sh_eth: R8A7740 supports packet shecksumming
[linux/fpc-iii.git] / drivers / net / ethernet / renesas / sh_eth.c
blobf729a6b43958cc82a1b2d38293cb50baf767f39a
1 /* SuperH Ethernet device driver
3 * Copyright (C) 2014 Renesas Electronics Corporation
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2014 Renesas Solutions Corp.
6 * Copyright (C) 2013-2016 Cogent Embedded, Inc.
7 * Copyright (C) 2014 Codethink Limited
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
47 #include "sh_eth.h"
49 #define SH_ETH_DEF_MSG_ENABLE \
50 (NETIF_MSG_LINK | \
51 NETIF_MSG_TIMER | \
52 NETIF_MSG_RX_ERR| \
53 NETIF_MSG_TX_ERR)
55 #define SH_ETH_OFFSET_INVALID ((u16)~0)
57 #define SH_ETH_OFFSET_DEFAULTS \
58 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 SH_ETH_OFFSET_DEFAULTS,
63 [EDSR] = 0x0000,
64 [EDMR] = 0x0400,
65 [EDTRR] = 0x0408,
66 [EDRRR] = 0x0410,
67 [EESR] = 0x0428,
68 [EESIPR] = 0x0430,
69 [TDLAR] = 0x0010,
70 [TDFAR] = 0x0014,
71 [TDFXR] = 0x0018,
72 [TDFFR] = 0x001c,
73 [RDLAR] = 0x0030,
74 [RDFAR] = 0x0034,
75 [RDFXR] = 0x0038,
76 [RDFFR] = 0x003c,
77 [TRSCER] = 0x0438,
78 [RMFCR] = 0x0440,
79 [TFTR] = 0x0448,
80 [FDR] = 0x0450,
81 [RMCR] = 0x0458,
82 [RPADIR] = 0x0460,
83 [FCFTR] = 0x0468,
84 [CSMR] = 0x04E4,
86 [ECMR] = 0x0500,
87 [ECSR] = 0x0510,
88 [ECSIPR] = 0x0518,
89 [PIR] = 0x0520,
90 [PSR] = 0x0528,
91 [PIPR] = 0x052c,
92 [RFLR] = 0x0508,
93 [APR] = 0x0554,
94 [MPR] = 0x0558,
95 [PFTCR] = 0x055c,
96 [PFRCR] = 0x0560,
97 [TPAUSER] = 0x0564,
98 [GECMR] = 0x05b0,
99 [BCULR] = 0x05b4,
100 [MAHR] = 0x05c0,
101 [MALR] = 0x05c8,
102 [TROCR] = 0x0700,
103 [CDCR] = 0x0708,
104 [LCCR] = 0x0710,
105 [CEFCR] = 0x0740,
106 [FRECR] = 0x0748,
107 [TSFRCR] = 0x0750,
108 [TLFRCR] = 0x0758,
109 [RFCR] = 0x0760,
110 [CERCR] = 0x0768,
111 [CEECR] = 0x0770,
112 [MAFCR] = 0x0778,
113 [RMII_MII] = 0x0790,
115 [ARSTR] = 0x0000,
116 [TSU_CTRST] = 0x0004,
117 [TSU_FWEN0] = 0x0010,
118 [TSU_FWEN1] = 0x0014,
119 [TSU_FCM] = 0x0018,
120 [TSU_BSYSL0] = 0x0020,
121 [TSU_BSYSL1] = 0x0024,
122 [TSU_PRISL0] = 0x0028,
123 [TSU_PRISL1] = 0x002c,
124 [TSU_FWSL0] = 0x0030,
125 [TSU_FWSL1] = 0x0034,
126 [TSU_FWSLC] = 0x0038,
127 [TSU_QTAG0] = 0x0040,
128 [TSU_QTAG1] = 0x0044,
129 [TSU_FWSR] = 0x0050,
130 [TSU_FWINMK] = 0x0054,
131 [TSU_ADQT0] = 0x0048,
132 [TSU_ADQT1] = 0x004c,
133 [TSU_VTAG0] = 0x0058,
134 [TSU_VTAG1] = 0x005c,
135 [TSU_ADSBSY] = 0x0060,
136 [TSU_TEN] = 0x0064,
137 [TSU_POST1] = 0x0070,
138 [TSU_POST2] = 0x0074,
139 [TSU_POST3] = 0x0078,
140 [TSU_POST4] = 0x007c,
141 [TSU_ADRH0] = 0x0100,
143 [TXNLCR0] = 0x0080,
144 [TXALCR0] = 0x0084,
145 [RXNLCR0] = 0x0088,
146 [RXALCR0] = 0x008c,
147 [FWNLCR0] = 0x0090,
148 [FWALCR0] = 0x0094,
149 [TXNLCR1] = 0x00a0,
150 [TXALCR1] = 0x00a0,
151 [RXNLCR1] = 0x00a8,
152 [RXALCR1] = 0x00ac,
153 [FWNLCR1] = 0x00b0,
154 [FWALCR1] = 0x00b4,
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 SH_ETH_OFFSET_DEFAULTS,
160 [EDSR] = 0x0000,
161 [EDMR] = 0x0400,
162 [EDTRR] = 0x0408,
163 [EDRRR] = 0x0410,
164 [EESR] = 0x0428,
165 [EESIPR] = 0x0430,
166 [TDLAR] = 0x0010,
167 [TDFAR] = 0x0014,
168 [TDFXR] = 0x0018,
169 [TDFFR] = 0x001c,
170 [RDLAR] = 0x0030,
171 [RDFAR] = 0x0034,
172 [RDFXR] = 0x0038,
173 [RDFFR] = 0x003c,
174 [TRSCER] = 0x0438,
175 [RMFCR] = 0x0440,
176 [TFTR] = 0x0448,
177 [FDR] = 0x0450,
178 [RMCR] = 0x0458,
179 [RPADIR] = 0x0460,
180 [FCFTR] = 0x0468,
181 [CSMR] = 0x04E4,
183 [ECMR] = 0x0500,
184 [RFLR] = 0x0508,
185 [ECSR] = 0x0510,
186 [ECSIPR] = 0x0518,
187 [PIR] = 0x0520,
188 [APR] = 0x0554,
189 [MPR] = 0x0558,
190 [PFTCR] = 0x055c,
191 [PFRCR] = 0x0560,
192 [TPAUSER] = 0x0564,
193 [MAHR] = 0x05c0,
194 [MALR] = 0x05c8,
195 [CEFCR] = 0x0740,
196 [FRECR] = 0x0748,
197 [TSFRCR] = 0x0750,
198 [TLFRCR] = 0x0758,
199 [RFCR] = 0x0760,
200 [MAFCR] = 0x0778,
202 [ARSTR] = 0x0000,
203 [TSU_CTRST] = 0x0004,
204 [TSU_FWSLC] = 0x0038,
205 [TSU_VTAG0] = 0x0058,
206 [TSU_ADSBSY] = 0x0060,
207 [TSU_TEN] = 0x0064,
208 [TSU_POST1] = 0x0070,
209 [TSU_POST2] = 0x0074,
210 [TSU_POST3] = 0x0078,
211 [TSU_POST4] = 0x007c,
212 [TSU_ADRH0] = 0x0100,
214 [TXNLCR0] = 0x0080,
215 [TXALCR0] = 0x0084,
216 [RXNLCR0] = 0x0088,
217 [RXALCR0] = 0x008C,
220 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
221 SH_ETH_OFFSET_DEFAULTS,
223 [ECMR] = 0x0300,
224 [RFLR] = 0x0308,
225 [ECSR] = 0x0310,
226 [ECSIPR] = 0x0318,
227 [PIR] = 0x0320,
228 [PSR] = 0x0328,
229 [RDMLR] = 0x0340,
230 [IPGR] = 0x0350,
231 [APR] = 0x0354,
232 [MPR] = 0x0358,
233 [RFCF] = 0x0360,
234 [TPAUSER] = 0x0364,
235 [TPAUSECR] = 0x0368,
236 [MAHR] = 0x03c0,
237 [MALR] = 0x03c8,
238 [TROCR] = 0x03d0,
239 [CDCR] = 0x03d4,
240 [LCCR] = 0x03d8,
241 [CNDCR] = 0x03dc,
242 [CEFCR] = 0x03e4,
243 [FRECR] = 0x03e8,
244 [TSFRCR] = 0x03ec,
245 [TLFRCR] = 0x03f0,
246 [RFCR] = 0x03f4,
247 [MAFCR] = 0x03f8,
249 [EDMR] = 0x0200,
250 [EDTRR] = 0x0208,
251 [EDRRR] = 0x0210,
252 [TDLAR] = 0x0218,
253 [RDLAR] = 0x0220,
254 [EESR] = 0x0228,
255 [EESIPR] = 0x0230,
256 [TRSCER] = 0x0238,
257 [RMFCR] = 0x0240,
258 [TFTR] = 0x0248,
259 [FDR] = 0x0250,
260 [RMCR] = 0x0258,
261 [TFUCR] = 0x0264,
262 [RFOCR] = 0x0268,
263 [RMIIMODE] = 0x026c,
264 [FCFTR] = 0x0270,
265 [TRIMD] = 0x027c,
268 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
269 SH_ETH_OFFSET_DEFAULTS,
271 [ECMR] = 0x0100,
272 [RFLR] = 0x0108,
273 [ECSR] = 0x0110,
274 [ECSIPR] = 0x0118,
275 [PIR] = 0x0120,
276 [PSR] = 0x0128,
277 [RDMLR] = 0x0140,
278 [IPGR] = 0x0150,
279 [APR] = 0x0154,
280 [MPR] = 0x0158,
281 [TPAUSER] = 0x0164,
282 [RFCF] = 0x0160,
283 [TPAUSECR] = 0x0168,
284 [BCFRR] = 0x016c,
285 [MAHR] = 0x01c0,
286 [MALR] = 0x01c8,
287 [TROCR] = 0x01d0,
288 [CDCR] = 0x01d4,
289 [LCCR] = 0x01d8,
290 [CNDCR] = 0x01dc,
291 [CEFCR] = 0x01e4,
292 [FRECR] = 0x01e8,
293 [TSFRCR] = 0x01ec,
294 [TLFRCR] = 0x01f0,
295 [RFCR] = 0x01f4,
296 [MAFCR] = 0x01f8,
297 [RTRATE] = 0x01fc,
299 [EDMR] = 0x0000,
300 [EDTRR] = 0x0008,
301 [EDRRR] = 0x0010,
302 [TDLAR] = 0x0018,
303 [RDLAR] = 0x0020,
304 [EESR] = 0x0028,
305 [EESIPR] = 0x0030,
306 [TRSCER] = 0x0038,
307 [RMFCR] = 0x0040,
308 [TFTR] = 0x0048,
309 [FDR] = 0x0050,
310 [RMCR] = 0x0058,
311 [TFUCR] = 0x0064,
312 [RFOCR] = 0x0068,
313 [FCFTR] = 0x0070,
314 [RPADIR] = 0x0078,
315 [TRIMD] = 0x007c,
316 [RBWAR] = 0x00c8,
317 [RDFAR] = 0x00cc,
318 [TBRAR] = 0x00d4,
319 [TDFAR] = 0x00d8,
322 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
323 SH_ETH_OFFSET_DEFAULTS,
325 [EDMR] = 0x0000,
326 [EDTRR] = 0x0004,
327 [EDRRR] = 0x0008,
328 [TDLAR] = 0x000c,
329 [RDLAR] = 0x0010,
330 [EESR] = 0x0014,
331 [EESIPR] = 0x0018,
332 [TRSCER] = 0x001c,
333 [RMFCR] = 0x0020,
334 [TFTR] = 0x0024,
335 [FDR] = 0x0028,
336 [RMCR] = 0x002c,
337 [EDOCR] = 0x0030,
338 [FCFTR] = 0x0034,
339 [RPADIR] = 0x0038,
340 [TRIMD] = 0x003c,
341 [RBWAR] = 0x0040,
342 [RDFAR] = 0x0044,
343 [TBRAR] = 0x004c,
344 [TDFAR] = 0x0050,
346 [ECMR] = 0x0160,
347 [ECSR] = 0x0164,
348 [ECSIPR] = 0x0168,
349 [PIR] = 0x016c,
350 [MAHR] = 0x0170,
351 [MALR] = 0x0174,
352 [RFLR] = 0x0178,
353 [PSR] = 0x017c,
354 [TROCR] = 0x0180,
355 [CDCR] = 0x0184,
356 [LCCR] = 0x0188,
357 [CNDCR] = 0x018c,
358 [CEFCR] = 0x0194,
359 [FRECR] = 0x0198,
360 [TSFRCR] = 0x019c,
361 [TLFRCR] = 0x01a0,
362 [RFCR] = 0x01a4,
363 [MAFCR] = 0x01a8,
364 [IPGR] = 0x01b4,
365 [APR] = 0x01b8,
366 [MPR] = 0x01bc,
367 [TPAUSER] = 0x01c4,
368 [BCFR] = 0x01cc,
370 [ARSTR] = 0x0000,
371 [TSU_CTRST] = 0x0004,
372 [TSU_FWEN0] = 0x0010,
373 [TSU_FWEN1] = 0x0014,
374 [TSU_FCM] = 0x0018,
375 [TSU_BSYSL0] = 0x0020,
376 [TSU_BSYSL1] = 0x0024,
377 [TSU_PRISL0] = 0x0028,
378 [TSU_PRISL1] = 0x002c,
379 [TSU_FWSL0] = 0x0030,
380 [TSU_FWSL1] = 0x0034,
381 [TSU_FWSLC] = 0x0038,
382 [TSU_QTAGM0] = 0x0040,
383 [TSU_QTAGM1] = 0x0044,
384 [TSU_ADQT0] = 0x0048,
385 [TSU_ADQT1] = 0x004c,
386 [TSU_FWSR] = 0x0050,
387 [TSU_FWINMK] = 0x0054,
388 [TSU_ADSBSY] = 0x0060,
389 [TSU_TEN] = 0x0064,
390 [TSU_POST1] = 0x0070,
391 [TSU_POST2] = 0x0074,
392 [TSU_POST3] = 0x0078,
393 [TSU_POST4] = 0x007c,
395 [TXNLCR0] = 0x0080,
396 [TXALCR0] = 0x0084,
397 [RXNLCR0] = 0x0088,
398 [RXALCR0] = 0x008c,
399 [FWNLCR0] = 0x0090,
400 [FWALCR0] = 0x0094,
401 [TXNLCR1] = 0x00a0,
402 [TXALCR1] = 0x00a0,
403 [RXNLCR1] = 0x00a8,
404 [RXALCR1] = 0x00ac,
405 [FWNLCR1] = 0x00b0,
406 [FWALCR1] = 0x00b4,
408 [TSU_ADRH0] = 0x0100,
411 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
412 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
414 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
416 struct sh_eth_private *mdp = netdev_priv(ndev);
417 u16 offset = mdp->reg_offset[enum_index];
419 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
420 return;
422 iowrite32(data, mdp->addr + offset);
425 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
427 struct sh_eth_private *mdp = netdev_priv(ndev);
428 u16 offset = mdp->reg_offset[enum_index];
430 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
431 return ~0U;
433 return ioread32(mdp->addr + offset);
436 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
437 u32 set)
439 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
440 enum_index);
443 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
445 return mdp->reg_offset == sh_eth_offset_gigabit;
448 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
450 return mdp->reg_offset == sh_eth_offset_fast_rz;
453 static void sh_eth_select_mii(struct net_device *ndev)
