Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / net / mac80211 / rx.c
blob70e9d2ca8bbec176edac094268247bb125e3cbdc
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
41 u64_stats_update_begin(&tstats->syncp);
42 tstats->rx_packets++;
43 tstats->rx_bytes += len;
44 u64_stats_update_end(&tstats->syncp);
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 enum nl80211_iftype type)
50 __le16 fc = hdr->frame_control;
52 if (ieee80211_is_data(fc)) {
53 if (len < 24) /* drop incorrect hdr len (data) */
54 return NULL;
56 if (ieee80211_has_a4(fc))
57 return NULL;
58 if (ieee80211_has_tods(fc))
59 return hdr->addr1;
60 if (ieee80211_has_fromds(fc))
61 return hdr->addr2;
63 return hdr->addr3;
66 if (ieee80211_is_mgmt(fc)) {
67 if (len < 24) /* drop incorrect hdr len (mgmt) */
68 return NULL;
69 return hdr->addr3;
72 if (ieee80211_is_ctl(fc)) {
73 if (ieee80211_is_pspoll(fc))
74 return hdr->addr1;
76 if (ieee80211_is_back_req(fc)) {
77 switch (type) {
78 case NL80211_IFTYPE_STATION:
79 return hdr->addr2;
80 case NL80211_IFTYPE_AP:
81 case NL80211_IFTYPE_AP_VLAN:
82 return hdr->addr1;
83 default:
84 break; /* fall through to the return */
89 return NULL;
93 * monitor mode reception
95 * This function cleans up the SKB, i.e. it removes all the stuff
96 * only useful for monitoring.
98 static void remove_monitor_info(struct sk_buff *skb,
99 unsigned int present_fcs_len,
100 unsigned int rtap_vendor_space)
102 if (present_fcs_len)
103 __pskb_trim(skb, skb->len - present_fcs_len);
104 __pskb_pull(skb, rtap_vendor_space);
107 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
108 unsigned int rtap_vendor_space)
110 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
111 struct ieee80211_hdr *hdr;
113 hdr = (void *)(skb->data + rtap_vendor_space);
115 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
116 RX_FLAG_FAILED_PLCP_CRC |
117 RX_FLAG_ONLY_MONITOR))
118 return true;
120 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
121 return true;
123 if (ieee80211_is_ctl(hdr->frame_control) &&
124 !ieee80211_is_pspoll(hdr->frame_control) &&
125 !ieee80211_is_back_req(hdr->frame_control))
126 return true;
128 return false;
131 static int
132 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
133 struct ieee80211_rx_status *status,
134 struct sk_buff *skb)
136 int len;
138 /* always present fields */
139 len = sizeof(struct ieee80211_radiotap_header) + 8;
141 /* allocate extra bitmaps */
142 if (status->chains)
143 len += 4 * hweight8(status->chains);
145 if (ieee80211_have_rx_timestamp(status)) {
146 len = ALIGN(len, 8);
147 len += 8;
149 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
150 len += 1;
152 /* antenna field, if we don't have per-chain info */
153 if (!status->chains)
154 len += 1;
156 /* padding for RX_FLAGS if necessary */
157 len = ALIGN(len, 2);
159 if (status->encoding == RX_ENC_HT) /* HT info */
160 len += 3;
162 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
163 len = ALIGN(len, 4);
164 len += 8;
167 if (status->encoding == RX_ENC_VHT) {
168 len = ALIGN(len, 2);
169 len += 12;
172 if (local->hw.radiotap_timestamp.units_pos >= 0) {
173 len = ALIGN(len, 8);
174 len += 12;
177 if (status->chains) {
178 /* antenna and antenna signal fields */
179 len += 2 * hweight8(status->chains);
182 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
183 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
185 /* vendor presence bitmap */
186 len += 4;
187 /* alignment for fixed 6-byte vendor data header */
188 len = ALIGN(len, 2);
189 /* vendor data header */
190 len += 6;
191 if (WARN_ON(rtap->align == 0))
192 rtap->align = 1;
193 len = ALIGN(len, rtap->align);
194 len += rtap->len + rtap->pad;
197 return len;
200 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
201 struct sk_buff *skb,
202 int rtap_vendor_space)
204 struct {
205 struct ieee80211_hdr_3addr hdr;
206 u8 category;
207 u8 action_code;
208 } __packed action;
210 if (!sdata)
211 return;
213 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
215 if (skb->len < rtap_vendor_space + sizeof(action) +
216 VHT_MUMIMO_GROUPS_DATA_LEN)
217 return;
219 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
220 return;
222 skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action));
224 if (!ieee80211_is_action(action.hdr.frame_control))
225 return;
227 if (action.category != WLAN_CATEGORY_VHT)
228 return;
230 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
231 return;
233 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
234 return;
236 skb = skb_copy(skb, GFP_ATOMIC);
237 if (!skb)
238 return;
240 skb_queue_tail(&sdata->skb_queue, skb);
241 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
245 * ieee80211_add_rx_radiotap_header - add radiotap header
247 * add a radiotap header containing all the fields which the hardware provided.
249 static void
250 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
251 struct sk_buff *skb,
252 struct ieee80211_rate *rate,
253 int rtap_len, bool has_fcs)
255 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
256 struct ieee80211_radiotap_header *rthdr;
257 unsigned char *pos;
258 __le32 *it_present;
259 u32 it_present_val;
260 u16 rx_flags = 0;
261 u16 channel_flags = 0;
262 int mpdulen, chain;
263 unsigned long chains = status->chains;
264 struct ieee80211_vendor_radiotap rtap = {};
266 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
267 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
268 /* rtap.len and rtap.pad are undone immediately */
269 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
272 mpdulen = skb->len;
273 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
274 mpdulen += FCS_LEN;
276 rthdr = skb_push(skb, rtap_len);
277 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
278 it_present = &rthdr->it_present;
280 /* radiotap header, set always present flags */
281 rthdr->it_len = cpu_to_le16(rtap_len);
282 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
283 BIT(IEEE80211_RADIOTAP_CHANNEL) |
284 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
286 if (!status->chains)
287 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
289 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
290 it_present_val |=
291 BIT(IEEE80211_RADIOTAP_EXT) |
292 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
293 put_unaligned_le32(it_present_val, it_present);
294 it_present++;
295 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
296 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
299 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
300 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
301 BIT(IEEE80211_RADIOTAP_EXT);
302 put_unaligned_le32(it_present_val, it_present);
303 it_present++;
304 it_present_val = rtap.present;
307 put_unaligned_le32(it_present_val, it_present);
309 pos = (void *)(it_present + 1);
311 /* the order of the following fields is important */
313 /* IEEE80211_RADIOTAP_TSFT */
314 if (ieee80211_have_rx_timestamp(status)) {
315 /* padding */
316 while ((pos - (u8 *)rthdr) & 7)
317 *pos++ = 0;
318 put_unaligned_le64(
319 ieee80211_calculate_rx_timestamp(local, status,
320 mpdulen, 0),
321 pos);
322 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
323 pos += 8;
326 /* IEEE80211_RADIOTAP_FLAGS */
327 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
328 *pos |= IEEE80211_RADIOTAP_F_FCS;
329 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
330 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
331 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
332 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
333 pos++;
335 /* IEEE80211_RADIOTAP_RATE */
336 if (!rate || status->encoding != RX_ENC_LEGACY) {
338 * Without rate information don't add it. If we have,
339 * MCS information is a separate field in radiotap,
340 * added below. The byte here is needed as padding
341 * for the channel though, so initialise it to 0.
343 *pos = 0;
344 } else {
345 int shift = 0;
346 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
347 if (status->bw == RATE_INFO_BW_10)
348 shift = 1;
349 else if (status->bw == RATE_INFO_BW_5)
350 shift = 2;
351 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
353 pos++;
355 /* IEEE80211_RADIOTAP_CHANNEL */
356 put_unaligned_le16(status->freq, pos);
357 pos += 2;
358 if (status->bw == RATE_INFO_BW_10)
359 channel_flags |= IEEE80211_CHAN_HALF;
360 else if (status->bw == RATE_INFO_BW_5)
361 channel_flags |= IEEE80211_CHAN_QUARTER;
363 if (status->band == NL80211_BAND_5GHZ)
364 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
365 else if (status->encoding != RX_ENC_LEGACY)
366 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
367 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
368 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
369 else if (rate)
370 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
371 else
372 channel_flags |= IEEE80211_CHAN_2GHZ;
373 put_unaligned_le16(channel_flags, pos);
374 pos += 2;
376 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
377 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
378 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
379 *pos = status->signal;
380 rthdr->it_present |=
381 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
382 pos++;
385 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
387 if (!status->chains) {
388 /* IEEE80211_RADIOTAP_ANTENNA */
389 *pos = status->antenna;
390 pos++;
393 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
395 /* IEEE80211_RADIOTAP_RX_FLAGS */
396 /* ensure 2 byte alignment for the 2 byte field as required */
397 if ((pos - (u8 *)rthdr) & 1)
398 *pos++ = 0;
399 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
400 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
401 put_unaligned_le16(rx_flags, pos);
402 pos += 2;
404 if (status->encoding == RX_ENC_HT) {
405 unsigned int stbc;
407 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
408 *pos++ = local->hw.radiotap_mcs_details;
409 *pos = 0;
410 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
411 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
412 if (status->bw == RATE_INFO_BW_40)
413 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
414 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
415 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
416 if (status->enc_flags & RX_ENC_FLAG_LDPC)
417 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
418 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
419 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
420 pos++;
421 *pos++ = status->rate_idx;
424 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
425 u16 flags = 0;
427 /* ensure 4 byte alignment */
428 while ((pos - (u8 *)rthdr) & 3)
429 pos++;
430 rthdr->it_present |=
431 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
432 put_unaligned_le32(status->ampdu_reference, pos);
433 pos += 4;
434 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
435 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
436 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
437 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
438 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
439 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
440 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
441 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
442 put_unaligned_le16(flags, pos);
443 pos += 2;
444 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
445 *pos++ = status->ampdu_delimiter_crc;
446 else
447 *pos++ = 0;
448 *pos++ = 0;
451 if (status->encoding == RX_ENC_VHT) {
452 u16 known = local->hw.radiotap_vht_details;
454 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
455 put_unaligned_le16(known, pos);
456 pos += 2;
457 /* flags */
458 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
459 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
460 /* in VHT, STBC is binary */
461 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
462 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
463 if (status->enc_flags & RX_ENC_FLAG_BF)
464 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
465 pos++;
466 /* bandwidth */
467 switch (status->bw) {
468 case RATE_INFO_BW_80:
469 *pos++ = 4;
470 break;
471 case RATE_INFO_BW_160:
472 *pos++ = 11;
473 break;
474 case RATE_INFO_BW_40:
475 *pos++ = 1;
476 break;
477 default:
478 *pos++ = 0;
480 /* MCS/NSS */
481 *pos = (status->rate_idx << 4) | status->nss;
482 pos += 4;
483 /* coding field */
484 if (status->enc_flags & RX_ENC_FLAG_LDPC)
485 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
486 pos++;
487 /* group ID */
488 pos++;
489 /* partial_aid */
490 pos += 2;
493 if (local->hw.radiotap_timestamp.units_pos >= 0) {
494 u16 accuracy = 0;
495 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
497 rthdr->it_present |=
498 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
500 /* ensure 8 byte alignment */
501 while ((pos - (u8 *)rthdr) & 7)
502 pos++;
504 put_unaligned_le64(status->device_timestamp, pos);
505 pos += sizeof(u64);
507 if (local->hw.radiotap_timestamp.accuracy >= 0) {
508 accuracy = local->hw.radiotap_timestamp.accuracy;
509 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
511 put_unaligned_le16(accuracy, pos);
512 pos += sizeof(u16);
514 *pos++ = local->hw.radiotap_timestamp.units_pos;
515 *pos++ = flags;
518 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
519 *pos++ = status->chain_signal[chain];
520 *pos++ = chain;
523 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
524 /* ensure 2 byte alignment for the vendor field as required */
525 if ((pos - (u8 *)rthdr) & 1)
526 *pos++ = 0;
527 *pos++ = rtap.oui[0];
528 *pos++ = rtap.oui[1];
529 *pos++ = rtap.oui[2];
530 *pos++ = rtap.subns;
531 put_unaligned_le16(rtap.len, pos);
532 pos += 2;
533 /* align the actual payload as requested */
534 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
535 *pos++ = 0;
536 /* data (and possible padding) already follows */
540 static struct sk_buff *
541 ieee80211_make_monitor_skb(struct ieee80211_local *local,
542 struct sk_buff **origskb,
543 struct ieee80211_rate *rate,
544 int rtap_vendor_space, bool use_origskb)
546 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
547 int rt_hdrlen, needed_headroom;
548 struct sk_buff *skb;
550 /* room for the radiotap header based on driver features */
551 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
552 needed_headroom = rt_hdrlen - rtap_vendor_space;
554 if (use_origskb) {
555 /* only need to expand headroom if necessary */
556 skb = *origskb;
557 *origskb = NULL;
560 * This shouldn't trigger often because most devices have an
561 * RX header they pull before we get here, and that should
562 * be big enough for our radiotap information. We should
563 * probably export the length to drivers so that we can have
564 * them allocate enough headroom to start with.
