2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
76 module_param(halt_poll_ns
, uint
, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns
);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow
= 2;
81 module_param(halt_poll_ns_grow
, uint
, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow
);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink
;
86 module_param(halt_poll_ns_shrink
, uint
, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink
);
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock
);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
99 static cpumask_var_t cpus_hardware_enabled
;
100 static int kvm_usage_count
;
101 static atomic_t hardware_enable_failed
;
103 struct kmem_cache
*kvm_vcpu_cache
;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
106 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
108 struct dentry
*kvm_debugfs_dir
;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
111 static int kvm_debugfs_num_entries
;
112 static const struct file_operations
*stat_fops_per_vm
[];
114 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
119 #define KVM_COMPAT(c) .compat_ioctl = (c)
121 static long kvm_no_compat_ioctl(struct file
*file
, unsigned int ioctl
,
122 unsigned long arg
) { return -EINVAL
; }
123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
128 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
132 __visible
bool kvm_rebooting
;
133 EXPORT_SYMBOL_GPL(kvm_rebooting
);
135 static bool largepages_enabled
= true;
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
);
140 static unsigned long long kvm_createvm_count
;
141 static unsigned long long kvm_active_vms
;
143 __weak
int kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
144 unsigned long start
, unsigned long end
, bool blockable
)
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn
)
152 return PageReserved(pfn_to_page(pfn
));
158 * Switches to specified vcpu, until a matching vcpu_put()
160 void vcpu_load(struct kvm_vcpu
*vcpu
)
163 preempt_notifier_register(&vcpu
->preempt_notifier
);
164 kvm_arch_vcpu_load(vcpu
, cpu
);
167 EXPORT_SYMBOL_GPL(vcpu_load
);
169 void vcpu_put(struct kvm_vcpu
*vcpu
)
172 kvm_arch_vcpu_put(vcpu
);
173 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
176 EXPORT_SYMBOL_GPL(vcpu_put
);
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu
*vcpu
, unsigned req
)
181 int mode
= kvm_vcpu_exiting_guest_mode(vcpu
);
184 * We need to wait for the VCPU to reenable interrupts and get out of
185 * READING_SHADOW_PAGE_TABLES mode.
187 if (req
& KVM_REQUEST_WAIT
)
188 return mode
!= OUTSIDE_GUEST_MODE
;
191 * Need to kick a running VCPU, but otherwise there is nothing to do.
193 return mode
== IN_GUEST_MODE
;
196 static void ack_flush(void *_completed
)
200 static inline bool kvm_kick_many_cpus(const struct cpumask
*cpus
, bool wait
)
203 cpus
= cpu_online_mask
;
205 if (cpumask_empty(cpus
))
208 smp_call_function_many(cpus
, ack_flush
, NULL
, wait
);
212 bool kvm_make_vcpus_request_mask(struct kvm
*kvm
, unsigned int req
,
213 unsigned long *vcpu_bitmap
, cpumask_var_t tmp
)
216 struct kvm_vcpu
*vcpu
;
221 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
222 if (!test_bit(i
, vcpu_bitmap
))
225 kvm_make_request(req
, vcpu
);
228 if (!(req
& KVM_REQUEST_NO_WAKEUP
) && kvm_vcpu_wake_up(vcpu
))
231 if (tmp
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
232 kvm_request_needs_ipi(vcpu
, req
))
233 __cpumask_set_cpu(cpu
, tmp
);
236 called
= kvm_kick_many_cpus(tmp
, !!(req
& KVM_REQUEST_WAIT
));
242 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
246 static unsigned long vcpu_bitmap
[BITS_TO_LONGS(KVM_MAX_VCPUS
)]
247 = {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS
)-1] = ULONG_MAX
};
249 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
251 called
= kvm_make_vcpus_request_mask(kvm
, req
, vcpu_bitmap
, cpus
);
253 free_cpumask_var(cpus
);
257 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
258 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
261 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
262 * kvm_make_all_cpus_request.
264 long dirty_count
= smp_load_acquire(&kvm
->tlbs_dirty
);
267 * We want to publish modifications to the page tables before reading
268 * mode. Pairs with a memory barrier in arch-specific code.
269 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
270 * and smp_mb in walk_shadow_page_lockless_begin/end.
271 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
273 * There is already an smp_mb__after_atomic() before
274 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
277 if (!kvm_arch_flush_remote_tlb(kvm
)
278 || kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
279 ++kvm
->stat
.remote_tlb_flush
;
280 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
282 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
285 void kvm_reload_remote_mmus(struct kvm
*kvm
)
287 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
290 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
295 mutex_init(&vcpu
->mutex
);
300 init_swait_queue_head(&vcpu
->wq
);
301 kvm_async_pf_vcpu_init(vcpu
);
304 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
306 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
311 vcpu
->run
= page_address(page
);
313 kvm_vcpu_set_in_spin_loop(vcpu
, false);
314 kvm_vcpu_set_dy_eligible(vcpu
, false);
315 vcpu
->preempted
= false;
317 r
= kvm_arch_vcpu_init(vcpu
);
323 free_page((unsigned long)vcpu
->run
);
327 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
329 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
332 * no need for rcu_read_lock as VCPU_RUN is the only place that
333 * will change the vcpu->pid pointer and on uninit all file
334 * descriptors are already gone.
336 put_pid(rcu_dereference_protected(vcpu
->pid
, 1));
337 kvm_arch_vcpu_uninit(vcpu
);
338 free_page((unsigned long)vcpu
->run
);
340 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
342 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
343 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
345 return container_of(mn
, struct kvm
, mmu_notifier
);
348 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
349 struct mm_struct
*mm
,
350 unsigned long address
,
353 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
356 idx
= srcu_read_lock(&kvm
->srcu
);
357 spin_lock(&kvm
->mmu_lock
);
358 kvm
->mmu_notifier_seq
++;
359 kvm_set_spte_hva(kvm
, address
, pte
);
360 spin_unlock(&kvm
->mmu_lock
);
361 srcu_read_unlock(&kvm
->srcu
, idx
);
364 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
365 struct mm_struct
*mm
,
370 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
371 int need_tlb_flush
= 0, idx
;
374 idx
= srcu_read_lock(&kvm
->srcu
);
375 spin_lock(&kvm
->mmu_lock
);
377 * The count increase must become visible at unlock time as no
378 * spte can be established without taking the mmu_lock and
379 * count is also read inside the mmu_lock critical section.
381 kvm
->mmu_notifier_count
++;
382 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
383 need_tlb_flush
|= kvm
->tlbs_dirty
;
384 /* we've to flush the tlb before the pages can be freed */
386 kvm_flush_remote_tlbs(kvm
);
388 spin_unlock(&kvm
->mmu_lock
);
390 ret
= kvm_arch_mmu_notifier_invalidate_range(kvm
, start
, end
, blockable
);
392 srcu_read_unlock(&kvm
->srcu
, idx
);
397 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
398 struct mm_struct
*mm
,
402 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
404 spin_lock(&kvm
->mmu_lock
);
406 * This sequence increase will notify the kvm page fault that
407 * the page that is going to be mapped in the spte could have
410 kvm
->mmu_notifier_seq
++;
413 * The above sequence increase must be visible before the
414 * below count decrease, which is ensured by the smp_wmb above
415 * in conjunction with the smp_rmb in mmu_notifier_retry().
417 kvm
->mmu_notifier_count
--;
418 spin_unlock(&kvm
->mmu_lock
);
420 BUG_ON(kvm
->mmu_notifier_count
< 0);
423 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
424 struct mm_struct
*mm
,
428 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
431 idx
= srcu_read_lock(&kvm
->srcu
);
432 spin_lock(&kvm
->mmu_lock
);
434 young
= kvm_age_hva(kvm
, start
, end
);
436 kvm_flush_remote_tlbs(kvm
);
438 spin_unlock(&kvm
->mmu_lock
);
439 srcu_read_unlock(&kvm
->srcu
, idx
);
444 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
445 struct mm_struct
*mm
,
449 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
452 idx
= srcu_read_lock(&kvm
->srcu
);
453 spin_lock(&kvm
->mmu_lock
);
455 * Even though we do not flush TLB, this will still adversely
456 * affect performance on pre-Haswell Intel EPT, where there is
457 * no EPT Access Bit to clear so that we have to tear down EPT
458 * tables instead. If we find this unacceptable, we can always
459 * add a parameter to kvm_age_hva so that it effectively doesn't
460 * do anything on clear_young.
462 * Also note that currently we never issue secondary TLB flushes
463 * from clear_young, leaving this job up to the regular system
464 * cadence. If we find this inaccurate, we might come up with a
465 * more sophisticated heuristic later.
467 young
= kvm_age_hva(kvm
, start
, end
);
468 spin_unlock(&kvm
->mmu_lock
);
469 srcu_read_unlock(&kvm
->srcu
, idx
);
474 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
475 struct mm_struct
*mm
,
476 unsigned long address
)
478 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
481 idx
= srcu_read_lock(&kvm
->srcu
);
482 spin_lock(&kvm
->mmu_lock
);
483 young
= kvm_test_age_hva(kvm
, address
);
484 spin_unlock(&kvm
->mmu_lock
);
485 srcu_read_unlock(&kvm
->srcu
, idx
);
490 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
491 struct mm_struct
*mm
)
493 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
496 idx
= srcu_read_lock(&kvm
->srcu
);
497 kvm_arch_flush_shadow_all(kvm
);
498 srcu_read_unlock(&kvm
->srcu
, idx
);
501 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
502 .flags
= MMU_INVALIDATE_DOES_NOT_BLOCK
,
503 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
504 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
505 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
506 .clear_young
= kvm_mmu_notifier_clear_young
,
507 .test_young
= kvm_mmu_notifier_test_young
,
508 .change_pte
= kvm_mmu_notifier_change_pte
,
509 .release
= kvm_mmu_notifier_release
,
512 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
514 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
515 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
518 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
525 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527 static struct kvm_memslots
*kvm_alloc_memslots(void)
530 struct kvm_memslots
*slots
;
532 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
536 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
537 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
544 if (!memslot
->dirty_bitmap
)
547 kvfree(memslot
->dirty_bitmap
);
548 memslot
->dirty_bitmap
= NULL
;
552 * Free any memory in @free but not in @dont.