455 struct sh_eth_private *mdp = netdev_priv(ndev);
456 u32 value;
458 switch (mdp->phy_interface) {
459 case PHY_INTERFACE_MODE_GMII:
460 value = 0x2;
461 break;
462 case PHY_INTERFACE_MODE_MII:
463 value = 0x1;
464 break;
465 case PHY_INTERFACE_MODE_RMII:
466 value = 0x0;
467 break;
468 default:
469 netdev_warn(ndev,
470 "PHY interface mode was not setup. Set to MII.\n");
471 value = 0x1;
472 break;
475 sh_eth_write(ndev, value, RMII_MII);
478 static void sh_eth_set_duplex(struct net_device *ndev)
480 struct sh_eth_private *mdp = netdev_priv(ndev);
482 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
485 static void sh_eth_chip_reset(struct net_device *ndev)
487 struct sh_eth_private *mdp = netdev_priv(ndev);
489 /* reset device */
490 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
491 mdelay(1);
494 static void sh_eth_set_rate_gether(struct net_device *ndev)
496 struct sh_eth_private *mdp = netdev_priv(ndev);
498 switch (mdp->speed) {
499 case 10: /* 10BASE */
500 sh_eth_write(ndev, GECMR_10, GECMR);
501 break;
502 case 100:/* 100BASE */
503 sh_eth_write(ndev, GECMR_100, GECMR);
504 break;
505 case 1000: /* 1000BASE */
506 sh_eth_write(ndev, GECMR_1000, GECMR);
507 break;
511 #ifdef CONFIG_OF
512 /* R7S72100 */
513 static struct sh_eth_cpu_data r7s72100_data = {
514 .chip_reset = sh_eth_chip_reset,
515 .set_duplex = sh_eth_set_duplex,
517 .register_type = SH_ETH_REG_FAST_RZ,
519 .ecsr_value = ECSR_ICD,
520 .ecsipr_value = ECSIPR_ICDIP,
521 .eesipr_value = 0xe77f009f,
523 .tx_check = EESR_TC1 | EESR_FTC,
524 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
525 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
526 EESR_TDE | EESR_ECI,
527 .fdr_value = 0x0000070f,
529 .no_psr = 1,
530 .apr = 1,
531 .mpr = 1,
532 .tpauser = 1,
533 .hw_swap = 1,
534 .rpadir = 1,
535 .rpadir_value = 2 << 16,
536 .no_trimd = 1,
537 .no_ade = 1,
538 .hw_crc = 1,
539 .tsu = 1,
540 .shift_rd0 = 1,
543 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
545 sh_eth_chip_reset(ndev);
547 sh_eth_select_mii(ndev);
550 /* R8A7740 */
551 static struct sh_eth_cpu_data r8a7740_data = {
552 .chip_reset = sh_eth_chip_reset_r8a7740,
553 .set_duplex = sh_eth_set_duplex,
554 .set_rate = sh_eth_set_rate_gether,
556 .register_type = SH_ETH_REG_GIGABIT,
558 .ecsr_value = ECSR_ICD | ECSR_MPD,
559 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
560 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
562 .tx_check = EESR_TC1 | EESR_FTC,
563 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
564 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
565 EESR_TDE | EESR_ECI,
566 .fdr_value = 0x0000070f,
568 .apr = 1,
569 .mpr = 1,
570 .tpauser = 1,
571 .bculr = 1,
572 .hw_swap = 1,
573 .rpadir = 1,
574 .rpadir_value = 2 << 16,
575 .no_trimd = 1,
576 .no_ade = 1,
577 .hw_crc = 1,
578 .tsu = 1,
579 .select_mii = 1,
580 .shift_rd0 = 1,
583 /* There is CPU dependent code */
584 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
586 struct sh_eth_private *mdp = netdev_priv(ndev);
588 switch (mdp->speed) {
589 case 10: /* 10BASE */
590 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
591 break;
592 case 100:/* 100BASE */
593 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
594 break;
598 /* R8A7778/9 */
599 static struct sh_eth_cpu_data r8a777x_data = {
600 .set_duplex = sh_eth_set_duplex,
601 .set_rate = sh_eth_set_rate_r8a777x,
603 .register_type = SH_ETH_REG_FAST_RCAR,
605 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
606 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
607 .eesipr_value = 0x01ff009f,
609 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
610 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
611 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
612 EESR_ECI,
613 .fdr_value = 0x00000f0f,
615 .apr = 1,
616 .mpr = 1,
617 .tpauser = 1,
618 .hw_swap = 1,
621 /* R8A7790/1 */
622 static struct sh_eth_cpu_data r8a779x_data = {
623 .set_duplex = sh_eth_set_duplex,
624 .set_rate = sh_eth_set_rate_r8a777x,
626 .register_type = SH_ETH_REG_FAST_RCAR,
628 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
629 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
630 .eesipr_value = 0x01ff009f,
632 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
633 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
634 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
635 EESR_ECI,
636 .fdr_value = 0x00000f0f,
638 .trscer_err_mask = DESC_I_RINT8,
640 .apr = 1,
641 .mpr = 1,
642 .tpauser = 1,
643 .hw_swap = 1,
644 .rmiimode = 1,
646 #endif /* CONFIG_OF */
648 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
650 struct sh_eth_private *mdp = netdev_priv(ndev);
652 switch (mdp->speed) {
653 case 10: /* 10BASE */
654 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
655 break;
656 case 100:/* 100BASE */
657 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
658 break;
662 /* SH7724 */
663 static struct sh_eth_cpu_data sh7724_data = {
664 .set_duplex = sh_eth_set_duplex,
665 .set_rate = sh_eth_set_rate_sh7724,
667 .register_type = SH_ETH_REG_FAST_SH4,
669 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
670 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
671 .eesipr_value = 0x01ff009f,
673 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
674 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
675 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
676 EESR_ECI,
678 .apr = 1,
679 .mpr = 1,
680 .tpauser = 1,
681 .hw_swap = 1,
682 .rpadir = 1,
683 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
686 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
688 struct sh_eth_private *mdp = netdev_priv(ndev);
690 switch (mdp->speed) {
691 case 10: /* 10BASE */
692 sh_eth_write(ndev, 0, RTRATE);
693 break;
694 case 100:/* 100BASE */
695 sh_eth_write(ndev, 1, RTRATE);
696 break;
700 /* SH7757 */
701 static struct sh_eth_cpu_data sh7757_data = {
702 .set_duplex = sh_eth_set_duplex,
703 .set_rate = sh_eth_set_rate_sh7757,
705 .register_type = SH_ETH_REG_FAST_SH4,
707 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
709 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
710 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
711 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
712 EESR_ECI,
714 .irq_flags = IRQF_SHARED,
715 .apr = 1,
716 .mpr = 1,
717 .tpauser = 1,
718 .hw_swap = 1,
719 .no_ade = 1,
720 .rpadir = 1,
721 .rpadir_value = 2 << 16,
722 .rtrate = 1,
725 #define SH_GIGA_ETH_BASE 0xfee00000UL
726 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
727 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
728 static void sh_eth_chip_reset_giga(struct net_device *ndev)
730 u32 mahr[2], malr[2];
731 int i;
733 /* save MAHR and MALR */
734 for (i = 0; i < 2; i++) {
735 malr[i] = ioread32((void *)GIGA_MALR(i));
736 mahr[i] = ioread32((void *)GIGA_MAHR(i));
739 sh_eth_chip_reset(ndev);
741 /* restore MAHR and MALR */
742 for (i = 0; i < 2; i++) {
743 iowrite32(malr[i], (void *)GIGA_MALR(i));
744 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
748 static void sh_eth_set_rate_giga(struct net_device *ndev)
750 struct sh_eth_private *mdp = netdev_priv(ndev);
752 switch (mdp->speed) {
753 case 10: /* 10BASE */
754 sh_eth_write(ndev, 0x00000000, GECMR);
755 break;
756 case 100:/* 100BASE */
757 sh_eth_write(ndev, 0x00000010, GECMR);
758 break;
759 case 1000: /* 1000BASE */
760 sh_eth_write(ndev, 0x00000020, GECMR);
761 break;
765 /* SH7757(GETHERC) */
766 static struct sh_eth_cpu_data sh7757_data_giga = {
767 .chip_reset = sh_eth_chip_reset_giga,
768 .set_duplex = sh_eth_set_duplex,
769 .set_rate = sh_eth_set_rate_giga,
771 .register_type = SH_ETH_REG_GIGABIT,
773 .ecsr_value = ECSR_ICD | ECSR_MPD,
774 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
775 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
777 .tx_check = EESR_TC1 | EESR_FTC,
778 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
779 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
780 EESR_TDE | EESR_ECI,
781 .fdr_value = 0x0000072f,
783 .irq_flags = IRQF_SHARED,
784 .apr = 1,
785 .mpr = 1,
786 .tpauser = 1,
787 .bculr = 1,
788 .hw_swap = 1,
789 .rpadir = 1,
790 .rpadir_value = 2 << 16,
791 .no_trimd = 1,
792 .no_ade = 1,
793 .tsu = 1,
796 /* SH7734 */
797 static struct sh_eth_cpu_data sh7734_data = {
798 .chip_reset = sh_eth_chip_reset,
799 .set_duplex = sh_eth_set_duplex,
800 .set_rate = sh_eth_set_rate_gether,
802 .register_type = SH_ETH_REG_GIGABIT,
804 .ecsr_value = ECSR_ICD | ECSR_MPD,
805 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
806 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003f07ff,
808 .tx_check = EESR_TC1 | EESR_FTC,
809 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
810 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
811 EESR_TDE | EESR_ECI,
813 .apr = 1,
814 .mpr = 1,
815 .tpauser = 1,
816 .bculr = 1,
817 .hw_swap = 1,
818 .no_trimd = 1,
819 .no_ade = 1,
820 .tsu = 1,
821 .hw_crc = 1,
822 .select_mii = 1,
823 .shift_rd0 = 1,
826 /* SH7763 */
827 static struct sh_eth_cpu_data sh7763_data = {
828 .chip_reset = sh_eth_chip_reset,
829 .set_duplex = sh_eth_set_duplex,
830 .set_rate = sh_eth_set_rate_gether,
832 .register_type = SH_ETH_REG_GIGABIT,
834 .ecsr_value = ECSR_ICD | ECSR_MPD,
835 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
836 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003f07ff,
