drm/i915: take a power domain reference while checking the HDMI live status
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_hdmi.c
blob81cdd9ff38922397171e91558136ae0765229106
1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
29 #include <linux/i2c.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/hdmi.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
41 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
43 return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
46 static void
47 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
49 struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
50 struct drm_i915_private *dev_priv = dev->dev_private;
51 uint32_t enabled_bits;
53 enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
55 WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
56 "HDMI port enabled, expecting disabled\n");
59 struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
61 struct intel_digital_port *intel_dig_port =
62 container_of(encoder, struct intel_digital_port, base.base);
63 return &intel_dig_port->hdmi;
66 static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
68 return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
71 static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
73 switch (type) {
74 case HDMI_INFOFRAME_TYPE_AVI:
75 return VIDEO_DIP_SELECT_AVI;
76 case HDMI_INFOFRAME_TYPE_SPD:
77 return VIDEO_DIP_SELECT_SPD;
78 case HDMI_INFOFRAME_TYPE_VENDOR:
79 return VIDEO_DIP_SELECT_VENDOR;
80 default:
81 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
82 return 0;
86 static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
88 switch (type) {
89 case HDMI_INFOFRAME_TYPE_AVI:
90 return VIDEO_DIP_ENABLE_AVI;
91 case HDMI_INFOFRAME_TYPE_SPD:
92 return VIDEO_DIP_ENABLE_SPD;
93 case HDMI_INFOFRAME_TYPE_VENDOR:
94 return VIDEO_DIP_ENABLE_VENDOR;
95 default:
96 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
97 return 0;
101 static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
103 switch (type) {
104 case HDMI_INFOFRAME_TYPE_AVI:
105 return VIDEO_DIP_ENABLE_AVI_HSW;
106 case HDMI_INFOFRAME_TYPE_SPD:
107 return VIDEO_DIP_ENABLE_SPD_HSW;
108 case HDMI_INFOFRAME_TYPE_VENDOR:
109 return VIDEO_DIP_ENABLE_VS_HSW;
110 default:
111 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
112 return 0;
116 static u32 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
117 enum transcoder cpu_transcoder,
118 enum hdmi_infoframe_type type,
119 int i)
121 switch (type) {
122 case HDMI_INFOFRAME_TYPE_AVI:
123 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
124 case HDMI_INFOFRAME_TYPE_SPD:
125 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
126 case HDMI_INFOFRAME_TYPE_VENDOR:
127 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
128 default:
129 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
130 return 0;
134 static void g4x_write_infoframe(struct drm_encoder *encoder,
135 enum hdmi_infoframe_type type,
136 const void *frame, ssize_t len)
138 const uint32_t *data = frame;
139 struct drm_device *dev = encoder->dev;
140 struct drm_i915_private *dev_priv = dev->dev_private;
141 u32 val = I915_READ(VIDEO_DIP_CTL);
142 int i;
144 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
146 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
147 val |= g4x_infoframe_index(type);
149 val &= ~g4x_infoframe_enable(type);
151 I915_WRITE(VIDEO_DIP_CTL, val);
153 mmiowb();
154 for (i = 0; i < len; i += 4) {
155 I915_WRITE(VIDEO_DIP_DATA, *data);
156 data++;
158 /* Write every possible data byte to force correct ECC calculation. */
159 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
160 I915_WRITE(VIDEO_DIP_DATA, 0);
161 mmiowb();
163 val |= g4x_infoframe_enable(type);
164 val &= ~VIDEO_DIP_FREQ_MASK;
165 val |= VIDEO_DIP_FREQ_VSYNC;
167 I915_WRITE(VIDEO_DIP_CTL, val);
168 POSTING_READ(VIDEO_DIP_CTL);
171 static bool g4x_infoframe_enabled(struct drm_encoder *encoder)
173 struct drm_device *dev = encoder->dev;
174 struct drm_i915_private *dev_priv = dev->dev_private;
175 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
176 u32 val = I915_READ(VIDEO_DIP_CTL);
178 if ((val & VIDEO_DIP_ENABLE) == 0)
179 return false;
181 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
182 return false;
184 return val & (VIDEO_DIP_ENABLE_AVI |
185 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
188 static void ibx_write_infoframe(struct drm_encoder *encoder,
189 enum hdmi_infoframe_type type,
190 const void *frame, ssize_t len)
192 const uint32_t *data = frame;
193 struct drm_device *dev = encoder->dev;
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
196 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
197 u32 val = I915_READ(reg);
199 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
201 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
202 val |= g4x_infoframe_index(type);
204 val &= ~g4x_infoframe_enable(type);
206 I915_WRITE(reg, val);
208 mmiowb();
209 for (i = 0; i < len; i += 4) {
210 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
211 data++;
213 /* Write every possible data byte to force correct ECC calculation. */
214 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
215 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
216 mmiowb();
218 val |= g4x_infoframe_enable(type);
219 val &= ~VIDEO_DIP_FREQ_MASK;
220 val |= VIDEO_DIP_FREQ_VSYNC;
222 I915_WRITE(reg, val);
223 POSTING_READ(reg);
226 static bool ibx_infoframe_enabled(struct drm_encoder *encoder)
228 struct drm_device *dev = encoder->dev;
229 struct drm_i915_private *dev_priv = dev->dev_private;
230 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
231 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
232 int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
233 u32 val = I915_READ(reg);
235 if ((val & VIDEO_DIP_ENABLE) == 0)
236 return false;
238 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
239 return false;
241 return val & (VIDEO_DIP_ENABLE_AVI |
242 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
243 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
246 static void cpt_write_infoframe(struct drm_encoder *encoder,
247 enum hdmi_infoframe_type type,
248 const void *frame, ssize_t len)
250 const uint32_t *data = frame;
251 struct drm_device *dev = encoder->dev;
252 struct drm_i915_private *dev_priv = dev->dev_private;
253 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
254 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
255 u32 val = I915_READ(reg);
257 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
259 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
260 val |= g4x_infoframe_index(type);
262 /* The DIP control register spec says that we need to update the AVI
263 * infoframe without clearing its enable bit */
264 if (type != HDMI_INFOFRAME_TYPE_AVI)
265 val &= ~g4x_infoframe_enable(type);
267 I915_WRITE(reg, val);
269 mmiowb();
270 for (i = 0; i < len; i += 4) {
271 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
272 data++;
274 /* Write every possible data byte to force correct ECC calculation. */
275 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
276 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
277 mmiowb();
279 val |= g4x_infoframe_enable(type);
280 val &= ~VIDEO_DIP_FREQ_MASK;
281 val |= VIDEO_DIP_FREQ_VSYNC;
283 I915_WRITE(reg, val);
284 POSTING_READ(reg);
287 static bool cpt_infoframe_enabled(struct drm_encoder *encoder)
289 struct drm_device *dev = encoder->dev;
290 struct drm_i915_private *dev_priv = dev->dev_private;
291 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
292 int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
293 u32 val = I915_READ(reg);
295 if ((val & VIDEO_DIP_ENABLE) == 0)
296 return false;
298 return val & (VIDEO_DIP_ENABLE_AVI |
299 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
300 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
303 static void vlv_write_infoframe(struct drm_encoder *encoder,
304 enum hdmi_infoframe_type type,
305 const void *frame, ssize_t len)
307 const uint32_t *data = frame;
308 struct drm_device *dev = encoder->dev;
309 struct drm_i915_private *dev_priv = dev->dev_private;
310 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
311 int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
312 u32 val = I915_READ(reg);
