seccomp: Fix ioctl number for SECCOMP_IOCTL_NOTIF_ID_VALID
[linux/fpc-iii.git] / net / sched / sch_sfb.c
blob4074c50ac3d73100dd82bd631c127326ff49f355
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sched/sch_sfb.c Stochastic Fair Blue
5 * Copyright (c) 2008-2011 Juliusz Chroboczek <jch@pps.jussieu.fr>
6 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
8 * W. Feng, D. Kandlur, D. Saha, K. Shin. Blue:
9 * A New Class of Active Queue Management Algorithms.
10 * U. Michigan CSE-TR-387-99, April 1999.
12 * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/skbuff.h>
20 #include <linux/random.h>
21 #include <linux/siphash.h>
22 #include <net/ip.h>
23 #include <net/pkt_sched.h>
24 #include <net/pkt_cls.h>
25 #include <net/inet_ecn.h>
28 * SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level)
29 * This implementation uses L = 8 and N = 16
30 * This permits us to split one 32bit hash (provided per packet by rxhash or
31 * external classifier) into 8 subhashes of 4 bits.
33 #define SFB_BUCKET_SHIFT 4
34 #define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */
35 #define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1)
36 #define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */
38 /* SFB algo uses a virtual queue, named "bin" */
39 struct sfb_bucket {
40 u16 qlen; /* length of virtual queue */
41 u16 p_mark; /* marking probability */
44 /* We use a double buffering right before hash change
45 * (Section 4.4 of SFB reference : moving hash functions)
47 struct sfb_bins {
48 siphash_key_t perturbation; /* siphash key */
49 struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS];
52 struct sfb_sched_data {
53 struct Qdisc *qdisc;
54 struct tcf_proto __rcu *filter_list;
55 struct tcf_block *block;
56 unsigned long rehash_interval;
57 unsigned long warmup_time; /* double buffering warmup time in jiffies */
58 u32 max;
59 u32 bin_size; /* maximum queue length per bin */
60 u32 increment; /* d1 */
61 u32 decrement; /* d2 */
62 u32 limit; /* HARD maximal queue length */
63 u32 penalty_rate;
64 u32 penalty_burst;
65 u32 tokens_avail;
66 unsigned long rehash_time;
67 unsigned long token_time;
69 u8 slot; /* current active bins (0 or 1) */
70 bool double_buffering;
71 struct sfb_bins bins[2];
73 struct {
74 u32 earlydrop;
75 u32 penaltydrop;
76 u32 bucketdrop;
77 u32 queuedrop;
78 u32 childdrop; /* drops in child qdisc */
79 u32 marked; /* ECN mark */
80 } stats;
84 * Each queued skb might be hashed on one or two bins
85 * We store in skb_cb the two hash values.
86 * (A zero value means double buffering was not used)
88 struct sfb_skb_cb {
89 u32 hashes[2];
92 static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb)
94 qdisc_cb_private_validate(skb, sizeof(struct sfb_skb_cb));
95 return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data;
99 * If using 'internal' SFB flow classifier, hash comes from skb rxhash
100 * If using external classifier, hash comes from the classid.