838 .tx_check = EESR_TC1 | EESR_FTC,
839 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
840 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
841 EESR_ECI,
843 .apr = 1,
844 .mpr = 1,
845 .tpauser = 1,
846 .bculr = 1,
847 .hw_swap = 1,
848 .no_trimd = 1,
849 .no_ade = 1,
850 .tsu = 1,
851 .irq_flags = IRQF_SHARED,
854 static struct sh_eth_cpu_data sh7619_data = {
855 .register_type = SH_ETH_REG_FAST_SH3_SH2,
857 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
859 .apr = 1,
860 .mpr = 1,
861 .tpauser = 1,
862 .hw_swap = 1,
865 static struct sh_eth_cpu_data sh771x_data = {
866 .register_type = SH_ETH_REG_FAST_SH3_SH2,
868 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
869 .tsu = 1,
872 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
874 if (!cd->ecsr_value)
875 cd->ecsr_value = DEFAULT_ECSR_INIT;
877 if (!cd->ecsipr_value)
878 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
880 if (!cd->fcftr_value)
881 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
882 DEFAULT_FIFO_F_D_RFD;
884 if (!cd->fdr_value)
885 cd->fdr_value = DEFAULT_FDR_INIT;
887 if (!cd->tx_check)
888 cd->tx_check = DEFAULT_TX_CHECK;
890 if (!cd->eesr_err_check)
891 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
893 if (!cd->trscer_err_mask)
894 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
897 static int sh_eth_check_reset(struct net_device *ndev)
899 int ret = 0;
900 int cnt = 100;
902 while (cnt > 0) {
903 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
904 break;
905 mdelay(1);
906 cnt--;
908 if (cnt <= 0) {
909 netdev_err(ndev, "Device reset failed\n");
910 ret = -ETIMEDOUT;
912 return ret;
915 static int sh_eth_reset(struct net_device *ndev)
917 struct sh_eth_private *mdp = netdev_priv(ndev);
918 int ret = 0;
920 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
921 sh_eth_write(ndev, EDSR_ENALL, EDSR);
922 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
924 ret = sh_eth_check_reset(ndev);
925 if (ret)
926 return ret;
928 /* Table Init */
929 sh_eth_write(ndev, 0x0, TDLAR);
930 sh_eth_write(ndev, 0x0, TDFAR);
931 sh_eth_write(ndev, 0x0, TDFXR);
932 sh_eth_write(ndev, 0x0, TDFFR);
933 sh_eth_write(ndev, 0x0, RDLAR);
934 sh_eth_write(ndev, 0x0, RDFAR);
935 sh_eth_write(ndev, 0x0, RDFXR);
936 sh_eth_write(ndev, 0x0, RDFFR);
938 /* Reset HW CRC register */
939 if (mdp->cd->hw_crc)
940 sh_eth_write(ndev, 0x0, CSMR);
942 /* Select MII mode */
943 if (mdp->cd->select_mii)
944 sh_eth_select_mii(ndev);
945 } else {
946 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
947 mdelay(3);
948 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
951 return ret;
954 static void sh_eth_set_receive_align(struct sk_buff *skb)
956 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
958 if (reserve)
959 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
962 /* Program the hardware MAC address from dev->dev_addr. */
963 static void update_mac_address(struct net_device *ndev)
965 sh_eth_write(ndev,
966 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
967 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
968 sh_eth_write(ndev,
969 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
972 /* Get MAC address from SuperH MAC address register
974 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
975 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
976 * When you want use this device, you must set MAC address in bootloader.
979 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
981 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
982 memcpy(ndev->dev_addr, mac, ETH_ALEN);
983 } else {
984 u32 mahr = sh_eth_read(ndev, MAHR);
985 u32 malr = sh_eth_read(ndev, MALR);
987 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
988 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
989 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
990 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
991 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
992 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
996 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
998 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
999 return EDTRR_TRNS_GETHER;
1000 else
1001 return EDTRR_TRNS_ETHER;
1004 struct bb_info {
1005 void (*set_gate)(void *addr);
1006 struct mdiobb_ctrl ctrl;
1007 void *addr;
1010 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1012 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1013 u32 pir;
1015 if (bitbang->set_gate)
1016 bitbang->set_gate(bitbang->addr);
1018 pir = ioread32(bitbang->addr);
1019 if (set)
1020 pir |= mask;
1021 else
1022 pir &= ~mask;
1023 iowrite32(pir, bitbang->addr);
1026 /* Data I/O pin control */
1027 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1029 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1032 /* Set bit data*/
1033 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1035 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1038 /* Get bit data*/
1039 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1041 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1043 if (bitbang->set_gate)
1044 bitbang->set_gate(bitbang->addr);
1046 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1049 /* MDC pin control */
1050 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1052 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1055 /* mdio bus control struct */
1056 static struct mdiobb_ops bb_ops = {
1057 .owner = THIS_MODULE,
1058 .set_mdc = sh_mdc_ctrl,
1059 .set_mdio_dir = sh_mmd_ctrl,
1060 .set_mdio_data = sh_set_mdio,
1061 .get_mdio_data = sh_get_mdio,
1064 /* free skb and descriptor buffer */
1065 static void sh_eth_ring_free(struct net_device *ndev)
1067 struct sh_eth_private *mdp = netdev_priv(ndev);
1068 int ringsize, i;
1070 /* Free Rx skb ringbuffer */
1071 if (mdp->rx_skbuff) {
1072 for (i = 0; i < mdp->num_rx_ring; i++)
1073 dev_kfree_skb(mdp->rx_skbuff[i]);
1075 kfree(mdp->rx_skbuff);
1076 mdp->rx_skbuff = NULL;
1078 /* Free Tx skb ringbuffer */
1079 if (mdp->tx_skbuff) {
1080 for (i = 0; i < mdp->num_tx_ring; i++)
1081 dev_kfree_skb(mdp->tx_skbuff[i]);
1083 kfree(mdp->tx_skbuff);
1084 mdp->tx_skbuff = NULL;
1086 if (mdp->rx_ring) {
1087 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1088 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1089 mdp->rx_desc_dma);
1090 mdp->rx_ring = NULL;
1093 if (mdp->tx_ring) {
1094 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1095 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1096 mdp->tx_desc_dma);
1097 mdp->tx_ring = NULL;
1101 /* format skb and descriptor buffer */
1102 static void sh_eth_ring_format(struct net_device *ndev)
1104 struct sh_eth_private *mdp = netdev_priv(ndev);
1105 int i;
1106 struct sk_buff *skb;
1107 struct sh_eth_rxdesc *rxdesc = NULL;
1108 struct sh_eth_txdesc *txdesc = NULL;
1109 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1110 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1111 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1112 dma_addr_t dma_addr;
1113 u32 buf_len;
1115 mdp->cur_rx = 0;
1116 mdp->cur_tx = 0;
1117 mdp->dirty_rx = 0;
1118 mdp->dirty_tx = 0;
1120 memset(mdp->rx_ring, 0, rx_ringsize);
1122 /* build Rx ring buffer */
1123 for (i = 0; i < mdp->num_rx_ring; i++) {
1124 /* skb */
1125 mdp->rx_skbuff[i] = NULL;
1126 skb = netdev_alloc_skb(ndev, skbuff_size);
1127 if (skb == NULL)
1128 break;
1129 sh_eth_set_receive_align(skb);
1131 /* The size of the buffer is a multiple of 32 bytes. */
1132 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1133 dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1134 DMA_FROM_DEVICE);
1135 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1136 kfree_skb(skb);
1137 break;
1139 mdp->rx_skbuff[i] = skb;
1141 /* RX descriptor */
1142 rxdesc = &mdp->rx_ring[i];
1143 rxdesc->len = cpu_to_le32(buf_len << 16);
1144 rxdesc->addr = cpu_to_le32(dma_addr);
1145 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1147 /* Rx descriptor address set */
1148 if (i == 0) {
1149 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1150 if (sh_eth_is_gether(mdp) ||
1151 sh_eth_is_rz_fast_ether(mdp))
1152 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1156 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1158 /* Mark the last entry as wrapping the ring. */
1159 if (rxdesc)
1160 rxdesc->status |= cpu_to_le32(RD_RDLE);
1162 memset(mdp->tx_ring, 0, tx_ringsize);
1164 /* build Tx ring buffer */
1165 for (i = 0; i < mdp->num_tx_ring; i++) {
1166 mdp->tx_skbuff[i] = NULL;
1167 txdesc = &mdp->tx_ring[i];
1168 txdesc->status = cpu_to_le32(TD_TFP);
1169 txdesc->len = cpu_to_le32(0);
1170 if (i == 0) {
1171 /* Tx descriptor address set */
1172 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1173 if (sh_eth_is_gether(mdp) ||
1174 sh_eth_is_rz_fast_ether(mdp))
1175 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1179 txdesc->status |= cpu_to_le32(TD_TDLE);
1182 /* Get skb and descriptor buffer */
1183 static int sh_eth_ring_init(struct net_device *ndev)
1185 struct sh_eth_private *mdp = netdev_priv(ndev);
1186 int rx_ringsize, tx_ringsize;
1188 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1189 * card needs room to do 8 byte alignment, +2 so we can reserve
1190 * the first 2 bytes, and +16 gets room for the status word from the
1191 * card.