314 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
316 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
317 val |= g4x_infoframe_index(type);
319 val &= ~g4x_infoframe_enable(type);
321 I915_WRITE(reg, val);
323 mmiowb();
324 for (i = 0; i < len; i += 4) {
325 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
326 data++;
328 /* Write every possible data byte to force correct ECC calculation. */
329 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
330 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
331 mmiowb();
333 val |= g4x_infoframe_enable(type);
334 val &= ~VIDEO_DIP_FREQ_MASK;
335 val |= VIDEO_DIP_FREQ_VSYNC;
337 I915_WRITE(reg, val);
338 POSTING_READ(reg);
341 static bool vlv_infoframe_enabled(struct drm_encoder *encoder)
343 struct drm_device *dev = encoder->dev;
344 struct drm_i915_private *dev_priv = dev->dev_private;
345 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
346 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
347 int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
348 u32 val = I915_READ(reg);
350 if ((val & VIDEO_DIP_ENABLE) == 0)
351 return false;
353 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
354 return false;
356 return val & (VIDEO_DIP_ENABLE_AVI |
357 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
358 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
361 static void hsw_write_infoframe(struct drm_encoder *encoder,
362 enum hdmi_infoframe_type type,
363 const void *frame, ssize_t len)
365 const uint32_t *data = frame;
366 struct drm_device *dev = encoder->dev;
367 struct drm_i915_private *dev_priv = dev->dev_private;
368 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
369 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
370 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
371 u32 data_reg;
372 int i;
373 u32 val = I915_READ(ctl_reg);
375 data_reg = hsw_dip_data_reg(dev_priv, cpu_transcoder, type, 0);
376 if (data_reg == 0)
377 return;
379 val &= ~hsw_infoframe_enable(type);
380 I915_WRITE(ctl_reg, val);
382 mmiowb();
383 for (i = 0; i < len; i += 4) {
384 I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
385 type, i >> 2), *data);
386 data++;
388 /* Write every possible data byte to force correct ECC calculation. */
389 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
390 I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
391 type, i >> 2), 0);
392 mmiowb();
394 val |= hsw_infoframe_enable(type);
395 I915_WRITE(ctl_reg, val);
396 POSTING_READ(ctl_reg);
399 static bool hsw_infoframe_enabled(struct drm_encoder *encoder)
401 struct drm_device *dev = encoder->dev;
402 struct drm_i915_private *dev_priv = dev->dev_private;
403 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
404 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
405 u32 val = I915_READ(ctl_reg);
407 return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
408 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
409 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
413 * The data we write to the DIP data buffer registers is 1 byte bigger than the
414 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
415 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
416 * used for both technologies.
418 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
419 * DW1: DB3 | DB2 | DB1 | DB0
420 * DW2: DB7 | DB6 | DB5 | DB4
421 * DW3: ...
423 * (HB is Header Byte, DB is Data Byte)
425 * The hdmi pack() functions don't know about that hardware specific hole so we
426 * trick them by giving an offset into the buffer and moving back the header
427 * bytes by one.
429 static void intel_write_infoframe(struct drm_encoder *encoder,
430 union hdmi_infoframe *frame)
432 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
433 uint8_t buffer[VIDEO_DIP_DATA_SIZE];
434 ssize_t len;
436 /* see comment above for the reason for this offset */
437 len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
438 if (len < 0)
439 return;
441 /* Insert the 'hole' (see big comment above) at position 3 */
442 buffer[0] = buffer[1];
443 buffer[1] = buffer[2];
444 buffer[2] = buffer[3];
445 buffer[3] = 0;
446 len++;
448 intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
451 static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
452 const struct drm_display_mode *adjusted_mode)
454 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
455 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
456 union hdmi_infoframe frame;
457 int ret;
459 ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
460 adjusted_mode);
461 if (ret < 0) {
462 DRM_ERROR("couldn't fill AVI infoframe\n");
463 return;
466 if (intel_hdmi->rgb_quant_range_selectable) {
467 if (intel_crtc->config->limited_color_range)
468 frame.avi.quantization_range =
469 HDMI_QUANTIZATION_RANGE_LIMITED;
470 else
471 frame.avi.quantization_range =
472 HDMI_QUANTIZATION_RANGE_FULL;
475 intel_write_infoframe(encoder, &frame);
478 static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
480 union hdmi_infoframe frame;
481 int ret;
483 ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
484 if (ret < 0) {
485 DRM_ERROR("couldn't fill SPD infoframe\n");
486 return;
489 frame.spd.sdi = HDMI_SPD_SDI_PC;
491 intel_write_infoframe(encoder, &frame);
494 static void
495 intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
496 const struct drm_display_mode *adjusted_mode)
498 union hdmi_infoframe frame;
499 int ret;
501 ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
502 adjusted_mode);
503 if (ret < 0)
504 return;
506 intel_write_infoframe(encoder, &frame);
509 static void g4x_set_infoframes(struct drm_encoder *encoder,
510 bool enable,
511 const struct drm_display_mode *adjusted_mode)
513 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
514 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
515 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
516 u32 reg = VIDEO_DIP_CTL;
517 u32 val = I915_READ(reg);
518 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
520 assert_hdmi_port_disabled(intel_hdmi);
522 /* If the registers were not initialized yet, they might be zeroes,
523 * which means we're selecting the AVI DIP and we're setting its
524 * frequency to once. This seems to really confuse the HW and make
525 * things stop working (the register spec says the AVI always needs to
526 * be sent every VSync). So here we avoid writing to the register more
527 * than we need and also explicitly select the AVI DIP and explicitly
528 * set its frequency to every VSync. Avoiding to write it twice seems to
529 * be enough to solve the problem, but being defensive shouldn't hurt us
530 * either. */
531 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
533 if (!enable) {
534 if (!(val & VIDEO_DIP_ENABLE))
535 return;
536 if (port != (val & VIDEO_DIP_PORT_MASK)) {
537 DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
538 (val & VIDEO_DIP_PORT_MASK) >> 29);
539 return;
541 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
542 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
543 I915_WRITE(reg, val);
544 POSTING_READ(reg);
545 return;
548 if (port != (val & VIDEO_DIP_PORT_MASK)) {
549 if (val & VIDEO_DIP_ENABLE) {
550 DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
551 (val & VIDEO_DIP_PORT_MASK) >> 29);
552 return;
554 val &= ~VIDEO_DIP_PORT_MASK;
555 val |= port;
558 val |= VIDEO_DIP_ENABLE;
559 val &= ~(VIDEO_DIP_ENABLE_AVI |
560 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
562 I915_WRITE(reg, val);
563 POSTING_READ(reg);
565 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
566 intel_hdmi_set_spd_infoframe(encoder);
567 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
570 static bool hdmi_sink_is_deep_color(struct drm_encoder *encoder)
572 struct drm_device *dev = encoder->dev;
573 struct drm_connector *connector;
575 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
578 * HDMI cloning is only supported on g4x which doesn't
579 * support deep color or GCP infoframes anyway so no
580 * need to worry about multiple HDMI sinks here.
582 list_for_each_entry(connector, &dev->mode_config.connector_list, head)
583 if (connector->encoder == encoder)
584 return connector->display_info.bpc > 8;
586 return false;
590 * Determine if default_phase=1 can be indicated in the GCP infoframe.