102 static u32 sfb_hash(const struct sk_buff *skb, u32 slot)
104 return sfb_skb_cb(skb)->hashes[slot];
107 /* Probabilities are coded as Q0.16 fixed-point values,
108 * with 0xFFFF representing 65535/65536 (almost 1.0)
109 * Addition and subtraction are saturating in [0, 65535]
111 static u32 prob_plus(u32 p1, u32 p2)
113 u32 res = p1 + p2;
115 return min_t(u32, res, SFB_MAX_PROB);
118 static u32 prob_minus(u32 p1, u32 p2)
120 return p1 > p2 ? p1 - p2 : 0;
123 static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q)
125 int i;
126 struct sfb_bucket *b = &q->bins[slot].bins[0][0];
128 for (i = 0; i < SFB_LEVELS; i++) {
129 u32 hash = sfbhash & SFB_BUCKET_MASK;
131 sfbhash >>= SFB_BUCKET_SHIFT;
132 if (b[hash].qlen < 0xFFFF)
133 b[hash].qlen++;
134 b += SFB_NUMBUCKETS; /* next level */
138 static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
140 u32 sfbhash;
142 sfbhash = sfb_hash(skb, 0);
143 if (sfbhash)
144 increment_one_qlen(sfbhash, 0, q);
146 sfbhash = sfb_hash(skb, 1);
147 if (sfbhash)
148 increment_one_qlen(sfbhash, 1, q);
151 static void decrement_one_qlen(u32 sfbhash, u32 slot,
152 struct sfb_sched_data *q)
154 int i;
155 struct sfb_bucket *b = &q->bins[slot].bins[0][0];
157 for (i = 0; i < SFB_LEVELS; i++) {
158 u32 hash = sfbhash & SFB_BUCKET_MASK;
160 sfbhash >>= SFB_BUCKET_SHIFT;
161 if (b[hash].qlen > 0)
162 b[hash].qlen--;
163 b += SFB_NUMBUCKETS; /* next level */
167 static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
169 u32 sfbhash;
171 sfbhash = sfb_hash(skb, 0);
172 if (sfbhash)
173 decrement_one_qlen(sfbhash, 0, q);
175 sfbhash = sfb_hash(skb, 1);
176 if (sfbhash)
177 decrement_one_qlen(sfbhash, 1, q);
180 static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
182 b->p_mark = prob_minus(b->p_mark, q->decrement);
185 static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
187 b->p_mark = prob_plus(b->p_mark, q->increment);
190 static void sfb_zero_all_buckets(struct sfb_sched_data *q)
192 memset(&q->bins, 0, sizeof(q->bins));
196 * compute max qlen, max p_mark, and avg p_mark
198 static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q)
200 int i;
201 u32 qlen = 0, prob = 0, totalpm = 0;
202 const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0];
204 for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) {
205 if (qlen < b->qlen)
206 qlen = b->qlen;
207 totalpm += b->p_mark;
208 if (prob < b->p_mark)
209 prob = b->p_mark;
210 b++;
212 *prob_r = prob;
213 *avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS);
214 return qlen;
218 static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q)
220 get_random_bytes(&q->bins[slot].perturbation,
221 sizeof(q->bins[slot].perturbation));
224 static void sfb_swap_slot(struct sfb_sched_data *q)
226 sfb_init_perturbation(q->slot, q);
227 q->slot ^= 1;
228 q->double_buffering = false;
231 /* Non elastic flows are allowed to use part of the bandwidth, expressed
232 * in "penalty_rate" packets per second, with "penalty_burst" burst
234 static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q)
236 if (q->penalty_rate == 0 || q->penalty_burst == 0)
237 return true;
239 if (q->tokens_avail < 1) {
240 unsigned long age = min(10UL * HZ, jiffies - q->token_time);
242 q->tokens_avail = (age * q->penalty_rate) / HZ;
243 if (q->tokens_avail > q->penalty_burst)
244 q->tokens_avail = q->penalty_burst;
245 q->token_time = jiffies;
246 if (q->tokens_avail < 1)
247 return true;
250 q->tokens_avail--;
251 return false;
254 static bool sfb_classify(struct sk_buff *skb, struct tcf_proto *fl,
255 int *qerr, u32 *salt)
257 struct tcf_result res;
258 int result;
260 result = tcf_classify(skb, fl, &res, false);
261 if (result >= 0) {
262 #ifdef CONFIG_NET_CLS_ACT