1193 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1194 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1195 if (mdp->cd->rpadir)
1196 mdp->rx_buf_sz += NET_IP_ALIGN;
1198 /* Allocate RX and TX skb rings */
1199 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1200 GFP_KERNEL);
1201 if (!mdp->rx_skbuff)
1202 return -ENOMEM;
1204 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1205 GFP_KERNEL);
1206 if (!mdp->tx_skbuff)
1207 goto ring_free;
1209 /* Allocate all Rx descriptors. */
1210 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1211 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1212 GFP_KERNEL);
1213 if (!mdp->rx_ring)
1214 goto ring_free;
1216 mdp->dirty_rx = 0;
1218 /* Allocate all Tx descriptors. */
1219 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1220 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1221 GFP_KERNEL);
1222 if (!mdp->tx_ring)
1223 goto ring_free;
1224 return 0;
1226 ring_free:
1227 /* Free Rx and Tx skb ring buffer and DMA buffer */
1228 sh_eth_ring_free(ndev);
1230 return -ENOMEM;
1233 static int sh_eth_dev_init(struct net_device *ndev)
1235 struct sh_eth_private *mdp = netdev_priv(ndev);
1236 int ret;
1238 /* Soft Reset */
1239 ret = sh_eth_reset(ndev);
1240 if (ret)
1241 return ret;
1243 if (mdp->cd->rmiimode)
1244 sh_eth_write(ndev, 0x1, RMIIMODE);
1246 /* Descriptor format */
1247 sh_eth_ring_format(ndev);
1248 if (mdp->cd->rpadir)
1249 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1251 /* all sh_eth int mask */
1252 sh_eth_write(ndev, 0, EESIPR);
1254 #if defined(__LITTLE_ENDIAN)
1255 if (mdp->cd->hw_swap)
1256 sh_eth_write(ndev, EDMR_EL, EDMR);
1257 else
1258 #endif
1259 sh_eth_write(ndev, 0, EDMR);
1261 /* FIFO size set */
1262 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1263 sh_eth_write(ndev, 0, TFTR);
1265 /* Frame recv control (enable multiple-packets per rx irq) */
1266 sh_eth_write(ndev, RMCR_RNC, RMCR);
1268 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1270 if (mdp->cd->bculr)
1271 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1273 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1275 if (!mdp->cd->no_trimd)
1276 sh_eth_write(ndev, 0, TRIMD);
1278 /* Recv frame limit set register */
1279 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1280 RFLR);
1282 sh_eth_modify(ndev, EESR, 0, 0);
1283 mdp->irq_enabled = true;
1284 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1286 /* PAUSE Prohibition */
1287 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1288 ECMR_TE | ECMR_RE, ECMR);
1290 if (mdp->cd->set_rate)
1291 mdp->cd->set_rate(ndev);
1293 /* E-MAC Status Register clear */
1294 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1296 /* E-MAC Interrupt Enable register */
1297 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1299 /* Set MAC address */
1300 update_mac_address(ndev);
1302 /* mask reset */
1303 if (mdp->cd->apr)
1304 sh_eth_write(ndev, APR_AP, APR);
1305 if (mdp->cd->mpr)
1306 sh_eth_write(ndev, MPR_MP, MPR);
1307 if (mdp->cd->tpauser)
1308 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1310 /* Setting the Rx mode will start the Rx process. */
1311 sh_eth_write(ndev, EDRRR_R, EDRRR);
1313 return ret;
1316 static void sh_eth_dev_exit(struct net_device *ndev)
1318 struct sh_eth_private *mdp = netdev_priv(ndev);
1319 int i;
1321 /* Deactivate all TX descriptors, so DMA should stop at next
1322 * packet boundary if it's currently running
1324 for (i = 0; i < mdp->num_tx_ring; i++)
1325 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1327 /* Disable TX FIFO egress to MAC */
1328 sh_eth_rcv_snd_disable(ndev);
1330 /* Stop RX DMA at next packet boundary */
1331 sh_eth_write(ndev, 0, EDRRR);
1333 /* Aside from TX DMA, we can't tell when the hardware is
1334 * really stopped, so we need to reset to make sure.
1335 * Before doing that, wait for long enough to *probably*
1336 * finish transmitting the last packet and poll stats.
1338 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1339 sh_eth_get_stats(ndev);
1340 sh_eth_reset(ndev);
1342 /* Set MAC address again */
1343 update_mac_address(ndev);
1346 /* free Tx skb function */
1347 static int sh_eth_txfree(struct net_device *ndev)
1349 struct sh_eth_private *mdp = netdev_priv(ndev);
1350 struct sh_eth_txdesc *txdesc;
1351 int free_num = 0;
1352 int entry;
1354 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1355 entry = mdp->dirty_tx % mdp->num_tx_ring;
1356 txdesc = &mdp->tx_ring[entry];
1357 if (txdesc->status & cpu_to_le32(TD_TACT))
1358 break;
1359 /* TACT bit must be checked before all the following reads */
1360 dma_rmb();
1361 netif_info(mdp, tx_done, ndev,
1362 "tx entry %d status 0x%08x\n",
1363 entry, le32_to_cpu(txdesc->status));
1364 /* Free the original skb. */
1365 if (mdp->tx_skbuff[entry]) {
1366 dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1367 le32_to_cpu(txdesc->len) >> 16,
1368 DMA_TO_DEVICE);
1369 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1370 mdp->tx_skbuff[entry] = NULL;
1371 free_num++;
1373 txdesc->status = cpu_to_le32(TD_TFP);
1374 if (entry >= mdp->num_tx_ring - 1)
1375 txdesc->status |= cpu_to_le32(TD_TDLE);
1377 ndev->stats.tx_packets++;
1378 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1380 return free_num;
1383 /* Packet receive function */
1384 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1386 struct sh_eth_private *mdp = netdev_priv(ndev);
1387 struct sh_eth_rxdesc *rxdesc;
1389 int entry = mdp->cur_rx % mdp->num_rx_ring;
1390 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1391 int limit;
1392 struct sk_buff *skb;
1393 u32 desc_status;
1394 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1395 dma_addr_t dma_addr;
1396 u16 pkt_len;
1397 u32 buf_len;
1399 boguscnt = min(boguscnt, *quota);
1400 limit = boguscnt;
1401 rxdesc = &mdp->rx_ring[entry];
1402 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1403 /* RACT bit must be checked before all the following reads */
1404 dma_rmb();
1405 desc_status = le32_to_cpu(rxdesc->status);
1406 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1408 if (--boguscnt < 0)
1409 break;
1411 netif_info(mdp, rx_status, ndev,
1412 "rx entry %d status 0x%08x len %d\n",
1413 entry, desc_status, pkt_len);
1415 if (!(desc_status & RDFEND))
1416 ndev->stats.rx_length_errors++;
1418 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1419 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1420 * bit 0. However, in case of the R8A7740 and R7S72100
1421 * the RFS bits are from bit 25 to bit 16. So, the
1422 * driver needs right shifting by 16.
1424 if (mdp->cd->shift_rd0)
1425 desc_status >>= 16;
1427 skb = mdp->rx_skbuff[entry];
1428 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1429 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1430 ndev->stats.rx_errors++;
1431 if (desc_status & RD_RFS1)
1432 ndev->stats.rx_crc_errors++;
1433 if (desc_status & RD_RFS2)
1434 ndev->stats.rx_frame_errors++;
1435 if (desc_status & RD_RFS3)
1436 ndev->stats.rx_length_errors++;
1437 if (desc_status & RD_RFS4)
1438 ndev->stats.rx_length_errors++;
1439 if (desc_status & RD_RFS6)
1440 ndev->stats.rx_missed_errors++;
1441 if (desc_status & RD_RFS10)
1442 ndev->stats.rx_over_errors++;
1443 } else if (skb) {
1444 dma_addr = le32_to_cpu(rxdesc->addr);
1445 if (!mdp->cd->hw_swap)
1446 sh_eth_soft_swap(
1447 phys_to_virt(ALIGN(dma_addr, 4)),
1448 pkt_len + 2);
1449 mdp->rx_skbuff[entry] = NULL;
1450 if (mdp->cd->rpadir)
1451 skb_reserve(skb, NET_IP_ALIGN);
1452 dma_unmap_single(&ndev->dev, dma_addr,
1453 ALIGN(mdp->rx_buf_sz, 32),
1454 DMA_FROM_DEVICE);
1455 skb_put(skb, pkt_len);
1456 skb->protocol = eth_type_trans(skb, ndev);
1457 netif_receive_skb(skb);
1458 ndev->stats.rx_packets++;
1459 ndev->stats.rx_bytes += pkt_len;
1460 if (desc_status & RD_RFS8)
1461 ndev->stats.multicast++;
1463 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1464 rxdesc = &mdp->rx_ring[entry];
1467 /* Refill the Rx ring buffers. */
1468 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1469 entry = mdp->dirty_rx % mdp->num_rx_ring;
1470 rxdesc = &mdp->rx_ring[entry];
1471 /* The size of the buffer is 32 byte boundary. */
1472 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1473 rxdesc->len = cpu_to_le32(buf_len << 16);
1475 if (mdp->rx_skbuff[entry] == NULL) {
1476 skb = netdev_alloc_skb(ndev, skbuff_size);
1477 if (skb == NULL)
1478 break; /* Better luck next round. */
1479 sh_eth_set_receive_align(skb);
1480 dma_addr = dma_map_single(&ndev->dev, skb->data,
1481 buf_len, DMA_FROM_DEVICE);
1482 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1483 kfree_skb(skb);
1484 break;
1486 mdp->rx_skbuff[entry] = skb;
1488 skb_checksum_none_assert(skb);
1489 rxdesc->addr = cpu_to_le32(dma_addr);
1491 dma_wmb(); /* RACT bit must be set after all the above writes */
1492 if (entry >= mdp->num_rx_ring - 1)
1493 rxdesc->status |=
1494 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1495 else
1496 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1499 /* Restart Rx engine if stopped. */
1500 /* If we don't need to check status, don't. -KDU */
1501 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1502 /* fix the values for the next receiving if RDE is set */
1503 if (intr_status & EESR_RDE &&
1504 mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1505 u32 count = (sh_eth_read(ndev, RDFAR) -
1506 sh_eth_read(ndev, RDLAR)) >> 4;
1508 mdp->cur_rx = count;
1509 mdp->dirty_rx = count;
1511 sh_eth_write(ndev, EDRRR_R, EDRRR);
1514 *quota -= limit - boguscnt - 1;
1516 return *quota <= 0;
1519 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1521 /* disable tx and rx */
