2 * adv7604 - Analog Devices ADV7604 video decoder driver
4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * References (c = chapter, p = page):
23 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
24 * Revision 2.5, June 2010
25 * REF_02 - Analog devices, Register map documentation, Documentation of
26 * the register maps, Software manual, Rev. F, June 2010
27 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
30 #include <linux/delay.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/v4l2-dv-timings.h>
38 #include <linux/videodev2.h>
39 #include <linux/workqueue.h>
40 #include <linux/regmap.h>
42 #include <media/i2c/adv7604.h>
43 #include <media/cec.h>
44 #include <media/v4l2-ctrls.h>
45 #include <media/v4l2-device.h>
46 #include <media/v4l2-event.h>
47 #include <media/v4l2-dv-timings.h>
48 #include <media/v4l2-of.h>
51 module_param(debug
, int, 0644);
52 MODULE_PARM_DESC(debug
, "debug level (0-2)");
54 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
55 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
56 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
57 MODULE_LICENSE("GPL");
59 /* ADV7604 system clock frequency */
60 #define ADV76XX_FSC (28636360)
62 #define ADV76XX_RGB_OUT (1 << 1)
64 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0)
65 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0)
66 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0)
68 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5)
69 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5)
70 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5)
71 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5)
72 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5)
73 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5)
75 #define ADV76XX_OP_CH_SEL_GBR (0 << 5)
76 #define ADV76XX_OP_CH_SEL_GRB (1 << 5)
77 #define ADV76XX_OP_CH_SEL_BGR (2 << 5)
78 #define ADV76XX_OP_CH_SEL_RGB (3 << 5)
79 #define ADV76XX_OP_CH_SEL_BRG (4 << 5)
80 #define ADV76XX_OP_CH_SEL_RBG (5 << 5)
82 #define ADV76XX_OP_SWAP_CB_CR (1 << 0)
84 #define ADV76XX_MAX_ADDRS (3)
92 struct adv76xx_reg_seq
{
97 struct adv76xx_format_info
{
105 struct adv76xx_cfg_read_infoframe
{
112 struct adv76xx_chip_info
{
113 enum adv76xx_type type
;
116 unsigned int max_port
;
117 unsigned int num_dv_ports
;
119 unsigned int edid_enable_reg
;
120 unsigned int edid_status_reg
;
121 unsigned int lcf_reg
;
123 unsigned int cable_det_mask
;
124 unsigned int tdms_lock_mask
;
125 unsigned int fmt_change_digital_mask
;
128 const struct adv76xx_format_info
*formats
;
129 unsigned int nformats
;
131 void (*set_termination
)(struct v4l2_subdev
*sd
, bool enable
);
132 void (*setup_irqs
)(struct v4l2_subdev
*sd
);
133 unsigned int (*read_hdmi_pixelclock
)(struct v4l2_subdev
*sd
);
134 unsigned int (*read_cable_det
)(struct v4l2_subdev
*sd
);
136 /* 0 = AFE, 1 = HDMI */
137 const struct adv76xx_reg_seq
*recommended_settings
[2];
138 unsigned int num_recommended_settings
[2];
140 unsigned long page_mask
;
142 /* Masks for timings */
143 unsigned int linewidth_mask
;
144 unsigned int field0_height_mask
;
145 unsigned int field1_height_mask
;
146 unsigned int hfrontporch_mask
;
147 unsigned int hsync_mask
;
148 unsigned int hbackporch_mask
;
149 unsigned int field0_vfrontporch_mask
;
150 unsigned int field1_vfrontporch_mask
;
151 unsigned int field0_vsync_mask
;
152 unsigned int field1_vsync_mask
;
153 unsigned int field0_vbackporch_mask
;
154 unsigned int field1_vbackporch_mask
;
158 **********************************************************************
160 * Arrays with configuration parameters for the ADV7604
162 **********************************************************************
165 struct adv76xx_state
{
166 const struct adv76xx_chip_info
*info
;
167 struct adv76xx_platform_data pdata
;
169 struct gpio_desc
*hpd_gpio
[4];
170 struct gpio_desc
*reset_gpio
;
172 struct v4l2_subdev sd
;
173 struct media_pad pads
[ADV76XX_PAD_MAX
];
174 unsigned int source_pad
;
176 struct v4l2_ctrl_handler hdl
;
178 enum adv76xx_pad selected_input
;
180 struct v4l2_dv_timings timings
;
181 const struct adv76xx_format_info
*format
;
189 struct v4l2_fract aspect_ratio
;
190 u32 rgb_quantization_range
;
191 struct delayed_work delayed_work_enable_hotplug
;
192 bool restart_stdi_once
;
195 struct cec_adapter
*cec_adap
;
196 u8 cec_addr
[ADV76XX_MAX_ADDRS
];
198 bool cec_enabled_adap
;
201 struct i2c_client
*i2c_clients
[ADV76XX_PAGE_MAX
];
204 struct regmap
*regmap
[ADV76XX_PAGE_MAX
];
207 struct v4l2_ctrl
*detect_tx_5v_ctrl
;
208 struct v4l2_ctrl
*analog_sampling_phase_ctrl
;
209 struct v4l2_ctrl
*free_run_color_manual_ctrl
;
210 struct v4l2_ctrl
*free_run_color_ctrl
;
211 struct v4l2_ctrl
*rgb_quantization_range_ctrl
;
214 static bool adv76xx_has_afe(struct adv76xx_state
*state
)
216 return state
->info
->has_afe
;
219 /* Unsupported timings. This device cannot support 720p30. */
220 static const struct v4l2_dv_timings adv76xx_timings_exceptions
[] = {
221 V4L2_DV_BT_CEA_1280X720P30
,
225 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings
*t
, void *hdl
)
229 for (i
= 0; adv76xx_timings_exceptions
[i
].bt
.width
; i
++)
230 if (v4l2_match_dv_timings(t
, adv76xx_timings_exceptions
+ i
, 0, false))
235 struct adv76xx_video_standards
{
236 struct v4l2_dv_timings timings
;
241 /* sorted by number of lines */
242 static const struct adv76xx_video_standards adv7604_prim_mode_comp
[] = {
243 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
244 { V4L2_DV_BT_CEA_720X576P50
, 0x0b, 0x00 },
245 { V4L2_DV_BT_CEA_1280X720P50
, 0x19, 0x01 },
246 { V4L2_DV_BT_CEA_1280X720P60
, 0x19, 0x00 },
247 { V4L2_DV_BT_CEA_1920X1080P24
, 0x1e, 0x04 },
248 { V4L2_DV_BT_CEA_1920X1080P25
, 0x1e, 0x03 },
249 { V4L2_DV_BT_CEA_1920X1080P30
, 0x1e, 0x02 },
250 { V4L2_DV_BT_CEA_1920X1080P50
, 0x1e, 0x01 },
251 { V4L2_DV_BT_CEA_1920X1080P60
, 0x1e, 0x00 },
252 /* TODO add 1920x1080P60_RB (CVT timing) */
256 /* sorted by number of lines */
257 static const struct adv76xx_video_standards adv7604_prim_mode_gr
[] = {
258 { V4L2_DV_BT_DMT_640X480P60
, 0x08, 0x00 },
259 { V4L2_DV_BT_DMT_640X480P72
, 0x09, 0x00 },
260 { V4L2_DV_BT_DMT_640X480P75
, 0x0a, 0x00 },
261 { V4L2_DV_BT_DMT_640X480P85
, 0x0b, 0x00 },
262 { V4L2_DV_BT_DMT_800X600P56
, 0x00, 0x00 },
263 { V4L2_DV_BT_DMT_800X600P60
, 0x01, 0x00 },
264 { V4L2_DV_BT_DMT_800X600P72
, 0x02, 0x00 },
265 { V4L2_DV_BT_DMT_800X600P75
, 0x03, 0x00 },
266 { V4L2_DV_BT_DMT_800X600P85
, 0x04, 0x00 },
267 { V4L2_DV_BT_DMT_1024X768P60
, 0x0c, 0x00 },
268 { V4L2_DV_BT_DMT_1024X768P70
, 0x0d, 0x00 },
269 { V4L2_DV_BT_DMT_1024X768P75
, 0x0e, 0x00 },
270 { V4L2_DV_BT_DMT_1024X768P85
, 0x0f, 0x00 },
271 { V4L2_DV_BT_DMT_1280X1024P60
, 0x05, 0x00 },
272 { V4L2_DV_BT_DMT_1280X1024P75
, 0x06, 0x00 },
273 { V4L2_DV_BT_DMT_1360X768P60
, 0x12, 0x00 },
274 { V4L2_DV_BT_DMT_1366X768P60
, 0x13, 0x00 },
275 { V4L2_DV_BT_DMT_1400X1050P60
, 0x14, 0x00 },
276 { V4L2_DV_BT_DMT_1400X1050P75
, 0x15, 0x00 },
277 { V4L2_DV_BT_DMT_1600X1200P60
, 0x16, 0x00 }, /* TODO not tested */
278 /* TODO add 1600X1200P60_RB (not a DMT timing) */
279 { V4L2_DV_BT_DMT_1680X1050P60
, 0x18, 0x00 },
280 { V4L2_DV_BT_DMT_1920X1200P60_RB
, 0x19, 0x00 }, /* TODO not tested */
284 /* sorted by number of lines */
285 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp
[] = {
286 { V4L2_DV_BT_CEA_720X480P59_94
, 0x0a, 0x00 },
287 { V4L2_DV_BT_CEA_720X576P50
, 0x0b, 0x00 },
288 { V4L2_DV_BT_CEA_1280X720P50
, 0x13, 0x01 },
289 { V4L2_DV_BT_CEA_1280X720P60
, 0x13, 0x00 },
290 { V4L2_DV_BT_CEA_1920X1080P24
, 0x1e, 0x04 },
291 { V4L2_DV_BT_CEA_1920X1080P25
, 0x1e, 0x03 },
292 { V4L2_DV_BT_CEA_1920X1080P30
, 0x1e, 0x02 },
293 { V4L2_DV_BT_CEA_1920X1080P50
, 0x1e, 0x01 },
294 { V4L2_DV_BT_CEA_1920X1080P60
, 0x1e, 0x00 },
298 /* sorted by number of lines */
299 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr
[] = {
300 { V4L2_DV_BT_DMT_640X480P60
, 0x08, 0x00 },
301 { V4L2_DV_BT_DMT_640X480P72
, 0x09, 0x00 },
302 { V4L2_DV_BT_DMT_640X480P75
, 0x0a, 0x00 },
303 { V4L2_DV_BT_DMT_640X480P85
, 0x0b, 0x00 },
304 { V4L2_DV_BT_DMT_800X600P56
, 0x00, 0x00 },
305 { V4L2_DV_BT_DMT_800X600P60
, 0x01, 0x00 },
306 { V4L2_DV_BT_DMT_800X600P72
, 0x02, 0x00 },
307 { V4L2_DV_BT_DMT_800X600P75
, 0x03, 0x00 },
308 { V4L2_DV_BT_DMT_800X600P85
, 0x04, 0x00 },
309 { V4L2_DV_BT_DMT_1024X768P60
, 0x0c, 0x00 },
310 { V4L2_DV_BT_DMT_1024X768P70
, 0x0d, 0x00 },
311 { V4L2_DV_BT_DMT_1024X768P75
, 0x0e, 0x00 },
312 { V4L2_DV_BT_DMT_1024X768P85
, 0x0f, 0x00 },
313 { V4L2_DV_BT_DMT_1280X1024P60
, 0x05, 0x00 },
314 { V4L2_DV_BT_DMT_1280X1024P75
, 0x06, 0x00 },
318 static const struct v4l2_event adv76xx_ev_fmt
= {
319 .type
= V4L2_EVENT_SOURCE_CHANGE
,
320 .u
.src_change
.changes
= V4L2_EVENT_SRC_CH_RESOLUTION
,
323 /* ----------------------------------------------------------------------- */
325 static inline struct adv76xx_state
*to_state(struct v4l2_subdev
*sd
)
327 return container_of(sd
, struct adv76xx_state
, sd
);
330 static inline unsigned htotal(const struct v4l2_bt_timings
*t
)
332 return V4L2_DV_BT_FRAME_WIDTH(t
);
335 static inline unsigned vtotal(const struct v4l2_bt_timings
*t
)
337 return V4L2_DV_BT_FRAME_HEIGHT(t
);
340 /* ----------------------------------------------------------------------- */
342 static int adv76xx_read_check(struct adv76xx_state
*state
,
343 int client_page
, u8 reg
)
345 struct i2c_client
*client
= state
->i2c_clients
[client_page
];
349 err
= regmap_read(state
->regmap
[client_page
], reg
, &val
);
352 v4l_err(client
, "error reading %02x, %02x\n",
359 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
360 * size to one or more registers.
362 * A value of zero will be returned on success, a negative errno will
363 * be returned in error cases.
365 static int adv76xx_write_block(struct adv76xx_state
*state
, int client_page
,
366 unsigned int init_reg
, const void *val
,
369 struct regmap
*regmap
= state
->regmap
[client_page
];
371 if (val_len
> I2C_SMBUS_BLOCK_MAX
)
372 val_len
= I2C_SMBUS_BLOCK_MAX
;
374 return regmap_raw_write(regmap
, init_reg
, val
, val_len
);
377 /* ----------------------------------------------------------------------- */
379 static inline int io_read(struct v4l2_subdev
*sd
, u8 reg
)
381 struct adv76xx_state
*state
= to_state(sd
);
383 return adv76xx_read_check(state
, ADV76XX_PAGE_IO
, reg
);
386 static inline int io_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
388 struct adv76xx_state
*state
= to_state(sd
);
390 return regmap_write(state
->regmap
[ADV76XX_PAGE_IO
], reg
, val
);
393 static inline int io_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
,
396 return io_write(sd
, reg
, (io_read(sd
, reg
) & ~mask
) | val
);
399 static inline int avlink_read(struct v4l2_subdev
*sd
, u8 reg
)
401 struct adv76xx_state
*state
= to_state(sd
);
403 return adv76xx_read_check(state
, ADV7604_PAGE_AVLINK
, reg
);
406 static inline int avlink_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
408 struct adv76xx_state
*state
= to_state(sd
);
410 return regmap_write(state
->regmap
[ADV7604_PAGE_AVLINK
], reg
, val
);
413 static inline int cec_read(struct v4l2_subdev
*sd
, u8 reg
)
415 struct adv76xx_state
*state
= to_state(sd
);
417 return adv76xx_read_check(state
, ADV76XX_PAGE_CEC
, reg
);
420 static inline int cec_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
422 struct adv76xx_state
*state
= to_state(sd
);
424 return regmap_write(state
->regmap
[ADV76XX_PAGE_CEC
], reg
, val
);
427 static inline int cec_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
,
430 return cec_write(sd
, reg
, (cec_read(sd
, reg
) & ~mask
) | val
);
433 static inline int infoframe_read(struct v4l2_subdev
*sd
, u8 reg
)
435 struct adv76xx_state
*state
= to_state(sd
);
437 return adv76xx_read_check(state
, ADV76XX_PAGE_INFOFRAME
, reg
);
440 static inline int infoframe_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
442 struct adv76xx_state
*state
= to_state(sd
);
444 return regmap_write(state
->regmap
[ADV76XX_PAGE_INFOFRAME
], reg
, val
);
447 static inline int afe_read(struct v4l2_subdev
*sd
, u8 reg
)
449 struct adv76xx_state
*state
= to_state(sd
);
451 return adv76xx_read_check(state
, ADV76XX_PAGE_AFE
, reg
);
454 static inline int afe_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
456 struct adv76xx_state
*state
= to_state(sd
);
458 return regmap_write(state
->regmap
[ADV76XX_PAGE_AFE
], reg
, val
);
461 static inline int rep_read(struct v4l2_subdev
*sd
, u8 reg
)
463 struct adv76xx_state
*state
= to_state(sd
);
465 return adv76xx_read_check(state
, ADV76XX_PAGE_REP
, reg
);
468 static inline int rep_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
470 struct adv76xx_state
*state
= to_state(sd
);
472 return regmap_write(state
->regmap
[ADV76XX_PAGE_REP
], reg
, val
);
475 static inline int rep_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
, u8 val
)
477 return rep_write(sd
, reg
, (rep_read(sd
, reg
) & ~mask
) | val
);
480 static inline int edid_read(struct v4l2_subdev
*sd
, u8 reg
)
482 struct adv76xx_state
*state
= to_state(sd
);
484 return adv76xx_read_check(state
, ADV76XX_PAGE_EDID
, reg
);
487 static inline int edid_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
489 struct adv76xx_state
*state
= to_state(sd
);
491 return regmap_write(state
->regmap
[ADV76XX_PAGE_EDID
], reg
, val
);
494 static inline int edid_write_block(struct v4l2_subdev
*sd
,
495 unsigned int total_len
, const u8
*val
)
497 struct adv76xx_state
*state
= to_state(sd
);
502 v4l2_dbg(2, debug
, sd
, "%s: write EDID block (%d byte)\n",
503 __func__
, total_len
);
505 while (!err
&& i
< total_len
) {
506 len
= (total_len
- i
) > I2C_SMBUS_BLOCK_MAX
?