554 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
555 struct kvm_memory_slot
*dont
)
557 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
558 kvm_destroy_dirty_bitmap(free
);
560 kvm_arch_free_memslot(kvm
, free
, dont
);
565 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
567 struct kvm_memory_slot
*memslot
;
572 kvm_for_each_memslot(memslot
, slots
)
573 kvm_free_memslot(kvm
, memslot
, NULL
);
578 static void kvm_destroy_vm_debugfs(struct kvm
*kvm
)
582 if (!kvm
->debugfs_dentry
)
585 debugfs_remove_recursive(kvm
->debugfs_dentry
);
587 if (kvm
->debugfs_stat_data
) {
588 for (i
= 0; i
< kvm_debugfs_num_entries
; i
++)
589 kfree(kvm
->debugfs_stat_data
[i
]);
590 kfree(kvm
->debugfs_stat_data
);
594 static int kvm_create_vm_debugfs(struct kvm
*kvm
, int fd
)
596 char dir_name
[ITOA_MAX_LEN
* 2];
597 struct kvm_stat_data
*stat_data
;
598 struct kvm_stats_debugfs_item
*p
;
600 if (!debugfs_initialized())
603 snprintf(dir_name
, sizeof(dir_name
), "%d-%d", task_pid_nr(current
), fd
);
604 kvm
->debugfs_dentry
= debugfs_create_dir(dir_name
, kvm_debugfs_dir
);
606 kvm
->debugfs_stat_data
= kcalloc(kvm_debugfs_num_entries
,
607 sizeof(*kvm
->debugfs_stat_data
),
609 if (!kvm
->debugfs_stat_data
)
612 for (p
= debugfs_entries
; p
->name
; p
++) {
613 stat_data
= kzalloc(sizeof(*stat_data
), GFP_KERNEL
);
617 stat_data
->kvm
= kvm
;
618 stat_data
->offset
= p
->offset
;
619 kvm
->debugfs_stat_data
[p
- debugfs_entries
] = stat_data
;
620 debugfs_create_file(p
->name
, 0644, kvm
->debugfs_dentry
,
621 stat_data
, stat_fops_per_vm
[p
->kind
]);
626 static struct kvm
*kvm_create_vm(unsigned long type
)
629 struct kvm
*kvm
= kvm_arch_alloc_vm();
632 return ERR_PTR(-ENOMEM
);
634 spin_lock_init(&kvm
->mmu_lock
);
636 kvm
->mm
= current
->mm
;
637 kvm_eventfd_init(kvm
);
638 mutex_init(&kvm
->lock
);
639 mutex_init(&kvm
->irq_lock
);
640 mutex_init(&kvm
->slots_lock
);
641 refcount_set(&kvm
->users_count
, 1);
642 INIT_LIST_HEAD(&kvm
->devices
);
644 r
= kvm_arch_init_vm(kvm
, type
);
646 goto out_err_no_disable
;
648 r
= hardware_enable_all();
650 goto out_err_no_disable
;
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
656 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
659 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
660 struct kvm_memslots
*slots
= kvm_alloc_memslots();
662 goto out_err_no_srcu
;
664 * Generations must be different for each address space.
665 * Init kvm generation close to the maximum to easily test the
666 * code of handling generation number wrap-around.
668 slots
->generation
= i
* 2 - 150;
669 rcu_assign_pointer(kvm
->memslots
[i
], slots
);
672 if (init_srcu_struct(&kvm
->srcu
))
673 goto out_err_no_srcu
;
674 if (init_srcu_struct(&kvm
->irq_srcu
))
675 goto out_err_no_irq_srcu
;
676 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
677 rcu_assign_pointer(kvm
->buses
[i
],
678 kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL
));
683 r
= kvm_init_mmu_notifier(kvm
);
687 spin_lock(&kvm_lock
);
688 list_add(&kvm
->vm_list
, &vm_list
);
689 spin_unlock(&kvm_lock
);
691 preempt_notifier_inc();
696 cleanup_srcu_struct(&kvm
->irq_srcu
);
698 cleanup_srcu_struct(&kvm
->srcu
);
700 hardware_disable_all();
702 refcount_set(&kvm
->users_count
, 0);
703 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
704 kfree(kvm_get_bus(kvm
, i
));
705 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
706 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
707 kvm_arch_free_vm(kvm
);
712 static void kvm_destroy_devices(struct kvm
*kvm
)
714 struct kvm_device
*dev
, *tmp
;
717 * We do not need to take the kvm->lock here, because nobody else
718 * has a reference to the struct kvm at this point and therefore
719 * cannot access the devices list anyhow.
721 list_for_each_entry_safe(dev
, tmp
, &kvm
->devices
, vm_node
) {
722 list_del(&dev
->vm_node
);
723 dev
->ops
->destroy(dev
);
727 static void kvm_destroy_vm(struct kvm
*kvm
)
730 struct mm_struct
*mm
= kvm
->mm
;
732 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM
, kvm
);
733 kvm_destroy_vm_debugfs(kvm
);
734 kvm_arch_sync_events(kvm
);
735 spin_lock(&kvm_lock
);
736 list_del(&kvm
->vm_list
);
737 spin_unlock(&kvm_lock
);
738 kvm_free_irq_routing(kvm
);
739 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
740 struct kvm_io_bus
*bus
= kvm_get_bus(kvm
, i
);
743 kvm_io_bus_destroy(bus
);
744 kvm
->buses
[i
] = NULL
;
746 kvm_coalesced_mmio_free(kvm
);
747 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
748 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
750 kvm_arch_flush_shadow_all(kvm
);
752 kvm_arch_destroy_vm(kvm
);
753 kvm_destroy_devices(kvm
);
754 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
755 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
756 cleanup_srcu_struct(&kvm
->irq_srcu
);
757 cleanup_srcu_struct(&kvm
->srcu
);
758 kvm_arch_free_vm(kvm
);
759 preempt_notifier_dec();
760 hardware_disable_all();
764 void kvm_get_kvm(struct kvm
*kvm
)
766 refcount_inc(&kvm
->users_count
);
768 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
770 void kvm_put_kvm(struct kvm
*kvm
)
772 if (refcount_dec_and_test(&kvm
->users_count
))
775 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
778 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
780 struct kvm
*kvm
= filp
->private_data
;
782 kvm_irqfd_release(kvm
);
789 * Allocation size is twice as large as the actual dirty bitmap size.
790 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
792 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
794 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
796 memslot
->dirty_bitmap
= kvzalloc(dirty_bytes
, GFP_KERNEL
);
797 if (!memslot
->dirty_bitmap
)
804 * Insert memslot and re-sort memslots based on their GFN,
805 * so binary search could be used to lookup GFN.
806 * Sorting algorithm takes advantage of having initially
807 * sorted array and known changed memslot position.
809 static void update_memslots(struct kvm_memslots
*slots
,
810 struct kvm_memory_slot
*new)
813 int i
= slots
->id_to_index
[id
];
814 struct kvm_memory_slot
*mslots
= slots
->memslots
;
816 WARN_ON(mslots
[i
].id
!= id
);
818 WARN_ON(!mslots
[i
].npages
);
819 if (mslots
[i
].npages
)
822 if (!mslots
[i
].npages
)
826 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
827 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
828 if (!mslots
[i
+ 1].npages
)
830 mslots
[i
] = mslots
[i
+ 1];
831 slots
->id_to_index
[mslots
[i
].id
] = i
;
836 * The ">=" is needed when creating a slot with base_gfn == 0,
837 * so that it moves before all those with base_gfn == npages == 0.
839 * On the other hand, if new->npages is zero, the above loop has
840 * already left i pointing to the beginning of the empty part of
841 * mslots, and the ">=" would move the hole backwards in this
842 * case---which is wrong. So skip the loop when deleting a slot.
846 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
847 mslots
[i
] = mslots
[i
- 1];
848 slots
->id_to_index
[mslots
[i
].id
] = i
;
852 WARN_ON_ONCE(i
!= slots
->used_slots
);
855 slots
->id_to_index
[mslots
[i
].id
] = i
;
858 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
860 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
862 #ifdef __KVM_HAVE_READONLY_MEM
863 valid_flags
|= KVM_MEM_READONLY
;
866 if (mem
->flags
& ~valid_flags
)
872 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
873 int as_id
, struct kvm_memslots
*slots
)
875 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
878 * Set the low bit in the generation, which disables SPTE caching
879 * until the end of synchronize_srcu_expedited.
881 WARN_ON(old_memslots
->generation
& 1);
882 slots
->generation
= old_memslots
->generation
+ 1;
884 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
885 synchronize_srcu_expedited(&kvm
->srcu
);
888 * Increment the new memslot generation a second time. This prevents
889 * vm exits that race with memslot updates from caching a memslot
890 * generation that will (potentially) be valid forever.
892 * Generations must be unique even across address spaces. We do not need
893 * a global counter for that, instead the generation space is evenly split
894 * across address spaces. For example, with two address spaces, address
895 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
896 * use generations 2, 6, 10, 14, ...
898 slots
->generation
+= KVM_ADDRESS_SPACE_NUM
* 2 - 1;
900 kvm_arch_memslots_updated(kvm
, slots
);
906 * Allocate some memory and give it an address in the guest physical address
909 * Discontiguous memory is allowed, mostly for framebuffers.
911 * Must be called holding kvm->slots_lock for write.