566 if (skb_headroom(skb) < needed_headroom &&
567 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
568 dev_kfree_skb(skb);
569 return NULL;
571 } else {
573 * Need to make a copy and possibly remove radiotap header
574 * and FCS from the original.
576 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
578 if (!skb)
579 return NULL;
582 /* prepend radiotap information */
583 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
585 skb_reset_mac_header(skb);
586 skb->ip_summed = CHECKSUM_UNNECESSARY;
587 skb->pkt_type = PACKET_OTHERHOST;
588 skb->protocol = htons(ETH_P_802_2);
590 return skb;
594 * This function copies a received frame to all monitor interfaces and
595 * returns a cleaned-up SKB that no longer includes the FCS nor the
596 * radiotap header the driver might have added.
598 static struct sk_buff *
599 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
600 struct ieee80211_rate *rate)
602 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
603 struct ieee80211_sub_if_data *sdata;
604 struct sk_buff *monskb = NULL;
605 int present_fcs_len = 0;
606 unsigned int rtap_vendor_space = 0;
607 struct ieee80211_sub_if_data *monitor_sdata =
608 rcu_dereference(local->monitor_sdata);
609 bool only_monitor = false;
611 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
612 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
614 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
618 * First, we may need to make a copy of the skb because
619 * (1) we need to modify it for radiotap (if not present), and
620 * (2) the other RX handlers will modify the skb we got.
622 * We don't need to, of course, if we aren't going to return
623 * the SKB because it has a bad FCS/PLCP checksum.
626 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
627 if (unlikely(origskb->len <= FCS_LEN)) {
628 /* driver bug */
629 WARN_ON(1);
630 dev_kfree_skb(origskb);
631 return NULL;
633 present_fcs_len = FCS_LEN;
636 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
637 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
638 dev_kfree_skb(origskb);
639 return NULL;
642 only_monitor = should_drop_frame(origskb, present_fcs_len,
643 rtap_vendor_space);
645 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
646 if (only_monitor) {
647 dev_kfree_skb(origskb);
648 return NULL;
651 remove_monitor_info(origskb, present_fcs_len,
652 rtap_vendor_space);
653 return origskb;
656 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space);
658 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
659 bool last_monitor = list_is_last(&sdata->u.mntr.list,
660 &local->mon_list);
662 if (!monskb)
663 monskb = ieee80211_make_monitor_skb(local, &origskb,
664 rate,
665 rtap_vendor_space,
666 only_monitor &&
667 last_monitor);
669 if (monskb) {
670 struct sk_buff *skb;
672 if (last_monitor) {
673 skb = monskb;
674 monskb = NULL;
675 } else {
676 skb = skb_clone(monskb, GFP_ATOMIC);
679 if (skb) {
680 skb->dev = sdata->dev;
681 ieee80211_rx_stats(skb->dev, skb->len);
682 netif_receive_skb(skb);
686 if (last_monitor)
687 break;
690 /* this happens if last_monitor was erroneously false */
691 dev_kfree_skb(monskb);
693 /* ditto */
694 if (!origskb)
695 return NULL;
697 remove_monitor_info(origskb, present_fcs_len, rtap_vendor_space);
698 return origskb;
701 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
703 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
704 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
705 int tid, seqno_idx, security_idx;
707 /* does the frame have a qos control field? */
708 if (ieee80211_is_data_qos(hdr->frame_control)) {
709 u8 *qc = ieee80211_get_qos_ctl(hdr);
710 /* frame has qos control */
711 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
712 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
713 status->rx_flags |= IEEE80211_RX_AMSDU;
715 seqno_idx = tid;
716 security_idx = tid;
717 } else {
719 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
721 * Sequence numbers for management frames, QoS data
722 * frames with a broadcast/multicast address in the
723 * Address 1 field, and all non-QoS data frames sent
724 * by QoS STAs are assigned using an additional single
725 * modulo-4096 counter, [...]
727 * We also use that counter for non-QoS STAs.
729 seqno_idx = IEEE80211_NUM_TIDS;
730 security_idx = 0;
731 if (ieee80211_is_mgmt(hdr->frame_control))
732 security_idx = IEEE80211_NUM_TIDS;
733 tid = 0;
736 rx->seqno_idx = seqno_idx;
737 rx->security_idx = security_idx;
738 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
739 * For now, set skb->priority to 0 for other cases. */
740 rx->skb->priority = (tid > 7) ? 0 : tid;
744 * DOC: Packet alignment
746 * Drivers always need to pass packets that are aligned to two-byte boundaries
747 * to the stack.
749 * Additionally, should, if possible, align the payload data in a way that
750 * guarantees that the contained IP header is aligned to a four-byte
751 * boundary. In the case of regular frames, this simply means aligning the
752 * payload to a four-byte boundary (because either the IP header is directly
753 * contained, or IV/RFC1042 headers that have a length divisible by four are
754 * in front of it). If the payload data is not properly aligned and the
755 * architecture doesn't support efficient unaligned operations, mac80211
756 * will align the data.
758 * With A-MSDU frames, however, the payload data address must yield two modulo
759 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
760 * push the IP header further back to a multiple of four again. Thankfully, the
761 * specs were sane enough this time around to require padding each A-MSDU
762 * subframe to a length that is a multiple of four.
764 * Padding like Atheros hardware adds which is between the 802.11 header and
765 * the payload is not supported, the driver is required to move the 802.11
766 * header to be directly in front of the payload in that case.
768 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
770 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
771 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
772 #endif
776 /* rx handlers */
778 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
780 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
782 if (is_multicast_ether_addr(hdr->addr1))
783 return 0;
785 return ieee80211_is_robust_mgmt_frame(skb);
789 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
791 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
793 if (!is_multicast_ether_addr(hdr->addr1))
794 return 0;
796 return ieee80211_is_robust_mgmt_frame(skb);
800 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
801 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
803 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
804 struct ieee80211_mmie *mmie;
805 struct ieee80211_mmie_16 *mmie16;
807 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
808 return -1;
810 if (!ieee80211_is_robust_mgmt_frame(skb))
811 return -1; /* not a robust management frame */
813 mmie = (struct ieee80211_mmie *)
814 (skb->data + skb->len - sizeof(*mmie));
815 if (mmie->element_id == WLAN_EID_MMIE &&
816 mmie->length == sizeof(*mmie) - 2)
817 return le16_to_cpu(mmie->key_id);
819 mmie16 = (struct ieee80211_mmie_16 *)
820 (skb->data + skb->len - sizeof(*mmie16));
821 if (skb->len >= 24 + sizeof(*mmie16) &&
822 mmie16->element_id == WLAN_EID_MMIE &&
823 mmie16->length == sizeof(*mmie16) - 2)
824 return le16_to_cpu(mmie16->key_id);
826 return -1;
829 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
830 struct sk_buff *skb)
832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
833 __le16 fc;
834 int hdrlen;
835 u8 keyid;
837 fc = hdr->frame_control;
838 hdrlen = ieee80211_hdrlen(fc);
840 if (skb->len < hdrlen + cs->hdr_len)
841 return -EINVAL;
843 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
844 keyid &= cs->key_idx_mask;
845 keyid >>= cs->key_idx_shift;
847 return keyid;
850 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
852 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
853 char *dev_addr = rx->sdata->vif.addr;
855 if (ieee80211_is_data(hdr->frame_control)) {
856 if (is_multicast_ether_addr(hdr->addr1)) {
857 if (ieee80211_has_tods(hdr->frame_control) ||
858 !ieee80211_has_fromds(hdr->frame_control))
859 return RX_DROP_MONITOR;
860 if (ether_addr_equal(hdr->addr3, dev_addr))
861 return RX_DROP_MONITOR;
862 } else {
863 if (!ieee80211_has_a4(hdr->frame_control))
864 return RX_DROP_MONITOR;
865 if (ether_addr_equal(hdr->addr4, dev_addr))
866 return RX_DROP_MONITOR;
870 /* If there is not an established peer link and this is not a peer link
871 * establisment frame, beacon or probe, drop the frame.