507 I2C_SMBUS_BLOCK_MAX
:
510 err
= adv76xx_write_block(state
, ADV76XX_PAGE_EDID
,
518 static void adv76xx_set_hpd(struct adv76xx_state
*state
, unsigned int hpd
)
522 for (i
= 0; i
< state
->info
->num_dv_ports
; ++i
)
523 gpiod_set_value_cansleep(state
->hpd_gpio
[i
], hpd
& BIT(i
));
525 v4l2_subdev_notify(&state
->sd
, ADV76XX_HOTPLUG
, &hpd
);
528 static void adv76xx_delayed_work_enable_hotplug(struct work_struct
*work
)
530 struct delayed_work
*dwork
= to_delayed_work(work
);
531 struct adv76xx_state
*state
= container_of(dwork
, struct adv76xx_state
,
532 delayed_work_enable_hotplug
);
533 struct v4l2_subdev
*sd
= &state
->sd
;
535 v4l2_dbg(2, debug
, sd
, "%s: enable hotplug\n", __func__
);
537 adv76xx_set_hpd(state
, state
->edid
.present
);
540 static inline int hdmi_read(struct v4l2_subdev
*sd
, u8 reg
)
542 struct adv76xx_state
*state
= to_state(sd
);
544 return adv76xx_read_check(state
, ADV76XX_PAGE_HDMI
, reg
);
547 static u16
hdmi_read16(struct v4l2_subdev
*sd
, u8 reg
, u16 mask
)
549 return ((hdmi_read(sd
, reg
) << 8) | hdmi_read(sd
, reg
+ 1)) & mask
;
552 static inline int hdmi_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
554 struct adv76xx_state
*state
= to_state(sd
);
556 return regmap_write(state
->regmap
[ADV76XX_PAGE_HDMI
], reg
, val
);
559 static inline int hdmi_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
, u8 val
)
561 return hdmi_write(sd
, reg
, (hdmi_read(sd
, reg
) & ~mask
) | val
);
564 static inline int test_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
566 struct adv76xx_state
*state
= to_state(sd
);
568 return regmap_write(state
->regmap
[ADV76XX_PAGE_TEST
], reg
, val
);
571 static inline int cp_read(struct v4l2_subdev
*sd
, u8 reg
)
573 struct adv76xx_state
*state
= to_state(sd
);
575 return adv76xx_read_check(state
, ADV76XX_PAGE_CP
, reg
);
578 static u16
cp_read16(struct v4l2_subdev
*sd
, u8 reg
, u16 mask
)
580 return ((cp_read(sd
, reg
) << 8) | cp_read(sd
, reg
+ 1)) & mask
;
583 static inline int cp_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
585 struct adv76xx_state
*state
= to_state(sd
);
587 return regmap_write(state
->regmap
[ADV76XX_PAGE_CP
], reg
, val
);
590 static inline int cp_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
, u8 val
)
592 return cp_write(sd
, reg
, (cp_read(sd
, reg
) & ~mask
) | val
);
595 static inline int vdp_read(struct v4l2_subdev
*sd
, u8 reg
)
597 struct adv76xx_state
*state
= to_state(sd
);
599 return adv76xx_read_check(state
, ADV7604_PAGE_VDP
, reg
);
602 static inline int vdp_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
604 struct adv76xx_state
*state
= to_state(sd
);
606 return regmap_write(state
->regmap
[ADV7604_PAGE_VDP
], reg
, val
);
609 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset))
610 #define ADV76XX_REG_SEQ_TERM 0xffff
612 #ifdef CONFIG_VIDEO_ADV_DEBUG
613 static int adv76xx_read_reg(struct v4l2_subdev
*sd
, unsigned int reg
)
615 struct adv76xx_state
*state
= to_state(sd
);
616 unsigned int page
= reg
>> 8;
620 if (!(BIT(page
) & state
->info
->page_mask
))
624 err
= regmap_read(state
->regmap
[page
], reg
, &val
);
626 return err
? err
: val
;
630 static int adv76xx_write_reg(struct v4l2_subdev
*sd
, unsigned int reg
, u8 val
)
632 struct adv76xx_state
*state
= to_state(sd
);
633 unsigned int page
= reg
>> 8;
635 if (!(BIT(page
) & state
->info
->page_mask
))
640 return regmap_write(state
->regmap
[page
], reg
, val
);
643 static void adv76xx_write_reg_seq(struct v4l2_subdev
*sd
,
644 const struct adv76xx_reg_seq
*reg_seq
)
648 for (i
= 0; reg_seq
[i
].reg
!= ADV76XX_REG_SEQ_TERM
; i
++)
649 adv76xx_write_reg(sd
, reg_seq
[i
].reg
, reg_seq
[i
].val
);
652 /* -----------------------------------------------------------------------------
656 static const struct adv76xx_format_info adv7604_formats
[] = {
657 { MEDIA_BUS_FMT_RGB888_1X24
, ADV76XX_OP_CH_SEL_RGB
, true, false,
658 ADV76XX_OP_MODE_SEL_SDR_444
| ADV76XX_OP_FORMAT_SEL_8BIT
},
659 { MEDIA_BUS_FMT_YUYV8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, false,
660 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
661 { MEDIA_BUS_FMT_YVYU8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, true,
662 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
663 { MEDIA_BUS_FMT_YUYV10_2X10
, ADV76XX_OP_CH_SEL_RGB
, false, false,
664 ADV76XX_OP_MODE_SEL_SDR_422
| ADV7604_OP_FORMAT_SEL_10BIT
},
665 { MEDIA_BUS_FMT_YVYU10_2X10
, ADV76XX_OP_CH_SEL_RGB
, false, true,
666 ADV76XX_OP_MODE_SEL_SDR_422
| ADV7604_OP_FORMAT_SEL_10BIT
},
667 { MEDIA_BUS_FMT_YUYV12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, false,
668 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
669 { MEDIA_BUS_FMT_YVYU12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, true,
670 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
671 { MEDIA_BUS_FMT_UYVY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, false,
672 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
673 { MEDIA_BUS_FMT_VYUY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, true,
674 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
675 { MEDIA_BUS_FMT_YUYV8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, false,
676 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
677 { MEDIA_BUS_FMT_YVYU8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, true,
678 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
679 { MEDIA_BUS_FMT_UYVY10_1X20
, ADV76XX_OP_CH_SEL_RBG
, false, false,
680 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
681 { MEDIA_BUS_FMT_VYUY10_1X20
, ADV76XX_OP_CH_SEL_RBG
, false, true,
682 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
683 { MEDIA_BUS_FMT_YUYV10_1X20
, ADV76XX_OP_CH_SEL_RGB
, false, false,
684 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
685 { MEDIA_BUS_FMT_YVYU10_1X20
, ADV76XX_OP_CH_SEL_RGB
, false, true,
686 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
687 { MEDIA_BUS_FMT_UYVY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, false,
688 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
689 { MEDIA_BUS_FMT_VYUY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, true,
690 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
691 { MEDIA_BUS_FMT_YUYV12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, false,
692 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
693 { MEDIA_BUS_FMT_YVYU12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, true,
694 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
697 static const struct adv76xx_format_info adv7611_formats
[] = {
698 { MEDIA_BUS_FMT_RGB888_1X24
, ADV76XX_OP_CH_SEL_RGB
, true, false,
699 ADV76XX_OP_MODE_SEL_SDR_444
| ADV76XX_OP_FORMAT_SEL_8BIT
},
700 { MEDIA_BUS_FMT_YUYV8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, false,
701 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
702 { MEDIA_BUS_FMT_YVYU8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, true,
703 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
704 { MEDIA_BUS_FMT_YUYV12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, false,
705 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
706 { MEDIA_BUS_FMT_YVYU12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, true,
707 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
708 { MEDIA_BUS_FMT_UYVY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, false,
709 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
710 { MEDIA_BUS_FMT_VYUY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, true,
711 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
712 { MEDIA_BUS_FMT_YUYV8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, false,
713 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
714 { MEDIA_BUS_FMT_YVYU8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, true,
715 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
716 { MEDIA_BUS_FMT_UYVY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, false,
717 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
718 { MEDIA_BUS_FMT_VYUY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, true,
719 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
720 { MEDIA_BUS_FMT_YUYV12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, false,
721 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
722 { MEDIA_BUS_FMT_YVYU12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, true,
723 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
726 static const struct adv76xx_format_info adv7612_formats
[] = {
727 { MEDIA_BUS_FMT_RGB888_1X24
, ADV76XX_OP_CH_SEL_RGB
, true, false,
728 ADV76XX_OP_MODE_SEL_SDR_444
| ADV76XX_OP_FORMAT_SEL_8BIT
},
729 { MEDIA_BUS_FMT_YUYV8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, false,
730 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
731 { MEDIA_BUS_FMT_YVYU8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, true,
732 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
733 { MEDIA_BUS_FMT_UYVY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, false,
734 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
735 { MEDIA_BUS_FMT_VYUY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, true,
736 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
737 { MEDIA_BUS_FMT_YUYV8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, false,
738 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
739 { MEDIA_BUS_FMT_YVYU8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, true,
740 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
743 static const struct adv76xx_format_info
*
744 adv76xx_format_info(struct adv76xx_state
*state
, u32 code
)
748 for (i
= 0; i
< state
->info
->nformats
; ++i
) {
749 if (state
->info
->formats
[i
].code
== code
)
750 return &state
->info
->formats
[i
];
756 /* ----------------------------------------------------------------------- */
758 static inline bool is_analog_input(struct v4l2_subdev
*sd
)
760 struct adv76xx_state
*state
= to_state(sd
);
762 return state
->selected_input
== ADV7604_PAD_VGA_RGB
||
763 state
->selected_input
== ADV7604_PAD_VGA_COMP
;
766 static inline bool is_digital_input(struct v4l2_subdev
*sd
)
768 struct adv76xx_state
*state
= to_state(sd
);
770 return state
->selected_input
== ADV76XX_PAD_HDMI_PORT_A
||
771 state
->selected_input
== ADV7604_PAD_HDMI_PORT_B
||
772 state
->selected_input
== ADV7604_PAD_HDMI_PORT_C
||
773 state
->selected_input
== ADV7604_PAD_HDMI_PORT_D
;
776 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog
= {
777 .type
= V4L2_DV_BT_656_1120
,
778 /* keep this initialization for compatibility with GCC < 4.4.6 */
780 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
781 V4L2_DV_BT_STD_CEA861
| V4L2_DV_BT_STD_DMT
|
782 V4L2_DV_BT_STD_GTF
| V4L2_DV_BT_STD_CVT
,
783 V4L2_DV_BT_CAP_PROGRESSIVE
| V4L2_DV_BT_CAP_REDUCED_BLANKING
|
784 V4L2_DV_BT_CAP_CUSTOM
)
787 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital
= {
788 .type
= V4L2_DV_BT_656_1120
,
789 /* keep this initialization for compatibility with GCC < 4.4.6 */
791 V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 225000000,
792 V4L2_DV_BT_STD_CEA861
| V4L2_DV_BT_STD_DMT
|
793 V4L2_DV_BT_STD_GTF
| V4L2_DV_BT_STD_CVT
,
794 V4L2_DV_BT_CAP_PROGRESSIVE
| V4L2_DV_BT_CAP_REDUCED_BLANKING
|
795 V4L2_DV_BT_CAP_CUSTOM
)
799 * Return the DV timings capabilities for the requested sink pad. As a special
800 * case, pad value -1 returns the capabilities for the currently selected input.
802 static const struct v4l2_dv_timings_cap
*
803 adv76xx_get_dv_timings_cap(struct v4l2_subdev
*sd
, int pad
)
806 struct adv76xx_state
*state
= to_state(sd
);
808 pad
= state
->selected_input
;
812 case ADV76XX_PAD_HDMI_PORT_A
:
813 case ADV7604_PAD_HDMI_PORT_B
:
814 case ADV7604_PAD_HDMI_PORT_C
:
815 case ADV7604_PAD_HDMI_PORT_D
:
816 return &adv76xx_timings_cap_digital
;
818 case ADV7604_PAD_VGA_RGB
:
819 case ADV7604_PAD_VGA_COMP
:
821 return &adv7604_timings_cap_analog
;
826 /* ----------------------------------------------------------------------- */
828 #ifdef CONFIG_VIDEO_ADV_DEBUG
829 static void adv76xx_inv_register(struct v4l2_subdev
*sd
)
831 v4l2_info(sd
, "0x000-0x0ff: IO Map\n");
832 v4l2_info(sd
, "0x100-0x1ff: AVLink Map\n");
833 v4l2_info(sd
, "0x200-0x2ff: CEC Map\n");
834 v4l2_info(sd
, "0x300-0x3ff: InfoFrame Map\n");
835 v4l2_info(sd
, "0x400-0x4ff: ESDP Map\n");
836 v4l2_info(sd
, "0x500-0x5ff: DPP Map\n");
837 v4l2_info(sd
, "0x600-0x6ff: AFE Map\n");
838 v4l2_info(sd
, "0x700-0x7ff: Repeater Map\n");
839 v4l2_info(sd
, "0x800-0x8ff: EDID Map\n");
840 v4l2_info(sd
, "0x900-0x9ff: HDMI Map\n");
841 v4l2_info(sd
, "0xa00-0xaff: Test Map\n");
842 v4l2_info(sd
, "0xb00-0xbff: CP Map\n");
843 v4l2_info(sd
, "0xc00-0xcff: VDP Map\n");
846 static int adv76xx_g_register(struct v4l2_subdev
*sd
,
847 struct v4l2_dbg_register
*reg
)
851 ret
= adv76xx_read_reg(sd
, reg
->reg
);
853 v4l2_info(sd
, "Register %03llx not supported\n", reg
->reg
);
854 adv76xx_inv_register(sd
);
864 static int adv76xx_s_register(struct v4l2_subdev
*sd
,
865 const struct v4l2_dbg_register
*reg
)
869 ret
= adv76xx_write_reg(sd
, reg
->reg
, reg
->val
);
871 v4l2_info(sd
, "Register %03llx not supported\n", reg
->reg
);
872 adv76xx_inv_register(sd
);
880 static unsigned int adv7604_read_cable_det(struct v4l2_subdev
*sd
)
882 u8 value
= io_read(sd
, 0x6f);
884 return ((value
& 0x10) >> 4)
885 | ((value
& 0x08) >> 2)
886 | ((value
& 0x04) << 0)
887 | ((value
& 0x02) << 2);
890 static unsigned int adv7611_read_cable_det(struct v4l2_subdev
*sd
)
892 u8 value
= io_read(sd
, 0x6f);
897 static unsigned int adv7612_read_cable_det(struct v4l2_subdev
*sd
)
899 /* Reads CABLE_DET_A_RAW. For input B support, need to
900 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
902 u8 value
= io_read(sd
, 0x6f);
907 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev
*sd
)
909 struct adv76xx_state
*state
= to_state(sd
);
910 const struct adv76xx_chip_info
*info
= state
->info
;
911 u16 cable_det
= info
->read_cable_det(sd
);
913 return v4l2_ctrl_s_ctrl(state
->detect_tx_5v_ctrl
, cable_det
);
916 static int find_and_set_predefined_video_timings(struct v4l2_subdev
*sd
,
918 const struct adv76xx_video_standards
*predef_vid_timings
,
919 const struct v4l2_dv_timings
*timings
)
923 for (i
= 0; predef_vid_timings
[i
].timings
.bt
.width
; i
++) {
924 if (!v4l2_match_dv_timings(timings
, &predef_vid_timings
[i
].timings
,
925 is_digital_input(sd
) ? 250000 : 1000000, false))
927 io_write(sd
, 0x00, predef_vid_timings
[i
].vid_std
); /* video std */
928 io_write(sd
, 0x01, (predef_vid_timings
[i
].v_freq
<< 4) +
929 prim_mode
); /* v_freq and prim mode */
936 static int configure_predefined_video_timings(struct v4l2_subdev
*sd
,
937 struct v4l2_dv_timings
*timings
)
939 struct adv76xx_state
*state
= to_state(sd
);
942 v4l2_dbg(1, debug
, sd
, "%s", __func__
);
944 if (adv76xx_has_afe(state
)) {
945 /* reset to default values */
946 io_write(sd
, 0x16, 0x43);
947 io_write(sd
, 0x17, 0x5a);
949 /* disable embedded syncs for auto graphics mode */
950 cp_write_clr_set(sd
, 0x81, 0x10, 0x00);
951 cp_write(sd
, 0x8f, 0x00);
952 cp_write(sd
, 0x90, 0x00);
953 cp_write(sd
, 0xa2, 0x00);
954 cp_write(sd
, 0xa3, 0x00);
955 cp_write(sd
, 0xa4, 0x00);
956 cp_write(sd
, 0xa5, 0x00);
957 cp_write(sd
, 0xa6, 0x00);
958 cp_write(sd
, 0xa7, 0x00);
959 cp_write(sd
, 0xab, 0x00);
960 cp_write(sd
, 0xac, 0x00);
962 if (is_analog_input(sd
)) {
963 err
= find_and_set_predefined_video_timings(sd
,
964 0x01, adv7604_prim_mode_comp
, timings
);
966 err
= find_and_set_predefined_video_timings(sd
,
967 0x02, adv7604_prim_mode_gr
, timings
);
968 } else if (is_digital_input(sd
)) {
969 err
= find_and_set_predefined_video_timings(sd
,
970 0x05, adv76xx_prim_mode_hdmi_comp
, timings
);
972 err
= find_and_set_predefined_video_timings(sd
,
973 0x06, adv76xx_prim_mode_hdmi_gr
, timings
);
975 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
976 __func__
, state
->selected_input
);
984 static void configure_custom_video_timings(struct v4l2_subdev
*sd
,
985 const struct v4l2_bt_timings
*bt
)
987 struct adv76xx_state
*state
= to_state(sd
);
988 u32 width
= htotal(bt
);
989 u32 height
= vtotal(bt
);
990 u16 cp_start_sav
= bt
->hsync
+ bt
->hbackporch
- 4;
991 u16 cp_start_eav
= width
- bt
->hfrontporch
;
992 u16 cp_start_vbi
= height
- bt
->vfrontporch
;
993 u16 cp_end_vbi
= bt
->vsync
+ bt
->vbackporch
;
994 u16 ch1_fr_ll
= (((u32
)bt
->pixelclock
/ 100) > 0) ?