1522 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1525 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1527 /* enable tx and rx */
1528 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1531 /* error control function */
1532 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1534 struct sh_eth_private *mdp = netdev_priv(ndev);
1535 u32 felic_stat;
1536 u32 link_stat;
1537 u32 mask;
1539 if (intr_status & EESR_ECI) {
1540 felic_stat = sh_eth_read(ndev, ECSR);
1541 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1542 if (felic_stat & ECSR_ICD)
1543 ndev->stats.tx_carrier_errors++;
1544 if (felic_stat & ECSR_LCHNG) {
1545 /* Link Changed */
1546 if (mdp->cd->no_psr || mdp->no_ether_link) {
1547 goto ignore_link;
1548 } else {
1549 link_stat = (sh_eth_read(ndev, PSR));
1550 if (mdp->ether_link_active_low)
1551 link_stat = ~link_stat;
1553 if (!(link_stat & PHY_ST_LINK)) {
1554 sh_eth_rcv_snd_disable(ndev);
1555 } else {
1556 /* Link Up */
1557 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 0);
1558 /* clear int */
1559 sh_eth_modify(ndev, ECSR, 0, 0);
1560 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI,
1561 DMAC_M_ECI);
1562 /* enable tx and rx */
1563 sh_eth_rcv_snd_enable(ndev);
1568 ignore_link:
1569 if (intr_status & EESR_TWB) {
1570 /* Unused write back interrupt */
1571 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1572 ndev->stats.tx_aborted_errors++;
1573 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1577 if (intr_status & EESR_RABT) {
1578 /* Receive Abort int */
1579 if (intr_status & EESR_RFRMER) {
1580 /* Receive Frame Overflow int */
1581 ndev->stats.rx_frame_errors++;
1585 if (intr_status & EESR_TDE) {
1586 /* Transmit Descriptor Empty int */
1587 ndev->stats.tx_fifo_errors++;
1588 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1591 if (intr_status & EESR_TFE) {
1592 /* FIFO under flow */
1593 ndev->stats.tx_fifo_errors++;
1594 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1597 if (intr_status & EESR_RDE) {
1598 /* Receive Descriptor Empty int */
1599 ndev->stats.rx_over_errors++;
1602 if (intr_status & EESR_RFE) {
1603 /* Receive FIFO Overflow int */
1604 ndev->stats.rx_fifo_errors++;
1607 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1608 /* Address Error */
1609 ndev->stats.tx_fifo_errors++;
1610 netif_err(mdp, tx_err, ndev, "Address Error\n");
1613 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1614 if (mdp->cd->no_ade)
1615 mask &= ~EESR_ADE;
1616 if (intr_status & mask) {
1617 /* Tx error */
1618 u32 edtrr = sh_eth_read(ndev, EDTRR);
1620 /* dmesg */
1621 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1622 intr_status, mdp->cur_tx, mdp->dirty_tx,
1623 (u32)ndev->state, edtrr);
1624 /* dirty buffer free */
1625 sh_eth_txfree(ndev);
1627 /* SH7712 BUG */
1628 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1629 /* tx dma start */
1630 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1632 /* wakeup */
1633 netif_wake_queue(ndev);
1637 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1639 struct net_device *ndev = netdev;
1640 struct sh_eth_private *mdp = netdev_priv(ndev);
1641 struct sh_eth_cpu_data *cd = mdp->cd;
1642 irqreturn_t ret = IRQ_NONE;
1643 u32 intr_status, intr_enable;
1645 spin_lock(&mdp->lock);
1647 /* Get interrupt status */
1648 intr_status = sh_eth_read(ndev, EESR);
1649 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1650 * enabled since it's the one that comes thru regardless of the mask,
1651 * and we need to fully handle it in sh_eth_error() in order to quench
1652 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1654 intr_enable = sh_eth_read(ndev, EESIPR);
1655 intr_status &= intr_enable | DMAC_M_ECI;
1656 if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1657 ret = IRQ_HANDLED;
1658 else
1659 goto out;
1661 if (unlikely(!mdp->irq_enabled)) {
1662 sh_eth_write(ndev, 0, EESIPR);
1663 goto out;
1666 if (intr_status & EESR_RX_CHECK) {
1667 if (napi_schedule_prep(&mdp->napi)) {
1668 /* Mask Rx interrupts */
1669 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1670 EESIPR);
1671 __napi_schedule(&mdp->napi);
1672 } else {
1673 netdev_warn(ndev,
1674 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1675 intr_status, intr_enable);
1679 /* Tx Check */
1680 if (intr_status & cd->tx_check) {
1681 /* Clear Tx interrupts */
1682 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1684 sh_eth_txfree(ndev);
1685 netif_wake_queue(ndev);
1688 if (intr_status & cd->eesr_err_check) {
1689 /* Clear error interrupts */
1690 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1692 sh_eth_error(ndev, intr_status);
1695 out:
1696 spin_unlock(&mdp->lock);
1698 return ret;
1701 static int sh_eth_poll(struct napi_struct *napi, int budget)
1703 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1704 napi);
1705 struct net_device *ndev = napi->dev;
1706 int quota = budget;
1707 u32 intr_status;
1709 for (;;) {
1710 intr_status = sh_eth_read(ndev, EESR);
1711 if (!(intr_status & EESR_RX_CHECK))
1712 break;
1713 /* Clear Rx interrupts */
1714 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1716 if (sh_eth_rx(ndev, intr_status, &quota))
1717 goto out;
1720 napi_complete(napi);
1722 /* Reenable Rx interrupts */
1723 if (mdp->irq_enabled)
1724 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1725 out:
1726 return budget - quota;
1729 /* PHY state control function */
1730 static void sh_eth_adjust_link(struct net_device *ndev)
1732 struct sh_eth_private *mdp = netdev_priv(ndev);
1733 struct phy_device *phydev = ndev->phydev;
1734 int new_state = 0;
1736 if (phydev->link) {
1737 if (phydev->duplex != mdp->duplex) {
1738 new_state = 1;
1739 mdp->duplex = phydev->duplex;
1740 if (mdp->cd->set_duplex)
1741 mdp->cd->set_duplex(ndev);
1744 if (phydev->speed != mdp->speed) {
1745 new_state = 1;
1746 mdp->speed = phydev->speed;
1747 if (mdp->cd->set_rate)
1748 mdp->cd->set_rate(ndev);
1750 if (!mdp->link) {
1751 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1752 new_state = 1;
1753 mdp->link = phydev->link;
1754 if (mdp->cd->no_psr || mdp->no_ether_link)
1755 sh_eth_rcv_snd_enable(ndev);
1757 } else if (mdp->link) {
1758 new_state = 1;
1759 mdp->link = 0;
1760 mdp->speed = 0;
1761 mdp->duplex = -1;
1762 if (mdp->cd->no_psr || mdp->no_ether_link)
1763 sh_eth_rcv_snd_disable(ndev);
1766 if (new_state && netif_msg_link(mdp))
1767 phy_print_status(phydev);
1770 /* PHY init function */
1771 static int sh_eth_phy_init(struct net_device *ndev)
1773 struct device_node *np = ndev->dev.parent->of_node;
1774 struct sh_eth_private *mdp = netdev_priv(ndev);
1775 struct phy_device *phydev;
1777 mdp->link = 0;
1778 mdp->speed = 0;
1779 mdp->duplex = -1;
1781 /* Try connect to PHY */
1782 if (np) {
1783 struct device_node *pn;
1785 pn = of_parse_phandle(np, "phy-handle", 0);
1786 phydev = of_phy_connect(ndev, pn,
1787 sh_eth_adjust_link, 0,
1788 mdp->phy_interface);
1790 of_node_put(pn);
1791 if (!phydev)
1792 phydev = ERR_PTR(-ENOENT);
1793 } else {
1794 char phy_id[MII_BUS_ID_SIZE + 3];
1796 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1797 mdp->mii_bus->id, mdp->phy_id);
1799 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1800 mdp->phy_interface);
1803 if (IS_ERR(phydev)) {
1804 netdev_err(ndev, "failed to connect PHY\n");
1805 return PTR_ERR(phydev);
1808 phy_attached_info(phydev);
1810 return 0;
1813 /* PHY control start function */
1814 static int sh_eth_phy_start(struct net_device *ndev)
1816 int ret;
1818 ret = sh_eth_phy_init(ndev);
1819 if (ret)
1820 return ret;
1822 phy_start(ndev->phydev);
1824 return 0;
1827 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1828 struct ethtool_link_ksettings *cmd)
1830 struct sh_eth_private *mdp = netdev_priv(ndev);
1831 unsigned long flags;
1832 int ret;
1834 if (!ndev->phydev)
1835 return -ENODEV;
1837 spin_lock_irqsave(&mdp->lock, flags);
1838 ret = phy_ethtool_ksettings_get(ndev->phydev, cmd);
1839 spin_unlock_irqrestore(&mdp->lock, flags);
1841 return ret;
1844 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1845 const struct ethtool_link_ksettings *cmd)
1847 struct sh_eth_private *mdp = netdev_priv(ndev);
1848 unsigned long flags;
1849 int ret;
1851 if (!ndev->phydev)
1852 return -ENODEV;
1854 spin_lock_irqsave(&mdp->lock, flags);
1856 /* disable tx and rx */
1857 sh_eth_rcv_snd_disable(ndev);
1859 ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1860 if (ret)
1861 goto error_exit;
1863 if (cmd->base.duplex == DUPLEX_FULL)
1864 mdp->duplex = 1;
1865 else
1866 mdp->duplex = 0;
1868 if (mdp->cd->set_duplex)
1869 mdp->cd->set_duplex(ndev);
1871 error_exit:
1872 mdelay(1);
1874 /* enable tx and rx */
1875 sh_eth_rcv_snd_enable(ndev);
1877 spin_unlock_irqrestore(&mdp->lock, flags);
1879 return ret;
1882 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1883 * version must be bumped as well. Just adding registers up to that
1884 * limit is fine, as long as the existing register indices don't
1885 * change.
1887 #define SH_ETH_REG_DUMP_VERSION 1
1888 #define SH_ETH_REG_DUMP_MAX_REGS 256
1890 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1892 struct sh_eth_private *mdp = netdev_priv(ndev);
1893 struct sh_eth_cpu_data *cd = mdp->cd;
1894 u32 *valid_map;
1895 size_t len;
1897 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1899 /* Dump starts with a bitmap that tells ethtool which
1900 * registers are defined for this chip.
1902 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1903 if (buf) {
1904 valid_map = buf;
1905 buf += len;
1906 } else {
1907 valid_map = NULL;
1910 /* Add a register to the dump, if it has a defined offset.
1911 * This automatically skips most undefined registers, but for
1912 * some it is also necessary to check a capability flag in
1913 * struct sh_eth_cpu_data.