874 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
875 struct ieee80211_mgmt *mgmt;
877 if (!ieee80211_is_mgmt(hdr->frame_control))
878 return RX_DROP_MONITOR;
880 if (ieee80211_is_action(hdr->frame_control)) {
881 u8 category;
883 /* make sure category field is present */
884 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
885 return RX_DROP_MONITOR;
887 mgmt = (struct ieee80211_mgmt *)hdr;
888 category = mgmt->u.action.category;
889 if (category != WLAN_CATEGORY_MESH_ACTION &&
890 category != WLAN_CATEGORY_SELF_PROTECTED)
891 return RX_DROP_MONITOR;
892 return RX_CONTINUE;
895 if (ieee80211_is_probe_req(hdr->frame_control) ||
896 ieee80211_is_probe_resp(hdr->frame_control) ||
897 ieee80211_is_beacon(hdr->frame_control) ||
898 ieee80211_is_auth(hdr->frame_control))
899 return RX_CONTINUE;
901 return RX_DROP_MONITOR;
904 return RX_CONTINUE;
907 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
908 int index)
910 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
911 struct sk_buff *tail = skb_peek_tail(frames);
912 struct ieee80211_rx_status *status;
914 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
915 return true;
917 if (!tail)
918 return false;
920 status = IEEE80211_SKB_RXCB(tail);
921 if (status->flag & RX_FLAG_AMSDU_MORE)
922 return false;
924 return true;
927 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
928 struct tid_ampdu_rx *tid_agg_rx,
929 int index,
930 struct sk_buff_head *frames)
932 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
933 struct sk_buff *skb;
934 struct ieee80211_rx_status *status;
936 lockdep_assert_held(&tid_agg_rx->reorder_lock);
938 if (skb_queue_empty(skb_list))
939 goto no_frame;
941 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
942 __skb_queue_purge(skb_list);
943 goto no_frame;
946 /* release frames from the reorder ring buffer */
947 tid_agg_rx->stored_mpdu_num--;
948 while ((skb = __skb_dequeue(skb_list))) {
949 status = IEEE80211_SKB_RXCB(skb);
950 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
951 __skb_queue_tail(frames, skb);
954 no_frame:
955 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
956 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
959 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
960 struct tid_ampdu_rx *tid_agg_rx,
961 u16 head_seq_num,
962 struct sk_buff_head *frames)
964 int index;
966 lockdep_assert_held(&tid_agg_rx->reorder_lock);
968 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
969 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
970 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
971 frames);
976 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
977 * the skb was added to the buffer longer than this time ago, the earlier
978 * frames that have not yet been received are assumed to be lost and the skb
979 * can be released for processing. This may also release other skb's from the
980 * reorder buffer if there are no additional gaps between the frames.
982 * Callers must hold tid_agg_rx->reorder_lock.
984 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
986 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
987 struct tid_ampdu_rx *tid_agg_rx,
988 struct sk_buff_head *frames)
990 int index, i, j;
992 lockdep_assert_held(&tid_agg_rx->reorder_lock);
994 /* release the buffer until next missing frame */
995 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
996 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
997 tid_agg_rx->stored_mpdu_num) {
999 * No buffers ready to be released, but check whether any
1000 * frames in the reorder buffer have timed out.
1002 int skipped = 1;
1003 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1004 j = (j + 1) % tid_agg_rx->buf_size) {
1005 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1006 skipped++;
1007 continue;
1009 if (skipped &&
1010 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1011 HT_RX_REORDER_BUF_TIMEOUT))
1012 goto set_release_timer;
1014 /* don't leave incomplete A-MSDUs around */
1015 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1016 i = (i + 1) % tid_agg_rx->buf_size)
1017 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1019 ht_dbg_ratelimited(sdata,
1020 "release an RX reorder frame due to timeout on earlier frames\n");
1021 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1022 frames);
1025 * Increment the head seq# also for the skipped slots.
1027 tid_agg_rx->head_seq_num =
1028 (tid_agg_rx->head_seq_num +
1029 skipped) & IEEE80211_SN_MASK;
1030 skipped = 0;
1032 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1033 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1034 frames);
1035 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1038 if (tid_agg_rx->stored_mpdu_num) {
1039 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1041 for (; j != (index - 1) % tid_agg_rx->buf_size;
1042 j = (j + 1) % tid_agg_rx->buf_size) {
1043 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1044 break;
1047 set_release_timer:
1049 if (!tid_agg_rx->removed)
1050 mod_timer(&tid_agg_rx->reorder_timer,
1051 tid_agg_rx->reorder_time[j] + 1 +
1052 HT_RX_REORDER_BUF_TIMEOUT);
1053 } else {
1054 del_timer(&tid_agg_rx->reorder_timer);
1059 * As this function belongs to the RX path it must be under
1060 * rcu_read_lock protection. It returns false if the frame
1061 * can be processed immediately, true if it was consumed.
1063 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1064 struct tid_ampdu_rx *tid_agg_rx,
1065 struct sk_buff *skb,
1066 struct sk_buff_head *frames)
1068 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1069 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1070 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1071 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1072 u16 head_seq_num, buf_size;
1073 int index;
1074 bool ret = true;
1076 spin_lock(&tid_agg_rx->reorder_lock);
1079 * Offloaded BA sessions have no known starting sequence number so pick
1080 * one from first Rxed frame for this tid after BA was started.
1082 if (unlikely(tid_agg_rx->auto_seq)) {
1083 tid_agg_rx->auto_seq = false;
1084 tid_agg_rx->ssn = mpdu_seq_num;
1085 tid_agg_rx->head_seq_num = mpdu_seq_num;
1088 buf_size = tid_agg_rx->buf_size;
1089 head_seq_num = tid_agg_rx->head_seq_num;
1092 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1093 * be reordered.
1095 if (unlikely(!tid_agg_rx->started)) {
1096 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1097 ret = false;
1098 goto out;
1100 tid_agg_rx->started = true;
1103 /* frame with out of date sequence number */
1104 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1105 dev_kfree_skb(skb);
1106 goto out;
1110 * If frame the sequence number exceeds our buffering window
1111 * size release some previous frames to make room for this one.
1113 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1114 head_seq_num = ieee80211_sn_inc(
1115 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1116 /* release stored frames up to new head to stack */
1117 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1118 head_seq_num, frames);
1121 /* Now the new frame is always in the range of the reordering buffer */
1123 index = mpdu_seq_num % tid_agg_rx->buf_size;
1125 /* check if we already stored this frame */
1126 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1127 dev_kfree_skb(skb);
1128 goto out;
1132 * If the current MPDU is in the right order and nothing else
1133 * is stored we can process it directly, no need to buffer it.
1134 * If it is first but there's something stored, we may be able
1135 * to release frames after this one.
1137 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1138 tid_agg_rx->stored_mpdu_num == 0) {
1139 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1140 tid_agg_rx->head_seq_num =
1141 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1142 ret = false;
1143 goto out;
1146 /* put the frame in the reordering buffer */
1147 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1148 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1149 tid_agg_rx->reorder_time[index] = jiffies;
1150 tid_agg_rx->stored_mpdu_num++;
1151 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1154 out:
1155 spin_unlock(&tid_agg_rx->reorder_lock);
1156 return ret;
1160 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1161 * true if the MPDU was buffered, false if it should be processed.
1163 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1164 struct sk_buff_head *frames)
1166 struct sk_buff *skb = rx->skb;
1167 struct ieee80211_local *local = rx->local;
1168 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1169 struct sta_info *sta = rx->sta;
1170 struct tid_ampdu_rx *tid_agg_rx;
1171 u16 sc;
1172 u8 tid, ack_policy;
1174 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1175 is_multicast_ether_addr(hdr->addr1))
1176 goto dont_reorder;
1179 * filter the QoS data rx stream according to
1180 * STA/TID and check if this STA/TID is on aggregation
1183 if (!sta)
1184 goto dont_reorder;
1186 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1187 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1188 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1190 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1191 if (!tid_agg_rx) {
1192 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1193 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1194 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1195 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1196 WLAN_BACK_RECIPIENT,
1197 WLAN_REASON_QSTA_REQUIRE_SETUP);
1198 goto dont_reorder;
1201 /* qos null data frames are excluded */
1202 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1203 goto dont_reorder;
1205 /* not part of a BA session */
1206 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1207 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1208 goto dont_reorder;
1210 /* new, potentially un-ordered, ampdu frame - process it */
1212 /* reset session timer */
1213 if (tid_agg_rx->timeout)
1214 tid_agg_rx->last_rx = jiffies;
1216 /* if this mpdu is fragmented - terminate rx aggregation session */
1217 sc = le16_to_cpu(hdr->seq_ctrl);
1218 if (sc & IEEE80211_SCTL_FRAG) {
1219 skb_queue_tail(&rx->sdata->skb_queue, skb);
1220 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1221 return;
1225 * No locking needed -- we will only ever process one
1226 * RX packet at a time, and thus own tid_agg_rx. All
1227 * other code manipulating it needs to (and does) make
1228 * sure that we cannot get to it any more before doing
1229 * anything with it.
1231 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1232 frames))
1233 return;
1235 dont_reorder:
1236 __skb_queue_tail(frames, skb);
1239 static ieee80211_rx_result debug_noinline
1240 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1242 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1243 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1245 if (status->flag & RX_FLAG_DUP_VALIDATED)
1246 return RX_CONTINUE;
1249 * Drop duplicate 802.11 retransmissions
1250 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1253 if (rx->skb->len < 24)
1254 return RX_CONTINUE;
1256 if (ieee80211_is_ctl(hdr->frame_control) ||
1257 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1258 is_multicast_ether_addr(hdr->addr1))
1259 return RX_CONTINUE;
1261 if (!rx->sta)
1262 return RX_CONTINUE;
1264 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1265 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1266 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1267 rx->sta->rx_stats.num_duplicates++;
1268 return RX_DROP_UNUSABLE;
1269 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1270 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1273 return RX_CONTINUE;
1276 static ieee80211_rx_result debug_noinline
1277 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1279 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1281 /* Drop disallowed frame classes based on STA auth/assoc state;
1282 * IEEE 802.11, Chap 5.5.
1284 * mac80211 filters only based on association state, i.e. it drops
1285 * Class 3 frames from not associated stations. hostapd sends
1286 * deauth/disassoc frames when needed. In addition, hostapd is
1287 * responsible for filtering on both auth and assoc states.