263 switch (result) {
264 case TC_ACT_STOLEN:
265 case TC_ACT_QUEUED:
266 case TC_ACT_TRAP:
267 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
268 /* fall through */
269 case TC_ACT_SHOT:
270 return false;
272 #endif
273 *salt = TC_H_MIN(res.classid);
274 return true;
276 return false;
279 static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch,
280 struct sk_buff **to_free)
283 struct sfb_sched_data *q = qdisc_priv(sch);
284 struct Qdisc *child = q->qdisc;
285 struct tcf_proto *fl;
286 int i;
287 u32 p_min = ~0;
288 u32 minqlen = ~0;
289 u32 r, sfbhash;
290 u32 slot = q->slot;
291 int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
293 if (unlikely(sch->q.qlen >= q->limit)) {
294 qdisc_qstats_overlimit(sch);
295 q->stats.queuedrop++;
296 goto drop;
299 if (q->rehash_interval > 0) {
300 unsigned long limit = q->rehash_time + q->rehash_interval;
302 if (unlikely(time_after(jiffies, limit))) {
303 sfb_swap_slot(q);
304 q->rehash_time = jiffies;
305 } else if (unlikely(!q->double_buffering && q->warmup_time > 0 &&
306 time_after(jiffies, limit - q->warmup_time))) {
307 q->double_buffering = true;
311 fl = rcu_dereference_bh(q->filter_list);
312 if (fl) {
313 u32 salt;
315 /* If using external classifiers, get result and record it. */
316 if (!sfb_classify(skb, fl, &ret, &salt))
317 goto other_drop;
318 sfbhash = siphash_1u32(salt, &q->bins[slot].perturbation);
319 } else {
320 sfbhash = skb_get_hash_perturb(skb, &q->bins[slot].perturbation);
324 if (!sfbhash)
325 sfbhash = 1;
326 sfb_skb_cb(skb)->hashes[slot] = sfbhash;
328 for (i = 0; i < SFB_LEVELS; i++) {
329 u32 hash = sfbhash & SFB_BUCKET_MASK;
330 struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
332 sfbhash >>= SFB_BUCKET_SHIFT;
333 if (b->qlen == 0)
334 decrement_prob(b, q);
335 else if (b->qlen >= q->bin_size)
336 increment_prob(b, q);
337 if (minqlen > b->qlen)
338 minqlen = b->qlen;
339 if (p_min > b->p_mark)
340 p_min = b->p_mark;
343 slot ^= 1;
344 sfb_skb_cb(skb)->hashes[slot] = 0;
346 if (unlikely(minqlen >= q->max)) {
347 qdisc_qstats_overlimit(sch);
348 q->stats.bucketdrop++;
349 goto drop;
352 if (unlikely(p_min >= SFB_MAX_PROB)) {
353 /* Inelastic flow */
354 if (q->double_buffering) {
355 sfbhash = skb_get_hash_perturb(skb,
356 &q->bins[slot].perturbation);
357 if (!sfbhash)
358 sfbhash = 1;
359 sfb_skb_cb(skb)->hashes[slot] = sfbhash;
361 for (i = 0; i < SFB_LEVELS; i++) {
362 u32 hash = sfbhash & SFB_BUCKET_MASK;
363 struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
365 sfbhash >>= SFB_BUCKET_SHIFT;
366 if (b->qlen == 0)
367 decrement_prob(b, q);
368 else if (b->qlen >= q->bin_size)
369 increment_prob(b, q);
372 if (sfb_rate_limit(skb, q)) {
373 qdisc_qstats_overlimit(sch);
374 q->stats.penaltydrop++;
375 goto drop;
377 goto enqueue;
380 r = prandom_u32() & SFB_MAX_PROB;
382 if (unlikely(r < p_min)) {
383 if (unlikely(p_min > SFB_MAX_PROB / 2)) {
384 /* If we're marking that many packets, then either
385 * this flow is unresponsive, or we're badly congested.
386 * In either case, we want to start dropping packets.
388 if (r < (p_min - SFB_MAX_PROB / 2) * 2) {
389 q->stats.earlydrop++;
390 goto drop;
393 if (INET_ECN_set_ce(skb)) {
394 q->stats.marked++;
395 } else {
396 q->stats.earlydrop++;
397 goto drop;
401 enqueue:
402 ret = qdisc_enqueue(skb, child, to_free);
403 if (likely(ret == NET_XMIT_SUCCESS)) {
404 qdisc_qstats_backlog_inc(sch, skb);
405 sch->q.qlen++;
406 increment_qlen(skb, q);
407 } else if (net_xmit_drop_count(ret)) {
408 q->stats.childdrop++;
409 qdisc_qstats_drop(sch);
411 return ret;
413 drop:
414 qdisc_drop(skb, sch, to_free);
415 return NET_XMIT_CN;
416 other_drop:
417 if (ret & __NET_XMIT_BYPASS)
