
->skb
, stats
);
2932 static struct Qdisc
*cake_leaf(struct Qdisc
*sch
, unsigned long arg
)
2937 static unsigned long cake_find(struct Qdisc
*sch
, u32 classid
)
2942 static unsigned long cake_bind(struct Qdisc
*sch
, unsigned long parent
,
2948 static void cake_unbind(struct Qdisc
*q
, unsigned long cl
)
2952 static struct tcf_block
*cake_tcf_block(struct Qdisc
*sch
, unsigned long cl
,
2953 struct netlink_ext_ack
*extack
)
2955 struct cake_sched_data
*q
= qdisc_priv(sch
);
2962 static int cake_dump_class(struct Qdisc
*sch
, unsigned long cl
,
2963 struct sk_buff
*skb
, struct tcmsg
*tcm
)
2965 tcm
->tcm_handle
|= TC_H_MIN(cl
);
2969 static int cake_dump_class_stats(struct Qdisc
*sch
, unsigned long cl
,
2970 struct gnet_dump
*d
)
2972 struct cake_sched_data
*q
= qdisc_priv(sch
);
2973 const struct cake_flow
*flow
= NULL
;
2974 struct gnet_stats_queue qs
= { 0 };
2975 struct nlattr
*stats
;
2978 if (idx
< CAKE_QUEUES
* q
->tin_cnt
) {
2979 const struct cake_tin_data
*b
= \
2980 &q
->tins
[q
->tin_order
[idx
/ CAKE_QUEUES
]];
2981 const struct sk_buff
*skb
;
2983 flow
= &b
->flows
[idx
% CAKE_QUEUES
];
2992 sch_tree_unlock(sch
);
2994 qs
.backlog
= b
->backlogs
[idx
% CAKE_QUEUES
];
2995 qs
.drops
= flow
->dropped
;
2997 if (gnet_stats_copy_queue(d
, NULL
, &qs
, qs
.qlen
) < 0)
3000 ktime_t now
= ktime_get();
3002 stats
= nla_nest_start_noflag(d
->skb
, TCA_STATS_APP
);
3006 #define PUT_STAT_U32(attr, data) do { \
3007 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3008 goto nla_put_failure; \
3010 #define PUT_STAT_S32(attr, data) do { \
3011 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3012 goto nla_put_failure; \
3015 PUT_STAT_S32(DEFICIT
, flow
->deficit
);
3016 PUT_STAT_U32(DROPPING
, flow
->cvars
.dropping
);
3017 PUT_STAT_U32(COBALT_COUNT
, flow
->cvars
.count
);
3018 PUT_STAT_U32(P_DROP
, flow
->cvars
.p_drop
);
3019 if (flow
->cvars
.p_drop
) {
3020 PUT_STAT_S32(BLUE_TIMER_US
,
3023 flow
->cvars
.blue_timer
)));
3025 if (flow
->cvars
.dropping
) {
3026 PUT_STAT_S32(DROP_NEXT_US
,
3029 flow
->cvars
.drop_next
)));
3032 if (nla_nest_end(d
->skb
, stats
) < 0)
3039 nla_nest_cancel(d
->skb
, stats
);
3043 static void cake_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
3045 struct cake_sched_data
*q
= qdisc_priv(sch
);
3051 for (i
= 0; i
< q
->tin_cnt
; i
++) {
3052 struct cake_tin_data
*b
= &q
->tins
[q
->tin_order
[i
]];
3054 for (j
= 0; j
< CAKE_QUEUES
; j
++) {
3055 if (list_empty(&b
->flows
[j
].flowchain
) ||
3056 arg
->count
< arg
->skip
) {
3060 if (arg
->fn(sch
, i
* CAKE_QUEUES
+ j
+ 1, arg
) < 0) {
3069 static const struct Qdisc_class_ops cake_class_ops
= {
3072 .tcf_block
= cake_tcf_block
,
3073 .bind_tcf
= cake_bind
,
3074 .unbind_tcf
= cake_unbind
,
3075 .dump
= cake_dump_class
,
3076 .dump_stats
= cake_dump_class_stats
,
3080 static struct Qdisc_ops cake_qdisc_ops __read_mostly
= {
3081 .cl_ops
= &cake_class_ops
,
3083 .priv_size
= sizeof(struct cake_sched_data
),
3084 .enqueue
= cake_enqueue
,
3085 .dequeue
= cake_dequeue
,
3086 .peek
= qdisc_peek_dequeued
,
3088 .reset
= cake_reset
,
3089 .destroy
= cake_destroy
,
3090 .change
= cake_change
,
3092 .dump_stats
= cake_dump_stats
,
3093 .owner
= THIS_MODULE
,
3096 static int __init
cake_module_init(void)
3098 return register_qdisc(&cake_qdisc_ops
);
3101 static void __exit
cake_module_exit(void)
3103 unregister_qdisc(&cake_qdisc_ops
);
3106 module_init(cake_module_init
)
3107 module_exit(cake_module_exit
)
3108 MODULE_AUTHOR("Jonathan Morton");
3109 MODULE_LICENSE("Dual BSD/GPL");
3110 MODULE_DESCRIPTION("The CAKE shaper.");