1290 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1291 return ieee80211_rx_mesh_check(rx);
1293 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1294 ieee80211_is_pspoll(hdr->frame_control)) &&
1295 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1296 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1297 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1298 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1300 * accept port control frames from the AP even when it's not
1301 * yet marked ASSOC to prevent a race where we don't set the
1302 * assoc bit quickly enough before it sends the first frame
1304 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1305 ieee80211_is_data_present(hdr->frame_control)) {
1306 unsigned int hdrlen;
1307 __be16 ethertype;
1309 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1311 if (rx->skb->len < hdrlen + 8)
1312 return RX_DROP_MONITOR;
1314 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1315 if (ethertype == rx->sdata->control_port_protocol)
1316 return RX_CONTINUE;
1319 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1320 cfg80211_rx_spurious_frame(rx->sdata->dev,
1321 hdr->addr2,
1322 GFP_ATOMIC))
1323 return RX_DROP_UNUSABLE;
1325 return RX_DROP_MONITOR;
1328 return RX_CONTINUE;
1332 static ieee80211_rx_result debug_noinline
1333 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1335 struct ieee80211_local *local;
1336 struct ieee80211_hdr *hdr;
1337 struct sk_buff *skb;
1339 local = rx->local;
1340 skb = rx->skb;
1341 hdr = (struct ieee80211_hdr *) skb->data;
1343 if (!local->pspolling)
1344 return RX_CONTINUE;
1346 if (!ieee80211_has_fromds(hdr->frame_control))
1347 /* this is not from AP */
1348 return RX_CONTINUE;
1350 if (!ieee80211_is_data(hdr->frame_control))
1351 return RX_CONTINUE;
1353 if (!ieee80211_has_moredata(hdr->frame_control)) {
1354 /* AP has no more frames buffered for us */
1355 local->pspolling = false;
1356 return RX_CONTINUE;
1359 /* more data bit is set, let's request a new frame from the AP */
1360 ieee80211_send_pspoll(local, rx->sdata);
1362 return RX_CONTINUE;
1365 static void sta_ps_start(struct sta_info *sta)
1367 struct ieee80211_sub_if_data *sdata = sta->sdata;
1368 struct ieee80211_local *local = sdata->local;
1369 struct ps_data *ps;
1370 int tid;
1372 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1373 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1374 ps = &sdata->bss->ps;
1375 else
1376 return;
1378 atomic_inc(&ps->num_sta_ps);
1379 set_sta_flag(sta, WLAN_STA_PS_STA);
1380 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1381 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1382 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1383 sta->sta.addr, sta->sta.aid);
1385 ieee80211_clear_fast_xmit(sta);
1387 if (!sta->sta.txq[0])
1388 return;
1390 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1391 if (txq_has_queue(sta->sta.txq[tid]))
1392 set_bit(tid, &sta->txq_buffered_tids);
1393 else
1394 clear_bit(tid, &sta->txq_buffered_tids);
1398 static void sta_ps_end(struct sta_info *sta)
1400 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1401 sta->sta.addr, sta->sta.aid);
1403 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1405 * Clear the flag only if the other one is still set
1406 * so that the TX path won't start TX'ing new frames
1407 * directly ... In the case that the driver flag isn't
1408 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1410 clear_sta_flag(sta, WLAN_STA_PS_STA);
1411 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1412 sta->sta.addr, sta->sta.aid);
1413 return;
1416 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1417 clear_sta_flag(sta, WLAN_STA_PS_STA);
1418 ieee80211_sta_ps_deliver_wakeup(sta);
1421 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1423 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1424 bool in_ps;
1426 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1428 /* Don't let the same PS state be set twice */
1429 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1430 if ((start && in_ps) || (!start && !in_ps))
1431 return -EINVAL;
1433 if (start)
1434 sta_ps_start(sta);
1435 else
1436 sta_ps_end(sta);
1438 return 0;
1440 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1442 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1444 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1446 if (test_sta_flag(sta, WLAN_STA_SP))
1447 return;
1449 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1450 ieee80211_sta_ps_deliver_poll_response(sta);
1451 else
1452 set_sta_flag(sta, WLAN_STA_PSPOLL);
1454 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1456 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1458 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1459 int ac = ieee80211_ac_from_tid(tid);
1462 * If this AC is not trigger-enabled do nothing unless the
1463 * driver is calling us after it already checked.
1465 * NB: This could/should check a separate bitmap of trigger-
1466 * enabled queues, but for now we only implement uAPSD w/o
1467 * TSPEC changes to the ACs, so they're always the same.
1469 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1470 tid != IEEE80211_NUM_TIDS)
1471 return;
1473 /* if we are in a service period, do nothing */
1474 if (test_sta_flag(sta, WLAN_STA_SP))
1475 return;
1477 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1478 ieee80211_sta_ps_deliver_uapsd(sta);
1479 else
1480 set_sta_flag(sta, WLAN_STA_UAPSD);
1482 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1484 static ieee80211_rx_result debug_noinline
1485 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1487 struct ieee80211_sub_if_data *sdata = rx->sdata;
1488 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1491 if (!rx->sta)
1492 return RX_CONTINUE;
1494 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1495 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1496 return RX_CONTINUE;
1499 * The device handles station powersave, so don't do anything about
1500 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1501 * it to mac80211 since they're handled.)
1503 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1504 return RX_CONTINUE;
1507 * Don't do anything if the station isn't already asleep. In
1508 * the uAPSD case, the station will probably be marked asleep,
1509 * in the PS-Poll case the station must be confused ...
1511 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1512 return RX_CONTINUE;
1514 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1515 ieee80211_sta_pspoll(&rx->sta->sta);
1517 /* Free PS Poll skb here instead of returning RX_DROP that would
1518 * count as an dropped frame. */
1519 dev_kfree_skb(rx->skb);
1521 return RX_QUEUED;
1522 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1523 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1524 ieee80211_has_pm(hdr->frame_control) &&
1525 (ieee80211_is_data_qos(hdr->frame_control) ||
1526 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1527 u8 tid;
1529 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1531 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1534 return RX_CONTINUE;
1537 static ieee80211_rx_result debug_noinline
1538 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1540 struct sta_info *sta = rx->sta;
1541 struct sk_buff *skb = rx->skb;
1542 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1543 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1544 int i;
1546 if (!sta)
1547 return RX_CONTINUE;
1550 * Update last_rx only for IBSS packets which are for the current
1551 * BSSID and for station already AUTHORIZED to avoid keeping the
1552 * current IBSS network alive in cases where other STAs start
1553 * using different BSSID. This will also give the station another
1554 * chance to restart the authentication/authorization in case
1555 * something went wrong the first time.
1557 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1558 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1559 NL80211_IFTYPE_ADHOC);
1560 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1561 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1562 sta->rx_stats.last_rx = jiffies;
1563 if (ieee80211_is_data(hdr->frame_control) &&
1564 !is_multicast_ether_addr(hdr->addr1))
1565 sta->rx_stats.last_rate =
1566 sta_stats_encode_rate(status);
1568 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1569 sta->rx_stats.last_rx = jiffies;
1570 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1572 * Mesh beacons will update last_rx when if they are found to
1573 * match the current local configuration when processed.
1575 sta->rx_stats.last_rx = jiffies;
1576 if (ieee80211_is_data(hdr->frame_control))
1577 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1580 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1581 ieee80211_sta_rx_notify(rx->sdata, hdr);
1583 sta->rx_stats.fragments++;
1585 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1586 sta->rx_stats.bytes += rx->skb->len;
1587 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1589 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1590 sta->rx_stats.last_signal = status->signal;
1591 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1594 if (status->chains) {
1595 sta->rx_stats.chains = status->chains;
1596 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1597 int signal = status->chain_signal[i];
1599 if (!(status->chains & BIT(i)))
1600 continue;
1602 sta->rx_stats.chain_signal_last[i] = signal;
1603 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1604 -signal);
1609 * Change STA power saving mode only at the end of a frame
1610 * exchange sequence.
1612 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1613 !ieee80211_has_morefrags(hdr->frame_control) &&
1614 !ieee80211_is_back_req(hdr->frame_control) &&
1615 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1616 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1617 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1619 * PM bit is only checked in frames where it isn't reserved,
1620 * in AP mode it's reserved in non-bufferable management frames
1621 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1622 * BAR frames should be ignored as specified in
1623 * IEEE 802.11-2012 10.2.1.2.
1625 (!ieee80211_is_mgmt(hdr->frame_control) ||
1626 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1627 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1628 if (!ieee80211_has_pm(hdr->frame_control))
1629 sta_ps_end(sta);
1630 } else {
1631 if (ieee80211_has_pm(hdr->frame_control))
1632 sta_ps_start(sta);
1636 /* mesh power save support */
1637 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1638 ieee80211_mps_rx_h_sta_process(sta, hdr);
1641 * Drop (qos-)data::nullfunc frames silently, since they
1642 * are used only to control station power saving mode.
1644 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1645 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1646 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1649 * If we receive a 4-addr nullfunc frame from a STA
1650 * that was not moved to a 4-addr STA vlan yet send
1651 * the event to userspace and for older hostapd drop
1652 * the frame to the monitor interface.
1654 if (ieee80211_has_a4(hdr->frame_control) &&
1655 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1656 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1657 !rx->sdata->u.vlan.sta))) {
1658 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1659 cfg80211_rx_unexpected_4addr_frame(
1660 rx->sdata->dev, sta->sta.addr,
1661 GFP_ATOMIC);
1662 return RX_DROP_MONITOR;
1665 * Update counter and free packet here to avoid
1666 * counting this as a dropped packed.
1668 sta->rx_stats.packets++;
1669 dev_kfree_skb(rx->skb);
1670 return RX_QUEUED;
1673 return RX_CONTINUE;
1674 } /* ieee80211_rx_h_sta_process */
1676 static ieee80211_rx_result debug_noinline
1677 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1679 struct sk_buff *skb = rx->skb;
1680 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1681 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1682 int keyidx;
1683 int hdrlen;
1684 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1685 struct ieee80211_key *sta_ptk = NULL;
1686 int mmie_keyidx = -1;
1687 __le16 fc;
1688 const struct ieee80211_cipher_scheme *cs = NULL;
1691 * Key selection 101
1693 * There are four types of keys:
1694 * - GTK (group keys)
1695 * - IGTK (group keys for management frames)
1696 * - PTK (pairwise keys)
1697 * - STK (station-to-station pairwise keys)
1699 * When selecting a key, we have to distinguish between multicast
1700 * (including broadcast) and unicast frames, the latter can only
1701 * use PTKs and STKs while the former always use GTKs and IGTKs.
1702 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1703 * unicast frames can also use key indices like GTKs. Hence, if we
1704 * don't have a PTK/STK we check the key index for a WEP key.
1706 * Note that in a regular BSS, multicast frames are sent by the
1707 * AP only, associated stations unicast the frame to the AP first
1708 * which then multicasts it on their behalf.
1710 * There is also a slight problem in IBSS mode: GTKs are negotiated
1711 * with each station, that is something we don't currently handle.
1712 * The spec seems to expect that one negotiates the same key with
1713 * every station but there's no such requirement; VLANs could be
1714 * possible.