418 qdisc_qstats_drop(sch);
419 kfree_skb(skb);
420 return ret;
423 static struct sk_buff *sfb_dequeue(struct Qdisc *sch)
425 struct sfb_sched_data *q = qdisc_priv(sch);
426 struct Qdisc *child = q->qdisc;
427 struct sk_buff *skb;
429 skb = child->dequeue(q->qdisc);
431 if (skb) {
432 qdisc_bstats_update(sch, skb);
433 qdisc_qstats_backlog_dec(sch, skb);
434 sch->q.qlen--;
435 decrement_qlen(skb, q);
438 return skb;
441 static struct sk_buff *sfb_peek(struct Qdisc *sch)
443 struct sfb_sched_data *q = qdisc_priv(sch);
444 struct Qdisc *child = q->qdisc;
446 return child->ops->peek(child);
449 /* No sfb_drop -- impossible since the child doesn't return the dropped skb. */
451 static void sfb_reset(struct Qdisc *sch)
453 struct sfb_sched_data *q = qdisc_priv(sch);
455 qdisc_reset(q->qdisc);
456 sch->qstats.backlog = 0;
457 sch->q.qlen = 0;
458 q->slot = 0;
459 q->double_buffering = false;
460 sfb_zero_all_buckets(q);
461 sfb_init_perturbation(0, q);
464 static void sfb_destroy(struct Qdisc *sch)
466 struct sfb_sched_data *q = qdisc_priv(sch);
468 tcf_block_put(q->block);
469 qdisc_put(q->qdisc);
472 static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = {
473 [TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) },
476 static const struct tc_sfb_qopt sfb_default_ops = {
477 .rehash_interval = 600 * MSEC_PER_SEC,
478 .warmup_time = 60 * MSEC_PER_SEC,
479 .limit = 0,
480 .max = 25,
481 .bin_size = 20,
482 .increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */
483 .decrement = (SFB_MAX_PROB + 3000) / 6000,
484 .penalty_rate = 10,
485 .penalty_burst = 20,
488 static int sfb_change(struct Qdisc *sch, struct nlattr *opt,
489 struct netlink_ext_ack *extack)
491 struct sfb_sched_data *q = qdisc_priv(sch);
492 struct Qdisc *child, *old;
493 struct nlattr *tb[TCA_SFB_MAX + 1];
494 const struct tc_sfb_qopt *ctl = &sfb_default_ops;
495 u32 limit;
496 int err;
498 if (opt) {
499 err = nla_parse_nested_deprecated(tb, TCA_SFB_MAX, opt,
500 sfb_policy, NULL);
501 if (err < 0)
502 return -EINVAL;
504 if (tb[TCA_SFB_PARMS] == NULL)
505 return -EINVAL;
507 ctl = nla_data(tb[TCA_SFB_PARMS]);
510 limit = ctl->limit;
511 if (limit == 0)
512 limit = qdisc_dev(sch)->tx_queue_len;
514 child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit, extack);
515 if (IS_ERR(child))
516 return PTR_ERR(child);
518 if (child != &noop_qdisc)
519 qdisc_hash_add(child, true);
520 sch_tree_lock(sch);
522 qdisc_purge_queue(q->qdisc);
523 old = q->qdisc;
524 q->qdisc = child;
526 q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval);
527 q->warmup_time = msecs_to_jiffies(ctl->warmup_time);
528 q->rehash_time = jiffies;
529 q->limit = limit;
530 q->increment = ctl->increment;
531 q->decrement = ctl->decrement;
532 q->max = ctl->max;
533 q->bin_size = ctl->bin_size;
534 q->penalty_rate = ctl->penalty_rate;
535 q->penalty_burst = ctl->penalty_burst;
536 q->tokens_avail = ctl->penalty_burst;
537 q->token_time = jiffies;
539 q->slot = 0;
540 q->double_buffering = false;
541 sfb_zero_all_buckets(q);
542 sfb_init_perturbation(0, q);
543 sfb_init_perturbation(1, q);
545 sch_tree_unlock(sch);
546 qdisc_put(old);
548 return 0;
551 static int sfb_init(struct Qdisc *sch, struct nlattr *opt,
552 struct netlink_ext_ack *extack)
554 struct sfb_sched_data *q = qdisc_priv(sch);
555 int err;
557 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
558 if (err)
559 return err;
561 q->qdisc = &noop_qdisc;
562 return sfb_change(sch, opt, extack);
565 static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb)
567 struct sfb_sched_data *q = qdisc_priv(sch);
568 struct nlattr *opts;
569 struct tc_sfb_qopt opt = {
570 .rehash_interval = jiffies_to_msecs(q->rehash_interval),