913 int __kvm_set_memory_region(struct kvm
*kvm
,
914 const struct kvm_userspace_memory_region
*mem
)
918 unsigned long npages
;
919 struct kvm_memory_slot
*slot
;
920 struct kvm_memory_slot old
, new;
921 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
923 enum kvm_mr_change change
;
925 r
= check_memory_region_flags(mem
);
930 as_id
= mem
->slot
>> 16;
933 /* General sanity checks */
934 if (mem
->memory_size
& (PAGE_SIZE
- 1))
936 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
938 /* We can read the guest memory with __xxx_user() later on. */
939 if ((id
< KVM_USER_MEM_SLOTS
) &&
940 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
941 !access_ok(VERIFY_WRITE
,
942 (void __user
*)(unsigned long)mem
->userspace_addr
,
945 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
947 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
950 slot
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
951 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
952 npages
= mem
->memory_size
>> PAGE_SHIFT
;
954 if (npages
> KVM_MEM_MAX_NR_PAGES
)
960 new.base_gfn
= base_gfn
;
962 new.flags
= mem
->flags
;
966 change
= KVM_MR_CREATE
;
967 else { /* Modify an existing slot. */
968 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
969 (npages
!= old
.npages
) ||
970 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
973 if (base_gfn
!= old
.base_gfn
)
974 change
= KVM_MR_MOVE
;
975 else if (new.flags
!= old
.flags
)
976 change
= KVM_MR_FLAGS_ONLY
;
977 else { /* Nothing to change. */
986 change
= KVM_MR_DELETE
;
991 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
992 /* Check for overlaps */
994 kvm_for_each_memslot(slot
, __kvm_memslots(kvm
, as_id
)) {
997 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
998 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
1003 /* Free page dirty bitmap if unneeded */
1004 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
1005 new.dirty_bitmap
= NULL
;
1008 if (change
== KVM_MR_CREATE
) {
1009 new.userspace_addr
= mem
->userspace_addr
;
1011 if (kvm_arch_create_memslot(kvm
, &new, npages
))
1015 /* Allocate page dirty bitmap if needed */
1016 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
1017 if (kvm_create_dirty_bitmap(&new) < 0)
1021 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
1024 memcpy(slots
, __kvm_memslots(kvm
, as_id
), sizeof(struct kvm_memslots
));
1026 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
1027 slot
= id_to_memslot(slots
, id
);
1028 slot
->flags
|= KVM_MEMSLOT_INVALID
;
1030 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1032 /* From this point no new shadow pages pointing to a deleted,
1033 * or moved, memslot will be created.
1035 * validation of sp->gfn happens in:
1036 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1037 * - kvm_is_visible_gfn (mmu_check_roots)
1039 kvm_arch_flush_shadow_memslot(kvm
, slot
);
1042 * We can re-use the old_memslots from above, the only difference
1043 * from the currently installed memslots is the invalid flag. This
1044 * will get overwritten by update_memslots anyway.
1046 slots
= old_memslots
;
1049 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
1053 /* actual memory is freed via old in kvm_free_memslot below */
1054 if (change
== KVM_MR_DELETE
) {
1055 new.dirty_bitmap
= NULL
;
1056 memset(&new.arch
, 0, sizeof(new.arch
));
1059 update_memslots(slots
, &new);
1060 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1062 kvm_arch_commit_memory_region(kvm
, mem
, &old
, &new, change
);
1064 kvm_free_memslot(kvm
, &old
, &new);
1065 kvfree(old_memslots
);
1071 kvm_free_memslot(kvm
, &new, &old
);
1075 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1077 int kvm_set_memory_region(struct kvm
*kvm
,
1078 const struct kvm_userspace_memory_region
*mem
)
1082 mutex_lock(&kvm
->slots_lock
);
1083 r
= __kvm_set_memory_region(kvm
, mem
);
1084 mutex_unlock(&kvm
->slots_lock
);
1087 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1089 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1090 struct kvm_userspace_memory_region
*mem
)
1092 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1095 return kvm_set_memory_region(kvm
, mem
);
1098 int kvm_get_dirty_log(struct kvm
*kvm
,
1099 struct kvm_dirty_log
*log
, int *is_dirty
)
1101 struct kvm_memslots
*slots
;
1102 struct kvm_memory_slot
*memslot
;
1105 unsigned long any
= 0;
1107 as_id
= log
->slot
>> 16;
1108 id
= (u16
)log
->slot
;
1109 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1112 slots
= __kvm_memslots(kvm
, as_id
);
1113 memslot
= id_to_memslot(slots
, id
);
1114 if (!memslot
->dirty_bitmap
)
1117 n
= kvm_dirty_bitmap_bytes(memslot
);
1119 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1120 any
= memslot
->dirty_bitmap
[i
];
1122 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134 * are dirty write protect them for next write.
1135 * @kvm: pointer to kvm instance
1136 * @log: slot id and address to which we copy the log
1137 * @is_dirty: flag set if any page is dirty
1139 * We need to keep it in mind that VCPU threads can write to the bitmap
1140 * concurrently. So, to avoid losing track of dirty pages we keep the
1143 * 1. Take a snapshot of the bit and clear it if needed.
1144 * 2. Write protect the corresponding page.
1145 * 3. Copy the snapshot to the userspace.
1146 * 4. Upon return caller flushes TLB's if needed.
1148 * Between 2 and 4, the guest may write to the page using the remaining TLB
1149 * entry. This is not a problem because the page is reported dirty using
1150 * the snapshot taken before and step 4 ensures that writes done after
1151 * exiting to userspace will be logged for the next call.
1154 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1155 struct kvm_dirty_log
*log
, bool *is_dirty
)
1157 struct kvm_memslots
*slots
;
1158 struct kvm_memory_slot
*memslot
;
1161 unsigned long *dirty_bitmap
;
1162 unsigned long *dirty_bitmap_buffer
;
1164 as_id
= log
->slot
>> 16;
1165 id
= (u16
)log
->slot
;
1166 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1169 slots
= __kvm_memslots(kvm
, as_id
);
1170 memslot
= id_to_memslot(slots
, id
);
1172 dirty_bitmap
= memslot
->dirty_bitmap
;
1176 n
= kvm_dirty_bitmap_bytes(memslot
);
1178 dirty_bitmap_buffer
= kvm_second_dirty_bitmap(memslot
);
1179 memset(dirty_bitmap_buffer
, 0, n
);
1181 spin_lock(&kvm
->mmu_lock
);
1183 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1187 if (!dirty_bitmap
[i
])
1192 mask
= xchg(&dirty_bitmap
[i
], 0);
1193 dirty_bitmap_buffer
[i
] = mask
;
1196 offset
= i
* BITS_PER_LONG
;
1197 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1202 spin_unlock(&kvm
->mmu_lock
);
1203 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1207 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1210 bool kvm_largepages_enabled(void)
1212 return largepages_enabled
;
1215 void kvm_disable_largepages(void)
1217 largepages_enabled
= false;
1219 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1221 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1223 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1225 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1227 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1229 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1232 bool kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1234 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1236 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1237 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1242 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1244 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1246 struct vm_area_struct
*vma
;
1247 unsigned long addr
, size
;
1251 addr
= gfn_to_hva(kvm
, gfn
);
1252 if (kvm_is_error_hva(addr
))
1255 down_read(¤t
->mm
->mmap_sem
);
1256 vma
= find_vma(current
->mm
, addr
);
1260 size
= vma_kernel_pagesize(vma
);
1263 up_read(¤t
->mm
->mmap_sem
);
1268 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1270 return slot
->flags
& KVM_MEM_READONLY
;
1273 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1274 gfn_t
*nr_pages
, bool write
)
1276 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1277 return KVM_HVA_ERR_BAD
;
1279 if (memslot_is_readonly(slot
) && write
)
1280 return KVM_HVA_ERR_RO_BAD
;
1283 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1285 return __gfn_to_hva_memslot(slot
, gfn
);
1288 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1291 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1294 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1297 return gfn_to_hva_many(slot
, gfn
, NULL
);
1299 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1301 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1303 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1305 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1307 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1309 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1311 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1314 * If writable is set to false, the hva returned by this function is only
1315 * allowed to be read.
1317 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1318 gfn_t gfn
, bool *writable
)
1320 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1322 if (!kvm_is_error_hva(hva
) && writable
)
1323 *writable
= !memslot_is_readonly(slot
);
1328 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1330 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1332 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1335 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1337 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1339 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1342 static inline int check_user_page_hwpoison(unsigned long addr
)
1344 int rc
, flags
= FOLL_HWPOISON
| FOLL_WRITE
;
1346 rc
= get_user_pages(addr
, 1, flags
, NULL
, NULL
);
1347 return rc
== -EHWPOISON
;
1351 * The fast path to get the writable pfn which will be stored in @pfn,
1352 * true indicates success, otherwise false is returned. It's also the
1353 * only part that runs if we can are in atomic context.
1355 static bool hva_to_pfn_fast(unsigned long addr
, bool write_fault
,
1356 bool *writable
, kvm_pfn_t
*pfn
)
1358 struct page
*page
[1];
1362 * Fast pin a writable pfn only if it is a write fault request
1363 * or the caller allows to map a writable pfn for a read fault
1366 if (!(write_fault
|| writable
))
1369 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1371 *pfn
= page_to_pfn(page
[0]);
1382 * The slow path to get the pfn of the specified host virtual address,
1383 * 1 indicates success, -errno is returned if error is detected.
1385 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1386 bool *writable
, kvm_pfn_t
*pfn
)
1388 unsigned int flags
= FOLL_HWPOISON
;
1395 *writable
= write_fault
;
1398 flags
|= FOLL_WRITE
;
1400 flags
|= FOLL_NOWAIT
;
1402 npages
= get_user_pages_unlocked(addr
, 1, &page
, flags
);
1406 /* map read fault as writable if possible */
1407 if (unlikely(!write_fault
) && writable
) {
1410 if (__get_user_pages_fast(addr
, 1, 1, &wpage
) == 1) {
1416 *pfn
= page_to_pfn(page
);
1420 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1422 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1425 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1431 static int hva_to_pfn_remapped(struct vm_area_struct
*vma
,
1432 unsigned long addr
, bool *async
,
1433 bool write_fault
, bool *writable
,
1439 r
= follow_pfn(vma
, addr
, &pfn
);
1442 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1443 * not call the fault handler, so do it here.