592 * From HDMI specification 1.4a:
593 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
594 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
595 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
596 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
597 * phase of 0
599 static bool gcp_default_phase_possible(int pipe_bpp,
600 const struct drm_display_mode *mode)
602 unsigned int pixels_per_group;
604 switch (pipe_bpp) {
605 case 30:
606 /* 4 pixels in 5 clocks */
607 pixels_per_group = 4;
608 break;
609 case 36:
610 /* 2 pixels in 3 clocks */
611 pixels_per_group = 2;
612 break;
613 case 48:
614 /* 1 pixel in 2 clocks */
615 pixels_per_group = 1;
616 break;
617 default:
618 /* phase information not relevant for 8bpc */
619 return false;
622 return mode->crtc_hdisplay % pixels_per_group == 0 &&
623 mode->crtc_htotal % pixels_per_group == 0 &&
624 mode->crtc_hblank_start % pixels_per_group == 0 &&
625 mode->crtc_hblank_end % pixels_per_group == 0 &&
626 mode->crtc_hsync_start % pixels_per_group == 0 &&
627 mode->crtc_hsync_end % pixels_per_group == 0 &&
628 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
629 mode->crtc_htotal/2 % pixels_per_group == 0);
632 static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder)
634 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
635 struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
636 u32 reg, val = 0;
638 if (HAS_DDI(dev_priv))
639 reg = HSW_TVIDEO_DIP_GCP(crtc->config->cpu_transcoder);
640 else if (IS_VALLEYVIEW(dev_priv))
641 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
642 else if (HAS_PCH_SPLIT(dev_priv->dev))
643 reg = TVIDEO_DIP_GCP(crtc->pipe);
644 else
645 return false;
647 /* Indicate color depth whenever the sink supports deep color */
648 if (hdmi_sink_is_deep_color(encoder))
649 val |= GCP_COLOR_INDICATION;
651 /* Enable default_phase whenever the display mode is suitably aligned */
652 if (gcp_default_phase_possible(crtc->config->pipe_bpp,
653 &crtc->config->base.adjusted_mode))
654 val |= GCP_DEFAULT_PHASE_ENABLE;
656 I915_WRITE(reg, val);
658 return val != 0;
661 static void ibx_set_infoframes(struct drm_encoder *encoder,
662 bool enable,
663 const struct drm_display_mode *adjusted_mode)
665 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
666 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
667 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
668 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
669 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
670 u32 val = I915_READ(reg);
671 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
673 assert_hdmi_port_disabled(intel_hdmi);
675 /* See the big comment in g4x_set_infoframes() */
676 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
678 if (!enable) {
679 if (!(val & VIDEO_DIP_ENABLE))
680 return;
681 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
682 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
683 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
684 I915_WRITE(reg, val);
685 POSTING_READ(reg);
686 return;
689 if (port != (val & VIDEO_DIP_PORT_MASK)) {
690 WARN(val & VIDEO_DIP_ENABLE,
691 "DIP already enabled on port %c\n",
692 (val & VIDEO_DIP_PORT_MASK) >> 29);
693 val &= ~VIDEO_DIP_PORT_MASK;
694 val |= port;
697 val |= VIDEO_DIP_ENABLE;
698 val &= ~(VIDEO_DIP_ENABLE_AVI |
699 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
700 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
702 if (intel_hdmi_set_gcp_infoframe(encoder))
703 val |= VIDEO_DIP_ENABLE_GCP;
705 I915_WRITE(reg, val);
706 POSTING_READ(reg);
708 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
709 intel_hdmi_set_spd_infoframe(encoder);
710 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
713 static void cpt_set_infoframes(struct drm_encoder *encoder,
714 bool enable,
715 const struct drm_display_mode *adjusted_mode)
717 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
718 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
719 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
720 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
721 u32 val = I915_READ(reg);
723 assert_hdmi_port_disabled(intel_hdmi);
725 /* See the big comment in g4x_set_infoframes() */
726 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
728 if (!enable) {
729 if (!(val & VIDEO_DIP_ENABLE))
730 return;
731 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
732 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
733 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
734 I915_WRITE(reg, val);
735 POSTING_READ(reg);
736 return;
739 /* Set both together, unset both together: see the spec. */
740 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
741 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
742 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
744 if (intel_hdmi_set_gcp_infoframe(encoder))
745 val |= VIDEO_DIP_ENABLE_GCP;
747 I915_WRITE(reg, val);
748 POSTING_READ(reg);
750 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
751 intel_hdmi_set_spd_infoframe(encoder);
752 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
755 static void vlv_set_infoframes(struct drm_encoder *encoder,
756 bool enable,
757 const struct drm_display_mode *adjusted_mode)
759 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
760 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
761 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
762 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
763 u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
764 u32 val = I915_READ(reg);
765 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
767 assert_hdmi_port_disabled(intel_hdmi);
769 /* See the big comment in g4x_set_infoframes() */
770 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
772 if (!enable) {
773 if (!(val & VIDEO_DIP_ENABLE))
774 return;
775 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
776 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
777 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
778 I915_WRITE(reg, val);
779 POSTING_READ(reg);
780 return;
783 if (port != (val & VIDEO_DIP_PORT_MASK)) {
784 WARN(val & VIDEO_DIP_ENABLE,
785 "DIP already enabled on port %c\n",
786 (val & VIDEO_DIP_PORT_MASK) >> 29);
787 val &= ~VIDEO_DIP_PORT_MASK;
788 val |= port;
791 val |= VIDEO_DIP_ENABLE;
792 val &= ~(VIDEO_DIP_ENABLE_AVI |
793 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
794 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
796 if (intel_hdmi_set_gcp_infoframe(encoder))
797 val |= VIDEO_DIP_ENABLE_GCP;
799 I915_WRITE(reg, val);
800 POSTING_READ(reg);
802 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
803 intel_hdmi_set_spd_infoframe(encoder);
804 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
807 static void hsw_set_infoframes(struct drm_encoder *encoder,
808 bool enable,
809 const struct drm_display_mode *adjusted_mode)
811 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
812 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
813 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
814 u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
815 u32 val = I915_READ(reg);
817 assert_hdmi_port_disabled(intel_hdmi);
819 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
820 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
821 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
823 if (!enable) {
824 I915_WRITE(reg, val);
825 POSTING_READ(reg);
826 return;
829 if (intel_hdmi_set_gcp_infoframe(encoder))
830 val |= VIDEO_DIP_ENABLE_GCP_HSW;
832 I915_WRITE(reg, val);
833 POSTING_READ(reg);
835 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
836 intel_hdmi_set_spd_infoframe(encoder);
837 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
840 static void intel_hdmi_prepare(struct intel_encoder *encoder)
842 struct drm_device *dev = encoder->base.dev;
843 struct drm_i915_private *dev_priv = dev->dev_private;
844 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
845 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