1915 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1916 #define add_reg_from(reg, read_expr) do { \
1917 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
1918 if (buf) { \
1919 mark_reg_valid(reg); \
1920 *buf++ = read_expr; \
1922 ++len; \
1924 } while (0)
1925 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1926 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1928 add_reg(EDSR);
1929 add_reg(EDMR);
1930 add_reg(EDTRR);
1931 add_reg(EDRRR);
1932 add_reg(EESR);
1933 add_reg(EESIPR);
1934 add_reg(TDLAR);
1935 add_reg(TDFAR);
1936 add_reg(TDFXR);
1937 add_reg(TDFFR);
1938 add_reg(RDLAR);
1939 add_reg(RDFAR);
1940 add_reg(RDFXR);
1941 add_reg(RDFFR);
1942 add_reg(TRSCER);
1943 add_reg(RMFCR);
1944 add_reg(TFTR);
1945 add_reg(FDR);
1946 add_reg(RMCR);
1947 add_reg(TFUCR);
1948 add_reg(RFOCR);
1949 if (cd->rmiimode)
1950 add_reg(RMIIMODE);
1951 add_reg(FCFTR);
1952 if (cd->rpadir)
1953 add_reg(RPADIR);
1954 if (!cd->no_trimd)
1955 add_reg(TRIMD);
1956 add_reg(ECMR);
1957 add_reg(ECSR);
1958 add_reg(ECSIPR);
1959 add_reg(PIR);
1960 if (!cd->no_psr)
1961 add_reg(PSR);
1962 add_reg(RDMLR);
1963 add_reg(RFLR);
1964 add_reg(IPGR);
1965 if (cd->apr)
1966 add_reg(APR);
1967 if (cd->mpr)
1968 add_reg(MPR);
1969 add_reg(RFCR);
1970 add_reg(RFCF);
1971 if (cd->tpauser)
1972 add_reg(TPAUSER);
1973 add_reg(TPAUSECR);
1974 add_reg(GECMR);
1975 if (cd->bculr)
1976 add_reg(BCULR);
1977 add_reg(MAHR);
1978 add_reg(MALR);
1979 add_reg(TROCR);
1980 add_reg(CDCR);
1981 add_reg(LCCR);
1982 add_reg(CNDCR);
1983 add_reg(CEFCR);
1984 add_reg(FRECR);
1985 add_reg(TSFRCR);
1986 add_reg(TLFRCR);
1987 add_reg(CERCR);
1988 add_reg(CEECR);
1989 add_reg(MAFCR);
1990 if (cd->rtrate)
1991 add_reg(RTRATE);
1992 if (cd->hw_crc)
1993 add_reg(CSMR);
1994 if (cd->select_mii)
1995 add_reg(RMII_MII);
1996 add_reg(ARSTR);
1997 if (cd->tsu) {
1998 add_tsu_reg(TSU_CTRST);
1999 add_tsu_reg(TSU_FWEN0);
2000 add_tsu_reg(TSU_FWEN1);
2001 add_tsu_reg(TSU_FCM);
2002 add_tsu_reg(TSU_BSYSL0);
2003 add_tsu_reg(TSU_BSYSL1);
2004 add_tsu_reg(TSU_PRISL0);
2005 add_tsu_reg(TSU_PRISL1);
2006 add_tsu_reg(TSU_FWSL0);
2007 add_tsu_reg(TSU_FWSL1);
2008 add_tsu_reg(TSU_FWSLC);
2009 add_tsu_reg(TSU_QTAG0);
2010 add_tsu_reg(TSU_QTAG1);
2011 add_tsu_reg(TSU_QTAGM0);
2012 add_tsu_reg(TSU_QTAGM1);
2013 add_tsu_reg(TSU_FWSR);
2014 add_tsu_reg(TSU_FWINMK);
2015 add_tsu_reg(TSU_ADQT0);
2016 add_tsu_reg(TSU_ADQT1);
2017 add_tsu_reg(TSU_VTAG0);
2018 add_tsu_reg(TSU_VTAG1);
2019 add_tsu_reg(TSU_ADSBSY);
2020 add_tsu_reg(TSU_TEN);
2021 add_tsu_reg(TSU_POST1);
2022 add_tsu_reg(TSU_POST2);
2023 add_tsu_reg(TSU_POST3);
2024 add_tsu_reg(TSU_POST4);
2025 if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2026 /* This is the start of a table, not just a single
2027 * register.
2029 if (buf) {
2030 unsigned int i;
2032 mark_reg_valid(TSU_ADRH0);
2033 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2034 *buf++ = ioread32(
2035 mdp->tsu_addr +
2036 mdp->reg_offset[TSU_ADRH0] +
2037 i * 4);
2039 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2043 #undef mark_reg_valid
2044 #undef add_reg_from
2045 #undef add_reg
2046 #undef add_tsu_reg
2048 return len * 4;
2051 static int sh_eth_get_regs_len(struct net_device *ndev)
2053 return __sh_eth_get_regs(ndev, NULL);
2056 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2057 void *buf)
2059 struct sh_eth_private *mdp = netdev_priv(ndev);
2061 regs->version = SH_ETH_REG_DUMP_VERSION;
2063 pm_runtime_get_sync(&mdp->pdev->dev);
2064 __sh_eth_get_regs(ndev, buf);
2065 pm_runtime_put_sync(&mdp->pdev->dev);
2068 static int sh_eth_nway_reset(struct net_device *ndev)
2070 struct sh_eth_private *mdp = netdev_priv(ndev);
2071 unsigned long flags;
2072 int ret;
2074 if (!ndev->phydev)
2075 return -ENODEV;
2077 spin_lock_irqsave(&mdp->lock, flags);
2078 ret = phy_start_aneg(ndev->phydev);
2079 spin_unlock_irqrestore(&mdp->lock, flags);
2081 return ret;
2084 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2086 struct sh_eth_private *mdp = netdev_priv(ndev);
2087 return mdp->msg_enable;
2090 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2092 struct sh_eth_private *mdp = netdev_priv(ndev);
2093 mdp->msg_enable = value;
2096 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2097 "rx_current", "tx_current",
2098 "rx_dirty", "tx_dirty",
2100 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2102 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2104 switch (sset) {
2105 case ETH_SS_STATS:
2106 return SH_ETH_STATS_LEN;
2107 default:
2108 return -EOPNOTSUPP;
2112 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2113 struct ethtool_stats *stats, u64 *data)
2115 struct sh_eth_private *mdp = netdev_priv(ndev);
2116 int i = 0;
2118 /* device-specific stats */
2119 data[i++] = mdp->cur_rx;
2120 data[i++] = mdp->cur_tx;
2121 data[i++] = mdp->dirty_rx;
2122 data[i++] = mdp->dirty_tx;
2125 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2127 switch (stringset) {
2128 case ETH_SS_STATS:
2129 memcpy(data, *sh_eth_gstrings_stats,
2130 sizeof(sh_eth_gstrings_stats));
2131 break;
2135 static void sh_eth_get_ringparam(struct net_device *ndev,
2136 struct ethtool_ringparam *ring)
2138 struct sh_eth_private *mdp = netdev_priv(ndev);
2140 ring->rx_max_pending = RX_RING_MAX;
2141 ring->tx_max_pending = TX_RING_MAX;
2142 ring->rx_pending = mdp->num_rx_ring;
2143 ring->tx_pending = mdp->num_tx_ring;
2146 static int sh_eth_set_ringparam(struct net_device *ndev,
2147 struct ethtool_ringparam *ring)
2149 struct sh_eth_private *mdp = netdev_priv(ndev);
2150 int ret;
2152 if (ring->tx_pending > TX_RING_MAX ||
2153 ring->rx_pending > RX_RING_MAX ||
2154 ring->tx_pending < TX_RING_MIN ||
2155 ring->rx_pending < RX_RING_MIN)
2156 return -EINVAL;
2157 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2158 return -EINVAL;
2160 if (netif_running(ndev)) {
2161 netif_device_detach(ndev);
2162 netif_tx_disable(ndev);
2164 /* Serialise with the interrupt handler and NAPI, then
2165 * disable interrupts. We have to clear the
2166 * irq_enabled flag first to ensure that interrupts
2167 * won't be re-enabled.
2169 mdp->irq_enabled = false;
2170 synchronize_irq(ndev->irq);
2171 napi_synchronize(&mdp->napi);
2172 sh_eth_write(ndev, 0x0000, EESIPR);
2174 sh_eth_dev_exit(ndev);
2176 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2177 sh_eth_ring_free(ndev);
2180 /* Set new parameters */
2181 mdp->num_rx_ring = ring->rx_pending;
2182 mdp->num_tx_ring = ring->tx_pending;
2184 if (netif_running(ndev)) {
2185 ret = sh_eth_ring_init(ndev);
2186 if (ret < 0) {
2187 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2188 __func__);
2189 return ret;
2191 ret = sh_eth_dev_init(ndev);
2192 if (ret < 0) {
2193 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2194 __func__);
2195 return ret;
2198 netif_device_attach(ndev);
2201 return 0;
2204 static const struct ethtool_ops sh_eth_ethtool_ops = {
2205 .get_regs_len = sh_eth_get_regs_len,
2206 .get_regs = sh_eth_get_regs,
2207 .nway_reset = sh_eth_nway_reset,
2208 .get_msglevel = sh_eth_get_msglevel,
2209 .set_msglevel = sh_eth_set_msglevel,
2210 .get_link = ethtool_op_get_link,
2211 .get_strings = sh_eth_get_strings,
2212 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2213 .get_sset_count = sh_eth_get_sset_count,
2214 .get_ringparam = sh_eth_get_ringparam,
2215 .set_ringparam = sh_eth_set_ringparam,
2216 .get_link_ksettings = sh_eth_get_link_ksettings,
2217 .set_link_ksettings = sh_eth_set_link_ksettings,
2220 /* network device open function */
2221 static int sh_eth_open(struct net_device *ndev)
2223 struct sh_eth_private *mdp = netdev_priv(ndev);
2224 int ret;
2226 pm_runtime_get_sync(&mdp->pdev->dev);
2228 napi_enable(&mdp->napi);
2230 ret = request_irq(ndev->irq, sh_eth_interrupt,
2231 mdp->cd->irq_flags, ndev->name, ndev);
2232 if (ret) {
2233 netdev_err(ndev, "Can not assign IRQ number\n");
2234 goto out_napi_off;
2237 /* Descriptor set */
2238 ret = sh_eth_ring_init(ndev);
2239 if (ret)
2240 goto out_free_irq;
2242 /* device init */
2243 ret = sh_eth_dev_init(ndev);
2244 if (ret)
2245 goto out_free_irq;
2247 /* PHY control start*/
2248 ret = sh_eth_phy_start(ndev);
2249 if (ret)
2250 goto out_free_irq;
2252 netif_start_queue(ndev);
2254 mdp->is_opened = 1;
2256 return ret;
2258 out_free_irq:
2259 free_irq(ndev->irq, ndev);
2260 out_napi_off:
2261 napi_disable(&mdp->napi);
2262 pm_runtime_put_sync(&mdp->pdev->dev);
2263 return ret;
2266 /* Timeout function */
2267 static void sh_eth_tx_timeout(struct net_device *ndev)
2269 struct sh_eth_private *mdp = netdev_priv(ndev);
2270 struct sh_eth_rxdesc *rxdesc;
2271 int i;
2273 netif_stop_queue(ndev);
2275 netif_err(mdp, timer, ndev,
2276 "transmit timed out, status %8.8x, resetting...\n",
2277 sh_eth_read(ndev, EESR));
2279 /* tx_errors count up */
2280 ndev->stats.tx_errors++;
2282 /* Free all the skbuffs in the Rx queue. */
2283 for (i = 0; i < mdp->num_rx_ring; i++) {
2284 rxdesc = &mdp->rx_ring[i];
2285 rxdesc->status = cpu_to_le32(0);
2286 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2287 dev_kfree_skb(mdp->rx_skbuff[i]);
2288 mdp->rx_skbuff[i] = NULL;
2290 for (i = 0; i < mdp->num_tx_ring; i++) {
2291 dev_kfree_skb(mdp->tx_skbuff[i]);
2292 mdp->tx_skbuff[i] = NULL;
2295 /* device init */
2296 sh_eth_dev_init(ndev);
2298 netif_start_queue(ndev);
2301 /* Packet transmit function */
2302 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2304 struct sh_eth_private *mdp = netdev_priv(ndev);
2305 struct sh_eth_txdesc *txdesc;
2306 dma_addr_t dma_addr;
2307 u32 entry;
2308 unsigned long flags;
2310 spin_lock_irqsave(&mdp->lock, flags);
2311 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2312 if (!sh_eth_txfree(ndev)) {
2313 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2314 netif_stop_queue(ndev);
2315 spin_unlock_irqrestore(&mdp->lock, flags);
2316 return NETDEV_TX_BUSY;
2319 spin_unlock_irqrestore(&mdp->lock, flags);
2321 if (skb_put_padto(skb, ETH_ZLEN))
2322 return NETDEV_TX_OK;
2324 entry = mdp->cur_tx % mdp->num_tx_ring;
2325 mdp->tx_skbuff[entry] = skb;
2326 txdesc = &mdp->tx_ring[entry];
2327 /* soft swap. */
2328 if (!mdp->cd->hw_swap)
2329 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2330 dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2331 DMA_TO_DEVICE);
2332 if (dma_mapping_error(&ndev->dev, dma_addr)) {
2333 kfree_skb(skb);
2334 return NETDEV_TX_OK;
2336 txdesc->addr = cpu_to_le32(dma_addr);
2337 txdesc->len = cpu_to_le32(skb->len << 16);
2339 dma_wmb(); /* TACT bit must be set after all the above writes */
2340 if (entry >= mdp->num_tx_ring - 1)
2341 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2342 else
2343 txdesc->status |= cpu_to_le32(TD_TACT);
2345 mdp->cur_tx++;
2347 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2348 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2350 return NETDEV_TX_OK;
2353 /* The statistics registers have write-clear behaviour, which means we
2354 * will lose any increment between the read and write. We mitigate
2355 * this by only clearing when we read a non-zero value, so we will
2356 * never falsely report a total of zero.
