Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / pwm / pwm-stm32.c
blob6139512aab7b8953c708279ee9a61580d9adcbc3
1 /*
2 * Copyright (C) STMicroelectronics 2016
4 * Author: Gerald Baeza <gerald.baeza@st.com>
6 * License terms: GNU General Public License (GPL), version 2
8 * Inspired by timer-stm32.c from Maxime Coquelin
9 * pwm-atmel.c from Bo Shen
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pwm.h>
18 #define CCMR_CHANNEL_SHIFT 8
19 #define CCMR_CHANNEL_MASK 0xFF
20 #define MAX_BREAKINPUT 2
22 struct stm32_pwm {
23 struct pwm_chip chip;
24 struct device *dev;
25 struct clk *clk;
26 struct regmap *regmap;
27 u32 max_arr;
28 bool have_complementary_output;
31 struct stm32_breakinput {
32 u32 index;
33 u32 level;
34 u32 filter;
37 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
39 return container_of(chip, struct stm32_pwm, chip);
42 static u32 active_channels(struct stm32_pwm *dev)
44 u32 ccer;
46 regmap_read(dev->regmap, TIM_CCER, &ccer);
48 return ccer & TIM_CCER_CCXE;
51 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
53 switch (ch) {
54 case 0:
55 return regmap_write(dev->regmap, TIM_CCR1, value);
56 case 1:
57 return regmap_write(dev->regmap, TIM_CCR2, value);
58 case 2:
59 return regmap_write(dev->regmap, TIM_CCR3, value);
60 case 3:
61 return regmap_write(dev->regmap, TIM_CCR4, value);
63 return -EINVAL;
66 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
67 int duty_ns, int period_ns)
69 unsigned long long prd, div, dty;
70 unsigned int prescaler = 0;
71 u32 ccmr, mask, shift;
73 /* Period and prescaler values depends on clock rate */
74 div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
76 do_div(div, NSEC_PER_SEC);
77 prd = div;
79 while (div > priv->max_arr) {
80 prescaler++;
81 div = prd;
82 do_div(div, prescaler + 1);
85 prd = div;
87 if (prescaler > MAX_TIM_PSC)
88 return -EINVAL;
91 * All channels share the same prescaler and counter so when two
92 * channels are active at the same time we can't change them
94 if (active_channels(priv) & ~(1 << ch * 4)) {
95 u32 psc, arr;
97 regmap_read(priv->regmap, TIM_PSC, &psc);
98 regmap_read(priv->regmap, TIM_ARR, &arr);
100 if ((psc != prescaler) || (arr != prd - 1))
101 return -EBUSY;
104 regmap_write(priv->regmap, TIM_PSC, prescaler);
105 regmap_write(priv->regmap, TIM_ARR, prd - 1);
106 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
108 /* Calculate the duty cycles */
109 dty = prd * duty_ns;
110 do_div(dty, period_ns);
112 write_ccrx(priv, ch, dty);
114 /* Configure output mode */
115 shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
116 ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
117 mask = CCMR_CHANNEL_MASK << shift;
119 if (ch < 2)
120 regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
121 else
122 regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
124 regmap_update_bits(priv->regmap, TIM_BDTR,
125 TIM_BDTR_MOE | TIM_BDTR_AOE,
126 TIM_BDTR_MOE | TIM_BDTR_AOE);
128 return 0;
131 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
132 enum pwm_polarity polarity)
134 u32 mask;
136 mask = TIM_CCER_CC1P << (ch * 4);
137 if (priv->have_complementary_output)
138 mask |= TIM_CCER_CC1NP << (ch * 4);
140 regmap_update_bits(priv->regmap, TIM_CCER, mask,
141 polarity == PWM_POLARITY_NORMAL ? 0 : mask);
143 return 0;
146 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
148 u32 mask;
149 int ret;
151 ret = clk_enable(priv->clk);
152 if (ret)
153 return ret;
155 /* Enable channel */
156 mask = TIM_CCER_CC1E << (ch * 4);
157 if (priv->have_complementary_output)
158 mask |= TIM_CCER_CC1NE << (ch * 4);
160 regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
162 /* Make sure that registers are updated */
163 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
165 /* Enable controller */
166 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
168 return 0;
171 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
173 u32 mask;
175 /* Disable channel */
176 mask = TIM_CCER_CC1E << (ch * 4);
177 if (priv->have_complementary_output)
178 mask |= TIM_CCER_CC1NE << (ch * 4);
180 regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
182 /* When all channels are disabled, we can disable the controller */
183 if (!active_channels(priv))
184 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
186 clk_disable(priv->clk);
189 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
190 struct pwm_state *state)
192 bool enabled;
193 struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
194 int ret;
196 enabled = pwm->state.enabled;
198 if (enabled && !state->enabled) {
199 stm32_pwm_disable(priv, pwm->hwpwm);
200 return 0;
203 if (state->polarity != pwm->state.polarity)
204 stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
206 ret = stm32_pwm_config(priv, pwm->hwpwm,
207 state->duty_cycle, state->period);
208 if (ret)
209 return ret;
211 if (!enabled && state->enabled)
212 ret = stm32_pwm_enable(priv, pwm->hwpwm);
214 return ret;
217 static const struct pwm_ops stm32pwm_ops = {
218 .owner = THIS_MODULE,
219 .apply = stm32_pwm_apply,
222 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
223 int index, int level, int filter)
225 u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
226 int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
227 u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
228 : TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
229 u32 bdtr = bke;
232 * The both bits could be set since only one will be wrote
233 * due to mask value.