846 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
847 u32 hdmi_val;
849 hdmi_val = SDVO_ENCODING_HDMI;
850 if (!HAS_PCH_SPLIT(dev) && crtc->config->limited_color_range)
851 hdmi_val |= HDMI_COLOR_RANGE_16_235;
852 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
853 hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
854 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
855 hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
857 if (crtc->config->pipe_bpp > 24)
858 hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
859 else
860 hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
862 if (crtc->config->has_hdmi_sink)
863 hdmi_val |= HDMI_MODE_SELECT_HDMI;
865 if (HAS_PCH_CPT(dev))
866 hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
867 else if (IS_CHERRYVIEW(dev))
868 hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
869 else
870 hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
872 I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
873 POSTING_READ(intel_hdmi->hdmi_reg);
876 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
877 enum pipe *pipe)
879 struct drm_device *dev = encoder->base.dev;
880 struct drm_i915_private *dev_priv = dev->dev_private;
881 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
882 enum intel_display_power_domain power_domain;
883 u32 tmp;
885 power_domain = intel_display_port_power_domain(encoder);
886 if (!intel_display_power_is_enabled(dev_priv, power_domain))
887 return false;
889 tmp = I915_READ(intel_hdmi->hdmi_reg);
891 if (!(tmp & SDVO_ENABLE))
892 return false;
894 if (HAS_PCH_CPT(dev))
895 *pipe = PORT_TO_PIPE_CPT(tmp);
896 else if (IS_CHERRYVIEW(dev))
897 *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
898 else
899 *pipe = PORT_TO_PIPE(tmp);
901 return true;
904 static void intel_hdmi_get_config(struct intel_encoder *encoder,
905 struct intel_crtc_state *pipe_config)
907 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
908 struct drm_device *dev = encoder->base.dev;
909 struct drm_i915_private *dev_priv = dev->dev_private;
910 u32 tmp, flags = 0;
911 int dotclock;
913 tmp = I915_READ(intel_hdmi->hdmi_reg);
915 if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
916 flags |= DRM_MODE_FLAG_PHSYNC;
917 else
918 flags |= DRM_MODE_FLAG_NHSYNC;
920 if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
921 flags |= DRM_MODE_FLAG_PVSYNC;
922 else
923 flags |= DRM_MODE_FLAG_NVSYNC;
925 if (tmp & HDMI_MODE_SELECT_HDMI)
926 pipe_config->has_hdmi_sink = true;
928 if (intel_hdmi->infoframe_enabled(&encoder->base))
929 pipe_config->has_infoframe = true;
931 if (tmp & SDVO_AUDIO_ENABLE)
932 pipe_config->has_audio = true;
934 if (!HAS_PCH_SPLIT(dev) &&
935 tmp & HDMI_COLOR_RANGE_16_235)
936 pipe_config->limited_color_range = true;
938 pipe_config->base.adjusted_mode.flags |= flags;
940 if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
941 dotclock = pipe_config->port_clock * 2 / 3;
942 else
943 dotclock = pipe_config->port_clock;
945 if (pipe_config->pixel_multiplier)
946 dotclock /= pipe_config->pixel_multiplier;
948 if (HAS_PCH_SPLIT(dev_priv->dev))
949 ironlake_check_encoder_dotclock(pipe_config, dotclock);
951 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
954 static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
956 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
958 WARN_ON(!crtc->config->has_hdmi_sink);
959 DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
960 pipe_name(crtc->pipe));
961 intel_audio_codec_enable(encoder);
964 static void g4x_enable_hdmi(struct intel_encoder *encoder)
966 struct drm_device *dev = encoder->base.dev;
967 struct drm_i915_private *dev_priv = dev->dev_private;
968 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
969 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
970 u32 temp;
972 temp = I915_READ(intel_hdmi->hdmi_reg);
974 temp |= SDVO_ENABLE;
975 if (crtc->config->has_audio)
976 temp |= SDVO_AUDIO_ENABLE;
978 I915_WRITE(intel_hdmi->hdmi_reg, temp);
979 POSTING_READ(intel_hdmi->hdmi_reg);
981 if (crtc->config->has_audio)
982 intel_enable_hdmi_audio(encoder);
985 static void ibx_enable_hdmi(struct intel_encoder *encoder)
987 struct drm_device *dev = encoder->base.dev;
988 struct drm_i915_private *dev_priv = dev->dev_private;
989 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
990 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
991 u32 temp;
993 temp = I915_READ(intel_hdmi->hdmi_reg);
995 temp |= SDVO_ENABLE;
996 if (crtc->config->has_audio)
997 temp |= SDVO_AUDIO_ENABLE;
1000 * HW workaround, need to write this twice for issue
1001 * that may result in first write getting masked.
1003 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1004 POSTING_READ(intel_hdmi->hdmi_reg);
1005 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1006 POSTING_READ(intel_hdmi->hdmi_reg);
1009 * HW workaround, need to toggle enable bit off and on
1010 * for 12bpc with pixel repeat.
1012 * FIXME: BSpec says this should be done at the end of
1013 * of the modeset sequence, so not sure if this isn't too soon.
1015 if (crtc->config->pipe_bpp > 24 &&
1016 crtc->config->pixel_multiplier > 1) {
1017 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
1018 POSTING_READ(intel_hdmi->hdmi_reg);
1021 * HW workaround, need to write this twice for issue
1022 * that may result in first write getting masked.
1024 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1025 POSTING_READ(intel_hdmi->hdmi_reg);
1026 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1027 POSTING_READ(intel_hdmi->hdmi_reg);
1030 if (crtc->config->has_audio)
1031 intel_enable_hdmi_audio(encoder);
1034 static void cpt_enable_hdmi(struct intel_encoder *encoder)
1036 struct drm_device *dev = encoder->base.dev;
1037 struct drm_i915_private *dev_priv = dev->dev_private;
1038 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1039 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1040 enum pipe pipe = crtc->pipe;
1041 u32 temp;
1043 temp = I915_READ(intel_hdmi->hdmi_reg);
1045 temp |= SDVO_ENABLE;
1046 if (crtc->config->has_audio)
1047 temp |= SDVO_AUDIO_ENABLE;
1050 * WaEnableHDMI8bpcBefore12bpc:snb,ivb
1052 * The procedure for 12bpc is as follows:
1053 * 1. disable HDMI clock gating
1054 * 2. enable HDMI with 8bpc
1055 * 3. enable HDMI with 12bpc
1056 * 4. enable HDMI clock gating
1059 if (crtc->config->pipe_bpp > 24) {
1060 I915_WRITE(TRANS_CHICKEN1(pipe),
1061 I915_READ(TRANS_CHICKEN1(pipe)) |
1062 TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1064 temp &= ~SDVO_COLOR_FORMAT_MASK;
1065 temp |= SDVO_COLOR_FORMAT_8bpc;
1068 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1069 POSTING_READ(intel_hdmi->hdmi_reg);
1071 if (crtc->config->pipe_bpp > 24) {
1072 temp &= ~SDVO_COLOR_FORMAT_MASK;
1073 temp |= HDMI_COLOR_FORMAT_12bpc;
1075 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1076 POSTING_READ(intel_hdmi->hdmi_reg);
1078 I915_WRITE(TRANS_CHICKEN1(pipe),
1079 I915_READ(TRANS_CHICKEN1(pipe)) &
1080 ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
1083 if (crtc->config->has_audio)
1084 intel_enable_hdmi_audio(encoder);
1087 static void vlv_enable_hdmi(struct intel_encoder *encoder)
1091 static void intel_disable_hdmi(struct intel_encoder *encoder)
1093 struct drm_device *dev = encoder->base.dev;
1094 struct drm_i915_private *dev_priv = dev->dev_private;
1095 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1096 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1097 u32 temp;
1099 temp = I915_READ(intel_hdmi->hdmi_reg);
1101 temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
1102 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1103 POSTING_READ(intel_hdmi->hdmi_reg);
1106 * HW workaround for IBX, we need to move the port
1107 * to transcoder A after disabling it to allow the
1108 * matching DP port to be enabled on transcoder A.
1110 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
1111 temp &= ~SDVO_PIPE_B_SELECT;
1112 temp |= SDVO_ENABLE;
1114 * HW workaround, need to write this twice for issue
1115 * that may result in first write getting masked.