995 ((width
* (ADV76XX_FSC
/ 100)) / ((u32
)bt
->pixelclock
/ 100)) : 0;
997 0xc0 | ((width
>> 8) & 0x1f),
1001 v4l2_dbg(2, debug
, sd
, "%s\n", __func__
);
1003 if (is_analog_input(sd
)) {
1005 io_write(sd
, 0x00, 0x07); /* video std */
1006 io_write(sd
, 0x01, 0x02); /* prim mode */
1007 /* enable embedded syncs for auto graphics mode */
1008 cp_write_clr_set(sd
, 0x81, 0x10, 0x10);
1010 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1011 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1012 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
1013 if (regmap_raw_write(state
->regmap
[ADV76XX_PAGE_IO
],
1015 v4l2_err(sd
, "writing to reg 0x16 and 0x17 failed\n");
1017 /* active video - horizontal timing */
1018 cp_write(sd
, 0xa2, (cp_start_sav
>> 4) & 0xff);
1019 cp_write(sd
, 0xa3, ((cp_start_sav
& 0x0f) << 4) |
1020 ((cp_start_eav
>> 8) & 0x0f));
1021 cp_write(sd
, 0xa4, cp_start_eav
& 0xff);
1023 /* active video - vertical timing */
1024 cp_write(sd
, 0xa5, (cp_start_vbi
>> 4) & 0xff);
1025 cp_write(sd
, 0xa6, ((cp_start_vbi
& 0xf) << 4) |
1026 ((cp_end_vbi
>> 8) & 0xf));
1027 cp_write(sd
, 0xa7, cp_end_vbi
& 0xff);
1028 } else if (is_digital_input(sd
)) {
1029 /* set default prim_mode/vid_std for HDMI
1030 according to [REF_03, c. 4.2] */
1031 io_write(sd
, 0x00, 0x02); /* video std */
1032 io_write(sd
, 0x01, 0x06); /* prim mode */
1034 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
1035 __func__
, state
->selected_input
);
1038 cp_write(sd
, 0x8f, (ch1_fr_ll
>> 8) & 0x7);
1039 cp_write(sd
, 0x90, ch1_fr_ll
& 0xff);
1040 cp_write(sd
, 0xab, (height
>> 4) & 0xff);
1041 cp_write(sd
, 0xac, (height
& 0x0f) << 4);
1044 static void adv76xx_set_offset(struct v4l2_subdev
*sd
, bool auto_offset
, u16 offset_a
, u16 offset_b
, u16 offset_c
)
1046 struct adv76xx_state
*state
= to_state(sd
);
1055 v4l2_dbg(2, debug
, sd
, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1056 __func__
, auto_offset
? "Auto" : "Manual",
1057 offset_a
, offset_b
, offset_c
);
1059 offset_buf
[0] = (cp_read(sd
, 0x77) & 0xc0) | ((offset_a
& 0x3f0) >> 4);
1060 offset_buf
[1] = ((offset_a
& 0x00f) << 4) | ((offset_b
& 0x3c0) >> 6);
1061 offset_buf
[2] = ((offset_b
& 0x03f) << 2) | ((offset_c
& 0x300) >> 8);
1062 offset_buf
[3] = offset_c
& 0x0ff;
1064 /* Registers must be written in this order with no i2c access in between */
1065 if (regmap_raw_write(state
->regmap
[ADV76XX_PAGE_CP
],
1066 0x77, offset_buf
, 4))
1067 v4l2_err(sd
, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__
);
1070 static void adv76xx_set_gain(struct v4l2_subdev
*sd
, bool auto_gain
, u16 gain_a
, u16 gain_b
, u16 gain_c
)
1072 struct adv76xx_state
*state
= to_state(sd
);
1075 u8 agc_mode_man
= 1;
1085 v4l2_dbg(2, debug
, sd
, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1086 __func__
, auto_gain
? "Auto" : "Manual",
1087 gain_a
, gain_b
, gain_c
);
1089 gain_buf
[0] = ((gain_man
<< 7) | (agc_mode_man
<< 6) | ((gain_a
& 0x3f0) >> 4));
1090 gain_buf
[1] = (((gain_a
& 0x00f) << 4) | ((gain_b
& 0x3c0) >> 6));
1091 gain_buf
[2] = (((gain_b
& 0x03f) << 2) | ((gain_c
& 0x300) >> 8));
1092 gain_buf
[3] = ((gain_c
& 0x0ff));
1094 /* Registers must be written in this order with no i2c access in between */
1095 if (regmap_raw_write(state
->regmap
[ADV76XX_PAGE_CP
],
1097 v4l2_err(sd
, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__
);
1100 static void set_rgb_quantization_range(struct v4l2_subdev
*sd
)
1102 struct adv76xx_state
*state
= to_state(sd
);
1103 bool rgb_output
= io_read(sd
, 0x02) & 0x02;
1104 bool hdmi_signal
= hdmi_read(sd
, 0x05) & 0x80;
1105 u8 y
= HDMI_COLORSPACE_RGB
;
1107 if (hdmi_signal
&& (io_read(sd
, 0x60) & 1))
1108 y
= infoframe_read(sd
, 0x01) >> 5;
1110 v4l2_dbg(2, debug
, sd
, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1111 __func__
, state
->rgb_quantization_range
,
1112 rgb_output
, hdmi_signal
);
1114 adv76xx_set_gain(sd
, true, 0x0, 0x0, 0x0);
1115 adv76xx_set_offset(sd
, true, 0x0, 0x0, 0x0);
1116 io_write_clr_set(sd
, 0x02, 0x04, rgb_output
? 0 : 4);
1118 switch (state
->rgb_quantization_range
) {
1119 case V4L2_DV_RGB_RANGE_AUTO
:
1120 if (state
->selected_input
== ADV7604_PAD_VGA_RGB
) {
1121 /* Receiving analog RGB signal
1122 * Set RGB full range (0-255) */
1123 io_write_clr_set(sd
, 0x02, 0xf0, 0x10);
1127 if (state
->selected_input
== ADV7604_PAD_VGA_COMP
) {
1128 /* Receiving analog YPbPr signal
1130 io_write_clr_set(sd
, 0x02, 0xf0, 0xf0);
1135 /* Receiving HDMI signal
1137 io_write_clr_set(sd
, 0x02, 0xf0, 0xf0);
1141 /* Receiving DVI-D signal
1142 * ADV7604 selects RGB limited range regardless of
1143 * input format (CE/IT) in automatic mode */
1144 if (state
->timings
.bt
.flags
& V4L2_DV_FL_IS_CE_VIDEO
) {
1145 /* RGB limited range (16-235) */
1146 io_write_clr_set(sd
, 0x02, 0xf0, 0x00);
1148 /* RGB full range (0-255) */
1149 io_write_clr_set(sd
, 0x02, 0xf0, 0x10);
1151 if (is_digital_input(sd
) && rgb_output
) {
1152 adv76xx_set_offset(sd
, false, 0x40, 0x40, 0x40);
1154 adv76xx_set_gain(sd
, false, 0xe0, 0xe0, 0xe0);
1155 adv76xx_set_offset(sd
, false, 0x70, 0x70, 0x70);
1159 case V4L2_DV_RGB_RANGE_LIMITED
:
1160 if (state
->selected_input
== ADV7604_PAD_VGA_COMP
) {
1161 /* YCrCb limited range (16-235) */
1162 io_write_clr_set(sd
, 0x02, 0xf0, 0x20);
1166 if (y
!= HDMI_COLORSPACE_RGB
)
1169 /* RGB limited range (16-235) */
1170 io_write_clr_set(sd
, 0x02, 0xf0, 0x00);
1173 case V4L2_DV_RGB_RANGE_FULL
:
1174 if (state
->selected_input
== ADV7604_PAD_VGA_COMP
) {
1175 /* YCrCb full range (0-255) */
1176 io_write_clr_set(sd
, 0x02, 0xf0, 0x60);
1180 if (y
!= HDMI_COLORSPACE_RGB
)
1183 /* RGB full range (0-255) */
1184 io_write_clr_set(sd
, 0x02, 0xf0, 0x10);
1186 if (is_analog_input(sd
) || hdmi_signal
)
1189 /* Adjust gain/offset for DVI-D signals only */
1191 adv76xx_set_offset(sd
, false, 0x40, 0x40, 0x40);
1193 adv76xx_set_gain(sd
, false, 0xe0, 0xe0, 0xe0);
1194 adv76xx_set_offset(sd
, false, 0x70, 0x70, 0x70);
1200 static int adv76xx_s_ctrl(struct v4l2_ctrl
*ctrl
)
1202 struct v4l2_subdev
*sd
=
1203 &container_of(ctrl
->handler
, struct adv76xx_state
, hdl
)->sd
;
1205 struct adv76xx_state
*state
= to_state(sd
);
1208 case V4L2_CID_BRIGHTNESS
:
1209 cp_write(sd
, 0x3c, ctrl
->val
);
1211 case V4L2_CID_CONTRAST
:
1212 cp_write(sd
, 0x3a, ctrl
->val
);
1214 case V4L2_CID_SATURATION
:
1215 cp_write(sd
, 0x3b, ctrl
->val
);
1218 cp_write(sd
, 0x3d, ctrl
->val
);
1220 case V4L2_CID_DV_RX_RGB_RANGE
:
1221 state
->rgb_quantization_range
= ctrl
->val
;
1222 set_rgb_quantization_range(sd
);
1224 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE
:
1225 if (!adv76xx_has_afe(state
))
1227 /* Set the analog sampling phase. This is needed to find the
1228 best sampling phase for analog video: an application or
1229 driver has to try a number of phases and analyze the picture
1230 quality before settling on the best performing phase. */
1231 afe_write(sd
, 0xc8, ctrl
->val
);
1233 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL
:
1234 /* Use the default blue color for free running mode,
1235 or supply your own. */
1236 cp_write_clr_set(sd
, 0xbf, 0x04, ctrl
->val
<< 2);
1238 case V4L2_CID_ADV_RX_FREE_RUN_COLOR
:
1239 cp_write(sd
, 0xc0, (ctrl
->val
& 0xff0000) >> 16);
1240 cp_write(sd
, 0xc1, (ctrl
->val
& 0x00ff00) >> 8);
1241 cp_write(sd
, 0xc2, (u8
)(ctrl
->val
& 0x0000ff));
1247 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl
*ctrl
)
1249 struct v4l2_subdev
*sd
=
1250 &container_of(ctrl
->handler
, struct adv76xx_state
, hdl
)->sd
;
1252 if (ctrl
->id
== V4L2_CID_DV_RX_IT_CONTENT_TYPE
) {
1253 ctrl
->val
= V4L2_DV_IT_CONTENT_TYPE_NO_ITC
;
1254 if ((io_read(sd
, 0x60) & 1) && (infoframe_read(sd
, 0x03) & 0x80))
1255 ctrl
->val
= (infoframe_read(sd
, 0x05) >> 4) & 3;
1261 /* ----------------------------------------------------------------------- */
1263 static inline bool no_power(struct v4l2_subdev
*sd
)
1265 /* Entire chip or CP powered off */
1266 return io_read(sd
, 0x0c) & 0x24;
1269 static inline bool no_signal_tmds(struct v4l2_subdev
*sd
)
1271 struct adv76xx_state
*state
= to_state(sd
);
1273 return !(io_read(sd
, 0x6a) & (0x10 >> state
->selected_input
));
1276 static inline bool no_lock_tmds(struct v4l2_subdev
*sd
)
1278 struct adv76xx_state
*state
= to_state(sd
);
1279 const struct adv76xx_chip_info
*info
= state
->info
;
1281 return (io_read(sd
, 0x6a) & info
->tdms_lock_mask
) != info
->tdms_lock_mask
;
1284 static inline bool is_hdmi(struct v4l2_subdev
*sd
)
1286 return hdmi_read(sd
, 0x05) & 0x80;
1289 static inline bool no_lock_sspd(struct v4l2_subdev
*sd
)
1291 struct adv76xx_state
*state
= to_state(sd
);
1294 * Chips without a AFE don't expose registers for the SSPD, so just assume
1295 * that we have a lock.
1297 if (adv76xx_has_afe(state
))
1300 /* TODO channel 2 */
1301 return ((cp_read(sd
, 0xb5) & 0xd0) != 0xd0);
1304 static inline bool no_lock_stdi(struct v4l2_subdev
*sd
)
1306 /* TODO channel 2 */
1307 return !(cp_read(sd
, 0xb1) & 0x80);
1310 static inline bool no_signal(struct v4l2_subdev
*sd
)
1316 ret
|= no_lock_stdi(sd
);
1317 ret
|= no_lock_sspd(sd
);
1319 if (is_digital_input(sd
)) {
1320 ret
|= no_lock_tmds(sd
);
1321 ret
|= no_signal_tmds(sd
);
1327 static inline bool no_lock_cp(struct v4l2_subdev
*sd
)
1329 struct adv76xx_state
*state
= to_state(sd
);
1331 if (!adv76xx_has_afe(state
))
1334 /* CP has detected a non standard number of lines on the incoming
1335 video compared to what it is configured to receive by s_dv_timings */
1336 return io_read(sd
, 0x12) & 0x01;
1339 static inline bool in_free_run(struct v4l2_subdev
*sd
)
1341 return cp_read(sd
, 0xff) & 0x10;
1344 static int adv76xx_g_input_status(struct v4l2_subdev
*sd
, u32
*status
)
1347 *status
|= no_power(sd
) ? V4L2_IN_ST_NO_POWER
: 0;
1348 *status
|= no_signal(sd
) ? V4L2_IN_ST_NO_SIGNAL
: 0;
1349 if (!in_free_run(sd
) && no_lock_cp(sd
))
1350 *status
|= is_digital_input(sd
) ?