2358 static void
2359 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2361 u32 delta = sh_eth_read(ndev, reg);
2363 if (delta) {
2364 *stat += delta;
2365 sh_eth_write(ndev, 0, reg);
2369 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2371 struct sh_eth_private *mdp = netdev_priv(ndev);
2373 if (sh_eth_is_rz_fast_ether(mdp))
2374 return &ndev->stats;
2376 if (!mdp->is_opened)
2377 return &ndev->stats;
2379 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2380 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2381 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2383 if (sh_eth_is_gether(mdp)) {
2384 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2385 CERCR);
2386 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2387 CEECR);
2388 } else {
2389 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2390 CNDCR);
2393 return &ndev->stats;
2396 /* device close function */
2397 static int sh_eth_close(struct net_device *ndev)
2399 struct sh_eth_private *mdp = netdev_priv(ndev);
2401 netif_stop_queue(ndev);
2403 /* Serialise with the interrupt handler and NAPI, then disable
2404 * interrupts. We have to clear the irq_enabled flag first to
2405 * ensure that interrupts won't be re-enabled.
2407 mdp->irq_enabled = false;
2408 synchronize_irq(ndev->irq);
2409 napi_disable(&mdp->napi);
2410 sh_eth_write(ndev, 0x0000, EESIPR);
2412 sh_eth_dev_exit(ndev);
2414 /* PHY Disconnect */
2415 if (ndev->phydev) {
2416 phy_stop(ndev->phydev);
2417 phy_disconnect(ndev->phydev);
2420 free_irq(ndev->irq, ndev);
2422 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2423 sh_eth_ring_free(ndev);
2425 pm_runtime_put_sync(&mdp->pdev->dev);
2427 mdp->is_opened = 0;
2429 return 0;
2432 /* ioctl to device function */
2433 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2435 struct phy_device *phydev = ndev->phydev;
2437 if (!netif_running(ndev))
2438 return -EINVAL;
2440 if (!phydev)
2441 return -ENODEV;
2443 return phy_mii_ioctl(phydev, rq, cmd);
2446 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2447 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2448 int entry)
2450 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2453 static u32 sh_eth_tsu_get_post_mask(int entry)
2455 return 0x0f << (28 - ((entry % 8) * 4));
2458 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2460 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2463 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2464 int entry)
2466 struct sh_eth_private *mdp = netdev_priv(ndev);
2467 u32 tmp;
2468 void *reg_offset;
2470 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2471 tmp = ioread32(reg_offset);
2472 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2475 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2476 int entry)
2478 struct sh_eth_private *mdp = netdev_priv(ndev);
2479 u32 post_mask, ref_mask, tmp;
2480 void *reg_offset;
2482 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2483 post_mask = sh_eth_tsu_get_post_mask(entry);
2484 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2486 tmp = ioread32(reg_offset);
2487 iowrite32(tmp & ~post_mask, reg_offset);
2489 /* If other port enables, the function returns "true" */
2490 return tmp & ref_mask;
2493 static int sh_eth_tsu_busy(struct net_device *ndev)
2495 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2496 struct sh_eth_private *mdp = netdev_priv(ndev);
2498 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2499 udelay(10);
2500 timeout--;
2501 if (timeout <= 0) {
2502 netdev_err(ndev, "%s: timeout\n", __func__);
2503 return -ETIMEDOUT;
2507 return 0;
2510 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2511 const u8 *addr)
2513 u32 val;
2515 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2516 iowrite32(val, reg);
2517 if (sh_eth_tsu_busy(ndev) < 0)
2518 return -EBUSY;
2520 val = addr[4] << 8 | addr[5];
2521 iowrite32(val, reg + 4);
2522 if (sh_eth_tsu_busy(ndev) < 0)
2523 return -EBUSY;
2525 return 0;
2528 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2530 u32 val;
2532 val = ioread32(reg);
2533 addr[0] = (val >> 24) & 0xff;
2534 addr[1] = (val >> 16) & 0xff;
2535 addr[2] = (val >> 8) & 0xff;
2536 addr[3] = val & 0xff;
2537 val = ioread32(reg + 4);
2538 addr[4] = (val >> 8) & 0xff;
2539 addr[5] = val & 0xff;
2543 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2545 struct sh_eth_private *mdp = netdev_priv(ndev);
2546 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2547 int i;
2548 u8 c_addr[ETH_ALEN];
2550 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2551 sh_eth_tsu_read_entry(reg_offset, c_addr);
2552 if (ether_addr_equal(addr, c_addr))
2553 return i;
2556 return -ENOENT;
2559 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2561 u8 blank[ETH_ALEN];
2562 int entry;
2564 memset(blank, 0, sizeof(blank));
2565 entry = sh_eth_tsu_find_entry(ndev, blank);
2566 return (entry < 0) ? -ENOMEM : entry;
2569 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2570 int entry)
2572 struct sh_eth_private *mdp = netdev_priv(ndev);
2573 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2574 int ret;
2575 u8 blank[ETH_ALEN];
2577 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2578 ~(1 << (31 - entry)), TSU_TEN);
2580 memset(blank, 0, sizeof(blank));
2581 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2582 if (ret < 0)
2583 return ret;
2584 return 0;
2587 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2589 struct sh_eth_private *mdp = netdev_priv(ndev);
2590 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2591 int i, ret;
2593 if (!mdp->cd->tsu)
2594 return 0;
2596 i = sh_eth_tsu_find_entry(ndev, addr);
2597 if (i < 0) {
2598 /* No entry found, create one */
2599 i = sh_eth_tsu_find_empty(ndev);
2600 if (i < 0)
2601 return -ENOMEM;
2602 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2603 if (ret < 0)
2604 return ret;
2606 /* Enable the entry */
2607 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2608 (1 << (31 - i)), TSU_TEN);
2611 /* Entry found or created, enable POST */
2612 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2614 return 0;
2617 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2619 struct sh_eth_private *mdp = netdev_priv(ndev);
2620 int i, ret;
2622 if (!mdp->cd->tsu)
2623 return 0;
2625 i = sh_eth_tsu_find_entry(ndev, addr);
2626 if (i) {
2627 /* Entry found */
2628 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2629 goto done;
2631 /* Disable the entry if both ports was disabled */
2632 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2633 if (ret < 0)
2634 return ret;
2636 done:
2637 return 0;
2640 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2642 struct sh_eth_private *mdp = netdev_priv(ndev);
2643 int i, ret;
2645 if (!mdp->cd->tsu)
2646 return 0;
2648 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2649 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2650 continue;
2652 /* Disable the entry if both ports was disabled */
2653 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2654 if (ret < 0)
2655 return ret;
2658 return 0;
2661 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2663 struct sh_eth_private *mdp = netdev_priv(ndev);
2664 u8 addr[ETH_ALEN];
2665 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2666 int i;
2668 if (!mdp->cd->tsu)
2669 return;
2671 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2672 sh_eth_tsu_read_entry(reg_offset, addr);
2673 if (is_multicast_ether_addr(addr))
2674 sh_eth_tsu_del_entry(ndev, addr);
2678 /* Update promiscuous flag and multicast filter */
2679 static void sh_eth_set_rx_mode(struct net_device *ndev)
2681 struct sh_eth_private *mdp = netdev_priv(ndev);
2682 u32 ecmr_bits;
2683 int mcast_all = 0;
2684 unsigned long flags;
2686 spin_lock_irqsave(&mdp->lock, flags);
2687 /* Initial condition is MCT = 1, PRM = 0.