1117 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1118 POSTING_READ(intel_hdmi->hdmi_reg);
1119 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1120 POSTING_READ(intel_hdmi->hdmi_reg);
1122 temp &= ~SDVO_ENABLE;
1123 I915_WRITE(intel_hdmi->hdmi_reg, temp);
1124 POSTING_READ(intel_hdmi->hdmi_reg);
1127 intel_hdmi->set_infoframes(&encoder->base, false, NULL);
1130 static void g4x_disable_hdmi(struct intel_encoder *encoder)
1132 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1134 if (crtc->config->has_audio)
1135 intel_audio_codec_disable(encoder);
1137 intel_disable_hdmi(encoder);
1140 static void pch_disable_hdmi(struct intel_encoder *encoder)
1142 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1144 if (crtc->config->has_audio)
1145 intel_audio_codec_disable(encoder);
1148 static void pch_post_disable_hdmi(struct intel_encoder *encoder)
1150 intel_disable_hdmi(encoder);
1153 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
1155 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1157 if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
1158 return 165000;
1159 else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
1160 return 300000;
1161 else
1162 return 225000;
1165 static enum drm_mode_status
1166 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1167 int clock, bool respect_dvi_limit)
1169 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1171 if (clock < 25000)
1172 return MODE_CLOCK_LOW;
1173 if (clock > hdmi_port_clock_limit(hdmi, respect_dvi_limit))
1174 return MODE_CLOCK_HIGH;
1176 /* BXT DPLL can't generate 223-240 MHz */
1177 if (IS_BROXTON(dev) && clock > 223333 && clock < 240000)
1178 return MODE_CLOCK_RANGE;
1180 /* CHV DPLL can't generate 216-240 MHz */
1181 if (IS_CHERRYVIEW(dev) && clock > 216000 && clock < 240000)
1182 return MODE_CLOCK_RANGE;
1184 return MODE_OK;
1187 static enum drm_mode_status
1188 intel_hdmi_mode_valid(struct drm_connector *connector,
1189 struct drm_display_mode *mode)
1191 struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
1192 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1193 enum drm_mode_status status;
1194 int clock;
1196 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1197 return MODE_NO_DBLESCAN;
1199 clock = mode->clock;
1200 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
1201 clock *= 2;
1203 /* check if we can do 8bpc */
1204 status = hdmi_port_clock_valid(hdmi, clock, true);
1206 /* if we can't do 8bpc we may still be able to do 12bpc */
1207 if (!HAS_GMCH_DISPLAY(dev) && status != MODE_OK)
1208 status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true);
1210 return status;
1213 static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
1215 struct drm_device *dev = crtc_state->base.crtc->dev;
1216 struct drm_atomic_state *state;
1217 struct intel_encoder *encoder;
1218 struct drm_connector *connector;
1219 struct drm_connector_state *connector_state;
1220 int count = 0, count_hdmi = 0;
1221 int i;
1223 if (HAS_GMCH_DISPLAY(dev))
1224 return false;
1226 state = crtc_state->base.state;
1228 for_each_connector_in_state(state, connector, connector_state, i) {
1229 if (connector_state->crtc != crtc_state->base.crtc)
1230 continue;
1232 encoder = to_intel_encoder(connector_state->best_encoder);
1234 count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
1235 count++;
1239 * HDMI 12bpc affects the clocks, so it's only possible
1240 * when not cloning with other encoder types.
1242 return count_hdmi > 0 && count_hdmi == count;
1245 bool intel_hdmi_compute_config(struct intel_encoder *encoder,
1246 struct intel_crtc_state *pipe_config)
1248 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1249 struct drm_device *dev = encoder->base.dev;
1250 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1251 int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
1252 int clock_12bpc = clock_8bpc * 3 / 2;
1253 int desired_bpp;
1255 pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
1257 if (pipe_config->has_hdmi_sink)
1258 pipe_config->has_infoframe = true;
1260 if (intel_hdmi->color_range_auto) {
1261 /* See CEA-861-E - 5.1 Default Encoding Parameters */
1262 pipe_config->limited_color_range =
1263 pipe_config->has_hdmi_sink &&
1264 drm_match_cea_mode(adjusted_mode) > 1;
1265 } else {
1266 pipe_config->limited_color_range =
1267 intel_hdmi->limited_color_range;
1270 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
1271 pipe_config->pixel_multiplier = 2;
1272 clock_8bpc *= 2;
1273 clock_12bpc *= 2;
1276 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
1277 pipe_config->has_pch_encoder = true;
1279 if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
1280 pipe_config->has_audio = true;
1283 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
1284 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
1285 * outputs. We also need to check that the higher clock still fits
1286 * within limits.
1288 if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
1289 hdmi_port_clock_valid(intel_hdmi, clock_12bpc, false) == MODE_OK &&
1290 hdmi_12bpc_possible(pipe_config)) {
1291 DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
1292 desired_bpp = 12*3;
1294 /* Need to adjust the port link by 1.5x for 12bpc. */
1295 pipe_config->port_clock = clock_12bpc;
1296 } else {
1297 DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
1298 desired_bpp = 8*3;
1300 pipe_config->port_clock = clock_8bpc;
1303 if (!pipe_config->bw_constrained) {
1304 DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
1305 pipe_config->pipe_bpp = desired_bpp;
1308 if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
1309 false) != MODE_OK) {
1310 DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
1311 return false;
1314 /* Set user selected PAR to incoming mode's member */
1315 adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
1317 return true;
1320 static void
1321 intel_hdmi_unset_edid(struct drm_connector *connector)
1323 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1325 intel_hdmi->has_hdmi_sink = false;
1326 intel_hdmi->has_audio = false;
1327 intel_hdmi->rgb_quant_range_selectable = false;
1329 kfree(to_intel_connector(connector)->detect_edid);
1330 to_intel_connector(connector)->detect_edid = NULL;
1333 static bool
1334 intel_hdmi_set_edid(struct drm_connector *connector, bool force)
1336 struct drm_i915_private *dev_priv = to_i915(connector->dev);
1337 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1338 struct edid *edid = NULL;
1339 bool connected = false;
1341 intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
1343 if (force)
1344 edid = drm_get_edid(connector,
1345 intel_gmbus_get_adapter(dev_priv,
1346 intel_hdmi->ddc_bus));
1348 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
1350 to_intel_connector(connector)->detect_edid = edid;
1351 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
1352 intel_hdmi->rgb_quant_range_selectable =
1353 drm_rgb_quant_range_selectable(edid);
1355 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
1356 if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
1357 intel_hdmi->has_audio =
1358 intel_hdmi->force_audio == HDMI_AUDIO_ON;
1360 if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
1361 intel_hdmi->has_hdmi_sink =
1362 drm_detect_hdmi_monitor(edid);
1364 connected = true;
1367 return connected;
1370 static enum drm_connector_status
1371 intel_hdmi_detect(struct drm_connector *connector, bool force)
1373 enum drm_connector_status status;
1374 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1375 struct drm_i915_private *dev_priv = to_i915(connector->dev);
1376 bool live_status = false;
1377 unsigned int retry = 3;
1379 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1380 connector->base.id, connector->name);
1382 intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
1384 while (!live_status && --retry) {
1385 live_status = intel_digital_port_connected(dev_priv,
1386 hdmi_to_dig_port(intel_hdmi));
1387 mdelay(10);
1390 if (!live_status)
1391 DRM_DEBUG_KMS("Live status not up!");
1393 intel_hdmi_unset_edid(connector);
1395 if (intel_hdmi_set_edid(connector, live_status)) {
1396 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1398 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1399 status = connector_status_connected;
1400 } else
1401 status = connector_status_disconnected;
1403 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS);
1405 return status;
1408 static void
1409 intel_hdmi_force(struct drm_connector *connector)