1351 V4L2_IN_ST_NO_SYNC
: V4L2_IN_ST_NO_H_LOCK
;
1353 v4l2_dbg(1, debug
, sd
, "%s: status = 0x%x\n", __func__
, *status
);
1358 /* ----------------------------------------------------------------------- */
1360 struct stdi_readback
{
1366 static int stdi2dv_timings(struct v4l2_subdev
*sd
,
1367 struct stdi_readback
*stdi
,
1368 struct v4l2_dv_timings
*timings
)
1370 struct adv76xx_state
*state
= to_state(sd
);
1371 u32 hfreq
= (ADV76XX_FSC
* 8) / stdi
->bl
;
1375 for (i
= 0; v4l2_dv_timings_presets
[i
].bt
.width
; i
++) {
1376 const struct v4l2_bt_timings
*bt
= &v4l2_dv_timings_presets
[i
].bt
;
1378 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets
[i
],
1379 adv76xx_get_dv_timings_cap(sd
, -1),
1380 adv76xx_check_dv_timings
, NULL
))
1382 if (vtotal(bt
) != stdi
->lcf
+ 1)
1384 if (bt
->vsync
!= stdi
->lcvs
)
1387 pix_clk
= hfreq
* htotal(bt
);
1389 if ((pix_clk
< bt
->pixelclock
+ 1000000) &&
1390 (pix_clk
> bt
->pixelclock
- 1000000)) {
1391 *timings
= v4l2_dv_timings_presets
[i
];
1396 if (v4l2_detect_cvt(stdi
->lcf
+ 1, hfreq
, stdi
->lcvs
, 0,
1397 (stdi
->hs_pol
== '+' ? V4L2_DV_HSYNC_POS_POL
: 0) |
1398 (stdi
->vs_pol
== '+' ? V4L2_DV_VSYNC_POS_POL
: 0),
1401 if (v4l2_detect_gtf(stdi
->lcf
+ 1, hfreq
, stdi
->lcvs
,
1402 (stdi
->hs_pol
== '+' ? V4L2_DV_HSYNC_POS_POL
: 0) |
1403 (stdi
->vs_pol
== '+' ? V4L2_DV_VSYNC_POS_POL
: 0),
1404 false, state
->aspect_ratio
, timings
))
1407 v4l2_dbg(2, debug
, sd
,
1408 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1409 __func__
, stdi
->lcvs
, stdi
->lcf
, stdi
->bl
,
1410 stdi
->hs_pol
, stdi
->vs_pol
);
1415 static int read_stdi(struct v4l2_subdev
*sd
, struct stdi_readback
*stdi
)
1417 struct adv76xx_state
*state
= to_state(sd
);
1418 const struct adv76xx_chip_info
*info
= state
->info
;
1421 if (no_lock_stdi(sd
) || no_lock_sspd(sd
)) {
1422 v4l2_dbg(2, debug
, sd
, "%s: STDI and/or SSPD not locked\n", __func__
);
1427 stdi
->bl
= cp_read16(sd
, 0xb1, 0x3fff);
1428 stdi
->lcf
= cp_read16(sd
, info
->lcf_reg
, 0x7ff);
1429 stdi
->lcvs
= cp_read(sd
, 0xb3) >> 3;
1430 stdi
->interlaced
= io_read(sd
, 0x12) & 0x10;
1432 if (adv76xx_has_afe(state
)) {
1434 polarity
= cp_read(sd
, 0xb5);
1435 if ((polarity
& 0x03) == 0x01) {
1436 stdi
->hs_pol
= polarity
& 0x10
1437 ? (polarity
& 0x08 ? '+' : '-') : 'x';
1438 stdi
->vs_pol
= polarity
& 0x40
1439 ? (polarity
& 0x20 ? '+' : '-') : 'x';
1445 polarity
= hdmi_read(sd
, 0x05);
1446 stdi
->hs_pol
= polarity
& 0x20 ? '+' : '-';
1447 stdi
->vs_pol
= polarity
& 0x10 ? '+' : '-';
1450 if (no_lock_stdi(sd
) || no_lock_sspd(sd
)) {
1451 v4l2_dbg(2, debug
, sd
,
1452 "%s: signal lost during readout of STDI/SSPD\n", __func__
);
1456 if (stdi
->lcf
< 239 || stdi
->bl
< 8 || stdi
->bl
== 0x3fff) {
1457 v4l2_dbg(2, debug
, sd
, "%s: invalid signal\n", __func__
);
1458 memset(stdi
, 0, sizeof(struct stdi_readback
));
1462 v4l2_dbg(2, debug
, sd
,
1463 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1464 __func__
, stdi
->lcf
, stdi
->bl
, stdi
->lcvs
,
1465 stdi
->hs_pol
, stdi
->vs_pol
,
1466 stdi
->interlaced
? "interlaced" : "progressive");
1471 static int adv76xx_enum_dv_timings(struct v4l2_subdev
*sd
,
1472 struct v4l2_enum_dv_timings
*timings
)
1474 struct adv76xx_state
*state
= to_state(sd
);
1476 if (timings
->pad
>= state
->source_pad
)
1479 return v4l2_enum_dv_timings_cap(timings
,
1480 adv76xx_get_dv_timings_cap(sd
, timings
->pad
),
1481 adv76xx_check_dv_timings
, NULL
);
1484 static int adv76xx_dv_timings_cap(struct v4l2_subdev
*sd
,
1485 struct v4l2_dv_timings_cap
*cap
)
1487 struct adv76xx_state
*state
= to_state(sd
);
1488 unsigned int pad
= cap
->pad
;
1490 if (cap
->pad
>= state
->source_pad
)
1493 *cap
= *adv76xx_get_dv_timings_cap(sd
, pad
);
1499 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1500 if the format is listed in adv76xx_timings[] */
1501 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev
*sd
,
1502 struct v4l2_dv_timings
*timings
)
1504 v4l2_find_dv_timings_cap(timings
, adv76xx_get_dv_timings_cap(sd
, -1),
1505 is_digital_input(sd
) ? 250000 : 1000000,
1506 adv76xx_check_dv_timings
, NULL
);
1509 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev
*sd
)
1514 a
= hdmi_read(sd
, 0x06);
1515 b
= hdmi_read(sd
, 0x3b);
1518 freq
= a
* 1000000 + ((b
& 0x30) >> 4) * 250000;
1521 /* adjust for deep color mode */
1522 unsigned bits_per_channel
= ((hdmi_read(sd
, 0x0b) & 0x60) >> 4) + 8;
1524 freq
= freq
* 8 / bits_per_channel
;
1530 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev
*sd
)
1534 a
= hdmi_read(sd
, 0x51);
1535 b
= hdmi_read(sd
, 0x52);
1538 return ((a
<< 1) | (b
>> 7)) * 1000000 + (b
& 0x7f) * 1000000 / 128;
1541 static int adv76xx_query_dv_timings(struct v4l2_subdev
*sd
,
1542 struct v4l2_dv_timings
*timings
)
1544 struct adv76xx_state
*state
= to_state(sd
);
1545 const struct adv76xx_chip_info
*info
= state
->info
;
1546 struct v4l2_bt_timings
*bt
= &timings
->bt
;
1547 struct stdi_readback stdi
;
1552 memset(timings
, 0, sizeof(struct v4l2_dv_timings
));
1554 if (no_signal(sd
)) {
1555 state
->restart_stdi_once
= true;
1556 v4l2_dbg(1, debug
, sd
, "%s: no valid signal\n", __func__
);
1561 if (read_stdi(sd
, &stdi
)) {
1562 v4l2_dbg(1, debug
, sd
, "%s: STDI/SSPD not locked\n", __func__
);
1565 bt
->interlaced
= stdi
.interlaced
?
1566 V4L2_DV_INTERLACED
: V4L2_DV_PROGRESSIVE
;
1568 if (is_digital_input(sd
)) {
1569 bool hdmi_signal
= hdmi_read(sd
, 0x05) & 0x80;
1573 w
= hdmi_read16(sd
, 0x07, info
->linewidth_mask
);
1574 h
= hdmi_read16(sd
, 0x09, info
->field0_height_mask
);
1576 if (hdmi_signal
&& (io_read(sd
, 0x60) & 1))
1577 vic
= infoframe_read(sd
, 0x04);
1579 if (vic
&& v4l2_find_dv_timings_cea861_vic(timings
, vic
) &&
1580 bt
->width
== w
&& bt
->height
== h
)
1583 timings
->type
= V4L2_DV_BT_656_1120
;
1587 bt
->pixelclock
= info
->read_hdmi_pixelclock(sd
);
1588 bt
->hfrontporch
= hdmi_read16(sd
, 0x20, info
->hfrontporch_mask
);
1589 bt
->hsync
= hdmi_read16(sd
, 0x22, info
->hsync_mask
);
1590 bt
->hbackporch
= hdmi_read16(sd
, 0x24, info
->hbackporch_mask
);
1591 bt
->vfrontporch
= hdmi_read16(sd
, 0x2a,
1592 info
->field0_vfrontporch_mask
) / 2;
1593 bt
->vsync
= hdmi_read16(sd
, 0x2e, info
->field0_vsync_mask
) / 2;
1594 bt
->vbackporch
= hdmi_read16(sd
, 0x32,
1595 info
->field0_vbackporch_mask
) / 2;
1596 bt
->polarities
= ((hdmi_read(sd
, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL
: 0) |
1597 ((hdmi_read(sd
, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL
: 0);
1598 if (bt
->interlaced
== V4L2_DV_INTERLACED
) {
1599 bt
->height
+= hdmi_read16(sd
, 0x0b,
1600 info
->field1_height_mask
);
1601 bt
->il_vfrontporch
= hdmi_read16(sd
, 0x2c,
1602 info
->field1_vfrontporch_mask
) / 2;
1603 bt
->il_vsync
= hdmi_read16(sd
, 0x30,
1604 info
->field1_vsync_mask
) / 2;
1605 bt
->il_vbackporch
= hdmi_read16(sd
, 0x34,
1606 info
->field1_vbackporch_mask
) / 2;
1608 adv76xx_fill_optional_dv_timings_fields(sd
, timings
);
1611 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1612 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1614 if (!stdi2dv_timings(sd
, &stdi
, timings
))
1617 v4l2_dbg(1, debug
, sd
, "%s: lcvs + 1 = %d\n", __func__
, stdi
.lcvs
);
1618 if (!stdi2dv_timings(sd
, &stdi
, timings
))
1621 v4l2_dbg(1, debug
, sd
, "%s: lcvs - 1 = %d\n", __func__
, stdi
.lcvs
);
1622 if (stdi2dv_timings(sd
, &stdi
, timings
)) {
1624 * The STDI block may measure wrong values, especially
1625 * for lcvs and lcf. If the driver can not find any
1626 * valid timing, the STDI block is restarted to measure
1627 * the video timings again. The function will return an
1628 * error, but the restart of STDI will generate a new
1629 * STDI interrupt and the format detection process will
1632 if (state
->restart_stdi_once
) {
1633 v4l2_dbg(1, debug
, sd
, "%s: restart STDI\n", __func__
);
1634 /* TODO restart STDI for Sync Channel 2 */
1635 /* enter one-shot mode */
1636 cp_write_clr_set(sd
, 0x86, 0x06, 0x00);
1637 /* trigger STDI restart */
1638 cp_write_clr_set(sd
, 0x86, 0x06, 0x04);
1639 /* reset to continuous mode */
1640 cp_write_clr_set(sd
, 0x86, 0x06, 0x02);
1641 state
->restart_stdi_once
= false;
1644 v4l2_dbg(1, debug
, sd
, "%s: format not supported\n", __func__
);
1647 state
->restart_stdi_once
= true;
1651 if (no_signal(sd
)) {
1652 v4l2_dbg(1, debug
, sd
, "%s: signal lost during readout\n", __func__
);
1653 memset(timings
, 0, sizeof(struct v4l2_dv_timings
));
1657 if ((is_analog_input(sd
) && bt
->pixelclock
> 170000000) ||
1658 (is_digital_input(sd
) && bt
->pixelclock
> 225000000)) {
1659 v4l2_dbg(1, debug
, sd
, "%s: pixelclock out of range %d\n",
1660 __func__
, (u32
)bt
->pixelclock
);
1665 v4l2_print_dv_timings(sd
->name
, "adv76xx_query_dv_timings: ",
1671 static int adv76xx_s_dv_timings(struct v4l2_subdev
*sd
,
1672 struct v4l2_dv_timings
*timings
)
1674 struct adv76xx_state
*state
= to_state(sd
);
1675 struct v4l2_bt_timings
*bt
;
1681 if (v4l2_match_dv_timings(&state
->timings
, timings
, 0, false)) {
1682 v4l2_dbg(1, debug
, sd
, "%s: no change\n", __func__
);
1688 if (!v4l2_valid_dv_timings(timings
, adv76xx_get_dv_timings_cap(sd
, -1),
1689 adv76xx_check_dv_timings
, NULL
))
1692 adv76xx_fill_optional_dv_timings_fields(sd
, timings
);
1694 state
->timings
= *timings
;
1696 cp_write_clr_set(sd
, 0x91, 0x40, bt
->interlaced
? 0x40 : 0x00);
1698 /* Use prim_mode and vid_std when available */
1699 err
= configure_predefined_video_timings(sd
, timings
);
1701 /* custom settings when the video format
1702 does not have prim_mode/vid_std */
1703 configure_custom_video_timings(sd
, bt
);
1706 set_rgb_quantization_range(sd
);
1709 v4l2_print_dv_timings(sd
->name
, "adv76xx_s_dv_timings: ",
1714 static int adv76xx_g_dv_timings(struct v4l2_subdev
*sd
,
1715 struct v4l2_dv_timings
*timings
)
1717 struct adv76xx_state
*state
= to_state(sd
);
1719 *timings
= state
->timings
;
1723 static void adv7604_set_termination(struct v4l2_subdev
*sd
, bool enable
)
1725 hdmi_write(sd
, 0x01, enable
? 0x00 : 0x78);
1728 static void adv7611_set_termination(struct v4l2_subdev
*sd
, bool enable
)
1730 hdmi_write(sd
, 0x83, enable
? 0xfe : 0xff);
1733 static void enable_input(struct v4l2_subdev
*sd
)
1735 struct adv76xx_state
*state
= to_state(sd
);
1737 if (is_analog_input(sd
)) {
1738 io_write(sd
, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
1739 } else if (is_digital_input(sd
)) {
1740 hdmi_write_clr_set(sd
, 0x00, 0x03, state
->selected_input
);
1741 state
->info
->set_termination(sd
, true);
1742 io_write(sd
, 0x15, 0xa0); /* Disable Tristate of Pins */
1743 hdmi_write_clr_set(sd
, 0x1a, 0x10, 0x00); /* Unmute audio */
1745 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
1746 __func__
, state
->selected_input
);
1750 static void disable_input(struct v4l2_subdev
*sd
)
1752 struct adv76xx_state
*state
= to_state(sd
);
1754 hdmi_write_clr_set(sd
, 0x1a, 0x10, 0x10); /* Mute audio */
1755 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1756 io_write(sd
, 0x15, 0xbe); /* Tristate all outputs from video core */
1757 state
->info
->set_termination(sd
, false);
1760 static void select_input(struct v4l2_subdev
*sd
)
1762 struct adv76xx_state
*state
= to_state(sd
);
1763 const struct adv76xx_chip_info
*info
= state
->info
;
1765 if (is_analog_input(sd
)) {
1766 adv76xx_write_reg_seq(sd
, info
->recommended_settings
[0]);
1768 afe_write(sd
, 0x00, 0x08); /* power up ADC */
1769 afe_write(sd
, 0x01, 0x06); /* power up Analog Front End */
1770 afe_write(sd
, 0xc8, 0x00); /* phase control */
1771 } else if (is_digital_input(sd
)) {
1772 hdmi_write(sd
, 0x00, state
->selected_input
& 0x03);
1774 adv76xx_write_reg_seq(sd
, info
->recommended_settings
[1]);
1776 if (adv76xx_has_afe(state
)) {
1777 afe_write(sd
, 0x00, 0xff); /* power down ADC */
1778 afe_write(sd
, 0x01, 0xfe); /* power down Analog Front End */
1779 afe_write(sd
, 0xc8, 0x40); /* phase control */
1782 cp_write(sd
, 0x3e, 0x00); /* CP core pre-gain control */
1783 cp_write(sd
, 0xc3, 0x39); /* CP coast control. Graphics mode */
1784 cp_write(sd
, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1786 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
1787 __func__
, state
->selected_input
);
1791 static int adv76xx_s_routing(struct v4l2_subdev
*sd
,
1792 u32 input
, u32 output
, u32 config
)
1794 struct adv76xx_state
*state
= to_state(sd
);
1796 v4l2_dbg(2, debug
, sd
, "%s: input %d, selected input %d",
1797 __func__
, input
, state
->selected_input
);
1799 if (input
== state
->selected_input
)
1802 if (input
> state
->info
->max_port
)
1805 state
->selected_input
= input
;
1811 v4l2_subdev_notify_event(sd
, &adv76xx_ev_fmt
);
1816 static int adv76xx_enum_mbus_code(struct v4l2_subdev
*sd
,
1817 struct v4l2_subdev_pad_config
*cfg
,
1818 struct v4l2_subdev_mbus_code_enum
*code
)
1820 struct adv76xx_state
*state
= to_state(sd
);
1822 if (code
->index
>= state
->info
->nformats
)
1825 code
->code
= state
->info
->formats
[code
->index
].code
;
1830 static void adv76xx_fill_format(struct adv76xx_state
*state
,
1831 struct v4l2_mbus_framefmt
*format
)
1833 memset(format
, 0, sizeof(*format
));
1835 format
->width
= state
->timings
.bt
.width
;
1836 format
->height
= state
->timings
.bt
.height
;
1837 format
->field
= V4L2_FIELD_NONE
;
1838 format
->colorspace
= V4L2_COLORSPACE_SRGB
;
1840 if (state
->timings
.bt
.flags
& V4L2_DV_FL_IS_CE_VIDEO
)
1841 format
->colorspace
= (state
->timings
.bt
.height
<= 576) ?