1717 /* start without a key */
1718 rx->key = NULL;
1719 fc = hdr->frame_control;
1721 if (rx->sta) {
1722 int keyid = rx->sta->ptk_idx;
1724 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1725 cs = rx->sta->cipher_scheme;
1726 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1727 if (unlikely(keyid < 0))
1728 return RX_DROP_UNUSABLE;
1730 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1733 if (!ieee80211_has_protected(fc))
1734 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1736 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1737 rx->key = sta_ptk;
1738 if ((status->flag & RX_FLAG_DECRYPTED) &&
1739 (status->flag & RX_FLAG_IV_STRIPPED))
1740 return RX_CONTINUE;
1741 /* Skip decryption if the frame is not protected. */
1742 if (!ieee80211_has_protected(fc))
1743 return RX_CONTINUE;
1744 } else if (mmie_keyidx >= 0) {
1745 /* Broadcast/multicast robust management frame / BIP */
1746 if ((status->flag & RX_FLAG_DECRYPTED) &&
1747 (status->flag & RX_FLAG_IV_STRIPPED))
1748 return RX_CONTINUE;
1750 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1751 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1752 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1753 if (rx->sta) {
1754 if (ieee80211_is_group_privacy_action(skb) &&
1755 test_sta_flag(rx->sta, WLAN_STA_MFP))
1756 return RX_DROP_MONITOR;
1758 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1760 if (!rx->key)
1761 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1762 } else if (!ieee80211_has_protected(fc)) {
1764 * The frame was not protected, so skip decryption. However, we
1765 * need to set rx->key if there is a key that could have been
1766 * used so that the frame may be dropped if encryption would
1767 * have been expected.
1769 struct ieee80211_key *key = NULL;
1770 struct ieee80211_sub_if_data *sdata = rx->sdata;
1771 int i;
1773 if (ieee80211_is_mgmt(fc) &&
1774 is_multicast_ether_addr(hdr->addr1) &&
1775 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1776 rx->key = key;
1777 else {
1778 if (rx->sta) {
1779 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1780 key = rcu_dereference(rx->sta->gtk[i]);
1781 if (key)
1782 break;
1785 if (!key) {
1786 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1787 key = rcu_dereference(sdata->keys[i]);
1788 if (key)
1789 break;
1792 if (key)
1793 rx->key = key;
1795 return RX_CONTINUE;
1796 } else {
1797 u8 keyid;
1800 * The device doesn't give us the IV so we won't be
1801 * able to look up the key. That's ok though, we
1802 * don't need to decrypt the frame, we just won't
1803 * be able to keep statistics accurate.
1804 * Except for key threshold notifications, should
1805 * we somehow allow the driver to tell us which key
1806 * the hardware used if this flag is set?
1808 if ((status->flag & RX_FLAG_DECRYPTED) &&
1809 (status->flag & RX_FLAG_IV_STRIPPED))
1810 return RX_CONTINUE;
1812 hdrlen = ieee80211_hdrlen(fc);
1814 if (cs) {
1815 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1817 if (unlikely(keyidx < 0))
1818 return RX_DROP_UNUSABLE;
1819 } else {
1820 if (rx->skb->len < 8 + hdrlen)
1821 return RX_DROP_UNUSABLE; /* TODO: count this? */
1823 * no need to call ieee80211_wep_get_keyidx,
1824 * it verifies a bunch of things we've done already
1826 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1827 keyidx = keyid >> 6;
1830 /* check per-station GTK first, if multicast packet */
1831 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1832 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1834 /* if not found, try default key */
1835 if (!rx->key) {
1836 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1839 * RSNA-protected unicast frames should always be
1840 * sent with pairwise or station-to-station keys,
1841 * but for WEP we allow using a key index as well.
1843 if (rx->key &&
1844 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1845 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1846 !is_multicast_ether_addr(hdr->addr1))
1847 rx->key = NULL;
1851 if (rx->key) {
1852 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1853 return RX_DROP_MONITOR;
1855 /* TODO: add threshold stuff again */
1856 } else {
1857 return RX_DROP_MONITOR;
1860 switch (rx->key->conf.cipher) {
1861 case WLAN_CIPHER_SUITE_WEP40:
1862 case WLAN_CIPHER_SUITE_WEP104:
1863 result = ieee80211_crypto_wep_decrypt(rx);
1864 break;
1865 case WLAN_CIPHER_SUITE_TKIP:
1866 result = ieee80211_crypto_tkip_decrypt(rx);
1867 break;
1868 case WLAN_CIPHER_SUITE_CCMP:
1869 result = ieee80211_crypto_ccmp_decrypt(
1870 rx, IEEE80211_CCMP_MIC_LEN);
1871 break;
1872 case WLAN_CIPHER_SUITE_CCMP_256:
1873 result = ieee80211_crypto_ccmp_decrypt(
1874 rx, IEEE80211_CCMP_256_MIC_LEN);
1875 break;
1876 case WLAN_CIPHER_SUITE_AES_CMAC:
1877 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1878 break;
1879 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1880 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1881 break;
1882 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1883 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1884 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1885 break;
1886 case WLAN_CIPHER_SUITE_GCMP:
1887 case WLAN_CIPHER_SUITE_GCMP_256:
1888 result = ieee80211_crypto_gcmp_decrypt(rx);
1889 break;
1890 default:
1891 result = ieee80211_crypto_hw_decrypt(rx);
1894 /* the hdr variable is invalid after the decrypt handlers */
1896 /* either the frame has been decrypted or will be dropped */
1897 status->flag |= RX_FLAG_DECRYPTED;
1899 return result;
1902 static inline struct ieee80211_fragment_entry *
1903 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1904 unsigned int frag, unsigned int seq, int rx_queue,
1905 struct sk_buff **skb)
1907 struct ieee80211_fragment_entry *entry;
1909 entry = &sdata->fragments[sdata->fragment_next++];
1910 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1911 sdata->fragment_next = 0;
1913 if (!skb_queue_empty(&entry->skb_list))
1914 __skb_queue_purge(&entry->skb_list);
1916 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1917 *skb = NULL;
1918 entry->first_frag_time = jiffies;
1919 entry->seq = seq;
1920 entry->rx_queue = rx_queue;
1921 entry->last_frag = frag;
1922 entry->check_sequential_pn = false;
1923 entry->extra_len = 0;
1925 return entry;
1928 static inline struct ieee80211_fragment_entry *
1929 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1930 unsigned int frag, unsigned int seq,
1931 int rx_queue, struct ieee80211_hdr *hdr)
1933 struct ieee80211_fragment_entry *entry;
1934 int i, idx;
1936 idx = sdata->fragment_next;
1937 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1938 struct ieee80211_hdr *f_hdr;
1940 idx--;
1941 if (idx < 0)
1942 idx = IEEE80211_FRAGMENT_MAX - 1;
1944 entry = &sdata->fragments[idx];
1945 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1946 entry->rx_queue != rx_queue ||
1947 entry->last_frag + 1 != frag)
1948 continue;
1950 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1953 * Check ftype and addresses are equal, else check next fragment
1955 if (((hdr->frame_control ^ f_hdr->frame_control) &
1956 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1957 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1958 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1959 continue;
1961 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1962 __skb_queue_purge(&entry->skb_list);
1963 continue;
1965 return entry;
1968 return NULL;
1971 static ieee80211_rx_result debug_noinline
1972 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1974 struct ieee80211_hdr *hdr;
1975 u16 sc;
1976 __le16 fc;
1977 unsigned int frag, seq;
1978 struct ieee80211_fragment_entry *entry;
1979 struct sk_buff *skb;
1981 hdr = (struct ieee80211_hdr *)rx->skb->data;
1982 fc = hdr->frame_control;
1984 if (ieee80211_is_ctl(fc))
1985 return RX_CONTINUE;
1987 sc = le16_to_cpu(hdr->seq_ctrl);
1988 frag = sc & IEEE80211_SCTL_FRAG;
1990 if (is_multicast_ether_addr(hdr->addr1)) {
1991 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1992 goto out_no_led;
1995 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1996 goto out;
1998 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2000 if (skb_linearize(rx->skb))
2001 return RX_DROP_UNUSABLE;
2004 * skb_linearize() might change the skb->data and
2005 * previously cached variables (in this case, hdr) need to
2006 * be refreshed with the new data.
2008 hdr = (struct ieee80211_hdr *)rx->skb->data;
2009 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2011 if (frag == 0) {
2012 /* This is the first fragment of a new frame. */
2013 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2014 rx->seqno_idx, &(rx->skb));
2015 if (rx->key &&
2016 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2017 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2018 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2019 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2020 ieee80211_has_protected(fc)) {
2021 int queue = rx->security_idx;
2023 /* Store CCMP/GCMP PN so that we can verify that the
2024 * next fragment has a sequential PN value.
2026 entry->check_sequential_pn = true;
2027 memcpy(entry->last_pn,
2028 rx->key->u.ccmp.rx_pn[queue],
2029 IEEE80211_CCMP_PN_LEN);
2030 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2031 u.ccmp.rx_pn) !=
2032 offsetof(struct ieee80211_key,
2033 u.gcmp.rx_pn));
2034 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2035 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2036 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2037 IEEE80211_GCMP_PN_LEN);
2039 return RX_QUEUED;
2042 /* This is a fragment for a frame that should already be pending in
2043 * fragment cache. Add this fragment to the end of the pending entry.
2045 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2046 rx->seqno_idx, hdr);
2047 if (!entry) {
2048 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2049 return RX_DROP_MONITOR;
2052 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2053 * MPDU PN values are not incrementing in steps of 1."
2054 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2055 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2057 if (entry->check_sequential_pn) {
2058 int i;
2059 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2060 int queue;
2062 if (!rx->key ||
2063 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2064 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2065 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2066 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2067 return RX_DROP_UNUSABLE;
2068 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2069 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2070 pn[i]++;
2071 if (pn[i])
2072 break;
2074 queue = rx->security_idx;
2075 rpn = rx->key->u.ccmp.rx_pn[queue];
2076 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2077 return RX_DROP_UNUSABLE;
2078 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2081 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2082 __skb_queue_tail(&entry->skb_list, rx->skb);
2083 entry->last_frag = frag;
2084 entry->extra_len += rx->skb->len;
2085 if (ieee80211_has_morefrags(fc)) {
2086 rx->skb = NULL;
2087 return RX_QUEUED;
2090 rx->skb = __skb_dequeue(&entry->skb_list);
2091 if (skb_tailroom(rx->skb) < entry->extra_len) {
2092 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2093 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2094 GFP_ATOMIC))) {
2095 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2096 __skb_queue_purge(&entry->skb_list);
2097 return RX_DROP_UNUSABLE;
2100 while ((skb = __skb_dequeue(&entry->skb_list))) {
2101 skb_put_data(rx->skb, skb->data, skb->len);
2102 dev_kfree_skb(skb);
2105 out:
2106 ieee80211_led_rx(rx->local);
2107 out_no_led:
2108 if (rx->sta)
2109 rx->sta->rx_stats.packets++;
2110 return RX_CONTINUE;
2113 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2115 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2116 return -EACCES;
2118 return 0;
2121 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2123 struct sk_buff *skb = rx->skb;
2124 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2127 * Pass through unencrypted frames if the hardware has
2128 * decrypted them already.
2130 if (status->flag & RX_FLAG_DECRYPTED)
2131 return 0;
2133 /* Drop unencrypted frames if key is set. */
2134 if (unlikely(!ieee80211_has_protected(fc) &&
2135 !ieee80211_is_nullfunc(fc) &&
2136 ieee80211_is_data(fc) && rx->key))
2137 return -EACCES;
2139 return 0;
2142 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2144 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2146 __le16 fc = hdr->frame_control;
2149 * Pass through unencrypted frames if the hardware has
2150 * decrypted them already.