1411 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1413 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1414 connector->base.id, connector->name);
1416 intel_hdmi_unset_edid(connector);
1418 if (connector->status != connector_status_connected)
1419 return;
1421 intel_hdmi_set_edid(connector, true);
1422 hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
1425 static int intel_hdmi_get_modes(struct drm_connector *connector)
1427 struct edid *edid;
1429 edid = to_intel_connector(connector)->detect_edid;
1430 if (edid == NULL)
1431 return 0;
1433 return intel_connector_update_modes(connector, edid);
1436 static bool
1437 intel_hdmi_detect_audio(struct drm_connector *connector)
1439 bool has_audio = false;
1440 struct edid *edid;
1442 edid = to_intel_connector(connector)->detect_edid;
1443 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
1444 has_audio = drm_detect_monitor_audio(edid);
1446 return has_audio;
1449 static int
1450 intel_hdmi_set_property(struct drm_connector *connector,
1451 struct drm_property *property,
1452 uint64_t val)
1454 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1455 struct intel_digital_port *intel_dig_port =
1456 hdmi_to_dig_port(intel_hdmi);
1457 struct drm_i915_private *dev_priv = connector->dev->dev_private;
1458 int ret;
1460 ret = drm_object_property_set_value(&connector->base, property, val);
1461 if (ret)
1462 return ret;
1464 if (property == dev_priv->force_audio_property) {
1465 enum hdmi_force_audio i = val;
1466 bool has_audio;
1468 if (i == intel_hdmi->force_audio)
1469 return 0;
1471 intel_hdmi->force_audio = i;
1473 if (i == HDMI_AUDIO_AUTO)
1474 has_audio = intel_hdmi_detect_audio(connector);
1475 else
1476 has_audio = (i == HDMI_AUDIO_ON);
1478 if (i == HDMI_AUDIO_OFF_DVI)
1479 intel_hdmi->has_hdmi_sink = 0;
1481 intel_hdmi->has_audio = has_audio;
1482 goto done;
1485 if (property == dev_priv->broadcast_rgb_property) {
1486 bool old_auto = intel_hdmi->color_range_auto;
1487 bool old_range = intel_hdmi->limited_color_range;
1489 switch (val) {
1490 case INTEL_BROADCAST_RGB_AUTO:
1491 intel_hdmi->color_range_auto = true;
1492 break;
1493 case INTEL_BROADCAST_RGB_FULL:
1494 intel_hdmi->color_range_auto = false;
1495 intel_hdmi->limited_color_range = false;
1496 break;
1497 case INTEL_BROADCAST_RGB_LIMITED:
1498 intel_hdmi->color_range_auto = false;
1499 intel_hdmi->limited_color_range = true;
1500 break;
1501 default:
1502 return -EINVAL;
1505 if (old_auto == intel_hdmi->color_range_auto &&
1506 old_range == intel_hdmi->limited_color_range)
1507 return 0;
1509 goto done;
1512 if (property == connector->dev->mode_config.aspect_ratio_property) {
1513 switch (val) {
1514 case DRM_MODE_PICTURE_ASPECT_NONE:
1515 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1516 break;
1517 case DRM_MODE_PICTURE_ASPECT_4_3:
1518 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
1519 break;
1520 case DRM_MODE_PICTURE_ASPECT_16_9:
1521 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
1522 break;
1523 default:
1524 return -EINVAL;
1526 goto done;
1529 return -EINVAL;
1531 done:
1532 if (intel_dig_port->base.base.crtc)
1533 intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1535 return 0;
1538 static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
1540 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1541 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1542 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1544 intel_hdmi_prepare(encoder);
1546 intel_hdmi->set_infoframes(&encoder->base,
1547 intel_crtc->config->has_hdmi_sink,
1548 adjusted_mode);
1551 static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1553 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1554 struct intel_hdmi *intel_hdmi = &dport->hdmi;
1555 struct drm_device *dev = encoder->base.dev;
1556 struct drm_i915_private *dev_priv = dev->dev_private;
1557 struct intel_crtc *intel_crtc =
1558 to_intel_crtc(encoder->base.crtc);
1559 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1560 enum dpio_channel port = vlv_dport_to_channel(dport);
1561 int pipe = intel_crtc->pipe;
1562 u32 val;
1564 /* Enable clock channels for this port */
1565 mutex_lock(&dev_priv->sb_lock);
1566 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1567 val = 0;
1568 if (pipe)
1569 val |= (1<<21);
1570 else
1571 val &= ~(1<<21);
1572 val |= 0x001000c4;
1573 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1575 /* HDMI 1.0V-2dB */
1576 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
1577 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
1578 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
1579 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
1580 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
1581 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1582 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1583 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1585 /* Program lane clock */
1586 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1587 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1588 mutex_unlock(&dev_priv->sb_lock);
1590 intel_hdmi->set_infoframes(&encoder->base,
1591 intel_crtc->config->has_hdmi_sink,
1592 adjusted_mode);
1594 g4x_enable_hdmi(encoder);
1596 vlv_wait_port_ready(dev_priv, dport, 0x0);
1599 static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1601 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1602 struct drm_device *dev = encoder->base.dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 struct intel_crtc *intel_crtc =
1605 to_intel_crtc(encoder->base.crtc);
1606 enum dpio_channel port = vlv_dport_to_channel(dport);
1607 int pipe = intel_crtc->pipe;
1609 intel_hdmi_prepare(encoder);
1611 /* Program Tx lane resets to default */
1612 mutex_lock(&dev_priv->sb_lock);
1613 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1614 DPIO_PCS_TX_LANE2_RESET |
1615 DPIO_PCS_TX_LANE1_RESET);
1616 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1617 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1618 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1619 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1620 DPIO_PCS_CLK_SOFT_RESET);
1622 /* Fix up inter-pair skew failure */
1623 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1624 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1625 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1627 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1628 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1629 mutex_unlock(&dev_priv->sb_lock);
1632 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
1633 bool reset)
1635 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1636 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1637 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1638 enum pipe pipe = crtc->pipe;
1639 uint32_t val;
1641 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1642 if (reset)
1643 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1644 else
1645 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
1646 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1648 if (crtc->config->lane_count > 2) {
1649 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1650 if (reset)
1651 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1652 else
1653 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
1654 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1657 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1658 val |= CHV_PCS_REQ_SOFTRESET_EN;
1659 if (reset)
1660 val &= ~DPIO_PCS_CLK_SOFT_RESET;
1661 else
1662 val |= DPIO_PCS_CLK_SOFT_RESET;
1663 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1665 if (crtc->config->lane_count > 2) {
1666 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1667 val |= CHV_PCS_REQ_SOFTRESET_EN;
1668 if (reset)
1669 val &= ~DPIO_PCS_CLK_SOFT_RESET;
1670 else
1671 val |= DPIO_PCS_CLK_SOFT_RESET;
1672 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1676 static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1678 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1679 struct drm_device *dev = encoder->base.dev;
1680 struct drm_i915_private *dev_priv = dev->dev_private;
1681 struct intel_crtc *intel_crtc =
1682 to_intel_crtc(encoder->base.crtc);
1683 enum dpio_channel ch = vlv_dport_to_channel(dport);
1684 enum pipe pipe = intel_crtc->pipe;
1685 u32 val;
1687 intel_hdmi_prepare(encoder);
1690 * Must trick the second common lane into life.
1691 * Otherwise we can't even access the PLL.