1842 V4L2_COLORSPACE_SMPTE170M
: V4L2_COLORSPACE_REC709
;
1846 * Compute the op_ch_sel value required to obtain on the bus the component order
1847 * corresponding to the selected format taking into account bus reordering
1848 * applied by the board at the output of the device.
1850 * The following table gives the op_ch_value from the format component order
1851 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1852 * adv76xx_bus_order value in row).
1854 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
1855 * ----------+-------------------------------------------------
1856 * RGB (NOP) | GBR GRB BGR RGB BRG RBG
1857 * GRB (1-2) | BGR RGB GBR GRB RBG BRG
1858 * RBG (2-3) | GRB GBR BRG RBG BGR RGB
1859 * BGR (1-3) | RBG BRG RGB BGR GRB GBR
1860 * BRG (ROR) | BRG RBG GRB GBR RGB BGR
1861 * GBR (ROL) | RGB BGR RBG BRG GBR GRB
1863 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state
*state
)
1865 #define _SEL(a,b,c,d,e,f) { \
1866 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1867 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1868 #define _BUS(x) [ADV7604_BUS_ORDER_##x]
1870 static const unsigned int op_ch_sel
[6][6] = {
1871 _BUS(RGB
) /* NOP */ = _SEL(GBR
, GRB
, BGR
, RGB
, BRG
, RBG
),
1872 _BUS(GRB
) /* 1-2 */ = _SEL(BGR
, RGB
, GBR
, GRB
, RBG
, BRG
),
1873 _BUS(RBG
) /* 2-3 */ = _SEL(GRB
, GBR
, BRG
, RBG
, BGR
, RGB
),
1874 _BUS(BGR
) /* 1-3 */ = _SEL(RBG
, BRG
, RGB
, BGR
, GRB
, GBR
),
1875 _BUS(BRG
) /* ROR */ = _SEL(BRG
, RBG
, GRB
, GBR
, RGB
, BGR
),
1876 _BUS(GBR
) /* ROL */ = _SEL(RGB
, BGR
, RBG
, BRG
, GBR
, GRB
),
1879 return op_ch_sel
[state
->pdata
.bus_order
][state
->format
->op_ch_sel
>> 5];
1882 static void adv76xx_setup_format(struct adv76xx_state
*state
)
1884 struct v4l2_subdev
*sd
= &state
->sd
;
1886 io_write_clr_set(sd
, 0x02, 0x02,
1887 state
->format
->rgb_out
? ADV76XX_RGB_OUT
: 0);
1888 io_write(sd
, 0x03, state
->format
->op_format_sel
|
1889 state
->pdata
.op_format_mode_sel
);
1890 io_write_clr_set(sd
, 0x04, 0xe0, adv76xx_op_ch_sel(state
));
1891 io_write_clr_set(sd
, 0x05, 0x01,
1892 state
->format
->swap_cb_cr
? ADV76XX_OP_SWAP_CB_CR
: 0);
1893 set_rgb_quantization_range(sd
);
1896 static int adv76xx_get_format(struct v4l2_subdev
*sd
,
1897 struct v4l2_subdev_pad_config
*cfg
,
1898 struct v4l2_subdev_format
*format
)
1900 struct adv76xx_state
*state
= to_state(sd
);
1902 if (format
->pad
!= state
->source_pad
)
1905 adv76xx_fill_format(state
, &format
->format
);
1907 if (format
->which
== V4L2_SUBDEV_FORMAT_TRY
) {
1908 struct v4l2_mbus_framefmt
*fmt
;
1910 fmt
= v4l2_subdev_get_try_format(sd
, cfg
, format
->pad
);
1911 format
->format
.code
= fmt
->code
;
1913 format
->format
.code
= state
->format
->code
;
1919 static int adv76xx_get_selection(struct v4l2_subdev
*sd
,
1920 struct v4l2_subdev_pad_config
*cfg
,
1921 struct v4l2_subdev_selection
*sel
)
1923 struct adv76xx_state
*state
= to_state(sd
);
1925 if (sel
->which
!= V4L2_SUBDEV_FORMAT_ACTIVE
)
1927 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1928 if (sel
->target
> V4L2_SEL_TGT_CROP_BOUNDS
)
1933 sel
->r
.width
= state
->timings
.bt
.width
;
1934 sel
->r
.height
= state
->timings
.bt
.height
;
1939 static int adv76xx_set_format(struct v4l2_subdev
*sd
,
1940 struct v4l2_subdev_pad_config
*cfg
,
1941 struct v4l2_subdev_format
*format
)
1943 struct adv76xx_state
*state
= to_state(sd
);
1944 const struct adv76xx_format_info
*info
;
1946 if (format
->pad
!= state
->source_pad
)
1949 info
= adv76xx_format_info(state
, format
->format
.code
);
1951 info
= adv76xx_format_info(state
, MEDIA_BUS_FMT_YUYV8_2X8
);
1953 adv76xx_fill_format(state
, &format
->format
);
1954 format
->format
.code
= info
->code
;
1956 if (format
->which
== V4L2_SUBDEV_FORMAT_TRY
) {
1957 struct v4l2_mbus_framefmt
*fmt
;
1959 fmt
= v4l2_subdev_get_try_format(sd
, cfg
, format
->pad
);
1960 fmt
->code
= format
->format
.code
;
1962 state
->format
= info
;
1963 adv76xx_setup_format(state
);
1969 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1970 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev
*sd
, u8 tx_raw_status
)
1972 struct adv76xx_state
*state
= to_state(sd
);
1974 if ((cec_read(sd
, 0x11) & 0x01) == 0) {
1975 v4l2_dbg(1, debug
, sd
, "%s: tx raw: tx disabled\n", __func__
);
1979 if (tx_raw_status
& 0x02) {
1980 v4l2_dbg(1, debug
, sd
, "%s: tx raw: arbitration lost\n",
1982 cec_transmit_done(state
->cec_adap
, CEC_TX_STATUS_ARB_LOST
,
1985 if (tx_raw_status
& 0x04) {
1990 v4l2_dbg(1, debug
, sd
, "%s: tx raw: retry failed\n", __func__
);
1992 * We set this status bit since this hardware performs
1995 status
= CEC_TX_STATUS_MAX_RETRIES
;
1996 nack_cnt
= cec_read(sd
, 0x14) & 0xf;
1998 status
|= CEC_TX_STATUS_NACK
;
1999 low_drive_cnt
= cec_read(sd
, 0x14) >> 4;
2001 status
|= CEC_TX_STATUS_LOW_DRIVE
;
2002 cec_transmit_done(state
->cec_adap
, status
,
2003 0, nack_cnt
, low_drive_cnt
, 0);
2006 if (tx_raw_status
& 0x01) {
2007 v4l2_dbg(1, debug
, sd
, "%s: tx raw: ready ok\n", __func__
);
2008 cec_transmit_done(state
->cec_adap
, CEC_TX_STATUS_OK
, 0, 0, 0, 0);
2013 static void adv76xx_cec_isr(struct v4l2_subdev
*sd
, bool *handled
)
2015 struct adv76xx_state
*state
= to_state(sd
);
2018 /* cec controller */
2019 cec_irq
= io_read(sd
, 0x4d) & 0x0f;
2023 v4l2_dbg(1, debug
, sd
, "%s: cec: irq 0x%x\n", __func__
, cec_irq
);
2024 adv76xx_cec_tx_raw_status(sd
, cec_irq
);
2025 if (cec_irq
& 0x08) {
2028 msg
.len
= cec_read(sd
, 0x25) & 0x1f;
2035 for (i
= 0; i
< msg
.len
; i
++)
2036 msg
.msg
[i
] = cec_read(sd
, i
+ 0x15);
2037 cec_write(sd
, 0x26, 0x01); /* re-enable rx */
2038 cec_received_msg(state
->cec_adap
, &msg
);
2042 /* note: the bit order is swapped between 0x4d and 0x4e */
2043 cec_irq
= ((cec_irq
& 0x08) >> 3) | ((cec_irq
& 0x04) >> 1) |
2044 ((cec_irq
& 0x02) << 1) | ((cec_irq
& 0x01) << 3);
2045 io_write(sd
, 0x4e, cec_irq
);
2051 static int adv76xx_cec_adap_enable(struct cec_adapter
*adap
, bool enable
)
2053 struct adv76xx_state
*state
= adap
->priv
;
2054 struct v4l2_subdev
*sd
= &state
->sd
;
2056 if (!state
->cec_enabled_adap
&& enable
) {
2057 cec_write_clr_set(sd
, 0x2a, 0x01, 0x01); /* power up cec */
2058 cec_write(sd
, 0x2c, 0x01); /* cec soft reset */
2059 cec_write_clr_set(sd
, 0x11, 0x01, 0); /* initially disable tx */
2062 /* tx: arbitration lost */
2063 /* tx: retry timeout */
2065 io_write_clr_set(sd
, 0x50, 0x0f, 0x0f);
2066 cec_write(sd
, 0x26, 0x01); /* enable rx */
2067 } else if (state
->cec_enabled_adap
&& !enable
) {
2068 /* disable cec interrupts */
2069 io_write_clr_set(sd
, 0x50, 0x0f, 0x00);
2070 /* disable address mask 1-3 */
2071 cec_write_clr_set(sd
, 0x27, 0x70, 0x00);
2072 /* power down cec section */
2073 cec_write_clr_set(sd
, 0x2a, 0x01, 0x00);
2074 state
->cec_valid_addrs
= 0;
2076 state
->cec_enabled_adap
= enable
;
2077 adv76xx_s_detect_tx_5v_ctrl(sd
);
2081 static int adv76xx_cec_adap_log_addr(struct cec_adapter
*adap
, u8 addr
)
2083 struct adv76xx_state
*state
= adap
->priv
;
2084 struct v4l2_subdev
*sd
= &state
->sd
;
2085 unsigned int i
, free_idx
= ADV76XX_MAX_ADDRS
;
2087 if (!state
->cec_enabled_adap
)
2088 return addr
== CEC_LOG_ADDR_INVALID
? 0 : -EIO
;
2090 if (addr
== CEC_LOG_ADDR_INVALID
) {
2091 cec_write_clr_set(sd
, 0x27, 0x70, 0);
2092 state
->cec_valid_addrs
= 0;
2096 for (i
= 0; i
< ADV76XX_MAX_ADDRS
; i
++) {
2097 bool is_valid
= state
->cec_valid_addrs
& (1 << i
);
2099 if (free_idx
== ADV76XX_MAX_ADDRS
&& !is_valid
)
2101 if (is_valid
&& state
->cec_addr
[i
] == addr
)
2104 if (i
== ADV76XX_MAX_ADDRS
) {
2106 if (i
== ADV76XX_MAX_ADDRS
)
2109 state
->cec_addr
[i
] = addr
;
2110 state
->cec_valid_addrs
|= 1 << i
;
2114 /* enable address mask 0 */
2115 cec_write_clr_set(sd
, 0x27, 0x10, 0x10);
2116 /* set address for mask 0 */
2117 cec_write_clr_set(sd
, 0x28, 0x0f, addr
);
2120 /* enable address mask 1 */
2121 cec_write_clr_set(sd
, 0x27, 0x20, 0x20);
2122 /* set address for mask 1 */
2123 cec_write_clr_set(sd
, 0x28, 0xf0, addr
<< 4);
2126 /* enable address mask 2 */
2127 cec_write_clr_set(sd
, 0x27, 0x40, 0x40);
2128 /* set address for mask 1 */
2129 cec_write_clr_set(sd
, 0x29, 0x0f, addr
);
2135 static int adv76xx_cec_adap_transmit(struct cec_adapter
*adap
, u8 attempts
,
2136 u32 signal_free_time
, struct cec_msg
*msg
)
2138 struct adv76xx_state
*state
= adap
->priv
;
2139 struct v4l2_subdev
*sd
= &state
->sd
;
2144 * The number of retries is the number of attempts - 1, but retry
2145 * at least once. It's not clear if a value of 0 is allowed, so
2146 * let's do at least one retry.