2152 if (status->flag & RX_FLAG_DECRYPTED)
2153 return 0;
2155 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2156 if (unlikely(!ieee80211_has_protected(fc) &&
2157 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2158 rx->key)) {
2159 if (ieee80211_is_deauth(fc) ||
2160 ieee80211_is_disassoc(fc))
2161 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2162 rx->skb->data,
2163 rx->skb->len);
2164 return -EACCES;
2166 /* BIP does not use Protected field, so need to check MMIE */
2167 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2168 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2169 if (ieee80211_is_deauth(fc) ||
2170 ieee80211_is_disassoc(fc))
2171 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2172 rx->skb->data,
2173 rx->skb->len);
2174 return -EACCES;
2177 * When using MFP, Action frames are not allowed prior to
2178 * having configured keys.
2180 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2181 ieee80211_is_robust_mgmt_frame(rx->skb)))
2182 return -EACCES;
2185 return 0;
2188 static int
2189 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2191 struct ieee80211_sub_if_data *sdata = rx->sdata;
2192 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2193 bool check_port_control = false;
2194 struct ethhdr *ehdr;
2195 int ret;
2197 *port_control = false;
2198 if (ieee80211_has_a4(hdr->frame_control) &&
2199 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2200 return -1;
2202 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2203 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2205 if (!sdata->u.mgd.use_4addr)
2206 return -1;
2207 else
2208 check_port_control = true;
2211 if (is_multicast_ether_addr(hdr->addr1) &&
2212 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2213 return -1;
2215 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2216 if (ret < 0)
2217 return ret;
2219 ehdr = (struct ethhdr *) rx->skb->data;
2220 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2221 *port_control = true;
2222 else if (check_port_control)
2223 return -1;
2225 return 0;
2229 * requires that rx->skb is a frame with ethernet header
2231 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2233 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2234 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2235 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2238 * Allow EAPOL frames to us/the PAE group address regardless
2239 * of whether the frame was encrypted or not.
2241 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2242 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2243 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2244 return true;
2246 if (ieee80211_802_1x_port_control(rx) ||
2247 ieee80211_drop_unencrypted(rx, fc))
2248 return false;
2250 return true;
2254 * requires that rx->skb is a frame with ethernet header
2256 static void
2257 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2259 struct ieee80211_sub_if_data *sdata = rx->sdata;
2260 struct net_device *dev = sdata->dev;
2261 struct sk_buff *skb, *xmit_skb;
2262 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2263 struct sta_info *dsta;
2265 skb = rx->skb;
2266 xmit_skb = NULL;
2268 ieee80211_rx_stats(dev, skb->len);
2270 if (rx->sta) {
2271 /* The seqno index has the same property as needed
2272 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2273 * for non-QoS-data frames. Here we know it's a data
2274 * frame, so count MSDUs.
2276 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2277 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2278 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2281 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2282 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2283 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2284 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2285 if (is_multicast_ether_addr(ehdr->h_dest) &&
2286 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2288 * send multicast frames both to higher layers in
2289 * local net stack and back to the wireless medium
2291 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2292 if (!xmit_skb)
2293 net_info_ratelimited("%s: failed to clone multicast frame\n",
2294 dev->name);
2295 } else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2296 dsta = sta_info_get(sdata, skb->data);
2297 if (dsta) {
2299 * The destination station is associated to
2300 * this AP (in this VLAN), so send the frame
2301 * directly to it and do not pass it to local
2302 * net stack.
2304 xmit_skb = skb;
2305 skb = NULL;
2310 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2311 if (skb) {
2312 /* 'align' will only take the values 0 or 2 here since all
2313 * frames are required to be aligned to 2-byte boundaries
2314 * when being passed to mac80211; the code here works just
2315 * as well if that isn't true, but mac80211 assumes it can
2316 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2318 int align;
2320 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2321 if (align) {
2322 if (WARN_ON(skb_headroom(skb) < 3)) {
2323 dev_kfree_skb(skb);
2324 skb = NULL;
2325 } else {
2326 u8 *data = skb->data;
2327 size_t len = skb_headlen(skb);
2328 skb->data -= align;
2329 memmove(skb->data, data, len);
2330 skb_set_tail_pointer(skb, len);
2334 #endif
2336 if (skb) {
2337 /* deliver to local stack */
2338 skb->protocol = eth_type_trans(skb, dev);
2339 memset(skb->cb, 0, sizeof(skb->cb));
2340 if (rx->napi)
2341 napi_gro_receive(rx->napi, skb);
2342 else
2343 netif_receive_skb(skb);
2346 if (xmit_skb) {
2348 * Send to wireless media and increase priority by 256 to
2349 * keep the received priority instead of reclassifying
2350 * the frame (see cfg80211_classify8021d).
2352 xmit_skb->priority += 256;
2353 xmit_skb->protocol = htons(ETH_P_802_3);
2354 skb_reset_network_header(xmit_skb);
2355 skb_reset_mac_header(xmit_skb);
2356 dev_queue_xmit(xmit_skb);
2360 static ieee80211_rx_result debug_noinline
2361 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2363 struct net_device *dev = rx->sdata->dev;
2364 struct sk_buff *skb = rx->skb;
2365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2366 __le16 fc = hdr->frame_control;
2367 struct sk_buff_head frame_list;
2368 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2369 struct ethhdr ethhdr;
2370 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2372 if (unlikely(!ieee80211_is_data(fc)))
2373 return RX_CONTINUE;
2375 if (unlikely(!ieee80211_is_data_present(fc)))
2376 return RX_DROP_MONITOR;
2378 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2379 return RX_CONTINUE;
2381 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2382 switch (rx->sdata->vif.type) {
2383 case NL80211_IFTYPE_AP_VLAN:
2384 if (!rx->sdata->u.vlan.sta)
2385 return RX_DROP_UNUSABLE;
2386 break;
2387 case NL80211_IFTYPE_STATION:
2388 if (!rx->sdata->u.mgd.use_4addr)
2389 return RX_DROP_UNUSABLE;
2390 break;
2391 default:
2392 return RX_DROP_UNUSABLE;
2394 check_da = NULL;
2395 check_sa = NULL;
2396 } else switch (rx->sdata->vif.type) {
2397 case NL80211_IFTYPE_AP:
2398 case NL80211_IFTYPE_AP_VLAN:
2399 check_da = NULL;
2400 break;
2401 case NL80211_IFTYPE_STATION:
2402 if (!rx->sta ||
2403 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2404 check_sa = NULL;
2405 break;
2406 case NL80211_IFTYPE_MESH_POINT:
2407 check_sa = NULL;
2408 break;
2409 default:
2410 break;
2413 if (is_multicast_ether_addr(hdr->addr1))
2414 return RX_DROP_UNUSABLE;
2416 skb->dev = dev;
2417 __skb_queue_head_init(&frame_list);
2419 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2420 rx->sdata->vif.addr,
2421 rx->sdata->vif.type))
2422 return RX_DROP_UNUSABLE;
2424 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2425 rx->sdata->vif.type,
2426 rx->local->hw.extra_tx_headroom,
2427 check_da, check_sa);
2429 while (!skb_queue_empty(&frame_list)) {
2430 rx->skb = __skb_dequeue(&frame_list);
2432 if (!ieee80211_frame_allowed(rx, fc)) {
2433 dev_kfree_skb(rx->skb);
2434 continue;
2437 ieee80211_deliver_skb(rx);
2440 return RX_QUEUED;
2443 #ifdef CONFIG_MAC80211_MESH
2444 static ieee80211_rx_result
2445 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2447 struct ieee80211_hdr *fwd_hdr, *hdr;
2448 struct ieee80211_tx_info *info;
2449 struct ieee80211s_hdr *mesh_hdr;
2450 struct sk_buff *skb = rx->skb, *fwd_skb;
2451 struct ieee80211_local *local = rx->local;
2452 struct ieee80211_sub_if_data *sdata = rx->sdata;
2453 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2454 u16 ac, q, hdrlen;
2456 hdr = (struct ieee80211_hdr *) skb->data;
2457 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2459 /* make sure fixed part of mesh header is there, also checks skb len */
2460 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2461 return RX_DROP_MONITOR;
2463 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2465 /* make sure full mesh header is there, also checks skb len */
2466 if (!pskb_may_pull(rx->skb,
2467 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2468 return RX_DROP_MONITOR;
2470 /* reload pointers */
2471 hdr = (struct ieee80211_hdr *) skb->data;
2472 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2474 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2475 return RX_DROP_MONITOR;
2477 /* frame is in RMC, don't forward */
2478 if (ieee80211_is_data(hdr->frame_control) &&
2479 is_multicast_ether_addr(hdr->addr1) &&
2480 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2481 return RX_DROP_MONITOR;
2483 if (!ieee80211_is_data(hdr->frame_control))
2484 return RX_CONTINUE;
2486 if (!mesh_hdr->ttl)
2487 return RX_DROP_MONITOR;
2489 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2490 struct mesh_path *mppath;
2491 char *proxied_addr;
2492 char *mpp_addr;
2494 if (is_multicast_ether_addr(hdr->addr1)) {
2495 mpp_addr = hdr->addr3;
2496 proxied_addr = mesh_hdr->eaddr1;
2497 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2498 MESH_FLAGS_AE_A5_A6) {
2499 /* has_a4 already checked in ieee80211_rx_mesh_check */
2500 mpp_addr = hdr->addr4;
2501 proxied_addr = mesh_hdr->eaddr2;
2502 } else {
2503 return RX_DROP_MONITOR;
2506 rcu_read_lock();
2507 mppath = mpp_path_lookup(sdata, proxied_addr);
2508 if (!mppath) {
2509 mpp_path_add(sdata, proxied_addr, mpp_addr);
2510 } else {
2511 spin_lock_bh(&mppath->state_lock);
2512 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2513 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2514 mppath->exp_time = jiffies;
2515 spin_unlock_bh(&mppath->state_lock);
2517 rcu_read_unlock();
2520 /* Frame has reached destination. Don't forward */
2521 if (!is_multicast_ether_addr(hdr->addr1) &&
2522 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2523 return RX_CONTINUE;
2525 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2526 q = sdata->vif.hw_queue[ac];
2527 if (ieee80211_queue_stopped(&local->hw, q)) {
2528 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2529 return RX_DROP_MONITOR;
2531 skb_set_queue_mapping(skb, q);
2533 if (!--mesh_hdr->ttl) {
2534 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2535 goto out;
2538 if (!ifmsh->mshcfg.dot11MeshForwarding)
2539 goto out;
2541 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2542 sdata->encrypt_headroom, 0, GFP_ATOMIC);
2543 if (!fwd_skb) {
2544 net_info_ratelimited("%s: failed to clone mesh frame\n",
2545 sdata->name);
2546 goto out;
2549 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2550 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2551 info = IEEE80211_SKB_CB(fwd_skb);
2552 memset(info, 0, sizeof(*info));
2553 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2554 info->control.vif = &rx->sdata->vif;
2555 info->control.jiffies = jiffies;
2556 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2557 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2558 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2559 /* update power mode indication when forwarding */
2560 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2561 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2562 /* mesh power mode flags updated in mesh_nexthop_lookup */
2563 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2564 } else {
2565 /* unable to resolve next hop */
2566 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2567 fwd_hdr->addr3, 0,
2568 WLAN_REASON_MESH_PATH_NOFORWARD,
2569 fwd_hdr->addr2);
2570 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2571 kfree_skb(fwd_skb);
2572 return RX_DROP_MONITOR;
2575 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2576 ieee80211_add_pending_skb(local, fwd_skb);
2577 out:
2578 if (is_multicast_ether_addr(hdr->addr1))
2579 return RX_CONTINUE;
2580 return RX_DROP_MONITOR;
2582 #endif
2584 static ieee80211_rx_result debug_noinline
2585 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2587 struct ieee80211_sub_if_data *sdata = rx->sdata;
2588 struct ieee80211_local *local = rx->local;
2589 struct net_device *dev = sdata->dev;
2590 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2591 __le16 fc = hdr->frame_control;
2592 bool port_control;
2593 int err;
2595 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2596 return RX_CONTINUE;
2598 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2599 return RX_DROP_MONITOR;
2602 * Send unexpected-4addr-frame event to hostapd. For older versions,
2603 * also drop the frame to cooked monitor interfaces.