1693 if (ch == DPIO_CH0 && pipe == PIPE_B)
1694 dport->release_cl2_override =
1695 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
1697 chv_phy_powergate_lanes(encoder, true, 0x0);
1699 mutex_lock(&dev_priv->sb_lock);
1701 /* Assert data lane reset */
1702 chv_data_lane_soft_reset(encoder, true);
1704 /* program left/right clock distribution */
1705 if (pipe != PIPE_B) {
1706 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1707 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1708 if (ch == DPIO_CH0)
1709 val |= CHV_BUFLEFTENA1_FORCE;
1710 if (ch == DPIO_CH1)
1711 val |= CHV_BUFRIGHTENA1_FORCE;
1712 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1713 } else {
1714 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1715 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1716 if (ch == DPIO_CH0)
1717 val |= CHV_BUFLEFTENA2_FORCE;
1718 if (ch == DPIO_CH1)
1719 val |= CHV_BUFRIGHTENA2_FORCE;
1720 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1723 /* program clock channel usage */
1724 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
1725 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1726 if (pipe != PIPE_B)
1727 val &= ~CHV_PCS_USEDCLKCHANNEL;
1728 else
1729 val |= CHV_PCS_USEDCLKCHANNEL;
1730 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
1732 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
1733 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1734 if (pipe != PIPE_B)
1735 val &= ~CHV_PCS_USEDCLKCHANNEL;
1736 else
1737 val |= CHV_PCS_USEDCLKCHANNEL;
1738 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
1741 * This a a bit weird since generally CL
1742 * matches the pipe, but here we need to
1743 * pick the CL based on the port.
1745 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
1746 if (pipe != PIPE_B)
1747 val &= ~CHV_CMN_USEDCLKCHANNEL;
1748 else
1749 val |= CHV_CMN_USEDCLKCHANNEL;
1750 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
1752 mutex_unlock(&dev_priv->sb_lock);
1755 static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder)
1757 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1758 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
1759 u32 val;
1761 mutex_lock(&dev_priv->sb_lock);
1763 /* disable left/right clock distribution */
1764 if (pipe != PIPE_B) {
1765 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1766 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1767 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1768 } else {
1769 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1770 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1771 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1774 mutex_unlock(&dev_priv->sb_lock);
1777 * Leave the power down bit cleared for at least one
1778 * lane so that chv_powergate_phy_ch() will power
1779 * on something when the channel is otherwise unused.
1780 * When the port is off and the override is removed
1781 * the lanes power down anyway, so otherwise it doesn't
1782 * really matter what the state of power down bits is
1783 * after this.
1785 chv_phy_powergate_lanes(encoder, false, 0x0);
1788 static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1790 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1791 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1792 struct intel_crtc *intel_crtc =
1793 to_intel_crtc(encoder->base.crtc);
1794 enum dpio_channel port = vlv_dport_to_channel(dport);
1795 int pipe = intel_crtc->pipe;
1797 /* Reset lanes to avoid HDMI flicker (VLV w/a) */
1798 mutex_lock(&dev_priv->sb_lock);
1799 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1800 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1801 mutex_unlock(&dev_priv->sb_lock);
1804 static void chv_hdmi_post_disable(struct intel_encoder *encoder)
1806 struct drm_device *dev = encoder->base.dev;
1807 struct drm_i915_private *dev_priv = dev->dev_private;
1809 mutex_lock(&dev_priv->sb_lock);
1811 /* Assert data lane reset */
1812 chv_data_lane_soft_reset(encoder, true);
1814 mutex_unlock(&dev_priv->sb_lock);
1817 static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
1819 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1820 struct intel_hdmi *intel_hdmi = &dport->hdmi;
1821 struct drm_device *dev = encoder->base.dev;
1822 struct drm_i915_private *dev_priv = dev->dev_private;
1823 struct intel_crtc *intel_crtc =
1824 to_intel_crtc(encoder->base.crtc);
1825 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1826 enum dpio_channel ch = vlv_dport_to_channel(dport);
1827 int pipe = intel_crtc->pipe;
1828 int data, i, stagger;
1829 u32 val;
1831 mutex_lock(&dev_priv->sb_lock);
1833 /* allow hardware to manage TX FIFO reset source */
1834 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1835 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1836 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1838 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1839 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
1840 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1842 /* Program Tx latency optimal setting */
1843 for (i = 0; i < 4; i++) {
1844 /* Set the upar bit */
1845 data = (i == 1) ? 0x0 : 0x1;
1846 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
1847 data << DPIO_UPAR_SHIFT);
1850 /* Data lane stagger programming */
1851 if (intel_crtc->config->port_clock > 270000)
1852 stagger = 0x18;
1853 else if (intel_crtc->config->port_clock > 135000)
1854 stagger = 0xd;
1855 else if (intel_crtc->config->port_clock > 67500)
1856 stagger = 0x7;
1857 else if (intel_crtc->config->port_clock > 33750)
1858 stagger = 0x4;
1859 else
1860 stagger = 0x2;
1862 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
1863 val |= DPIO_TX2_STAGGER_MASK(0x1f);
1864 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
1866 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
1867 val |= DPIO_TX2_STAGGER_MASK(0x1f);
1868 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
1870 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
1871 DPIO_LANESTAGGER_STRAP(stagger) |
1872 DPIO_LANESTAGGER_STRAP_OVRD |
1873 DPIO_TX1_STAGGER_MASK(0x1f) |
1874 DPIO_TX1_STAGGER_MULT(6) |
1875 DPIO_TX2_STAGGER_MULT(0));
1877 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
1878 DPIO_LANESTAGGER_STRAP(stagger) |
1879 DPIO_LANESTAGGER_STRAP_OVRD |
1880 DPIO_TX1_STAGGER_MASK(0x1f) |
1881 DPIO_TX1_STAGGER_MULT(7) |
1882 DPIO_TX2_STAGGER_MULT(5));
1884 /* Deassert data lane reset */
1885 chv_data_lane_soft_reset(encoder, false);
1887 /* Clear calc init */
1888 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1889 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1890 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1891 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1892 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1894 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1895 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1896 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
1897 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1898 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1900 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
1901 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1902 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1903 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
1905 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
1906 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
1907 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
1908 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
1910 /* FIXME: Program the support xxx V-dB */
1911 /* Use 800mV-0dB */
1912 for (i = 0; i < 4; i++) {
1913 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
1914 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
1915 val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
1916 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
1919 for (i = 0; i < 4; i++) {
1920 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
1922 val &= ~DPIO_SWING_MARGIN000_MASK;
1923 val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
1926 * Supposedly this value shouldn't matter when unique transition
1927 * scale is disabled, but in fact it does matter. Let's just
1928 * always program the same value and hope it's OK.
1930 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
1931 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
1933 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
1937 * The document said it needs to set bit 27 for ch0 and bit 26
1938 * for ch1. Might be a typo in the doc.
1939 * For now, for this unique transition scale selection, set bit
1940 * 27 for ch0 and ch1.