2148 cec_write_clr_set(sd
, 0x12, 0x70, max(1, attempts
- 1) << 4);
2151 v4l2_err(sd
, "%s: len exceeded 16 (%d)\n", __func__
, len
);
2156 for (i
= 0; i
< len
; i
++)
2157 cec_write(sd
, i
, msg
->msg
[i
]);
2159 /* set length (data + header) */
2160 cec_write(sd
, 0x10, len
);
2161 /* start transmit, enable tx */
2162 cec_write(sd
, 0x11, 0x01);
2166 static const struct cec_adap_ops adv76xx_cec_adap_ops
= {
2167 .adap_enable
= adv76xx_cec_adap_enable
,
2168 .adap_log_addr
= adv76xx_cec_adap_log_addr
,
2169 .adap_transmit
= adv76xx_cec_adap_transmit
,
2173 static int adv76xx_isr(struct v4l2_subdev
*sd
, u32 status
, bool *handled
)
2175 struct adv76xx_state
*state
= to_state(sd
);
2176 const struct adv76xx_chip_info
*info
= state
->info
;
2177 const u8 irq_reg_0x43
= io_read(sd
, 0x43);
2178 const u8 irq_reg_0x6b
= io_read(sd
, 0x6b);
2179 const u8 irq_reg_0x70
= io_read(sd
, 0x70);
2180 u8 fmt_change_digital
;
2185 io_write(sd
, 0x44, irq_reg_0x43
);
2187 io_write(sd
, 0x71, irq_reg_0x70
);
2189 io_write(sd
, 0x6c, irq_reg_0x6b
);
2191 v4l2_dbg(2, debug
, sd
, "%s: ", __func__
);
2194 fmt_change
= irq_reg_0x43
& 0x98;
2195 fmt_change_digital
= is_digital_input(sd
)
2196 ? irq_reg_0x6b
& info
->fmt_change_digital_mask
2199 if (fmt_change
|| fmt_change_digital
) {
2200 v4l2_dbg(1, debug
, sd
,
2201 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2202 __func__
, fmt_change
, fmt_change_digital
);
2204 v4l2_subdev_notify_event(sd
, &adv76xx_ev_fmt
);
2210 if (irq_reg_0x6b
& 0x01) {
2211 v4l2_dbg(1, debug
, sd
, "%s: irq %s mode\n", __func__
,
2212 (io_read(sd
, 0x6a) & 0x01) ? "HDMI" : "DVI");
2213 set_rgb_quantization_range(sd
);
2218 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2220 adv76xx_cec_isr(sd
, handled
);
2224 tx_5v
= irq_reg_0x70
& info
->cable_det_mask
;
2226 v4l2_dbg(1, debug
, sd
, "%s: tx_5v: 0x%x\n", __func__
, tx_5v
);
2227 adv76xx_s_detect_tx_5v_ctrl(sd
);
2234 static int adv76xx_get_edid(struct v4l2_subdev
*sd
, struct v4l2_edid
*edid
)
2236 struct adv76xx_state
*state
= to_state(sd
);
2239 memset(edid
->reserved
, 0, sizeof(edid
->reserved
));
2241 switch (edid
->pad
) {
2242 case ADV76XX_PAD_HDMI_PORT_A
:
2243 case ADV7604_PAD_HDMI_PORT_B
:
2244 case ADV7604_PAD_HDMI_PORT_C
:
2245 case ADV7604_PAD_HDMI_PORT_D
:
2246 if (state
->edid
.present
& (1 << edid
->pad
))
2247 data
= state
->edid
.edid
;
2253 if (edid
->start_block
== 0 && edid
->blocks
== 0) {
2254 edid
->blocks
= data
? state
->edid
.blocks
: 0;
2261 if (edid
->start_block
>= state
->edid
.blocks
)
2264 if (edid
->start_block
+ edid
->blocks
> state
->edid
.blocks
)
2265 edid
->blocks
= state
->edid
.blocks
- edid
->start_block
;
2267 memcpy(edid
->edid
, data
+ edid
->start_block
* 128, edid
->blocks
* 128);
2272 static int adv76xx_set_edid(struct v4l2_subdev
*sd
, struct v4l2_edid
*edid
)
2274 struct adv76xx_state
*state
= to_state(sd
);
2275 const struct adv76xx_chip_info
*info
= state
->info
;
2276 unsigned int spa_loc
;
2281 memset(edid
->reserved
, 0, sizeof(edid
->reserved
));
2283 if (edid
->pad
> ADV7604_PAD_HDMI_PORT_D
)
2285 if (edid
->start_block
!= 0)
2287 if (edid
->blocks
== 0) {
2288 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2289 state
->edid
.present
&= ~(1 << edid
->pad
);
2290 adv76xx_set_hpd(state
, state
->edid
.present
);
2291 rep_write_clr_set(sd
, info
->edid_enable_reg
, 0x0f, state
->edid
.present
);
2293 /* Fall back to a 16:9 aspect ratio */
2294 state
->aspect_ratio
.numerator
= 16;
2295 state
->aspect_ratio
.denominator
= 9;
2297 if (!state
->edid
.present
)
2298 state
->edid
.blocks
= 0;
2300 v4l2_dbg(2, debug
, sd
, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2301 __func__
, edid
->pad
, state
->edid
.present
);
2304 if (edid
->blocks
> 2) {
2308 pa
= cec_get_edid_phys_addr(edid
->edid
, edid
->blocks
* 128, &spa_loc
);
2309 err
= cec_phys_addr_validate(pa
, &pa
, NULL
);
2313 v4l2_dbg(2, debug
, sd
, "%s: write EDID pad %d, edid.present = 0x%x\n",
2314 __func__
, edid
->pad
, state
->edid
.present
);
2316 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2317 cancel_delayed_work_sync(&state
->delayed_work_enable_hotplug
);
2318 adv76xx_set_hpd(state
, 0);
2319 rep_write_clr_set(sd
, info
->edid_enable_reg
, 0x0f, 0x00);
2322 * Return an error if no location of the source physical address
2328 switch (edid
->pad
) {
2329 case ADV76XX_PAD_HDMI_PORT_A
:
2330 state
->spa_port_a
[0] = edid
->edid
[spa_loc
];
2331 state
->spa_port_a
[1] = edid
->edid
[spa_loc
+ 1];
2333 case ADV7604_PAD_HDMI_PORT_B
:
2334 rep_write(sd
, 0x70, edid
->edid
[spa_loc
]);
2335 rep_write(sd
, 0x71, edid
->edid
[spa_loc
+ 1]);
2337 case ADV7604_PAD_HDMI_PORT_C
:
2338 rep_write(sd
, 0x72, edid
->edid
[spa_loc
]);
2339 rep_write(sd
, 0x73, edid
->edid
[spa_loc
+ 1]);
2341 case ADV7604_PAD_HDMI_PORT_D
:
2342 rep_write(sd
, 0x74, edid
->edid
[spa_loc
]);
2343 rep_write(sd
, 0x75, edid
->edid
[spa_loc
+ 1]);
2349 if (info
->type
== ADV7604
) {
2350 rep_write(sd
, 0x76, spa_loc
& 0xff);
2351 rep_write_clr_set(sd
, 0x77, 0x40, (spa_loc
& 0x100) >> 2);
2353 /* ADV7612 Software Manual Rev. A, p. 15 */
2354 rep_write(sd
, 0x70, spa_loc
& 0xff);
2355 rep_write_clr_set(sd
, 0x71, 0x01, (spa_loc
& 0x100) >> 8);
2358 edid
->edid
[spa_loc
] = state
->spa_port_a
[0];
2359 edid
->edid
[spa_loc
+ 1] = state
->spa_port_a
[1];
2361 memcpy(state
->edid
.edid
, edid
->edid
, 128 * edid
->blocks
);
2362 state
->edid
.blocks
= edid
->blocks
;
2363 state
->aspect_ratio
= v4l2_calc_aspect_ratio(edid
->edid
[0x15],
2365 state
->edid
.present
|= 1 << edid
->pad
;
2367 err
= edid_write_block(sd
, 128 * edid
->blocks
, state
->edid
.edid
);
2369 v4l2_err(sd
, "error %d writing edid pad %d\n", err
, edid
->pad
);
2373 /* adv76xx calculates the checksums and enables I2C access to internal
2374 EDID RAM from DDC port. */
2375 rep_write_clr_set(sd
, info
->edid_enable_reg
, 0x0f, state
->edid
.present
);
2377 for (i
= 0; i
< 1000; i
++) {
2378 if (rep_read(sd
, info
->edid_status_reg
) & state
->edid
.present
)
2383 v4l2_err(sd
, "error enabling edid (0x%x)\n", state
->edid
.present
);
2386 cec_s_phys_addr(state
->cec_adap
, pa
, false);
2388 /* enable hotplug after 100 ms */
2389 schedule_delayed_work(&state
->delayed_work_enable_hotplug
, HZ
/ 10);
2393 /*********** avi info frame CEA-861-E **************/
2395 static const struct adv76xx_cfg_read_infoframe adv76xx_cri
[] = {
2396 { "AVI", 0x01, 0xe0, 0x00 },
2397 { "Audio", 0x02, 0xe3, 0x1c },
2398 { "SDP", 0x04, 0xe6, 0x2a },
2399 { "Vendor", 0x10, 0xec, 0x54 }
2402 static int adv76xx_read_infoframe(struct v4l2_subdev
*sd
, int index
,
2403 union hdmi_infoframe
*frame
)
2409 if (!(io_read(sd
, 0x60) & adv76xx_cri
[index
].present_mask
)) {
2410 v4l2_info(sd
, "%s infoframe not received\n",
2411 adv76xx_cri
[index
].desc
);
2415 for (i
= 0; i
< 3; i
++)
2416 buffer
[i
] = infoframe_read(sd
,
2417 adv76xx_cri
[index
].head_addr
+ i
);
2419 len
= buffer
[2] + 1;
2421 if (len
+ 3 > sizeof(buffer
)) {
2422 v4l2_err(sd
, "%s: invalid %s infoframe length %d\n", __func__
,
2423 adv76xx_cri
[index
].desc
, len
);
2427 for (i
= 0; i
< len
; i
++)
2428 buffer
[i
+ 3] = infoframe_read(sd
,
2429 adv76xx_cri
[index
].payload_addr
+ i
);
2431 if (hdmi_infoframe_unpack(frame
, buffer
) < 0) {
2432 v4l2_err(sd
, "%s: unpack of %s infoframe failed\n", __func__
,
2433 adv76xx_cri
[index
].desc
);
2439 static void adv76xx_log_infoframes(struct v4l2_subdev
*sd
)
2444 v4l2_info(sd
, "receive DVI-D signal, no infoframes\n");
2448 for (i
= 0; i
< ARRAY_SIZE(adv76xx_cri
); i
++) {
2449 union hdmi_infoframe frame
;
2450 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
2452 if (adv76xx_read_infoframe(sd
, i
, &frame
))
2454 hdmi_infoframe_log(KERN_INFO
, &client
->dev
, &frame
);
2458 static int adv76xx_log_status(struct v4l2_subdev
*sd
)
2460 struct adv76xx_state
*state
= to_state(sd
);
2461 const struct adv76xx_chip_info
*info
= state
->info
;
2462 struct v4l2_dv_timings timings
;
2463 struct stdi_readback stdi
;
2464 u8 reg_io_0x02
= io_read(sd
, 0x02);
2468 static const char * const csc_coeff_sel_rb
[16] = {
2469 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2470 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2471 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2472 "reserved", "reserved", "reserved", "reserved", "manual"
2474 static const char * const input_color_space_txt
[16] = {
2475 "RGB limited range (16-235)", "RGB full range (0-255)",
2476 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2477 "xvYCC Bt.601", "xvYCC Bt.709",
2478 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2479 "invalid", "invalid", "invalid", "invalid", "invalid",
2480 "invalid", "invalid", "automatic"
2482 static const char * const hdmi_color_space_txt
[16] = {
2483 "RGB limited range (16-235)", "RGB full range (0-255)",
2484 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2485 "xvYCC Bt.601", "xvYCC Bt.709",
2486 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2487 "sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
2488 "invalid", "invalid", "invalid"
2490 static const char * const rgb_quantization_range_txt
[] = {
2492 "RGB limited range (16-235)",
2493 "RGB full range (0-255)",
2495 static const char * const deep_color_mode_txt
[4] = {
2496 "8-bits per channel",
2497 "10-bits per channel",
2498 "12-bits per channel",
2499 "16-bits per channel (not supported)"
2502 v4l2_info(sd
, "-----Chip status-----\n");
2503 v4l2_info(sd
, "Chip power: %s\n", no_power(sd
) ? "off" : "on");
2504 edid_enabled
= rep_read(sd
, info
->edid_status_reg
);
2505 v4l2_info(sd
, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2506 ((edid_enabled
& 0x01) ? "Yes" : "No"),
2507 ((edid_enabled
& 0x02) ? "Yes" : "No"),
2508 ((edid_enabled
& 0x04) ? "Yes" : "No"),
2509 ((edid_enabled
& 0x08) ? "Yes" : "No"));
2510 v4l2_info(sd
, "CEC: %s\n", state
->cec_enabled_adap
?
2511 "enabled" : "disabled");
2512 if (state
->cec_enabled_adap
) {
2515 for (i
= 0; i
< ADV76XX_MAX_ADDRS
; i
++) {
2516 bool is_valid
= state
->cec_valid_addrs
& (1 << i
);
2519 v4l2_info(sd
, "CEC Logical Address: 0x%x\n",
2520 state
->cec_addr
[i
]);
2524 v4l2_info(sd
, "-----Signal status-----\n");
2525 cable_det
= info
->read_cable_det(sd
);
2526 v4l2_info(sd
, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2527 ((cable_det
& 0x01) ? "Yes" : "No"),
2528 ((cable_det
& 0x02) ? "Yes" : "No"),
2529 ((cable_det
& 0x04) ? "Yes" : "No"),
2530 ((cable_det
& 0x08) ? "Yes" : "No"));
2531 v4l2_info(sd
, "TMDS signal detected: %s\n",
2532 no_signal_tmds(sd
) ? "false" : "true");
2533 v4l2_info(sd
, "TMDS signal locked: %s\n",
2534 no_lock_tmds(sd
) ? "false" : "true");
2535 v4l2_info(sd
, "SSPD locked: %s\n", no_lock_sspd(sd
) ? "false" : "true");
2536 v4l2_info(sd
, "STDI locked: %s\n", no_lock_stdi(sd
) ? "false" : "true");
2537 v4l2_info(sd
, "CP locked: %s\n", no_lock_cp(sd
) ? "false" : "true");
2538 v4l2_info(sd
, "CP free run: %s\n",
2539 (in_free_run(sd
)) ? "on" : "off");
2540 v4l2_info(sd
, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2541 io_read(sd
, 0x01) & 0x0f, io_read(sd
, 0x00) & 0x3f,
2542 (io_read(sd
, 0x01) & 0x70) >> 4);
2544 v4l2_info(sd
, "-----Video Timings-----\n");
2545 if (read_stdi(sd
, &stdi
))
2546 v4l2_info(sd
, "STDI: not locked\n");
2548 v4l2_info(sd
, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2549 stdi
.lcf
, stdi
.bl
, stdi
.lcvs
,
2550 stdi
.interlaced
? "interlaced" : "progressive",
2551 stdi
.hs_pol
, stdi
.vs_pol
);
2552 if (adv76xx_query_dv_timings(sd
, &timings
))
2553 v4l2_info(sd
, "No video detected\n");
2555 v4l2_print_dv_timings(sd
->name
, "Detected format: ",
2557 v4l2_print_dv_timings(sd
->name
, "Configured format: ",
2558 &state
->timings
, true);
2563 v4l2_info(sd
, "-----Color space-----\n");
2564 v4l2_info(sd
, "RGB quantization range ctrl: %s\n",
2565 rgb_quantization_range_txt
[state
->rgb_quantization_range
]);
2566 v4l2_info(sd
, "Input color space: %s\n",
2567 input_color_space_txt
[reg_io_0x02
>> 4]);
2568 v4l2_info(sd
, "Output color space: %s %s, alt-gamma %s\n",
2569 (reg_io_0x02
& 0x02) ? "RGB" : "YCbCr",
2570 (((reg_io_0x02
>> 2) & 0x01) ^ (reg_io_0x02
& 0x01)) ?