1445 bool unlocked
= false;
1446 r
= fixup_user_fault(current
, current
->mm
, addr
,
1447 (write_fault
? FAULT_FLAG_WRITE
: 0),
1454 r
= follow_pfn(vma
, addr
, &pfn
);
1464 * Get a reference here because callers of *hva_to_pfn* and
1465 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1466 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1467 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1468 * simply do nothing for reserved pfns.
1470 * Whoever called remap_pfn_range is also going to call e.g.
1471 * unmap_mapping_range before the underlying pages are freed,
1472 * causing a call to our MMU notifier.
1481 * Pin guest page in memory and return its pfn.
1482 * @addr: host virtual address which maps memory to the guest
1483 * @atomic: whether this function can sleep
1484 * @async: whether this function need to wait IO complete if the
1485 * host page is not in the memory
1486 * @write_fault: whether we should get a writable host page
1487 * @writable: whether it allows to map a writable host page for !@write_fault
1489 * The function will map a writable host page for these two cases:
1490 * 1): @write_fault = true
1491 * 2): @write_fault = false && @writable, @writable will tell the caller
1492 * whether the mapping is writable.
1494 static kvm_pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1495 bool write_fault
, bool *writable
)
1497 struct vm_area_struct
*vma
;
1501 /* we can do it either atomically or asynchronously, not both */
1502 BUG_ON(atomic
&& async
);
1504 if (hva_to_pfn_fast(addr
, write_fault
, writable
, &pfn
))
1508 return KVM_PFN_ERR_FAULT
;
1510 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1514 down_read(¤t
->mm
->mmap_sem
);
1515 if (npages
== -EHWPOISON
||
1516 (!async
&& check_user_page_hwpoison(addr
))) {
1517 pfn
= KVM_PFN_ERR_HWPOISON
;
1522 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1525 pfn
= KVM_PFN_ERR_FAULT
;
1526 else if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) {
1527 r
= hva_to_pfn_remapped(vma
, addr
, async
, write_fault
, writable
, &pfn
);
1531 pfn
= KVM_PFN_ERR_FAULT
;
1533 if (async
&& vma_is_valid(vma
, write_fault
))
1535 pfn
= KVM_PFN_ERR_FAULT
;
1538 up_read(¤t
->mm
->mmap_sem
);
1542 kvm_pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1543 bool atomic
, bool *async
, bool write_fault
,
1546 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1548 if (addr
== KVM_HVA_ERR_RO_BAD
) {
1551 return KVM_PFN_ERR_RO_FAULT
;
1554 if (kvm_is_error_hva(addr
)) {
1557 return KVM_PFN_NOSLOT
;
1560 /* Do not map writable pfn in the readonly memslot. */
1561 if (writable
&& memslot_is_readonly(slot
)) {
1566 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1569 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1571 kvm_pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1574 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1575 write_fault
, writable
);
1577 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1579 kvm_pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1581 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1585 kvm_pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1587 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1591 kvm_pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1593 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm
, gfn
), gfn
);
1595 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1597 kvm_pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1599 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1601 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1603 kvm_pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1605 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1607 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1609 kvm_pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1611 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1613 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
1615 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1616 struct page
**pages
, int nr_pages
)
1621 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
1622 if (kvm_is_error_hva(addr
))
1625 if (entry
< nr_pages
)
1628 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1630 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1632 static struct page
*kvm_pfn_to_page(kvm_pfn_t pfn
)
1634 if (is_error_noslot_pfn(pfn
))
1635 return KVM_ERR_PTR_BAD_PAGE
;
1637 if (kvm_is_reserved_pfn(pfn
)) {
1639 return KVM_ERR_PTR_BAD_PAGE
;
1642 return pfn_to_page(pfn
);
1645 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1649 pfn
= gfn_to_pfn(kvm
, gfn
);
1651 return kvm_pfn_to_page(pfn
);
1653 EXPORT_SYMBOL_GPL(gfn_to_page
);
1655 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1659 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
1661 return kvm_pfn_to_page(pfn
);
1663 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
1665 void kvm_release_page_clean(struct page
*page
)
1667 WARN_ON(is_error_page(page
));
1669 kvm_release_pfn_clean(page_to_pfn(page
));
1671 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1673 void kvm_release_pfn_clean(kvm_pfn_t pfn
)
1675 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1676 put_page(pfn_to_page(pfn
));
1678 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1680 void kvm_release_page_dirty(struct page
*page
)
1682 WARN_ON(is_error_page(page
));
1684 kvm_release_pfn_dirty(page_to_pfn(page
));
1686 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1688 void kvm_release_pfn_dirty(kvm_pfn_t pfn
)
1690 kvm_set_pfn_dirty(pfn
);
1691 kvm_release_pfn_clean(pfn
);
1693 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1695 void kvm_set_pfn_dirty(kvm_pfn_t pfn
)
1697 if (!kvm_is_reserved_pfn(pfn
)) {
1698 struct page
*page
= pfn_to_page(pfn
);
1700 if (!PageReserved(page
))
1704 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1706 void kvm_set_pfn_accessed(kvm_pfn_t pfn
)
1708 if (!kvm_is_reserved_pfn(pfn
))
1709 mark_page_accessed(pfn_to_page(pfn
));
1711 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1713 void kvm_get_pfn(kvm_pfn_t pfn
)
1715 if (!kvm_is_reserved_pfn(pfn
))
1716 get_page(pfn_to_page(pfn
));
1718 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1720 static int next_segment(unsigned long len
, int offset
)
1722 if (len
> PAGE_SIZE
- offset
)
1723 return PAGE_SIZE
- offset
;
1728 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1729 void *data
, int offset
, int len
)
1734 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1735 if (kvm_is_error_hva(addr
))
1737 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1743 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1746 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1748 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1750 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1752 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
1753 int offset
, int len
)
1755 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1757 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1759 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
1761 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1763 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1765 int offset
= offset_in_page(gpa
);
1768 while ((seg
= next_segment(len
, offset
)) != 0) {
1769 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1779 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1781 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
1783 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1785 int offset
= offset_in_page(gpa
);
1788 while ((seg
= next_segment(len
, offset
)) != 0) {
1789 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1799 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
1801 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1802 void *data
, int offset
, unsigned long len
)
1807 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1808 if (kvm_is_error_hva(addr
))
1810 pagefault_disable();
1811 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1818 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1821 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1822 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1823 int offset
= offset_in_page(gpa
);
1825 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1827 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic
);
1829 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1830 void *data
, unsigned long len
)
1832 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1833 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1834 int offset
= offset_in_page(gpa
);
1836 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1838 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
1840 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
1841 const void *data
, int offset
, int len
)
1846 addr
= gfn_to_hva_memslot(memslot
, gfn
);
1847 if (kvm_is_error_hva(addr
))
1849 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1852 mark_page_dirty_in_slot(memslot
, gfn
);
1856 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
1857 const void *data
, int offset
, int len
)
1859 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1861 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1863 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1865 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1866 const void *data
, int offset
, int len
)
1868 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1870 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1872 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
1874 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1877 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1879 int offset
= offset_in_page(gpa
);
1882 while ((seg
= next_segment(len
, offset
)) != 0) {
1883 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1893 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1895 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
1898 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1900 int offset
= offset_in_page(gpa
);
1903 while ((seg
= next_segment(len
, offset
)) != 0) {
1904 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1914 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
1916 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots
*slots
,
1917 struct gfn_to_hva_cache
*ghc
,
1918 gpa_t gpa
, unsigned long len
)
1920 int offset
= offset_in_page(gpa
);
1921 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1922 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1923 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1924 gfn_t nr_pages_avail
;
1927 ghc
->generation
= slots
->generation
;
1929 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
1930 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1931 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1935 * If the requested region crosses two memslots, we still
1936 * verify that the entire region is valid here.