2688 * Depending on ndev->flags, set PRM or clear MCT
2690 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2691 if (mdp->cd->tsu)
2692 ecmr_bits |= ECMR_MCT;
2694 if (!(ndev->flags & IFF_MULTICAST)) {
2695 sh_eth_tsu_purge_mcast(ndev);
2696 mcast_all = 1;
2698 if (ndev->flags & IFF_ALLMULTI) {
2699 sh_eth_tsu_purge_mcast(ndev);
2700 ecmr_bits &= ~ECMR_MCT;
2701 mcast_all = 1;
2704 if (ndev->flags & IFF_PROMISC) {
2705 sh_eth_tsu_purge_all(ndev);
2706 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2707 } else if (mdp->cd->tsu) {
2708 struct netdev_hw_addr *ha;
2709 netdev_for_each_mc_addr(ha, ndev) {
2710 if (mcast_all && is_multicast_ether_addr(ha->addr))
2711 continue;
2713 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2714 if (!mcast_all) {
2715 sh_eth_tsu_purge_mcast(ndev);
2716 ecmr_bits &= ~ECMR_MCT;
2717 mcast_all = 1;
2723 /* update the ethernet mode */
2724 sh_eth_write(ndev, ecmr_bits, ECMR);
2726 spin_unlock_irqrestore(&mdp->lock, flags);
2729 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2731 if (!mdp->port)
2732 return TSU_VTAG0;
2733 else
2734 return TSU_VTAG1;
2737 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2738 __be16 proto, u16 vid)
2740 struct sh_eth_private *mdp = netdev_priv(ndev);
2741 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2743 if (unlikely(!mdp->cd->tsu))
2744 return -EPERM;
2746 /* No filtering if vid = 0 */
2747 if (!vid)
2748 return 0;
2750 mdp->vlan_num_ids++;
2752 /* The controller has one VLAN tag HW filter. So, if the filter is
2753 * already enabled, the driver disables it and the filte
2755 if (mdp->vlan_num_ids > 1) {
2756 /* disable VLAN filter */
2757 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2758 return 0;
2761 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2762 vtag_reg_index);
2764 return 0;
2767 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2768 __be16 proto, u16 vid)
2770 struct sh_eth_private *mdp = netdev_priv(ndev);
2771 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2773 if (unlikely(!mdp->cd->tsu))
2774 return -EPERM;
2776 /* No filtering if vid = 0 */
2777 if (!vid)
2778 return 0;
2780 mdp->vlan_num_ids--;
2781 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2783 return 0;
2786 /* SuperH's TSU register init function */
2787 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2789 if (sh_eth_is_rz_fast_ether(mdp)) {
2790 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2791 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2792 TSU_FWSLC); /* Enable POST registers */
2793 return;
2796 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2797 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2798 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2799 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2800 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2801 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2802 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2803 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2804 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2805 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2806 if (sh_eth_is_gether(mdp)) {
2807 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2808 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2809 } else {
2810 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2811 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2813 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2814 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2815 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2816 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2817 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2818 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2819 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2822 /* MDIO bus release function */
2823 static int sh_mdio_release(struct sh_eth_private *mdp)
2825 /* unregister mdio bus */
2826 mdiobus_unregister(mdp->mii_bus);
2828 /* free bitbang info */
2829 free_mdio_bitbang(mdp->mii_bus);
2831 return 0;
2834 /* MDIO bus init function */
2835 static int sh_mdio_init(struct sh_eth_private *mdp,
2836 struct sh_eth_plat_data *pd)
2838 int ret;
2839 struct bb_info *bitbang;
2840 struct platform_device *pdev = mdp->pdev;
2841 struct device *dev = &mdp->pdev->dev;
2843 /* create bit control struct for PHY */
2844 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2845 if (!bitbang)
2846 return -ENOMEM;
2848 /* bitbang init */
2849 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2850 bitbang->set_gate = pd->set_mdio_gate;
2851 bitbang->ctrl.ops = &bb_ops;
2853 /* MII controller setting */
2854 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2855 if (!mdp->mii_bus)
2856 return -ENOMEM;
2858 /* Hook up MII support for ethtool */
2859 mdp->mii_bus->name = "sh_mii";
2860 mdp->mii_bus->parent = dev;
2861 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2862 pdev->name, pdev->id);
2864 /* register MDIO bus */
2865 if (dev->of_node) {
2866 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2867 } else {
2868 if (pd->phy_irq > 0)
2869 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2871 ret = mdiobus_register(mdp->mii_bus);
2874 if (ret)
2875 goto out_free_bus;
2877 return 0;
2879 out_free_bus:
2880 free_mdio_bitbang(mdp->mii_bus);
2881 return ret;
2884 static const u16 *sh_eth_get_register_offset(int register_type)
2886 const u16 *reg_offset = NULL;
2888 switch (register_type) {
2889 case SH_ETH_REG_GIGABIT:
2890 reg_offset = sh_eth_offset_gigabit;
2891 break;
2892 case SH_ETH_REG_FAST_RZ:
2893 reg_offset = sh_eth_offset_fast_rz;
2894 break;
2895 case SH_ETH_REG_FAST_RCAR:
2896 reg_offset = sh_eth_offset_fast_rcar;
2897 break;
2898 case SH_ETH_REG_FAST_SH4:
2899 reg_offset = sh_eth_offset_fast_sh4;
2900 break;
2901 case SH_ETH_REG_FAST_SH3_SH2:
2902 reg_offset = sh_eth_offset_fast_sh3_sh2;
2903 break;
2906 return reg_offset;
2909 static const struct net_device_ops sh_eth_netdev_ops = {
2910 .ndo_open = sh_eth_open,
2911 .ndo_stop = sh_eth_close,
2912 .ndo_start_xmit = sh_eth_start_xmit,
2913 .ndo_get_stats = sh_eth_get_stats,
2914 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2915 .ndo_tx_timeout = sh_eth_tx_timeout,
2916 .ndo_do_ioctl = sh_eth_do_ioctl,
2917 .ndo_validate_addr = eth_validate_addr,
2918 .ndo_set_mac_address = eth_mac_addr,
2921 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2922 .ndo_open = sh_eth_open,
2923 .ndo_stop = sh_eth_close,
2924 .ndo_start_xmit = sh_eth_start_xmit,
2925 .ndo_get_stats = sh_eth_get_stats,
2926 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2927 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
2928 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
2929 .ndo_tx_timeout = sh_eth_tx_timeout,
2930 .ndo_do_ioctl = sh_eth_do_ioctl,
2931 .ndo_validate_addr = eth_validate_addr,
2932 .ndo_set_mac_address = eth_mac_addr,
2935 #ifdef CONFIG_OF
2936 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2938 struct device_node *np = dev->of_node;
2939 struct sh_eth_plat_data *pdata;
2940 const char *mac_addr;
2942 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2943 if (!pdata)
2944 return NULL;
2946 pdata->phy_interface = of_get_phy_mode(np);
2948 mac_addr = of_get_mac_address(np);
2949 if (mac_addr)
2950 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2952 pdata->no_ether_link =
2953 of_property_read_bool(np, "renesas,no-ether-link");
2954 pdata->ether_link_active_low =
2955 of_property_read_bool(np, "renesas,ether-link-active-low");
2957 return pdata;
2960 static const struct of_device_id sh_eth_match_table[] = {
2961 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2962 { .compatible = "renesas,ether-r8a7743", .data = &r8a779x_data },
2963 { .compatible = "renesas,ether-r8a7745", .data = &r8a779x_data },
2964 { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2965 { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2966 { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2967 { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2968 { .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2969 { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2970 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2973 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2974 #else
2975 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2977 return NULL;
2979 #endif
2981 static int sh_eth_drv_probe(struct platform_device *pdev)
2983 struct resource *res;
2984 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2985 const struct platform_device_id *id = platform_get_device_id(pdev);
2986 struct sh_eth_private *mdp;
2987 struct net_device *ndev;
2988 int ret, devno;
2990 /* get base addr */
2991 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2993 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2994 if (!ndev)
2995 return -ENOMEM;
2997 pm_runtime_enable(&pdev->dev);
2998 pm_runtime_get_sync(&pdev->dev);
3000 devno = pdev->id;
3001 if (devno < 0)
3002 devno = 0;
3004 ret = platform_get_irq(pdev, 0);
3005 if (ret < 0)
3006 goto out_release;
3007 ndev->irq = ret;
3009 SET_NETDEV_DEV(ndev, &pdev->dev);
3011 mdp = netdev_priv(ndev);
3012 mdp->num_tx_ring = TX_RING_SIZE;
3013 mdp->num_rx_ring = RX_RING_SIZE;
3014 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3015 if (IS_ERR(mdp->addr)) {
3016 ret = PTR_ERR(mdp->addr);
3017 goto out_release;
3020 ndev->base_addr = res->start;
3022 spin_lock_init(&mdp->lock);
3023 mdp->pdev = pdev;
3025 if (pdev->dev.of_node)
3026 pd = sh_eth_parse_dt(&pdev->dev);
3027 if (!pd) {
3028 dev_err(&pdev->dev, "no platform data\n");
3029 ret = -EINVAL;
3030 goto out_release;
3033 /* get PHY ID */
3034 mdp->phy_id = pd->phy;
3035 mdp->phy_interface = pd->phy_interface;
3036 mdp->no_ether_link = pd->no_ether_link;
3037 mdp->ether_link_active_low = pd->ether_link_active_low;
3039 /* set cpu data */
3040 if (id)
3041 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3042 else
3043 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3045 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3046 if (!mdp->reg_offset) {
3047 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3048 mdp->cd->register_type);
3049 ret = -EINVAL;
3050 goto out_release;
3052 sh_eth_set_default_cpu_data(mdp->cd);
3054 /* set function */
3055 if (mdp->cd->tsu)
3056 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3057 else
3058 ndev->netdev_ops = &sh_eth_netdev_ops;
3059 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3060 ndev->watchdog_timeo = TX_TIMEOUT;
3062 /* debug message level */
3063 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3065 /* read and set MAC address */
3066 read_mac_address(ndev, pd->mac_addr);
3067 if (!is_valid_ether_addr(ndev->dev_addr)) {
3068 dev_warn(&pdev->dev,
3069 "no valid MAC address supplied, using a random one.\n");
3070 eth_hw_addr_random(ndev);
3073 /* ioremap the TSU registers */
3074 if (mdp->cd->tsu) {
3075 struct resource *rtsu;
3076 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3077 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3078 if (IS_ERR(mdp->tsu_addr)) {
3079 ret = PTR_ERR(mdp->tsu_addr);
3080 goto out_release;
3082 mdp->port = devno % 2;
3083 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3086 /* initialize first or needed device */
3087 if (!devno || pd->needs_init) {
3088 if (mdp->cd->chip_reset)
3089 mdp->cd->chip_reset(ndev);
3091 if (mdp->cd->tsu) {
3092 /* TSU init (Init only)*/
3093 sh_eth_tsu_init(mdp);
3097 if (mdp->cd->rmiimode)
3098 sh_eth_write(ndev, 0x1, RMIIMODE);
3100 /* MDIO bus init */
3101 ret = sh_mdio_init(mdp, pd);
3102 if (ret) {
3103 dev_err(&ndev->dev, "failed to initialise MDIO\n");
3104 goto out_release;
3107 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3109 /* network device register */
3110 ret = register_netdev(ndev);
3111 if (ret)
3112 goto out_napi_del;
3114 /* print device information */
3115 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3116 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3118 pm_runtime_put(&pdev->dev);
3119 platform_set_drvdata(pdev, ndev);
3121 return ret;
3123 out_napi_del:
3124 netif_napi_del(&mdp->napi);
3125 sh_mdio_release(mdp);
3127 out_release:
3128 /* net_dev free */
3129 if (ndev)
3130 free_netdev(ndev);
3132 pm_runtime_put(&pdev->dev);
3133 pm_runtime_disable(&pdev->dev);
3134 return ret;
3137 static int sh_eth_drv_remove(struct platform_device *pdev)
3139 struct net_device *ndev = platform_get_drvdata(pdev);
3140 struct sh_eth_private *mdp = netdev_priv(ndev);
3142 unregister_netdev(ndev);
3143 netif_napi_del(&mdp->napi);
3144 sh_mdio_release(mdp);
3145 pm_runtime_disable(&pdev->dev);
3146 free_netdev(ndev);
3148 return 0;
3151 #ifdef CONFIG_PM
3152 #ifdef CONFIG_PM_SLEEP
3153 static int sh_eth_suspend(struct device *dev)
3155 struct net_device *ndev = dev_get_drvdata(dev);
3156 int ret = 0;
3158 if (netif_running(ndev)) {
3159 netif_device_detach(ndev);
3160 ret = sh_eth_close(ndev);
3163 return ret;
3166 static int sh_eth_resume(struct device *dev)
3168 struct net_device *ndev = dev_get_drvdata(dev);
3169 int ret = 0;
3171 if (netif_running(ndev)) {
3172 ret = sh_eth_open(ndev);
3173 if (ret < 0)
3174 return ret;
3175 netif_device_attach(ndev);
3178 return ret;
3180 #endif
3182 static int sh_eth_runtime_nop(struct device *dev)
3184 /* Runtime PM callback shared between ->runtime_suspend()
3185 * and ->runtime_resume(). Simply returns success.
3187 * This driver re-initializes all registers after
3188 * pm_runtime_get_sync() anyway so there is no need
3189 * to save and restore registers here.
3191 return 0;
3194 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3195 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3196 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3198 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3199 #else
3200 #define SH_ETH_PM_OPS NULL
3201 #endif
3203 static struct platform_device_id sh_eth_id_table[] = {
3204 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3205 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3206 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3207 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3208 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3209 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3210 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3213 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3215 static struct platform_driver sh_eth_driver = {
3216 .probe = sh_eth_drv_probe,
3217 .remove = sh_eth_drv_remove,
3218 .id_table = sh_eth_id_table,
3219 .driver = {
3220 .name = CARDNAME,
3221 .pm = SH_ETH_PM_OPS,
3222 .of_match_table = of_match_ptr(sh_eth_match_table),
3226 module_platform_driver(sh_eth_driver);
3228 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3229 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3230 MODULE_LICENSE("GPL v2");