1942 for (i = 0; i < 4; i++) {
1943 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
1944 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
1945 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
1948 /* Start swing calculation */
1949 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1950 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1951 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1953 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1954 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1955 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1957 mutex_unlock(&dev_priv->sb_lock);
1959 intel_hdmi->set_infoframes(&encoder->base,
1960 intel_crtc->config->has_hdmi_sink,
1961 adjusted_mode);
1963 g4x_enable_hdmi(encoder);
1965 vlv_wait_port_ready(dev_priv, dport, 0x0);
1967 /* Second common lane will stay alive on its own now */
1968 if (dport->release_cl2_override) {
1969 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1970 dport->release_cl2_override = false;
1974 static void intel_hdmi_destroy(struct drm_connector *connector)
1976 kfree(to_intel_connector(connector)->detect_edid);
1977 drm_connector_cleanup(connector);
1978 kfree(connector);
1981 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
1982 .dpms = drm_atomic_helper_connector_dpms,
1983 .detect = intel_hdmi_detect,
1984 .force = intel_hdmi_force,
1985 .fill_modes = drm_helper_probe_single_connector_modes,
1986 .set_property = intel_hdmi_set_property,
1987 .atomic_get_property = intel_connector_atomic_get_property,
1988 .destroy = intel_hdmi_destroy,
1989 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1990 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1993 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
1994 .get_modes = intel_hdmi_get_modes,
1995 .mode_valid = intel_hdmi_mode_valid,
1996 .best_encoder = intel_best_encoder,
1999 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
2000 .destroy = intel_encoder_destroy,
2003 static void
2004 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2006 intel_attach_force_audio_property(connector);
2007 intel_attach_broadcast_rgb_property(connector);
2008 intel_hdmi->color_range_auto = true;
2009 intel_attach_aspect_ratio_property(connector);
2010 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
2013 void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
2014 struct intel_connector *intel_connector)
2016 struct drm_connector *connector = &intel_connector->base;
2017 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
2018 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2019 struct drm_device *dev = intel_encoder->base.dev;
2020 struct drm_i915_private *dev_priv = dev->dev_private;
2021 enum port port = intel_dig_port->port;
2022 uint8_t alternate_ddc_pin;
2024 drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
2025 DRM_MODE_CONNECTOR_HDMIA);
2026 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2028 connector->interlace_allowed = 1;
2029 connector->doublescan_allowed = 0;
2030 connector->stereo_allowed = 1;
2032 switch (port) {
2033 case PORT_B:
2034 if (IS_BROXTON(dev_priv))
2035 intel_hdmi->ddc_bus = GMBUS_PIN_1_BXT;
2036 else
2037 intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
2039 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
2040 * interrupts to check the external panel connection.
2042 if (IS_BROXTON(dev_priv) && (INTEL_REVID(dev) < BXT_REVID_B0))
2043 intel_encoder->hpd_pin = HPD_PORT_A;
2044 else
2045 intel_encoder->hpd_pin = HPD_PORT_B;
2046 break;
2047 case PORT_C:
2048 if (IS_BROXTON(dev_priv))
2049 intel_hdmi->ddc_bus = GMBUS_PIN_2_BXT;
2050 else
2051 intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
2052 intel_encoder->hpd_pin = HPD_PORT_C;
2053 break;
2054 case PORT_D:
2055 if (WARN_ON(IS_BROXTON(dev_priv)))
2056 intel_hdmi->ddc_bus = GMBUS_PIN_DISABLED;
2057 else if (IS_CHERRYVIEW(dev_priv))
2058 intel_hdmi->ddc_bus = GMBUS_PIN_DPD_CHV;
2059 else
2060 intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
2061 intel_encoder->hpd_pin = HPD_PORT_D;
2062 break;
2063 case PORT_E:
2064 /* On SKL PORT E doesn't have seperate GMBUS pin
2065 * We rely on VBT to set a proper alternate GMBUS pin. */
2066 alternate_ddc_pin =
2067 dev_priv->vbt.ddi_port_info[PORT_E].alternate_ddc_pin;
2068 switch (alternate_ddc_pin) {
2069 case DDC_PIN_B:
2070 intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
2071 break;
2072 case DDC_PIN_C:
2073 intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
2074 break;
2075 case DDC_PIN_D:
2076 intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
2077 break;
2078 default:
2079 MISSING_CASE(alternate_ddc_pin);
2081 intel_encoder->hpd_pin = HPD_PORT_E;
2082 break;
2083 case PORT_A:
2084 intel_encoder->hpd_pin = HPD_PORT_A;
2085 /* Internal port only for eDP. */
2086 default:
2087 BUG();
2090 if (IS_VALLEYVIEW(dev)) {
2091 intel_hdmi->write_infoframe = vlv_write_infoframe;
2092 intel_hdmi->set_infoframes = vlv_set_infoframes;
2093 intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
2094 } else if (IS_G4X(dev)) {
2095 intel_hdmi->write_infoframe = g4x_write_infoframe;
2096 intel_hdmi->set_infoframes = g4x_set_infoframes;
2097 intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
2098 } else if (HAS_DDI(dev)) {
2099 intel_hdmi->write_infoframe = hsw_write_infoframe;
2100 intel_hdmi->set_infoframes = hsw_set_infoframes;
2101 intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
2102 } else if (HAS_PCH_IBX(dev)) {
2103 intel_hdmi->write_infoframe = ibx_write_infoframe;
2104 intel_hdmi->set_infoframes = ibx_set_infoframes;
2105 intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
2106 } else {
2107 intel_hdmi->write_infoframe = cpt_write_infoframe;
2108 intel_hdmi->set_infoframes = cpt_set_infoframes;
2109 intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
2112 if (HAS_DDI(dev))
2113 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2114 else
2115 intel_connector->get_hw_state = intel_connector_get_hw_state;
2116 intel_connector->unregister = intel_connector_unregister;
2118 intel_hdmi_add_properties(intel_hdmi, connector);
2120 intel_connector_attach_encoder(intel_connector, intel_encoder);
2121 drm_connector_register(connector);
2122 intel_hdmi->attached_connector = intel_connector;
2124 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2125 * 0xd. Failure to do so will result in spurious interrupts being
2126 * generated on the port when a cable is not attached.
2128 if (IS_G4X(dev) && !IS_GM45(dev)) {
2129 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2130 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2134 void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
2136 struct intel_digital_port *intel_dig_port;
2137 struct intel_encoder *intel_encoder;
2138 struct intel_connector *intel_connector;
2140 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2141 if (!intel_dig_port)
2142 return;
2144 intel_connector = intel_connector_alloc();
2145 if (!intel_connector) {
2146 kfree(intel_dig_port);
2147 return;
2150 intel_encoder = &intel_dig_port->base;
2152 drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
2153 DRM_MODE_ENCODER_TMDS);
2155 intel_encoder->compute_config = intel_hdmi_compute_config;
2156 if (HAS_PCH_SPLIT(dev)) {
2157 intel_encoder->disable = pch_disable_hdmi;
2158 intel_encoder->post_disable = pch_post_disable_hdmi;
2159 } else {
2160 intel_encoder->disable = g4x_disable_hdmi;
2162 intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
2163 intel_encoder->get_config = intel_hdmi_get_config;
2164 if (IS_CHERRYVIEW(dev)) {
2165 intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
2166 intel_encoder->pre_enable = chv_hdmi_pre_enable;
2167 intel_encoder->enable = vlv_enable_hdmi;
2168 intel_encoder->post_disable = chv_hdmi_post_disable;
2169 intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
2170 } else if (IS_VALLEYVIEW(dev)) {
2171 intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
2172 intel_encoder->pre_enable = vlv_hdmi_pre_enable;
2173 intel_encoder->enable = vlv_enable_hdmi;
2174 intel_encoder->post_disable = vlv_hdmi_post_disable;
2175 } else {
2176 intel_encoder->pre_enable = intel_hdmi_pre_enable;
2177 if (HAS_PCH_CPT(dev))
2178 intel_encoder->enable = cpt_enable_hdmi;
2179 else if (HAS_PCH_IBX(dev))
2180 intel_encoder->enable = ibx_enable_hdmi;
2181 else
2182 intel_encoder->enable = g4x_enable_hdmi;
2185 intel_encoder->type = INTEL_OUTPUT_HDMI;
2186 if (IS_CHERRYVIEW(dev)) {
2187 if (port == PORT_D)
2188 intel_encoder->crtc_mask = 1 << 2;
2189 else
2190 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2191 } else {
2192 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2194 intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
2196 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
2197 * to work on real hardware. And since g4x can send infoframes to
2198 * only one port anyway, nothing is lost by allowing it.
2200 if (IS_G4X(dev))
2201 intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
2203 intel_dig_port->port = port;
2204 intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
2205 intel_dig_port->dp.output_reg = 0;
2207 intel_hdmi_init_connector(intel_dig_port, intel_connector);