1938 while (start_gfn
<= end_gfn
) {
1940 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
1941 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1943 if (kvm_is_error_hva(ghc
->hva
))
1945 start_gfn
+= nr_pages_avail
;
1947 /* Use the slow path for cross page reads and writes. */
1948 ghc
->memslot
= NULL
;
1953 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1954 gpa_t gpa
, unsigned long len
)
1956 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1957 return __kvm_gfn_to_hva_cache_init(slots
, ghc
, gpa
, len
);
1959 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1961 int kvm_write_guest_offset_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1962 void *data
, int offset
, unsigned long len
)
1964 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1966 gpa_t gpa
= ghc
->gpa
+ offset
;
1968 BUG_ON(len
+ offset
> ghc
->len
);
1970 if (slots
->generation
!= ghc
->generation
)
1971 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
1973 if (unlikely(!ghc
->memslot
))
1974 return kvm_write_guest(kvm
, gpa
, data
, len
);
1976 if (kvm_is_error_hva(ghc
->hva
))
1979 r
= __copy_to_user((void __user
*)ghc
->hva
+ offset
, data
, len
);
1982 mark_page_dirty_in_slot(ghc
->memslot
, gpa
>> PAGE_SHIFT
);
1986 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached
);
1988 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1989 void *data
, unsigned long len
)
1991 return kvm_write_guest_offset_cached(kvm
, ghc
, data
, 0, len
);
1993 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1995 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1996 void *data
, unsigned long len
)
1998 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
2001 BUG_ON(len
> ghc
->len
);
2003 if (slots
->generation
!= ghc
->generation
)
2004 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
2006 if (unlikely(!ghc
->memslot
))
2007 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
2009 if (kvm_is_error_hva(ghc
->hva
))
2012 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
2018 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
2020 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
2022 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2024 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
2026 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
2028 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
2030 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2032 int offset
= offset_in_page(gpa
);
2035 while ((seg
= next_segment(len
, offset
)) != 0) {
2036 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
2045 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
2047 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
2050 if (memslot
&& memslot
->dirty_bitmap
) {
2051 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
2053 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
2057 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
2059 struct kvm_memory_slot
*memslot
;
2061 memslot
= gfn_to_memslot(kvm
, gfn
);
2062 mark_page_dirty_in_slot(memslot
, gfn
);
2064 EXPORT_SYMBOL_GPL(mark_page_dirty
);
2066 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2068 struct kvm_memory_slot
*memslot
;
2070 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2071 mark_page_dirty_in_slot(memslot
, gfn
);
2073 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
2075 void kvm_sigset_activate(struct kvm_vcpu
*vcpu
)
2077 if (!vcpu
->sigset_active
)
2081 * This does a lockless modification of ->real_blocked, which is fine
2082 * because, only current can change ->real_blocked and all readers of
2083 * ->real_blocked don't care as long ->real_blocked is always a subset
2086 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, ¤t
->real_blocked
);
2089 void kvm_sigset_deactivate(struct kvm_vcpu
*vcpu
)
2091 if (!vcpu
->sigset_active
)
2094 sigprocmask(SIG_SETMASK
, ¤t
->real_blocked
, NULL
);
2095 sigemptyset(¤t
->real_blocked
);
2098 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2100 unsigned int old
, val
, grow
;
2102 old
= val
= vcpu
->halt_poll_ns
;
2103 grow
= READ_ONCE(halt_poll_ns_grow
);
2105 if (val
== 0 && grow
)
2110 if (val
> halt_poll_ns
)
2113 vcpu
->halt_poll_ns
= val
;
2114 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
2117 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2119 unsigned int old
, val
, shrink
;
2121 old
= val
= vcpu
->halt_poll_ns
;
2122 shrink
= READ_ONCE(halt_poll_ns_shrink
);
2128 vcpu
->halt_poll_ns
= val
;
2129 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
2132 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
2135 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2137 if (kvm_arch_vcpu_runnable(vcpu
)) {
2138 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
2141 if (kvm_cpu_has_pending_timer(vcpu
))
2143 if (signal_pending(current
))
2148 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2153 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2155 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2158 DECLARE_SWAITQUEUE(wait
);
2159 bool waited
= false;
2162 start
= cur
= ktime_get();
2163 if (vcpu
->halt_poll_ns
) {
2164 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2166 ++vcpu
->stat
.halt_attempted_poll
;
2169 * This sets KVM_REQ_UNHALT if an interrupt
2172 if (kvm_vcpu_check_block(vcpu
) < 0) {
2173 ++vcpu
->stat
.halt_successful_poll
;
2174 if (!vcpu_valid_wakeup(vcpu
))
2175 ++vcpu
->stat
.halt_poll_invalid
;
2179 } while (single_task_running() && ktime_before(cur
, stop
));
2182 kvm_arch_vcpu_blocking(vcpu
);
2185 prepare_to_swait_exclusive(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2187 if (kvm_vcpu_check_block(vcpu
) < 0)
2194 finish_swait(&vcpu
->wq
, &wait
);
2197 kvm_arch_vcpu_unblocking(vcpu
);
2199 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2201 if (!vcpu_valid_wakeup(vcpu
))
2202 shrink_halt_poll_ns(vcpu
);
2203 else if (halt_poll_ns
) {
2204 if (block_ns
<= vcpu
->halt_poll_ns
)
2206 /* we had a long block, shrink polling */
2207 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2208 shrink_halt_poll_ns(vcpu
);
2209 /* we had a short halt and our poll time is too small */
2210 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2211 block_ns
< halt_poll_ns
)
2212 grow_halt_poll_ns(vcpu
);
2214 vcpu
->halt_poll_ns
= 0;
2216 trace_kvm_vcpu_wakeup(block_ns
, waited
, vcpu_valid_wakeup(vcpu
));
2217 kvm_arch_vcpu_block_finish(vcpu
);
2219 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2221 bool kvm_vcpu_wake_up(struct kvm_vcpu
*vcpu
)
2223 struct swait_queue_head
*wqp
;
2225 wqp
= kvm_arch_vcpu_wq(vcpu
);
2226 if (swq_has_sleeper(wqp
)) {
2228 ++vcpu
->stat
.halt_wakeup
;
2234 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up
);
2238 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2240 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2243 int cpu
= vcpu
->cpu
;
2245 if (kvm_vcpu_wake_up(vcpu
))
2249 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2250 if (kvm_arch_vcpu_should_kick(vcpu
))
2251 smp_send_reschedule(cpu
);
2254 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2255 #endif /* !CONFIG_S390 */
2257 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2260 struct task_struct
*task
= NULL
;
2264 pid
= rcu_dereference(target
->pid
);
2266 task
= get_pid_task(pid
, PIDTYPE_PID
);
2270 ret
= yield_to(task
, 1);
2271 put_task_struct(task
);
2275 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2278 * Helper that checks whether a VCPU is eligible for directed yield.
2279 * Most eligible candidate to yield is decided by following heuristics:
2281 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2282 * (preempted lock holder), indicated by @in_spin_loop.
2283 * Set at the beiginning and cleared at the end of interception/PLE handler.
2285 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2286 * chance last time (mostly it has become eligible now since we have probably
2287 * yielded to lockholder in last iteration. This is done by toggling
2288 * @dy_eligible each time a VCPU checked for eligibility.)
2290 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2291 * to preempted lock-holder could result in wrong VCPU selection and CPU
2292 * burning. Giving priority for a potential lock-holder increases lock
2295 * Since algorithm is based on heuristics, accessing another VCPU data without
2296 * locking does not harm. It may result in trying to yield to same VCPU, fail
2297 * and continue with next VCPU and so on.
2299 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2301 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2304 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2305 vcpu
->spin_loop
.dy_eligible
;
2307 if (vcpu
->spin_loop
.in_spin_loop
)
2308 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2316 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
, bool yield_to_kernel_mode
)
2318 struct kvm
*kvm
= me
->kvm
;
2319 struct kvm_vcpu
*vcpu
;
2320 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2326 kvm_vcpu_set_in_spin_loop(me
, true);
2328 * We boost the priority of a VCPU that is runnable but not
2329 * currently running, because it got preempted by something
2330 * else and called schedule in __vcpu_run. Hopefully that
2331 * VCPU is holding the lock that we need and will release it.
2332 * We approximate round-robin by starting at the last boosted VCPU.
2334 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2335 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2336 if (!pass
&& i
<= last_boosted_vcpu
) {
2337 i
= last_boosted_vcpu
;
2339 } else if (pass
&& i
> last_boosted_vcpu
)
2341 if (!READ_ONCE(vcpu
->preempted
))
2345 if (swait_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
2347 if (yield_to_kernel_mode
&& !kvm_arch_vcpu_in_kernel(vcpu
))
2349 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2352 yielded
= kvm_vcpu_yield_to(vcpu
);
2354 kvm
->last_boosted_vcpu
= i
;
2356 } else if (yielded
< 0) {
2363 kvm_vcpu_set_in_spin_loop(me
, false);
2365 /* Ensure vcpu is not eligible during next spinloop */
2366 kvm_vcpu_set_dy_eligible(me
, false);
2368 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2370 static vm_fault_t
kvm_vcpu_fault(struct vm_fault
*vmf
)
2372 struct kvm_vcpu
*vcpu
= vmf
->vma
->vm_file
->private_data
;
2375 if (vmf
->pgoff
== 0)
2376 page
= virt_to_page(vcpu
->run
);
2378 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2379 page
= virt_to_page(vcpu
->arch
.pio_data
);
2381 #ifdef CONFIG_KVM_MMIO
2382 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2383 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2386 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2392 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2393 .fault
= kvm_vcpu_fault
,
2396 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2398 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2402 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2404 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2406 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2407 kvm_put_kvm(vcpu
->kvm
);
2411 static struct file_operations kvm_vcpu_fops
= {
2412 .release
= kvm_vcpu_release
,
2413 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2414 .mmap
= kvm_vcpu_mmap
,
2415 .llseek
= noop_llseek
,
2416 KVM_COMPAT(kvm_vcpu_compat_ioctl
),
2420 * Allocates an inode for the vcpu.
2422 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2424 char name
[8 + 1 + ITOA_MAX_LEN
+ 1];
2426 snprintf(name
, sizeof(name
), "kvm-vcpu:%d", vcpu
->vcpu_id
);
2427 return anon_inode_getfd(name
, &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2430 static int kvm_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
2432 char dir_name
[ITOA_MAX_LEN
* 2];
2435 if (!kvm_arch_has_vcpu_debugfs())
2438 if (!debugfs_initialized())
2441 snprintf(dir_name
, sizeof(dir_name
), "vcpu%d", vcpu
->vcpu_id
);
2442 vcpu
->debugfs_dentry
= debugfs_create_dir(dir_name
,
2443 vcpu
->kvm
->debugfs_dentry
);
2444 if (!vcpu
->debugfs_dentry
)
2447 ret
= kvm_arch_create_vcpu_debugfs(vcpu
);
2449 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2457 * Creates some virtual cpus. Good luck creating more than one.
2459 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2462 struct kvm_vcpu
*vcpu
;
2464 if (id
>= KVM_MAX_VCPU_ID
)
2467 mutex_lock(&kvm
->lock
);
2468 if (kvm
->created_vcpus
== KVM_MAX_VCPUS
) {
2469 mutex_unlock(&kvm
->lock
);
2473 kvm
->created_vcpus
++;
2474 mutex_unlock(&kvm
->lock
);
2476 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2479 goto vcpu_decrement
;
2482 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2484 r
= kvm_arch_vcpu_setup(vcpu
);
2488 r
= kvm_create_vcpu_debugfs(vcpu
);
2492 mutex_lock(&kvm
->lock
);
2493 if (kvm_get_vcpu_by_id(kvm
, id
)) {
2495 goto unlock_vcpu_destroy
;
2498 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2500 /* Now it's all set up, let userspace reach it */
2502 r
= create_vcpu_fd(vcpu
);
2505 goto unlock_vcpu_destroy
;
2508 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2511 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2512 * before kvm->online_vcpu's incremented value.