571 .warmup_time = jiffies_to_msecs(q->warmup_time),
572 .limit = q->limit,
573 .max = q->max,
574 .bin_size = q->bin_size,
575 .increment = q->increment,
576 .decrement = q->decrement,
577 .penalty_rate = q->penalty_rate,
578 .penalty_burst = q->penalty_burst,
581 sch->qstats.backlog = q->qdisc->qstats.backlog;
582 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
583 if (opts == NULL)
584 goto nla_put_failure;
585 if (nla_put(skb, TCA_SFB_PARMS, sizeof(opt), &opt))
586 goto nla_put_failure;
587 return nla_nest_end(skb, opts);
589 nla_put_failure:
590 nla_nest_cancel(skb, opts);
591 return -EMSGSIZE;
594 static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
596 struct sfb_sched_data *q = qdisc_priv(sch);
597 struct tc_sfb_xstats st = {
598 .earlydrop = q->stats.earlydrop,
599 .penaltydrop = q->stats.penaltydrop,
600 .bucketdrop = q->stats.bucketdrop,
601 .queuedrop = q->stats.queuedrop,
602 .childdrop = q->stats.childdrop,
603 .marked = q->stats.marked,
606 st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q);
608 return gnet_stats_copy_app(d, &st, sizeof(st));
611 static int sfb_dump_class(struct Qdisc *sch, unsigned long cl,
612 struct sk_buff *skb, struct tcmsg *tcm)
614 return -ENOSYS;
617 static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
618 struct Qdisc **old, struct netlink_ext_ack *extack)
620 struct sfb_sched_data *q = qdisc_priv(sch);
622 if (new == NULL)
623 new = &noop_qdisc;
625 *old = qdisc_replace(sch, new, &q->qdisc);
626 return 0;
629 static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg)
631 struct sfb_sched_data *q = qdisc_priv(sch);
633 return q->qdisc;
636 static unsigned long sfb_find(struct Qdisc *sch, u32 classid)
638 return 1;
641 static void sfb_unbind(struct Qdisc *sch, unsigned long arg)
645 static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
646 struct nlattr **tca, unsigned long *arg,
647 struct netlink_ext_ack *extack)
649 return -ENOSYS;
652 static int sfb_delete(struct Qdisc *sch, unsigned long cl)
654 return -ENOSYS;
657 static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker)
659 if (!walker->stop) {
660 if (walker->count >= walker->skip)
661 if (walker->fn(sch, 1, walker) < 0) {
662 walker->stop = 1;
663 return;
665 walker->count++;
669 static struct tcf_block *sfb_tcf_block(struct Qdisc *sch, unsigned long cl,
670 struct netlink_ext_ack *extack)
672 struct sfb_sched_data *q = qdisc_priv(sch);
674 if (cl)
675 return NULL;
676 return q->block;
679 static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent,
680 u32 classid)
682 return 0;
686 static const struct Qdisc_class_ops sfb_class_ops = {
687 .graft = sfb_graft,
688 .leaf = sfb_leaf,
689 .find = sfb_find,
690 .change = sfb_change_class,
691 .delete = sfb_delete,
692 .walk = sfb_walk,
693 .tcf_block = sfb_tcf_block,
694 .bind_tcf = sfb_bind,
695 .unbind_tcf = sfb_unbind,
696 .dump = sfb_dump_class,
699 static struct Qdisc_ops sfb_qdisc_ops __read_mostly = {
700 .id = "sfb",
701 .priv_size = sizeof(struct sfb_sched_data),
702 .cl_ops = &sfb_class_ops,
703 .enqueue = sfb_enqueue,
704 .dequeue = sfb_dequeue,
705 .peek = sfb_peek,
706 .init = sfb_init,
707 .reset = sfb_reset,
708 .destroy = sfb_destroy,
709 .change = sfb_change,
710 .dump = sfb_dump,
711 .dump_stats = sfb_dump_stats,
712 .owner = THIS_MODULE,
715 static int __init sfb_module_init(void)
717 return register_qdisc(&sfb_qdisc_ops);
720 static void __exit sfb_module_exit(void)
722 unregister_qdisc(&sfb_qdisc_ops);
725 module_init(sfb_module_init)
726 module_exit(sfb_module_exit)
728 MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline");
729 MODULE_AUTHOR("Juliusz Chroboczek");
730 MODULE_AUTHOR("Eric Dumazet");
731 MODULE_LICENSE("GPL");