2571 "(16-235)" : "(0-255)",
2572 (reg_io_0x02
& 0x08) ? "enabled" : "disabled");
2573 v4l2_info(sd
, "Color space conversion: %s\n",
2574 csc_coeff_sel_rb
[cp_read(sd
, info
->cp_csc
) >> 4]);
2576 if (!is_digital_input(sd
))
2579 v4l2_info(sd
, "-----%s status-----\n", is_hdmi(sd
) ? "HDMI" : "DVI-D");
2580 v4l2_info(sd
, "Digital video port selected: %c\n",
2581 (hdmi_read(sd
, 0x00) & 0x03) + 'A');
2582 v4l2_info(sd
, "HDCP encrypted content: %s\n",
2583 (hdmi_read(sd
, 0x05) & 0x40) ? "true" : "false");
2584 v4l2_info(sd
, "HDCP keys read: %s%s\n",
2585 (hdmi_read(sd
, 0x04) & 0x20) ? "yes" : "no",
2586 (hdmi_read(sd
, 0x04) & 0x10) ? "ERROR" : "");
2588 bool audio_pll_locked
= hdmi_read(sd
, 0x04) & 0x01;
2589 bool audio_sample_packet_detect
= hdmi_read(sd
, 0x18) & 0x01;
2590 bool audio_mute
= io_read(sd
, 0x65) & 0x40;
2592 v4l2_info(sd
, "Audio: pll %s, samples %s, %s\n",
2593 audio_pll_locked
? "locked" : "not locked",
2594 audio_sample_packet_detect
? "detected" : "not detected",
2595 audio_mute
? "muted" : "enabled");
2596 if (audio_pll_locked
&& audio_sample_packet_detect
) {
2597 v4l2_info(sd
, "Audio format: %s\n",
2598 (hdmi_read(sd
, 0x07) & 0x20) ? "multi-channel" : "stereo");
2600 v4l2_info(sd
, "Audio CTS: %u\n", (hdmi_read(sd
, 0x5b) << 12) +
2601 (hdmi_read(sd
, 0x5c) << 8) +
2602 (hdmi_read(sd
, 0x5d) & 0xf0));
2603 v4l2_info(sd
, "Audio N: %u\n", ((hdmi_read(sd
, 0x5d) & 0x0f) << 16) +
2604 (hdmi_read(sd
, 0x5e) << 8) +
2605 hdmi_read(sd
, 0x5f));
2606 v4l2_info(sd
, "AV Mute: %s\n", (hdmi_read(sd
, 0x04) & 0x40) ? "on" : "off");
2608 v4l2_info(sd
, "Deep color mode: %s\n", deep_color_mode_txt
[(hdmi_read(sd
, 0x0b) & 0x60) >> 5]);
2609 v4l2_info(sd
, "HDMI colorspace: %s\n", hdmi_color_space_txt
[hdmi_read(sd
, 0x53) & 0xf]);
2611 adv76xx_log_infoframes(sd
);
2617 static int adv76xx_subscribe_event(struct v4l2_subdev
*sd
,
2619 struct v4l2_event_subscription
*sub
)
2621 switch (sub
->type
) {
2622 case V4L2_EVENT_SOURCE_CHANGE
:
2623 return v4l2_src_change_event_subdev_subscribe(sd
, fh
, sub
);
2624 case V4L2_EVENT_CTRL
:
2625 return v4l2_ctrl_subdev_subscribe_event(sd
, fh
, sub
);
2631 static int adv76xx_registered(struct v4l2_subdev
*sd
)
2633 struct adv76xx_state
*state
= to_state(sd
);
2634 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
2637 err
= cec_register_adapter(state
->cec_adap
, &client
->dev
);
2639 cec_delete_adapter(state
->cec_adap
);
2643 static void adv76xx_unregistered(struct v4l2_subdev
*sd
)
2645 struct adv76xx_state
*state
= to_state(sd
);
2647 cec_unregister_adapter(state
->cec_adap
);
2650 /* ----------------------------------------------------------------------- */
2652 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops
= {
2653 .s_ctrl
= adv76xx_s_ctrl
,
2654 .g_volatile_ctrl
= adv76xx_g_volatile_ctrl
,
2657 static const struct v4l2_subdev_core_ops adv76xx_core_ops
= {
2658 .log_status
= adv76xx_log_status
,
2659 .interrupt_service_routine
= adv76xx_isr
,
2660 .subscribe_event
= adv76xx_subscribe_event
,
2661 .unsubscribe_event
= v4l2_event_subdev_unsubscribe
,
2662 #ifdef CONFIG_VIDEO_ADV_DEBUG
2663 .g_register
= adv76xx_g_register
,
2664 .s_register
= adv76xx_s_register
,
2668 static const struct v4l2_subdev_video_ops adv76xx_video_ops
= {
2669 .s_routing
= adv76xx_s_routing
,
2670 .g_input_status
= adv76xx_g_input_status
,
2671 .s_dv_timings
= adv76xx_s_dv_timings
,
2672 .g_dv_timings
= adv76xx_g_dv_timings
,
2673 .query_dv_timings
= adv76xx_query_dv_timings
,
2676 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops
= {
2677 .enum_mbus_code
= adv76xx_enum_mbus_code
,
2678 .get_selection
= adv76xx_get_selection
,
2679 .get_fmt
= adv76xx_get_format
,
2680 .set_fmt
= adv76xx_set_format
,
2681 .get_edid
= adv76xx_get_edid
,
2682 .set_edid
= adv76xx_set_edid
,
2683 .dv_timings_cap
= adv76xx_dv_timings_cap
,
2684 .enum_dv_timings
= adv76xx_enum_dv_timings
,
2687 static const struct v4l2_subdev_ops adv76xx_ops
= {
2688 .core
= &adv76xx_core_ops
,
2689 .video
= &adv76xx_video_ops
,
2690 .pad
= &adv76xx_pad_ops
,
2693 static const struct v4l2_subdev_internal_ops adv76xx_int_ops
= {
2694 .registered
= adv76xx_registered
,
2695 .unregistered
= adv76xx_unregistered
,
2698 /* -------------------------- custom ctrls ---------------------------------- */
2700 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase
= {
2701 .ops
= &adv76xx_ctrl_ops
,
2702 .id
= V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE
,
2703 .name
= "Analog Sampling Phase",
2704 .type
= V4L2_CTRL_TYPE_INTEGER
,
2711 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual
= {
2712 .ops
= &adv76xx_ctrl_ops
,
2713 .id
= V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL
,
2714 .name
= "Free Running Color, Manual",
2715 .type
= V4L2_CTRL_TYPE_BOOLEAN
,
2722 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color
= {
2723 .ops
= &adv76xx_ctrl_ops
,
2724 .id
= V4L2_CID_ADV_RX_FREE_RUN_COLOR
,
2725 .name
= "Free Running Color",
2726 .type
= V4L2_CTRL_TYPE_INTEGER
,
2733 /* ----------------------------------------------------------------------- */
2735 static int adv76xx_core_init(struct v4l2_subdev
*sd
)
2737 struct adv76xx_state
*state
= to_state(sd
);
2738 const struct adv76xx_chip_info
*info
= state
->info
;
2739 struct adv76xx_platform_data
*pdata
= &state
->pdata
;
2741 hdmi_write(sd
, 0x48,
2742 (pdata
->disable_pwrdnb
? 0x80 : 0) |
2743 (pdata
->disable_cable_det_rst
? 0x40 : 0));
2747 if (pdata
->default_input
>= 0 &&
2748 pdata
->default_input
< state
->source_pad
) {
2749 state
->selected_input
= pdata
->default_input
;
2755 io_write(sd
, 0x0c, 0x42); /* Power up part and power down VDP */
2756 io_write(sd
, 0x0b, 0x44); /* Power down ESDP block */
2757 cp_write(sd
, 0xcf, 0x01); /* Power down macrovision */
2760 io_write_clr_set(sd
, 0x02, 0x0f, pdata
->alt_gamma
<< 3);
2761 io_write_clr_set(sd
, 0x05, 0x0e, pdata
->blank_data
<< 3 |
2762 pdata
->insert_av_codes
<< 2 |
2763 pdata
->replicate_av_codes
<< 1);
2764 adv76xx_setup_format(state
);
2766 cp_write(sd
, 0x69, 0x30); /* Enable CP CSC */
2768 /* VS, HS polarities */
2769 io_write(sd
, 0x06, 0xa0 | pdata
->inv_vs_pol
<< 2 |
2770 pdata
->inv_hs_pol
<< 1 | pdata
->inv_llc_pol
);
2772 /* Adjust drive strength */
2773 io_write(sd
, 0x14, 0x40 | pdata
->dr_str_data
<< 4 |
2774 pdata
->dr_str_clk
<< 2 |
2775 pdata
->dr_str_sync
);
2777 cp_write(sd
, 0xba, (pdata
->hdmi_free_run_mode
<< 1) | 0x01); /* HDMI free run */
2778 cp_write(sd
, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2779 cp_write(sd
, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
2780 ADI recommended setting [REF_01, c. 2.3.3] */
2781 cp_write(sd
, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
2782 ADI recommended setting [REF_01, c. 2.3.3] */
2783 cp_write(sd
, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2784 for digital formats */
2787 hdmi_write_clr_set(sd
, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2788 hdmi_write_clr_set(sd
, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2789 hdmi_write_clr_set(sd
, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2791 /* TODO from platform data */
2792 afe_write(sd
, 0xb5, 0x01); /* Setting MCLK to 256Fs */
2794 if (adv76xx_has_afe(state
)) {
2795 afe_write(sd
, 0x02, pdata
->ain_sel
); /* Select analog input muxing mode */
2796 io_write_clr_set(sd
, 0x30, 1 << 4, pdata
->output_bus_lsb_to_msb
<< 4);
2800 io_write(sd
, 0x40, 0xc0 | pdata
->int1_config
); /* Configure INT1 */
2801 io_write(sd
, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2802 io_write(sd
, 0x6e, info
->fmt_change_digital_mask
); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2803 io_write(sd
, 0x73, info
->cable_det_mask
); /* Enable cable detection (+5v) interrupts */
2804 info
->setup_irqs(sd
);
2806 return v4l2_ctrl_handler_setup(sd
->ctrl_handler
);
2809 static void adv7604_setup_irqs(struct v4l2_subdev
*sd
)
2811 io_write(sd
, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2814 static void adv7611_setup_irqs(struct v4l2_subdev
*sd
)
2816 io_write(sd
, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2819 static void adv7612_setup_irqs(struct v4l2_subdev
*sd
)
2821 io_write(sd
, 0x41, 0xd0); /* disable INT2 */
2824 static void adv76xx_unregister_clients(struct adv76xx_state
*state
)
2828 for (i
= 1; i
< ARRAY_SIZE(state
->i2c_clients
); ++i
) {
2829 if (state
->i2c_clients
[i
])
2830 i2c_unregister_device(state
->i2c_clients
[i
]);
2834 static struct i2c_client
*adv76xx_dummy_client(struct v4l2_subdev
*sd
,
2837 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
2840 io_write(sd
, io_reg
, addr
<< 1);
2841 return i2c_new_dummy(client
->adapter
, io_read(sd
, io_reg
) >> 1);
2844 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe
[] = {
2845 /* reset ADI recommended settings for HDMI: */
2846 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2847 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x0d), 0x04 }, /* HDMI filter optimization */
2848 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x0d), 0x04 }, /* HDMI filter optimization */
2849 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2850 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3e), 0x74 }, /* TMDS PLL optimization */
2851 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4e), 0x3b }, /* TMDS PLL optimization */
2852 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0x74 }, /* TMDS PLL optimization */
2853 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x63 }, /* TMDS PLL optimization */
2854 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8d), 0x18 }, /* equaliser */
2855 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8e), 0x34 }, /* equaliser */
2856 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x93), 0x88 }, /* equaliser */
2857 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x94), 0x2e }, /* equaliser */
2858 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x96), 0x00 }, /* enable automatic EQ changing */
2860 /* set ADI recommended settings for digitizer */
2861 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2862 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2863 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x0c), 0x1f }, /* CP core gain controls */
2864 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x3e), 0x04 }, /* CP core pre-gain control */
2865 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2866 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2868 { ADV76XX_REG_SEQ_TERM
, 0 },
2871 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi
[] = {
2872 /* set ADI recommended settings for HDMI: */
2873 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2874 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x0d), 0x84 }, /* HDMI filter optimization */
2875 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2876 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3e), 0x39 }, /* TMDS PLL optimization */
2877 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4e), 0x3b }, /* TMDS PLL optimization */
2878 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0xb6 }, /* TMDS PLL optimization */
2879 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x03 }, /* TMDS PLL optimization */
2880 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8d), 0x18 }, /* equaliser */
2881 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8e), 0x34 }, /* equaliser */
2882 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x93), 0x8b }, /* equaliser */
2883 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x94), 0x2d }, /* equaliser */
2884 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x96), 0x01 }, /* enable automatic EQ changing */
2886 /* reset ADI recommended settings for digitizer */
2887 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2888 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2889 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x0c), 0x0d }, /* CP core gain controls */
2891 { ADV76XX_REG_SEQ_TERM
, 0 },
2894 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi
[] = {
2895 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2896 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x6c), 0x00 },
2897 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x9b), 0x03 },
2898 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x6f), 0x08 },
2899 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x85), 0x1f },
2900 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x87), 0x70 },
2901 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0xda },
2902 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x01 },
2903 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x03), 0x98 },
2904 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4c), 0x44 },
2905 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8d), 0x04 },
2906 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8e), 0x1e },
2908 { ADV76XX_REG_SEQ_TERM
, 0 },
2911 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi
[] = {
2912 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x6c), 0x00 },
2913 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x9b), 0x03 },
2914 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x6f), 0x08 },
2915 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x85), 0x1f },
2916 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x87), 0x70 },
2917 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0xda },
2918 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x01 },
2919 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x03), 0x98 },
2920 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4c), 0x44 },
2921 { ADV76XX_REG_SEQ_TERM
, 0 },
2924 static const struct adv76xx_chip_info adv76xx_chip_info
[] = {
2928 .max_port
= ADV7604_PAD_VGA_COMP
,
2930 .edid_enable_reg
= 0x77,
2931 .edid_status_reg
= 0x7d,
2933 .tdms_lock_mask
= 0xe0,
2934 .cable_det_mask
= 0x1e,
2935 .fmt_change_digital_mask
= 0xc1,
2937 .formats
= adv7604_formats
,
2938 .nformats
= ARRAY_SIZE(adv7604_formats
),
2939 .set_termination
= adv7604_set_termination
,
2940 .setup_irqs
= adv7604_setup_irqs
,
2941 .read_hdmi_pixelclock
= adv7604_read_hdmi_pixelclock
,
2942 .read_cable_det
= adv7604_read_cable_det
,
2943 .recommended_settings
= {
2944 [0] = adv7604_recommended_settings_afe
,
2945 [1] = adv7604_recommended_settings_hdmi
,
2947 .num_recommended_settings
= {
2948 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe
),
2949 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi
),
2951 .page_mask
= BIT(ADV76XX_PAGE_IO
) | BIT(ADV7604_PAGE_AVLINK
) |
2952 BIT(ADV76XX_PAGE_CEC
) | BIT(ADV76XX_PAGE_INFOFRAME
) |
2953 BIT(ADV7604_PAGE_ESDP
) | BIT(ADV7604_PAGE_DPP
) |
2954 BIT(ADV76XX_PAGE_AFE
) | BIT(ADV76XX_PAGE_REP
) |
2955 BIT(ADV76XX_PAGE_EDID
) | BIT(ADV76XX_PAGE_HDMI
) |
2956 BIT(ADV76XX_PAGE_TEST
) | BIT(ADV76XX_PAGE_CP
) |
2957 BIT(ADV7604_PAGE_VDP
),
2958 .linewidth_mask
= 0xfff,
2959 .field0_height_mask
= 0xfff,
2960 .field1_height_mask
= 0xfff,
2961 .hfrontporch_mask
= 0x3ff,
2962 .hsync_mask
= 0x3ff,
2963 .hbackporch_mask
= 0x3ff,
2964 .field0_vfrontporch_mask
= 0x1fff,
2965 .field0_vsync_mask