2515 atomic_inc(&kvm
->online_vcpus
);
2517 mutex_unlock(&kvm
->lock
);
2518 kvm_arch_vcpu_postcreate(vcpu
);
2521 unlock_vcpu_destroy
:
2522 mutex_unlock(&kvm
->lock
);
2523 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2525 kvm_arch_vcpu_destroy(vcpu
);
2527 mutex_lock(&kvm
->lock
);
2528 kvm
->created_vcpus
--;
2529 mutex_unlock(&kvm
->lock
);
2533 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2536 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2537 vcpu
->sigset_active
= 1;
2538 vcpu
->sigset
= *sigset
;
2540 vcpu
->sigset_active
= 0;
2544 static long kvm_vcpu_ioctl(struct file
*filp
,
2545 unsigned int ioctl
, unsigned long arg
)
2547 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2548 void __user
*argp
= (void __user
*)arg
;
2550 struct kvm_fpu
*fpu
= NULL
;
2551 struct kvm_sregs
*kvm_sregs
= NULL
;
2553 if (vcpu
->kvm
->mm
!= current
->mm
)
2556 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2560 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2561 * execution; mutex_lock() would break them.
2563 r
= kvm_arch_vcpu_async_ioctl(filp
, ioctl
, arg
);
2564 if (r
!= -ENOIOCTLCMD
)
2567 if (mutex_lock_killable(&vcpu
->mutex
))
2575 oldpid
= rcu_access_pointer(vcpu
->pid
);
2576 if (unlikely(oldpid
!= task_pid(current
))) {
2577 /* The thread running this VCPU changed. */
2580 r
= kvm_arch_vcpu_run_pid_change(vcpu
);
2584 newpid
= get_task_pid(current
, PIDTYPE_PID
);
2585 rcu_assign_pointer(vcpu
->pid
, newpid
);
2590 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2591 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2594 case KVM_GET_REGS
: {
2595 struct kvm_regs
*kvm_regs
;
2598 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2601 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2605 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2612 case KVM_SET_REGS
: {
2613 struct kvm_regs
*kvm_regs
;
2616 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2617 if (IS_ERR(kvm_regs
)) {
2618 r
= PTR_ERR(kvm_regs
);
2621 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2625 case KVM_GET_SREGS
: {
2626 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2630 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2634 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2639 case KVM_SET_SREGS
: {
2640 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2641 if (IS_ERR(kvm_sregs
)) {
2642 r
= PTR_ERR(kvm_sregs
);
2646 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2649 case KVM_GET_MP_STATE
: {
2650 struct kvm_mp_state mp_state
;
2652 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2656 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2661 case KVM_SET_MP_STATE
: {
2662 struct kvm_mp_state mp_state
;
2665 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2667 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2670 case KVM_TRANSLATE
: {
2671 struct kvm_translation tr
;
2674 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2676 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2680 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2685 case KVM_SET_GUEST_DEBUG
: {
2686 struct kvm_guest_debug dbg
;
2689 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2691 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2694 case KVM_SET_SIGNAL_MASK
: {
2695 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2696 struct kvm_signal_mask kvm_sigmask
;
2697 sigset_t sigset
, *p
;
2702 if (copy_from_user(&kvm_sigmask
, argp
,
2703 sizeof(kvm_sigmask
)))
2706 if (kvm_sigmask
.len
!= sizeof(sigset
))
2709 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2714 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2718 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2722 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2726 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2732 fpu
= memdup_user(argp
, sizeof(*fpu
));
2738 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2742 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2745 mutex_unlock(&vcpu
->mutex
);
2751 #ifdef CONFIG_KVM_COMPAT
2752 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2753 unsigned int ioctl
, unsigned long arg
)
2755 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2756 void __user
*argp
= compat_ptr(arg
);
2759 if (vcpu
->kvm
->mm
!= current
->mm
)
2763 case KVM_SET_SIGNAL_MASK
: {
2764 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2765 struct kvm_signal_mask kvm_sigmask
;
2770 if (copy_from_user(&kvm_sigmask
, argp
,
2771 sizeof(kvm_sigmask
)))
2774 if (kvm_sigmask
.len
!= sizeof(compat_sigset_t
))
2777 if (get_compat_sigset(&sigset
, (void *)sigmask_arg
->sigset
))
2779 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2781 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2785 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2793 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2794 int (*accessor
)(struct kvm_device
*dev
,
2795 struct kvm_device_attr
*attr
),
2798 struct kvm_device_attr attr
;
2803 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2806 return accessor(dev
, &attr
);
2809 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2812 struct kvm_device
*dev
= filp
->private_data
;
2815 case KVM_SET_DEVICE_ATTR
:
2816 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2817 case KVM_GET_DEVICE_ATTR
:
2818 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2819 case KVM_HAS_DEVICE_ATTR
:
2820 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2822 if (dev
->ops
->ioctl
)
2823 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2829 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2831 struct kvm_device
*dev
= filp
->private_data
;
2832 struct kvm
*kvm
= dev
->kvm
;
2838 static const struct file_operations kvm_device_fops
= {
2839 .unlocked_ioctl
= kvm_device_ioctl
,
2840 .release
= kvm_device_release
,
2841 KVM_COMPAT(kvm_device_ioctl
),
2844 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2846 if (filp
->f_op
!= &kvm_device_fops
)
2849 return filp
->private_data
;
2852 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2853 #ifdef CONFIG_KVM_MPIC
2854 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2855 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2859 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2861 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2864 if (kvm_device_ops_table
[type
] != NULL
)
2867 kvm_device_ops_table
[type
] = ops
;
2871 void kvm_unregister_device_ops(u32 type
)
2873 if (kvm_device_ops_table
[type
] != NULL
)
2874 kvm_device_ops_table
[type
] = NULL
;
2877 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2878 struct kvm_create_device
*cd
)
2880 struct kvm_device_ops
*ops
= NULL
;
2881 struct kvm_device
*dev
;
2882 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2885 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2888 ops
= kvm_device_ops_table
[cd
->type
];
2895 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2902 mutex_lock(&kvm
->lock
);
2903 ret
= ops
->create(dev
, cd
->type
);
2905 mutex_unlock(&kvm
->lock
);
2909 list_add(&dev
->vm_node
, &kvm
->devices
);
2910 mutex_unlock(&kvm
->lock
);
2915 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2917 mutex_lock(&kvm
->lock
);
2918 list_del(&dev
->vm_node
);
2919 mutex_unlock(&kvm
->lock
);
2929 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2932 case KVM_CAP_USER_MEMORY
:
2933 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2934 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2935 case KVM_CAP_INTERNAL_ERROR_DATA
:
2936 #ifdef CONFIG_HAVE_KVM_MSI
2937 case KVM_CAP_SIGNAL_MSI
:
2939 #ifdef CONFIG_HAVE_KVM_IRQFD
2941 case KVM_CAP_IRQFD_RESAMPLE
:
2943 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
2944 case KVM_CAP_CHECK_EXTENSION_VM
:
2946 #ifdef CONFIG_KVM_MMIO
2947 case KVM_CAP_COALESCED_MMIO
:
2948 return KVM_COALESCED_MMIO_PAGE_OFFSET
;
2950 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2951 case KVM_CAP_IRQ_ROUTING
:
2952 return KVM_MAX_IRQ_ROUTES
;
2954 #if KVM_ADDRESS_SPACE_NUM > 1
2955 case KVM_CAP_MULTI_ADDRESS_SPACE
:
2956 return KVM_ADDRESS_SPACE_NUM
;
2958 case KVM_CAP_MAX_VCPU_ID
:
2959 return KVM_MAX_VCPU_ID
;
2963 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2966 static long kvm_vm_ioctl(struct file
*filp
,
2967 unsigned int ioctl
, unsigned long arg
)
2969 struct kvm
*kvm
= filp
->private_data
;
2970 void __user
*argp
= (void __user
*)arg
;
2973 if (kvm
->mm
!= current
->mm
)
2976 case KVM_CREATE_VCPU
:
2977 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2979 case KVM_SET_USER_MEMORY_REGION
: {
2980 struct kvm_userspace_memory_region kvm_userspace_mem
;
2983 if (copy_from_user(&kvm_userspace_mem
, argp
,
2984 sizeof(kvm_userspace_mem
)))
2987 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2990 case KVM_GET_DIRTY_LOG
: {
2991 struct kvm_dirty_log log
;
2994 if (copy_from_user(&log
, argp
, sizeof(log
)))
2996 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2999 #ifdef CONFIG_KVM_MMIO
3000 case KVM_REGISTER_COALESCED_MMIO
: {
3001 struct kvm_coalesced_mmio_zone zone
;
3004 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3006 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
3009 case KVM_UNREGISTER_COALESCED_MMIO
: {
3010 struct kvm_coalesced_mmio_zone zone
;
3013 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3015 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
3020 struct kvm_irqfd data
;
3023 if (copy_from_user(&data
, argp
, sizeof(data
)))
3025 r
= kvm_irqfd(kvm
, &data
);
3028 case KVM_IOEVENTFD
: {
3029 struct kvm_ioeventfd data
;
3032 if (copy_from_user(&data
, argp
, sizeof(data
)))
3034 r
= kvm_ioeventfd(kvm
, &data
);
3037 #ifdef CONFIG_HAVE_KVM_MSI
3038 case KVM_SIGNAL_MSI
: {
3042 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
3044 r
= kvm_send_userspace_msi(kvm
, &msi
);
3048 #ifdef __KVM_HAVE_IRQ_LINE
3049 case KVM_IRQ_LINE_STATUS
:
3050 case KVM_IRQ_LINE
: {
3051 struct kvm_irq_level irq_event
;
3054 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
3057 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
3058 ioctl
== KVM_IRQ_LINE_STATUS
);
3063 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3064 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
3072 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3073 case KVM_SET_GSI_ROUTING
: {
3074 struct kvm_irq_routing routing
;
3075 struct kvm_irq_routing __user
*urouting
;
3076 struct kvm_irq_routing_entry
*entries
= NULL
;
3079 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
3082 if (!kvm_arch_can_set_irq_routing(kvm
))
3084 if (routing
.nr
> KVM_MAX_IRQ_ROUTES
)
3090 entries
= vmalloc(array_size(sizeof(*entries
),
3096 if (copy_from_user(entries
, urouting
->entries
,
3097 routing
.nr
* sizeof(*entries
)))
3098 goto out_free_irq_routing
;
3100 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
3102 out_free_irq_routing
:
3106 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3107 case KVM_CREATE_DEVICE
: {
3108 struct kvm_create_device cd
;
3111 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
3114 r
= kvm_ioctl_create_device(kvm
, &cd
);
3119 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
3125 case KVM_CHECK_EXTENSION
:
3126 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
3129 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
3135 #ifdef CONFIG_KVM_COMPAT
3136 struct compat_kvm_dirty_log
{
3140 compat_uptr_t dirty_bitmap
; /* one bit per page */
3145 static long kvm_vm_compat_ioctl(struct file
*filp
,
3146 unsigned int ioctl
, unsigned long arg
)
3148 struct kvm
*kvm
= filp
->private_data
;
3151 if (kvm
->mm
!= current
->mm
)
3154 case KVM_GET_DIRTY_LOG
: {
3155 struct compat_kvm_dirty_log compat_log
;
3156 struct kvm_dirty_log log
;
3158 if (copy_from_user(&compat_log
, (void __user
*)arg
,
3159 sizeof(compat_log
)))
3161 log
.slot
= compat_log
.slot
;
3162 log
.padding1
= compat_log
.padding1
;
3163 log
.padding2
= compat_log
.padding2
;
3164 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
3166 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3170 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
3176 static struct file_operations kvm_vm_fops
= {
3177 .release
= kvm_vm_release
,
3178 .unlocked_ioctl
= kvm_vm_ioctl
,
3179 .llseek
= noop_llseek
,
3180 KVM_COMPAT(kvm_vm_compat_ioctl
),
3183 static int kvm_dev_ioctl_create_vm(unsigned long type
)
3189 kvm
= kvm_create_vm(type
);
3191 return PTR_ERR(kvm
);
3192 #ifdef CONFIG_KVM_MMIO
3193 r
= kvm_coalesced_mmio_init(kvm
);
3197 r
= get_unused_fd_flags(O_CLOEXEC
);
3201 file
= anon_inode_getfile("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
3209 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3210 * already set, with ->release() being kvm_vm_release(). In error
3211 * cases it will be called by the final fput(file) and will take
3212 * care of doing kvm_put_kvm(kvm).