235 if (level)
236 bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
238 bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
240 regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
242 regmap_read(priv->regmap, TIM_BDTR, &bdtr);
244 return (bdtr & bke) ? 0 : -EINVAL;
247 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
248 struct device_node *np)
250 struct stm32_breakinput breakinput[MAX_BREAKINPUT];
251 int nb, ret, i, array_size;
253 nb = of_property_count_elems_of_size(np, "st,breakinput",
254 sizeof(struct stm32_breakinput));
257 * Because "st,breakinput" parameter is optional do not make probe
258 * failed if it doesn't exist.
260 if (nb <= 0)
261 return 0;
263 if (nb > MAX_BREAKINPUT)
264 return -EINVAL;
266 array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
267 ret = of_property_read_u32_array(np, "st,breakinput",
268 (u32 *)breakinput, array_size);
269 if (ret)
270 return ret;
272 for (i = 0; i < nb && !ret; i++) {
273 ret = stm32_pwm_set_breakinput(priv,
274 breakinput[i].index,
275 breakinput[i].level,
276 breakinput[i].filter);
279 return ret;
282 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
284 u32 ccer;
287 * If complementary bit doesn't exist writing 1 will have no
288 * effect so we can detect it.
290 regmap_update_bits(priv->regmap,
291 TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
292 regmap_read(priv->regmap, TIM_CCER, &ccer);
293 regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
295 priv->have_complementary_output = (ccer != 0);
298 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
300 u32 ccer;
301 int npwm = 0;
304 * If channels enable bits don't exist writing 1 will have no
305 * effect so we can detect and count them.
307 regmap_update_bits(priv->regmap,
308 TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
309 regmap_read(priv->regmap, TIM_CCER, &ccer);
310 regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
312 if (ccer & TIM_CCER_CC1E)
313 npwm++;
315 if (ccer & TIM_CCER_CC2E)
316 npwm++;
318 if (ccer & TIM_CCER_CC3E)
319 npwm++;
321 if (ccer & TIM_CCER_CC4E)
322 npwm++;
324 return npwm;
327 static int stm32_pwm_probe(struct platform_device *pdev)
329 struct device *dev = &pdev->dev;
330 struct device_node *np = dev->of_node;
331 struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
332 struct stm32_pwm *priv;
333 int ret;
335 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
336 if (!priv)
337 return -ENOMEM;
339 priv->regmap = ddata->regmap;
340 priv->clk = ddata->clk;
341 priv->max_arr = ddata->max_arr;
343 if (!priv->regmap || !priv->clk)
344 return -EINVAL;
346 ret = stm32_pwm_apply_breakinputs(priv, np);
347 if (ret)
348 return ret;
350 stm32_pwm_detect_complementary(priv);
352 priv->chip.base = -1;
353 priv->chip.dev = dev;
354 priv->chip.ops = &stm32pwm_ops;
355 priv->chip.npwm = stm32_pwm_detect_channels(priv);
357 ret = pwmchip_add(&priv->chip);
358 if (ret < 0)
359 return ret;
361 platform_set_drvdata(pdev, priv);
363 return 0;
366 static int stm32_pwm_remove(struct platform_device *pdev)
368 struct stm32_pwm *priv = platform_get_drvdata(pdev);
369 unsigned int i;
371 for (i = 0; i < priv->chip.npwm; i++)
372 pwm_disable(&priv->chip.pwms[i]);
374 pwmchip_remove(&priv->chip);
376 return 0;
379 static const struct of_device_id stm32_pwm_of_match[] = {
380 { .compatible = "st,stm32-pwm", },
381 { /* end node */ },
383 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
385 static struct platform_driver stm32_pwm_driver = {
386 .probe = stm32_pwm_probe,
387 .remove = stm32_pwm_remove,
388 .driver = {
389 .name = "stm32-pwm",
390 .of_match_table = stm32_pwm_of_match,
393 module_platform_driver(stm32_pwm_driver);
395 MODULE_ALIAS("platform:stm32-pwm");
396 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
397 MODULE_LICENSE("GPL v2");