= 0x1fff,
2966 .field0_vbackporch_mask
= 0x1fff,
2967 .field1_vfrontporch_mask
= 0x1fff,
2968 .field1_vsync_mask
= 0x1fff,
2969 .field1_vbackporch_mask
= 0x1fff,
2974 .max_port
= ADV76XX_PAD_HDMI_PORT_A
,
2976 .edid_enable_reg
= 0x74,
2977 .edid_status_reg
= 0x76,
2979 .tdms_lock_mask
= 0x43,
2980 .cable_det_mask
= 0x01,
2981 .fmt_change_digital_mask
= 0x03,
2983 .formats
= adv7611_formats
,
2984 .nformats
= ARRAY_SIZE(adv7611_formats
),
2985 .set_termination
= adv7611_set_termination
,
2986 .setup_irqs
= adv7611_setup_irqs
,
2987 .read_hdmi_pixelclock
= adv7611_read_hdmi_pixelclock
,
2988 .read_cable_det
= adv7611_read_cable_det
,
2989 .recommended_settings
= {
2990 [1] = adv7611_recommended_settings_hdmi
,
2992 .num_recommended_settings
= {
2993 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi
),
2995 .page_mask
= BIT(ADV76XX_PAGE_IO
) | BIT(ADV76XX_PAGE_CEC
) |
2996 BIT(ADV76XX_PAGE_INFOFRAME
) | BIT(ADV76XX_PAGE_AFE
) |
2997 BIT(ADV76XX_PAGE_REP
) | BIT(ADV76XX_PAGE_EDID
) |
2998 BIT(ADV76XX_PAGE_HDMI
) | BIT(ADV76XX_PAGE_CP
),
2999 .linewidth_mask
= 0x1fff,
3000 .field0_height_mask
= 0x1fff,
3001 .field1_height_mask
= 0x1fff,
3002 .hfrontporch_mask
= 0x1fff,
3003 .hsync_mask
= 0x1fff,
3004 .hbackporch_mask
= 0x1fff,
3005 .field0_vfrontporch_mask
= 0x3fff,
3006 .field0_vsync_mask
= 0x3fff,
3007 .field0_vbackporch_mask
= 0x3fff,
3008 .field1_vfrontporch_mask
= 0x3fff,
3009 .field1_vsync_mask
= 0x3fff,
3010 .field1_vbackporch_mask
= 0x3fff,
3015 .max_port
= ADV76XX_PAD_HDMI_PORT_A
, /* B not supported */
3016 .num_dv_ports
= 1, /* normally 2 */
3017 .edid_enable_reg
= 0x74,
3018 .edid_status_reg
= 0x76,
3020 .tdms_lock_mask
= 0x43,
3021 .cable_det_mask
= 0x01,
3022 .fmt_change_digital_mask
= 0x03,
3024 .formats
= adv7612_formats
,
3025 .nformats
= ARRAY_SIZE(adv7612_formats
),
3026 .set_termination
= adv7611_set_termination
,
3027 .setup_irqs
= adv7612_setup_irqs
,
3028 .read_hdmi_pixelclock
= adv7611_read_hdmi_pixelclock
,
3029 .read_cable_det
= adv7612_read_cable_det
,
3030 .recommended_settings
= {
3031 [1] = adv7612_recommended_settings_hdmi
,
3033 .num_recommended_settings
= {
3034 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi
),
3036 .page_mask
= BIT(ADV76XX_PAGE_IO
) | BIT(ADV76XX_PAGE_CEC
) |
3037 BIT(ADV76XX_PAGE_INFOFRAME
) | BIT(ADV76XX_PAGE_AFE
) |
3038 BIT(ADV76XX_PAGE_REP
) | BIT(ADV76XX_PAGE_EDID
) |
3039 BIT(ADV76XX_PAGE_HDMI
) | BIT(ADV76XX_PAGE_CP
),
3040 .linewidth_mask
= 0x1fff,
3041 .field0_height_mask
= 0x1fff,
3042 .field1_height_mask
= 0x1fff,
3043 .hfrontporch_mask
= 0x1fff,
3044 .hsync_mask
= 0x1fff,
3045 .hbackporch_mask
= 0x1fff,
3046 .field0_vfrontporch_mask
= 0x3fff,
3047 .field0_vsync_mask
= 0x3fff,
3048 .field0_vbackporch_mask
= 0x3fff,
3049 .field1_vfrontporch_mask
= 0x3fff,
3050 .field1_vsync_mask
= 0x3fff,
3051 .field1_vbackporch_mask
= 0x3fff,
3055 static const struct i2c_device_id adv76xx_i2c_id
[] = {
3056 { "adv7604", (kernel_ulong_t
)&adv76xx_chip_info
[ADV7604
] },
3057 { "adv7611", (kernel_ulong_t
)&adv76xx_chip_info
[ADV7611
] },
3058 { "adv7612", (kernel_ulong_t
)&adv76xx_chip_info
[ADV7612
] },
3061 MODULE_DEVICE_TABLE(i2c
, adv76xx_i2c_id
);
3063 static const struct of_device_id adv76xx_of_id
[] __maybe_unused
= {
3064 { .compatible
= "adi,adv7611", .data
= &adv76xx_chip_info
[ADV7611
] },
3065 { .compatible
= "adi,adv7612", .data
= &adv76xx_chip_info
[ADV7612
] },
3068 MODULE_DEVICE_TABLE(of
, adv76xx_of_id
);
3070 static int adv76xx_parse_dt(struct adv76xx_state
*state
)
3072 struct v4l2_of_endpoint bus_cfg
;
3073 struct device_node
*endpoint
;
3074 struct device_node
*np
;
3079 np
= state
->i2c_clients
[ADV76XX_PAGE_IO
]->dev
.of_node
;
3081 /* Parse the endpoint. */
3082 endpoint
= of_graph_get_next_endpoint(np
, NULL
);
3086 ret
= v4l2_of_parse_endpoint(endpoint
, &bus_cfg
);
3088 of_node_put(endpoint
);
3092 of_node_put(endpoint
);
3094 if (!of_property_read_u32(np
, "default-input", &v
))
3095 state
->pdata
.default_input
= v
;
3097 state
->pdata
.default_input
= -1;
3099 flags
= bus_cfg
.bus
.parallel
.flags
;
3101 if (flags
& V4L2_MBUS_HSYNC_ACTIVE_HIGH
)
3102 state
->pdata
.inv_hs_pol
= 1;
3104 if (flags
& V4L2_MBUS_VSYNC_ACTIVE_HIGH
)
3105 state
->pdata
.inv_vs_pol
= 1;
3107 if (flags
& V4L2_MBUS_PCLK_SAMPLE_RISING
)
3108 state
->pdata
.inv_llc_pol
= 1;
3110 if (bus_cfg
.bus_type
== V4L2_MBUS_BT656
)
3111 state
->pdata
.insert_av_codes
= 1;
3113 /* Disable the interrupt for now as no DT-based board uses it. */
3114 state
->pdata
.int1_config
= ADV76XX_INT1_CONFIG_DISABLED
;
3116 /* Use the default I2C addresses. */
3117 state
->pdata
.i2c_addresses
[ADV7604_PAGE_AVLINK
] = 0x42;
3118 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_CEC
] = 0x40;
3119 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_INFOFRAME
] = 0x3e;
3120 state
->pdata
.i2c_addresses
[ADV7604_PAGE_ESDP
] = 0x38;
3121 state
->pdata
.i2c_addresses
[ADV7604_PAGE_DPP
] = 0x3c;
3122 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_AFE
] = 0x26;
3123 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_REP
] = 0x32;
3124 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_EDID
] = 0x36;
3125 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_HDMI
] = 0x34;
3126 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_TEST
] = 0x30;
3127 state
->pdata
.i2c_addresses
[ADV76XX_PAGE_CP
] = 0x22;
3128 state
->pdata
.i2c_addresses
[ADV7604_PAGE_VDP
] = 0x24;
3130 /* Hardcode the remaining platform data fields. */
3131 state
->pdata
.disable_pwrdnb
= 0;
3132 state
->pdata
.disable_cable_det_rst
= 0;
3133 state
->pdata
.blank_data
= 1;
3134 state
->pdata
.op_format_mode_sel
= ADV7604_OP_FORMAT_MODE0
;
3135 state
->pdata
.bus_order
= ADV7604_BUS_ORDER_RGB
;
3140 static const struct regmap_config adv76xx_regmap_cnf
[] = {
3146 .max_register
= 0xff,
3147 .cache_type
= REGCACHE_NONE
,
3154 .max_register
= 0xff,
3155 .cache_type
= REGCACHE_NONE
,
3162 .max_register
= 0xff,
3163 .cache_type
= REGCACHE_NONE
,
3166 .name
= "infoframe",
3170 .max_register
= 0xff,
3171 .cache_type
= REGCACHE_NONE
,
3178 .max_register
= 0xff,
3179 .cache_type
= REGCACHE_NONE
,
3186 .max_register
= 0xff,
3187 .cache_type
= REGCACHE_NONE
,
3194 .max_register
= 0xff,
3195 .cache_type
= REGCACHE_NONE
,
3202 .max_register
= 0xff,
3203 .cache_type
= REGCACHE_NONE
,
3210 .max_register
= 0xff,
3211 .cache_type
= REGCACHE_NONE
,
3219 .max_register
= 0xff,
3220 .cache_type
= REGCACHE_NONE
,
3227 .max_register
= 0xff,
3228 .cache_type
= REGCACHE_NONE
,
3235 .max_register
= 0xff,
3236 .cache_type
= REGCACHE_NONE
,
3243 .max_register
= 0xff,
3244 .cache_type
= REGCACHE_NONE
,
3248 static int configure_regmap(struct adv76xx_state
*state
, int region
)
3252 if (!state
->i2c_clients
[region
])
3255 state
->regmap
[region
] =
3256 devm_regmap_init_i2c(state
->i2c_clients
[region
],
3257 &adv76xx_regmap_cnf
[region
]);
3259 if (IS_ERR(state
->regmap
[region
])) {
3260 err
= PTR_ERR(state
->regmap
[region
]);
3261 v4l_err(state
->i2c_clients
[region
],
3262 "Error initializing regmap %d with error %d\n",
3270 static int configure_regmaps(struct adv76xx_state
*state
)
3274 for (i
= ADV7604_PAGE_AVLINK
; i
< ADV76XX_PAGE_MAX
; i
++) {
3275 err
= configure_regmap(state
, i
);
3276 if (err
&& (err
!= -ENODEV
))
3282 static void adv76xx_reset(struct adv76xx_state
*state
)
3284 if (state
->reset_gpio
) {
3285 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3286 gpiod_set_value_cansleep(state
->reset_gpio
, 0);
3287 usleep_range(5000, 10000);
3288 gpiod_set_value_cansleep(state
->reset_gpio
, 1);
3289 /* It is recommended to wait 5 ms after the low pulse before */
3290 /* an I2C write is performed to the ADV76XX. */
3291 usleep_range(5000, 10000);
3295 static int adv76xx_probe(struct i2c_client
*client
,
3296 const struct i2c_device_id
*id
)
3298 static const struct v4l2_dv_timings cea640x480
=
3299 V4L2_DV_BT_CEA_640X480P59_94
;
3300 struct adv76xx_state
*state
;
3301 struct v4l2_ctrl_handler
*hdl
;
3302 struct v4l2_ctrl
*ctrl
;
3303 struct v4l2_subdev
*sd
;
3305 unsigned int val
, val2
;
3308 /* Check if the adapter supports the needed features */
3309 if (!i2c_check_functionality(client
->adapter
, I2C_FUNC_SMBUS_BYTE_DATA
))
3311 v4l_dbg(1, debug
, client
, "detecting adv76xx client on address 0x%x\n",
3314 state
= devm_kzalloc(&client
->dev
, sizeof(*state
), GFP_KERNEL
);
3316 v4l_err(client
, "Could not allocate adv76xx_state memory!\n");
3320 state
->i2c_clients
[ADV76XX_PAGE_IO
] = client
;
3322 /* initialize variables */
3323 state
->restart_stdi_once
= true;
3324 state
->selected_input
= ~0;
3326 if (IS_ENABLED(CONFIG_OF
) && client
->dev
.of_node
) {
3327 const struct of_device_id
*oid
;
3329 oid
= of_match_node(adv76xx_of_id
, client
->dev
.of_node
);
3330 state
->info
= oid
->data
;
3332 err
= adv76xx_parse_dt(state
);
3334 v4l_err(client
, "DT parsing error\n");
3337 } else if (client
->dev
.platform_data
) {
3338 struct adv76xx_platform_data
*pdata
= client
->dev
.platform_data
;
3340 state
->info
= (const struct adv76xx_chip_info
*)id
->driver_data
;
3341 state
->pdata
= *pdata
;
3343 v4l_err(client
, "No platform data!\n");
3347 /* Request GPIOs. */
3348 for (i
= 0; i
< state
->info
->num_dv_ports
; ++i
) {
3349 state
->hpd_gpio
[i
] =
3350 devm_gpiod_get_index_optional(&client
->dev
, "hpd", i
,
3352 if (IS_ERR(state
->hpd_gpio
[i
]))
3353 return PTR_ERR(state
->hpd_gpio
[i
]);
3355 if (state
->hpd_gpio
[i
])
3356 v4l_info(client
, "Handling HPD %u GPIO\n", i
);
3358 state
->reset_gpio
= devm_gpiod_get_optional(&client
->dev
, "reset",
3360 if (IS_ERR(state
->reset_gpio
))
3361 return PTR_ERR(state
->reset_gpio
);
3363 adv76xx_reset(state
);
3365 state
->timings
= cea640x480
;
3366 state
->format
= adv76xx_format_info(state
, MEDIA_BUS_FMT_YUYV8_2X8
);
3369 v4l2_i2c_subdev_init(sd
, client
, &adv76xx_ops
);
3370 snprintf(sd
->name
, sizeof(sd
->name
), "%s %d-%04x",
3371 id
->name
, i2c_adapter_id(client
->adapter
),
3373 sd
->flags
|= V4L2_SUBDEV_FL_HAS_DEVNODE
| V4L2_SUBDEV_FL_HAS_EVENTS
;
3374 sd
->internal_ops
= &adv76xx_int_ops
;
3376 /* Configure IO Regmap region */
3377 err
= configure_regmap(state
, ADV76XX_PAGE_IO
);
3380 v4l2_err(sd
, "Error configuring IO regmap region\n");
3385 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3386 * identifies the revision, while on ADV7611 it identifies the model as
3387 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3389 switch (state
->info
->type
) {
3391 err
= regmap_read(state
->regmap
[ADV76XX_PAGE_IO
], 0xfb, &val
);
3393 v4l2_err(sd
, "Error %d reading IO Regmap\n", err
);
3397 v4l2_err(sd
, "not an adv7604 on address 0x%x\n",
3404 err
= regmap_read(state
->regmap
[ADV76XX_PAGE_IO
],
3408 v4l2_err(sd
, "Error %d reading IO Regmap\n", err
);
3412 err
= regmap_read(state
->regmap
[ADV76XX_PAGE_IO
],
3416 v4l2_err(sd
, "Error %d reading IO Regmap\n", err
);
3420 if ((state
->info
->type
== ADV7611
&& val
!= 0x2051) ||
3421 (state
->info
->type
== ADV7612
&& val
!= 0x2041)) {
3422 v4l2_err(sd
, "not an adv761x on address 0x%x\n",
3429 /* control handlers */
3431 v4l2_ctrl_handler_init(hdl
, adv76xx_has_afe(state
) ? 9 : 8);
3433 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3434 V4L2_CID_BRIGHTNESS
, -128, 127, 1, 0);
3435 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3436 V4L2_CID_CONTRAST
, 0, 255, 1, 128);
3437 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3438 V4L2_CID_SATURATION
, 0, 255, 1, 128);
3439 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3440 V4L2_CID_HUE
, 0, 128, 1, 0);
3441 ctrl
= v4l2_ctrl_new_std_menu(hdl
, &adv76xx_ctrl_ops
,
3442 V4L2_CID_DV_RX_IT_CONTENT_TYPE
, V4L2_DV_IT_CONTENT_TYPE_NO_ITC
,
3443 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC
);
3445 ctrl
->flags
|= V4L2_CTRL_FLAG_VOLATILE
;
3447 state
->detect_tx_5v_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
3448 V4L2_CID_DV_RX_POWER_PRESENT
, 0,
3449 (1 << state
->info
->num_dv_ports
) - 1, 0, 0);
3450 state
->rgb_quantization_range_ctrl
=
3451 v4l2_ctrl_new_std_menu(hdl
, &adv76xx_ctrl_ops
,
3452 V4L2_CID_DV_RX_RGB_RANGE
, V4L2_DV_RGB_RANGE_FULL
,
3453 0, V4L2_DV_RGB_RANGE_AUTO
);
3455 /* custom controls */
3456 if (adv76xx_has_afe(state
))
3457 state
->analog_sampling_phase_ctrl
=
3458 v4l2_ctrl_new_custom(hdl
, &adv7604_ctrl_analog_sampling_phase
, NULL
);
3459 state
->free_run_color_manual_ctrl
=
3460 v4l2_ctrl_new_custom(hdl
, &adv76xx_ctrl_free_run_color_manual
, NULL
);
3461 state
->free_run_color_ctrl
=
3462 v4l2_ctrl_new_custom(hdl
, &adv76xx_ctrl_free_run_color
, NULL
);
3464 sd
->ctrl_handler
= hdl
;
3469 if (adv76xx_s_detect_tx_5v_ctrl(sd
)) {
3474 for (i
= 1; i
< ADV76XX_PAGE_MAX
; ++i
) {
3475 if (!(BIT(i
) & state
->info
->page_mask
))
3478 state
->i2c_clients
[i
] =
3479 adv76xx_dummy_client(sd
, state
->pdata
.i2c_addresses
[i
],
3481 if (state
->i2c_clients
[i
] == NULL
) {
3483 v4l2_err(sd
, "failed to create i2c client %u\n", i
);
3488 INIT_DELAYED_WORK(&state
->delayed_work_enable_hotplug
,
3489 adv76xx_delayed_work_enable_hotplug
);
3491 state
->source_pad
= state
->info
->num_dv_ports
3492 + (state
->info
->has_afe
? 2 : 0);
3493 for (i
= 0; i
< state
->source_pad
; ++i
)
3494 state
->pads
[i
].flags
= MEDIA_PAD_FL_SINK
;
3495 state
->pads
[state
->source_pad
].flags
= MEDIA_PAD_FL_SOURCE
;
3497 err
= media_entity_pads_init(&sd
->entity
, state
->source_pad
+ 1,
3500 goto err_work_queues
;
3502 /* Configure regmaps */
3503 err
= configure_regmaps(state
);
3507 err
= adv76xx_core_init(sd
);
3511 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3512 state
->cec_adap
= cec_allocate_adapter(&adv76xx_cec_adap_ops
,
3513 state
, dev_name(&client
->dev
),
3514 CEC_CAP_TRANSMIT
| CEC_CAP_LOG_ADDRS
|
3515 CEC_CAP_PASSTHROUGH
| CEC_CAP_RC
, ADV76XX_MAX_ADDRS
);
3516 err
= PTR_ERR_OR_ZERO(state
->cec_adap
);
3521 v4l2_info(sd
, "%s found @ 0x%x (%s)\n", client
->name
,
3522 client
->addr
<< 1, client
->adapter
->name
);
3524 err
= v4l2_async_register_subdev(sd
);
3531 media_entity_cleanup(&sd
->entity
);
3533 cancel_delayed_work(&state
->delayed_work_enable_hotplug
);
3535 adv76xx_unregister_clients(state
);
3537 v4l2_ctrl_handler_free(hdl
);
3541 /* ----------------------------------------------------------------------- */
3543 static int adv76xx_remove(struct i2c_client
*client
)
3545 struct v4l2_subdev
*sd
= i2c_get_clientdata(client
);
3546 struct adv76xx_state
*state
= to_state(sd
);
3548 /* disable interrupts */
3549 io_write(sd
, 0x40, 0);
3550 io_write(sd
, 0x41, 0);
3551 io_write(sd
, 0x46, 0);
3552 io_write(sd
, 0x6e, 0);
3553 io_write(sd
, 0x73, 0);
3555 cancel_delayed_work(&state
->delayed_work_enable_hotplug
);
3556 v4l2_async_unregister_subdev(sd
);
3557 media_entity_cleanup(&sd
->entity
);
3558 adv76xx_unregister_clients(to_state(sd
));
3559 v4l2_ctrl_handler_free(sd
->ctrl_handler
);
3563 /* ----------------------------------------------------------------------- */
3565 static struct i2c_driver adv76xx_driver
= {
3568 .of_match_table
= of_match_ptr(adv76xx_of_id
),
3570 .probe
= adv76xx_probe
,
3571 .remove
= adv76xx_remove
,
3572 .id_table
= adv76xx_i2c_id
,
3575 module_i2c_driver(adv76xx_driver
);