3214 if (kvm_create_vm_debugfs(kvm
, r
) < 0) {
3219 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM
, kvm
);
3221 fd_install(r
, file
);
3229 static long kvm_dev_ioctl(struct file
*filp
,
3230 unsigned int ioctl
, unsigned long arg
)
3235 case KVM_GET_API_VERSION
:
3238 r
= KVM_API_VERSION
;
3241 r
= kvm_dev_ioctl_create_vm(arg
);
3243 case KVM_CHECK_EXTENSION
:
3244 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3246 case KVM_GET_VCPU_MMAP_SIZE
:
3249 r
= PAGE_SIZE
; /* struct kvm_run */
3251 r
+= PAGE_SIZE
; /* pio data page */
3253 #ifdef CONFIG_KVM_MMIO
3254 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3257 case KVM_TRACE_ENABLE
:
3258 case KVM_TRACE_PAUSE
:
3259 case KVM_TRACE_DISABLE
:
3263 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3269 static struct file_operations kvm_chardev_ops
= {
3270 .unlocked_ioctl
= kvm_dev_ioctl
,
3271 .llseek
= noop_llseek
,
3272 KVM_COMPAT(kvm_dev_ioctl
),
3275 static struct miscdevice kvm_dev
= {
3281 static void hardware_enable_nolock(void *junk
)
3283 int cpu
= raw_smp_processor_id();
3286 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3289 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3291 r
= kvm_arch_hardware_enable();
3294 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3295 atomic_inc(&hardware_enable_failed
);
3296 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3300 static int kvm_starting_cpu(unsigned int cpu
)
3302 raw_spin_lock(&kvm_count_lock
);
3303 if (kvm_usage_count
)
3304 hardware_enable_nolock(NULL
);
3305 raw_spin_unlock(&kvm_count_lock
);
3309 static void hardware_disable_nolock(void *junk
)
3311 int cpu
= raw_smp_processor_id();
3313 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3315 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3316 kvm_arch_hardware_disable();
3319 static int kvm_dying_cpu(unsigned int cpu
)
3321 raw_spin_lock(&kvm_count_lock
);
3322 if (kvm_usage_count
)
3323 hardware_disable_nolock(NULL
);
3324 raw_spin_unlock(&kvm_count_lock
);
3328 static void hardware_disable_all_nolock(void)
3330 BUG_ON(!kvm_usage_count
);
3333 if (!kvm_usage_count
)
3334 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3337 static void hardware_disable_all(void)
3339 raw_spin_lock(&kvm_count_lock
);
3340 hardware_disable_all_nolock();
3341 raw_spin_unlock(&kvm_count_lock
);
3344 static int hardware_enable_all(void)
3348 raw_spin_lock(&kvm_count_lock
);
3351 if (kvm_usage_count
== 1) {
3352 atomic_set(&hardware_enable_failed
, 0);
3353 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3355 if (atomic_read(&hardware_enable_failed
)) {
3356 hardware_disable_all_nolock();
3361 raw_spin_unlock(&kvm_count_lock
);
3366 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3370 * Some (well, at least mine) BIOSes hang on reboot if
3373 * And Intel TXT required VMX off for all cpu when system shutdown.
3375 pr_info("kvm: exiting hardware virtualization\n");
3376 kvm_rebooting
= true;
3377 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3381 static struct notifier_block kvm_reboot_notifier
= {
3382 .notifier_call
= kvm_reboot
,
3386 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3390 for (i
= 0; i
< bus
->dev_count
; i
++) {
3391 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
3393 kvm_iodevice_destructor(pos
);
3398 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
3399 const struct kvm_io_range
*r2
)
3401 gpa_t addr1
= r1
->addr
;
3402 gpa_t addr2
= r2
->addr
;
3407 /* If r2->len == 0, match the exact address. If r2->len != 0,
3408 * accept any overlapping write. Any order is acceptable for
3409 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3410 * we process all of them.
3423 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
3425 return kvm_io_bus_cmp(p1
, p2
);
3428 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
3429 gpa_t addr
, int len
)
3431 struct kvm_io_range
*range
, key
;
3434 key
= (struct kvm_io_range
) {
3439 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
3440 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
3444 off
= range
- bus
->range
;
3446 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3452 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3453 struct kvm_io_range
*range
, const void *val
)
3457 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3461 while (idx
< bus
->dev_count
&&
3462 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3463 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3472 /* kvm_io_bus_write - called under kvm->slots_lock */
3473 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3474 int len
, const void *val
)
3476 struct kvm_io_bus
*bus
;
3477 struct kvm_io_range range
;
3480 range
= (struct kvm_io_range
) {
3485 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3488 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3489 return r
< 0 ? r
: 0;
3492 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3493 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3494 gpa_t addr
, int len
, const void *val
, long cookie
)
3496 struct kvm_io_bus
*bus
;
3497 struct kvm_io_range range
;
3499 range
= (struct kvm_io_range
) {
3504 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3508 /* First try the device referenced by cookie. */
3509 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3510 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3511 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3516 * cookie contained garbage; fall back to search and return the
3517 * correct cookie value.
3519 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3522 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3523 struct kvm_io_range
*range
, void *val
)
3527 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3531 while (idx
< bus
->dev_count
&&
3532 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3533 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3541 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3543 /* kvm_io_bus_read - called under kvm->slots_lock */
3544 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3547 struct kvm_io_bus
*bus
;
3548 struct kvm_io_range range
;
3551 range
= (struct kvm_io_range
) {
3556 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3559 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3560 return r
< 0 ? r
: 0;
3564 /* Caller must hold slots_lock. */
3565 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3566 int len
, struct kvm_io_device
*dev
)
3569 struct kvm_io_bus
*new_bus
, *bus
;
3570 struct kvm_io_range range
;
3572 bus
= kvm_get_bus(kvm
, bus_idx
);
3576 /* exclude ioeventfd which is limited by maximum fd */
3577 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3580 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3581 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3585 range
= (struct kvm_io_range
) {
3591 for (i
= 0; i
< bus
->dev_count
; i
++)
3592 if (kvm_io_bus_cmp(&bus
->range
[i
], &range
) > 0)
3595 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3596 new_bus
->dev_count
++;
3597 new_bus
->range
[i
] = range
;
3598 memcpy(new_bus
->range
+ i
+ 1, bus
->range
+ i
,
3599 (bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3600 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3601 synchronize_srcu_expedited(&kvm
->srcu
);
3607 /* Caller must hold slots_lock. */
3608 void kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3609 struct kvm_io_device
*dev
)
3612 struct kvm_io_bus
*new_bus
, *bus
;
3614 bus
= kvm_get_bus(kvm
, bus_idx
);
3618 for (i
= 0; i
< bus
->dev_count
; i
++)
3619 if (bus
->range
[i
].dev
== dev
) {
3623 if (i
== bus
->dev_count
)
3626 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3627 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3629 pr_err("kvm: failed to shrink bus, removing it completely\n");
3633 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3634 new_bus
->dev_count
--;
3635 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3636 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3639 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3640 synchronize_srcu_expedited(&kvm
->srcu
);
3645 struct kvm_io_device
*kvm_io_bus_get_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3648 struct kvm_io_bus
*bus
;
3649 int dev_idx
, srcu_idx
;
3650 struct kvm_io_device
*iodev
= NULL
;
3652 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
3654 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
3658 dev_idx
= kvm_io_bus_get_first_dev(bus
, addr
, 1);
3662 iodev
= bus
->range
[dev_idx
].dev
;
3665 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
3669 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev
);
3671 static int kvm_debugfs_open(struct inode
*inode
, struct file
*file
,
3672 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
3675 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3678 /* The debugfs files are a reference to the kvm struct which
3679 * is still valid when kvm_destroy_vm is called.