2605 if (ieee80211_has_a4(hdr->frame_control) &&
2606 sdata->vif.type == NL80211_IFTYPE_AP) {
2607 if (rx->sta &&
2608 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2609 cfg80211_rx_unexpected_4addr_frame(
2610 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2611 return RX_DROP_MONITOR;
2614 err = __ieee80211_data_to_8023(rx, &port_control);
2615 if (unlikely(err))
2616 return RX_DROP_UNUSABLE;
2618 if (!ieee80211_frame_allowed(rx, fc))
2619 return RX_DROP_MONITOR;
2621 /* directly handle TDLS channel switch requests/responses */
2622 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2623 cpu_to_be16(ETH_P_TDLS))) {
2624 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2626 if (pskb_may_pull(rx->skb,
2627 offsetof(struct ieee80211_tdls_data, u)) &&
2628 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2629 tf->category == WLAN_CATEGORY_TDLS &&
2630 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2631 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2632 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2633 schedule_work(&local->tdls_chsw_work);
2634 if (rx->sta)
2635 rx->sta->rx_stats.packets++;
2637 return RX_QUEUED;
2641 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2642 unlikely(port_control) && sdata->bss) {
2643 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2644 u.ap);
2645 dev = sdata->dev;
2646 rx->sdata = sdata;
2649 rx->skb->dev = dev;
2651 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2652 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2653 !is_multicast_ether_addr(
2654 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2655 (!local->scanning &&
2656 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2657 mod_timer(&local->dynamic_ps_timer, jiffies +
2658 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2660 ieee80211_deliver_skb(rx);
2662 return RX_QUEUED;
2665 static ieee80211_rx_result debug_noinline
2666 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2668 struct sk_buff *skb = rx->skb;
2669 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2670 struct tid_ampdu_rx *tid_agg_rx;
2671 u16 start_seq_num;
2672 u16 tid;
2674 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2675 return RX_CONTINUE;
2677 if (ieee80211_is_back_req(bar->frame_control)) {
2678 struct {
2679 __le16 control, start_seq_num;
2680 } __packed bar_data;
2681 struct ieee80211_event event = {
2682 .type = BAR_RX_EVENT,
2685 if (!rx->sta)
2686 return RX_DROP_MONITOR;
2688 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2689 &bar_data, sizeof(bar_data)))
2690 return RX_DROP_MONITOR;
2692 tid = le16_to_cpu(bar_data.control) >> 12;
2694 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2695 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2696 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2697 WLAN_BACK_RECIPIENT,
2698 WLAN_REASON_QSTA_REQUIRE_SETUP);
2700 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2701 if (!tid_agg_rx)
2702 return RX_DROP_MONITOR;
2704 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2705 event.u.ba.tid = tid;
2706 event.u.ba.ssn = start_seq_num;
2707 event.u.ba.sta = &rx->sta->sta;
2709 /* reset session timer */
2710 if (tid_agg_rx->timeout)
2711 mod_timer(&tid_agg_rx->session_timer,
2712 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2714 spin_lock(&tid_agg_rx->reorder_lock);
2715 /* release stored frames up to start of BAR */
2716 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2717 start_seq_num, frames);
2718 spin_unlock(&tid_agg_rx->reorder_lock);
2720 drv_event_callback(rx->local, rx->sdata, &event);
2722 kfree_skb(skb);
2723 return RX_QUEUED;
2727 * After this point, we only want management frames,
2728 * so we can drop all remaining control frames to
2729 * cooked monitor interfaces.
2731 return RX_DROP_MONITOR;
2734 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2735 struct ieee80211_mgmt *mgmt,
2736 size_t len)
2738 struct ieee80211_local *local = sdata->local;
2739 struct sk_buff *skb;
2740 struct ieee80211_mgmt *resp;
2742 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2743 /* Not to own unicast address */
2744 return;
2747 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2748 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2749 /* Not from the current AP or not associated yet. */
2750 return;
2753 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2754 /* Too short SA Query request frame */
2755 return;
2758 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2759 if (skb == NULL)
2760 return;
2762 skb_reserve(skb, local->hw.extra_tx_headroom);
2763 resp = skb_put_zero(skb, 24);
2764 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2765 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2766 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2767 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2768 IEEE80211_STYPE_ACTION);
2769 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2770 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2771 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2772 memcpy(resp->u.action.u.sa_query.trans_id,
2773 mgmt->u.action.u.sa_query.trans_id,
2774 WLAN_SA_QUERY_TR_ID_LEN);
2776 ieee80211_tx_skb(sdata, skb);
2779 static ieee80211_rx_result debug_noinline
2780 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2782 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2783 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2786 * From here on, look only at management frames.
2787 * Data and control frames are already handled,
2788 * and unknown (reserved) frames are useless.
2790 if (rx->skb->len < 24)
2791 return RX_DROP_MONITOR;
2793 if (!ieee80211_is_mgmt(mgmt->frame_control))
2794 return RX_DROP_MONITOR;
2796 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2797 ieee80211_is_beacon(mgmt->frame_control) &&
2798 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2799 int sig = 0;
2801 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2802 sig = status->signal;
2804 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2805 rx->skb->data, rx->skb->len,
2806 status->freq, sig);
2807 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2810 if (ieee80211_drop_unencrypted_mgmt(rx))
2811 return RX_DROP_UNUSABLE;
2813 return RX_CONTINUE;
2816 static ieee80211_rx_result debug_noinline
2817 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2819 struct ieee80211_local *local = rx->local;
2820 struct ieee80211_sub_if_data *sdata = rx->sdata;
2821 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2822 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2823 int len = rx->skb->len;
2825 if (!ieee80211_is_action(mgmt->frame_control))
2826 return RX_CONTINUE;
2828 /* drop too small frames */
2829 if (len < IEEE80211_MIN_ACTION_SIZE)
2830 return RX_DROP_UNUSABLE;
2832 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2833 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2834 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2835 return RX_DROP_UNUSABLE;
2837 switch (mgmt->u.action.category) {
2838 case WLAN_CATEGORY_HT:
2839 /* reject HT action frames from stations not supporting HT */
2840 if (!rx->sta->sta.ht_cap.ht_supported)
2841 goto invalid;
2843 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2844 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2845 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2846 sdata->vif.type != NL80211_IFTYPE_AP &&
2847 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2848 break;
2850 /* verify action & smps_control/chanwidth are present */
2851 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2852 goto invalid;
2854 switch (mgmt->u.action.u.ht_smps.action) {
2855 case WLAN_HT_ACTION_SMPS: {
2856 struct ieee80211_supported_band *sband;
2857 enum ieee80211_smps_mode smps_mode;
2859 /* convert to HT capability */
2860 switch (mgmt->u.action.u.ht_smps.smps_control) {
2861 case WLAN_HT_SMPS_CONTROL_DISABLED:
2862 smps_mode = IEEE80211_SMPS_OFF;
2863 break;
2864 case WLAN_HT_SMPS_CONTROL_STATIC:
2865 smps_mode = IEEE80211_SMPS_STATIC;
2866 break;
2867 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2868 smps_mode = IEEE80211_SMPS_DYNAMIC;
2869 break;
2870 default:
2871 goto invalid;
2874 /* if no change do nothing */
2875 if (rx->sta->sta.smps_mode == smps_mode)
2876 goto handled;
2877 rx->sta->sta.smps_mode = smps_mode;
2879 sband = rx->local->hw.wiphy->bands[status->band];
2881 rate_control_rate_update(local, sband, rx->sta,
2882 IEEE80211_RC_SMPS_CHANGED);
2883 goto handled;
2885 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2886 struct ieee80211_supported_band *sband;
2887 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2888 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2890 /* If it doesn't support 40 MHz it can't change ... */
2891 if (!(rx->sta->sta.ht_cap.cap &
2892 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2893 goto handled;
2895 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2896 max_bw = IEEE80211_STA_RX_BW_20;
2897 else
2898 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2900 /* set cur_max_bandwidth and recalc sta bw */
2901 rx->sta->cur_max_bandwidth = max_bw;
2902 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2904 if (rx->sta->sta.bandwidth == new_bw)
2905 goto handled;
2907 rx->sta->sta.bandwidth = new_bw;
2908 sband = rx->local->hw.wiphy->bands[status->band];
2910 rate_control_rate_update(local, sband, rx->sta,
2911 IEEE80211_RC_BW_CHANGED);
2912 goto handled;
2914 default:
2915 goto invalid;
2918 break;
2919 case WLAN_CATEGORY_PUBLIC:
2920 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2921 goto invalid;
2922 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2923 break;
2924 if (!rx->sta)
2925 break;
2926 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2927 break;
2928 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2929 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2930 break;
2931 if (len < offsetof(struct ieee80211_mgmt,
2932 u.action.u.ext_chan_switch.variable))
2933 goto invalid;
2934 goto queue;
2935 case WLAN_CATEGORY_VHT:
2936 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2937 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2938 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2939 sdata->vif.type != NL80211_IFTYPE_AP &&
2940 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2941 break;
2943 /* verify action code is present */
2944 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2945 goto invalid;
2947 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2948 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2949 /* verify opmode is present */
2950 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2951 goto invalid;
2952 goto queue;
2954 case WLAN_VHT_ACTION_GROUPID_MGMT: {
2955 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2956 goto invalid;
2957 goto queue;
2959 default:
2960 break;
2962 break;
2963 case WLAN_CATEGORY_BACK:
2964 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2965 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2966 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2967 sdata->vif.type != NL80211_IFTYPE_AP &&