3680 * To avoid the race between open and the removal of the debugfs
3681 * directory we test against the users count.
3683 if (!refcount_inc_not_zero(&stat_data
->kvm
->users_count
))
3686 if (simple_attr_open(inode
, file
, get
, set
, fmt
)) {
3687 kvm_put_kvm(stat_data
->kvm
);
3694 static int kvm_debugfs_release(struct inode
*inode
, struct file
*file
)
3696 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3699 simple_attr_release(inode
, file
);
3700 kvm_put_kvm(stat_data
->kvm
);
3705 static int vm_stat_get_per_vm(void *data
, u64
*val
)
3707 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3709 *val
= *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
);
3714 static int vm_stat_clear_per_vm(void *data
, u64 val
)
3716 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3721 *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
) = 0;
3726 static int vm_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3728 __simple_attr_check_format("%llu\n", 0ull);
3729 return kvm_debugfs_open(inode
, file
, vm_stat_get_per_vm
,
3730 vm_stat_clear_per_vm
, "%llu\n");
3733 static const struct file_operations vm_stat_get_per_vm_fops
= {
3734 .owner
= THIS_MODULE
,
3735 .open
= vm_stat_get_per_vm_open
,
3736 .release
= kvm_debugfs_release
,
3737 .read
= simple_attr_read
,
3738 .write
= simple_attr_write
,
3739 .llseek
= no_llseek
,
3742 static int vcpu_stat_get_per_vm(void *data
, u64
*val
)
3745 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3746 struct kvm_vcpu
*vcpu
;
3750 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3751 *val
+= *(u64
*)((void *)vcpu
+ stat_data
->offset
);
3756 static int vcpu_stat_clear_per_vm(void *data
, u64 val
)
3759 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3760 struct kvm_vcpu
*vcpu
;
3765 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3766 *(u64
*)((void *)vcpu
+ stat_data
->offset
) = 0;
3771 static int vcpu_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3773 __simple_attr_check_format("%llu\n", 0ull);
3774 return kvm_debugfs_open(inode
, file
, vcpu_stat_get_per_vm
,
3775 vcpu_stat_clear_per_vm
, "%llu\n");
3778 static const struct file_operations vcpu_stat_get_per_vm_fops
= {
3779 .owner
= THIS_MODULE
,
3780 .open
= vcpu_stat_get_per_vm_open
,
3781 .release
= kvm_debugfs_release
,
3782 .read
= simple_attr_read
,
3783 .write
= simple_attr_write
,
3784 .llseek
= no_llseek
,
3787 static const struct file_operations
*stat_fops_per_vm
[] = {
3788 [KVM_STAT_VCPU
] = &vcpu_stat_get_per_vm_fops
,
3789 [KVM_STAT_VM
] = &vm_stat_get_per_vm_fops
,
3792 static int vm_stat_get(void *_offset
, u64
*val
)
3794 unsigned offset
= (long)_offset
;
3796 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3800 spin_lock(&kvm_lock
);
3801 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3803 vm_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3806 spin_unlock(&kvm_lock
);
3810 static int vm_stat_clear(void *_offset
, u64 val
)
3812 unsigned offset
= (long)_offset
;
3814 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3819 spin_lock(&kvm_lock
);
3820 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3822 vm_stat_clear_per_vm((void *)&stat_tmp
, 0);
3824 spin_unlock(&kvm_lock
);
3829 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, vm_stat_clear
, "%llu\n");
3831 static int vcpu_stat_get(void *_offset
, u64
*val
)
3833 unsigned offset
= (long)_offset
;
3835 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3839 spin_lock(&kvm_lock
);
3840 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3842 vcpu_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3845 spin_unlock(&kvm_lock
);
3849 static int vcpu_stat_clear(void *_offset
, u64 val
)
3851 unsigned offset
= (long)_offset
;
3853 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3858 spin_lock(&kvm_lock
);
3859 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3861 vcpu_stat_clear_per_vm((void *)&stat_tmp
, 0);
3863 spin_unlock(&kvm_lock
);
3868 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, vcpu_stat_clear
,
3871 static const struct file_operations
*stat_fops
[] = {
3872 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3873 [KVM_STAT_VM
] = &vm_stat_fops
,
3876 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
)
3878 struct kobj_uevent_env
*env
;
3879 unsigned long long created
, active
;
3881 if (!kvm_dev
.this_device
|| !kvm
)
3884 spin_lock(&kvm_lock
);
3885 if (type
== KVM_EVENT_CREATE_VM
) {
3886 kvm_createvm_count
++;
3888 } else if (type
== KVM_EVENT_DESTROY_VM
) {
3891 created
= kvm_createvm_count
;
3892 active
= kvm_active_vms
;
3893 spin_unlock(&kvm_lock
);
3895 env
= kzalloc(sizeof(*env
), GFP_KERNEL
);
3899 add_uevent_var(env
, "CREATED=%llu", created
);
3900 add_uevent_var(env
, "COUNT=%llu", active
);
3902 if (type
== KVM_EVENT_CREATE_VM
) {
3903 add_uevent_var(env
, "EVENT=create");
3904 kvm
->userspace_pid
= task_pid_nr(current
);
3905 } else if (type
== KVM_EVENT_DESTROY_VM
) {
3906 add_uevent_var(env
, "EVENT=destroy");
3908 add_uevent_var(env
, "PID=%d", kvm
->userspace_pid
);
3910 if (kvm
->debugfs_dentry
) {
3911 char *tmp
, *p
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3914 tmp
= dentry_path_raw(kvm
->debugfs_dentry
, p
, PATH_MAX
);
3916 add_uevent_var(env
, "STATS_PATH=%s", tmp
);
3920 /* no need for checks, since we are adding at most only 5 keys */
3921 env
->envp
[env
->envp_idx
++] = NULL
;
3922 kobject_uevent_env(&kvm_dev
.this_device
->kobj
, KOBJ_CHANGE
, env
->envp
);
3926 static void kvm_init_debug(void)
3928 struct kvm_stats_debugfs_item
*p
;
3930 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3932 kvm_debugfs_num_entries
= 0;
3933 for (p
= debugfs_entries
; p
->name
; ++p
, kvm_debugfs_num_entries
++) {
3934 debugfs_create_file(p
->name
, 0644, kvm_debugfs_dir
,
3935 (void *)(long)p
->offset
,
3936 stat_fops
[p
->kind
]);
3940 static int kvm_suspend(void)
3942 if (kvm_usage_count
)
3943 hardware_disable_nolock(NULL
);
3947 static void kvm_resume(void)
3949 if (kvm_usage_count
) {
3950 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3951 hardware_enable_nolock(NULL
);
3955 static struct syscore_ops kvm_syscore_ops
= {
3956 .suspend
= kvm_suspend
,
3957 .resume
= kvm_resume
,
3961 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3963 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3966 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3968 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3970 if (vcpu
->preempted
)
3971 vcpu
->preempted
= false;
3973 kvm_arch_sched_in(vcpu
, cpu
);
3975 kvm_arch_vcpu_load(vcpu
, cpu
);
3978 static void kvm_sched_out(struct preempt_notifier
*pn
,
3979 struct task_struct
*next
)
3981 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3983 if (current
->state
== TASK_RUNNING
)
3984 vcpu
->preempted
= true;
3985 kvm_arch_vcpu_put(vcpu
);
3988 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3989 struct module
*module
)
3994 r
= kvm_arch_init(opaque
);
3999 * kvm_arch_init makes sure there's at most one caller
4000 * for architectures that support multiple implementations,
4001 * like intel and amd on x86.
4002 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4003 * conflicts in case kvm is already setup for another implementation.
4005 r
= kvm_irqfd_init();
4009 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
4014 r
= kvm_arch_hardware_setup();
4018 for_each_online_cpu(cpu
) {
4019 smp_call_function_single(cpu
,
4020 kvm_arch_check_processor_compat
,
4026 r
= cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING
, "kvm/cpu:starting",
4027 kvm_starting_cpu
, kvm_dying_cpu
);
4030 register_reboot_notifier(&kvm_reboot_notifier
);
4032 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4034 vcpu_align
= __alignof__(struct kvm_vcpu
);
4036 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size
, vcpu_align
,
4038 offsetof(struct kvm_vcpu
, arch
),
4039 sizeof_field(struct kvm_vcpu
, arch
),
4041 if (!kvm_vcpu_cache
) {
4046 r
= kvm_async_pf_init();
4050 kvm_chardev_ops
.owner
= module
;
4051 kvm_vm_fops
.owner
= module
;
4052 kvm_vcpu_fops
.owner
= module
;
4054 r
= misc_register(&kvm_dev
);
4056 pr_err("kvm: misc device register failed\n");
4060 register_syscore_ops(&kvm_syscore_ops
);
4062 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
4063 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
4067 r
= kvm_vfio_ops_init();
4073 kvm_async_pf_deinit();
4075 kmem_cache_destroy(kvm_vcpu_cache
);
4077 unregister_reboot_notifier(&kvm_reboot_notifier
);
4078 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4081 kvm_arch_hardware_unsetup();
4083 free_cpumask_var(cpus_hardware_enabled
);
4091 EXPORT_SYMBOL_GPL(kvm_init
);
4095 debugfs_remove_recursive(kvm_debugfs_dir
);
4096 misc_deregister(&kvm_dev
);
4097 kmem_cache_destroy(kvm_vcpu_cache
);
4098 kvm_async_pf_deinit();
4099 unregister_syscore_ops(&kvm_syscore_ops
);
4100 unregister_reboot_notifier(&kvm_reboot_notifier
);
4101 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4102 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
4103 kvm_arch_hardware_unsetup();
4106 free_cpumask_var(cpus_hardware_enabled
);
4107 kvm_vfio_ops_exit();
4109 EXPORT_SYMBOL_GPL(kvm_exit
);