2968 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2969 break;
2971 /* verify action_code is present */
2972 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2973 break;
2975 switch (mgmt->u.action.u.addba_req.action_code) {
2976 case WLAN_ACTION_ADDBA_REQ:
2977 if (len < (IEEE80211_MIN_ACTION_SIZE +
2978 sizeof(mgmt->u.action.u.addba_req)))
2979 goto invalid;
2980 break;
2981 case WLAN_ACTION_ADDBA_RESP:
2982 if (len < (IEEE80211_MIN_ACTION_SIZE +
2983 sizeof(mgmt->u.action.u.addba_resp)))
2984 goto invalid;
2985 break;
2986 case WLAN_ACTION_DELBA:
2987 if (len < (IEEE80211_MIN_ACTION_SIZE +
2988 sizeof(mgmt->u.action.u.delba)))
2989 goto invalid;
2990 break;
2991 default:
2992 goto invalid;
2995 goto queue;
2996 case WLAN_CATEGORY_SPECTRUM_MGMT:
2997 /* verify action_code is present */
2998 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2999 break;
3001 switch (mgmt->u.action.u.measurement.action_code) {
3002 case WLAN_ACTION_SPCT_MSR_REQ:
3003 if (status->band != NL80211_BAND_5GHZ)
3004 break;
3006 if (len < (IEEE80211_MIN_ACTION_SIZE +
3007 sizeof(mgmt->u.action.u.measurement)))
3008 break;
3010 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3011 break;
3013 ieee80211_process_measurement_req(sdata, mgmt, len);
3014 goto handled;
3015 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3016 u8 *bssid;
3017 if (len < (IEEE80211_MIN_ACTION_SIZE +
3018 sizeof(mgmt->u.action.u.chan_switch)))
3019 break;
3021 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3022 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3023 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3024 break;
3026 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3027 bssid = sdata->u.mgd.bssid;
3028 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3029 bssid = sdata->u.ibss.bssid;
3030 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3031 bssid = mgmt->sa;
3032 else
3033 break;
3035 if (!ether_addr_equal(mgmt->bssid, bssid))
3036 break;
3038 goto queue;
3041 break;
3042 case WLAN_CATEGORY_SA_QUERY:
3043 if (len < (IEEE80211_MIN_ACTION_SIZE +
3044 sizeof(mgmt->u.action.u.sa_query)))
3045 break;
3047 switch (mgmt->u.action.u.sa_query.action) {
3048 case WLAN_ACTION_SA_QUERY_REQUEST:
3049 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3050 break;
3051 ieee80211_process_sa_query_req(sdata, mgmt, len);
3052 goto handled;
3054 break;
3055 case WLAN_CATEGORY_SELF_PROTECTED:
3056 if (len < (IEEE80211_MIN_ACTION_SIZE +
3057 sizeof(mgmt->u.action.u.self_prot.action_code)))
3058 break;
3060 switch (mgmt->u.action.u.self_prot.action_code) {
3061 case WLAN_SP_MESH_PEERING_OPEN:
3062 case WLAN_SP_MESH_PEERING_CLOSE:
3063 case WLAN_SP_MESH_PEERING_CONFIRM:
3064 if (!ieee80211_vif_is_mesh(&sdata->vif))
3065 goto invalid;
3066 if (sdata->u.mesh.user_mpm)
3067 /* userspace handles this frame */
3068 break;
3069 goto queue;
3070 case WLAN_SP_MGK_INFORM:
3071 case WLAN_SP_MGK_ACK:
3072 if (!ieee80211_vif_is_mesh(&sdata->vif))
3073 goto invalid;
3074 break;
3076 break;
3077 case WLAN_CATEGORY_MESH_ACTION:
3078 if (len < (IEEE80211_MIN_ACTION_SIZE +
3079 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3080 break;
3082 if (!ieee80211_vif_is_mesh(&sdata->vif))
3083 break;
3084 if (mesh_action_is_path_sel(mgmt) &&
3085 !mesh_path_sel_is_hwmp(sdata))
3086 break;
3087 goto queue;
3090 return RX_CONTINUE;
3092 invalid:
3093 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3094 /* will return in the next handlers */
3095 return RX_CONTINUE;
3097 handled:
3098 if (rx->sta)
3099 rx->sta->rx_stats.packets++;
3100 dev_kfree_skb(rx->skb);
3101 return RX_QUEUED;
3103 queue:
3104 skb_queue_tail(&sdata->skb_queue, rx->skb);
3105 ieee80211_queue_work(&local->hw, &sdata->work);
3106 if (rx->sta)
3107 rx->sta->rx_stats.packets++;
3108 return RX_QUEUED;
3111 static ieee80211_rx_result debug_noinline
3112 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3114 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3115 int sig = 0;
3117 /* skip known-bad action frames and return them in the next handler */
3118 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3119 return RX_CONTINUE;
3122 * Getting here means the kernel doesn't know how to handle
3123 * it, but maybe userspace does ... include returned frames
3124 * so userspace can register for those to know whether ones
3125 * it transmitted were processed or returned.
3128 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3129 sig = status->signal;
3131 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3132 rx->skb->data, rx->skb->len, 0)) {
3133 if (rx->sta)
3134 rx->sta->rx_stats.packets++;
3135 dev_kfree_skb(rx->skb);
3136 return RX_QUEUED;
3139 return RX_CONTINUE;
3142 static ieee80211_rx_result debug_noinline
3143 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3145 struct ieee80211_local *local = rx->local;
3146 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3147 struct sk_buff *nskb;
3148 struct ieee80211_sub_if_data *sdata = rx->sdata;
3149 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3151 if (!ieee80211_is_action(mgmt->frame_control))
3152 return RX_CONTINUE;
3155 * For AP mode, hostapd is responsible for handling any action
3156 * frames that we didn't handle, including returning unknown
3157 * ones. For all other modes we will return them to the sender,
3158 * setting the 0x80 bit in the action category, as required by
3159 * 802.11-2012 9.24.4.
3160 * Newer versions of hostapd shall also use the management frame
3161 * registration mechanisms, but older ones still use cooked
3162 * monitor interfaces so push all frames there.
3164 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3165 (sdata->vif.type == NL80211_IFTYPE_AP ||
3166 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3167 return RX_DROP_MONITOR;
3169 if (is_multicast_ether_addr(mgmt->da))
3170 return RX_DROP_MONITOR;
3172 /* do not return rejected action frames */
3173 if (mgmt->u.action.category & 0x80)
3174 return RX_DROP_UNUSABLE;
3176 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3177 GFP_ATOMIC);
3178 if (nskb) {
3179 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3181 nmgmt->u.action.category |= 0x80;
3182 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3183 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3185 memset(nskb->cb, 0, sizeof(nskb->cb));
3187 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3188 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3190 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3191 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3192 IEEE80211_TX_CTL_NO_CCK_RATE;
3193 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3194 info->hw_queue =
3195 local->hw.offchannel_tx_hw_queue;
3198 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3199 status->band);
3201 dev_kfree_skb(rx->skb);
3202 return RX_QUEUED;
3205 static ieee80211_rx_result debug_noinline
3206 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3208 struct ieee80211_sub_if_data *sdata = rx->sdata;
3209 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3210 __le16 stype;
3212 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3214 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3215 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3216 sdata->vif.type != NL80211_IFTYPE_OCB &&
3217 sdata->vif.type != NL80211_IFTYPE_STATION)
3218 return RX_DROP_MONITOR;
3220 switch (stype) {
3221 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3222 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3223 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3224 /* process for all: mesh, mlme, ibss */
3225 break;
3226 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3227 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3228 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3229 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3230 if (is_multicast_ether_addr(mgmt->da) &&
3231 !is_broadcast_ether_addr(mgmt->da))
3232 return RX_DROP_MONITOR;
3234 /* process only for station */
3235 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3236 return RX_DROP_MONITOR;
3237 break;
3238 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3239 /* process only for ibss and mesh */
3240 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3241 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3242 return RX_DROP_MONITOR;
3243 break;
3244 default:
3245 return RX_DROP_MONITOR;
3248 /* queue up frame and kick off work to process it */
3249 skb_queue_tail(&sdata->skb_queue, rx->skb);
3250 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3251 if (rx->sta)
3252 rx->sta->rx_stats.packets++;
3254 return RX_QUEUED;
3257 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3258 struct ieee80211_rate *rate)
3260 struct ieee80211_sub_if_data *sdata;
3261 struct ieee80211_local *local = rx->local;
3262 struct sk_buff *skb = rx->skb, *skb2;
3263 struct net_device *prev_dev = NULL;
3264 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3265 int needed_headroom;
3268 * If cooked monitor has been processed already, then
3269 * don't do it again. If not, set the flag.
3271 if (rx->flags & IEEE80211_RX_CMNTR)
3272 goto out_free_skb;
3273 rx->flags |= IEEE80211_RX_CMNTR;
3275 /* If there are no cooked monitor interfaces, just free the SKB */
3276 if (!local->cooked_mntrs)
3277 goto out_free_skb;
3279 /* vendor data is long removed here */
3280 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3281 /* room for the radiotap header based on driver features */
3282 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3284 if (skb_headroom(skb) < needed_headroom &&
3285 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3286 goto out_free_skb;
3288 /* prepend radiotap information */
3289 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3290 false);
3292 skb_reset_mac_header(skb);
3293 skb->ip_summed = CHECKSUM_UNNECESSARY;
3294 skb->pkt_type = PACKET_OTHERHOST;
3295 skb->protocol = htons(ETH_P_802_2);
3297 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3298 if (!ieee80211_sdata_running(sdata))
3299 continue;
3301 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3302 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3303 continue;
3305 if (prev_dev) {
3306 skb2 = skb_clone(skb, GFP_ATOMIC);
3307 if (skb2) {
3308 skb2->dev = prev_dev;
3309 netif_receive_skb(skb2);
3313 prev_dev = sdata->dev;
3314 ieee80211_rx_stats(sdata->dev, skb->len);
3317 if (prev_dev) {
3318 skb->dev = prev_dev;
3319 netif_receive_skb(skb);
3320 return;
3323 out_free_skb:
3324 dev_kfree_skb(skb);
3327 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3328 ieee80211_rx_result res)
3330 switch (res) {
3331 case RX_DROP_MONITOR:
3332 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3333 if (rx->sta)
3334 rx->sta->rx_stats.dropped++;
3335 /* fall through */
3336 case RX_CONTINUE: {
3337 struct ieee80211_rate *rate = NULL;
3338 struct ieee80211_supported_band *sband;
3339 struct ieee80211_rx_status *status;
3341 status = IEEE80211_SKB_RXCB((rx->skb));
3343 sband = rx->local->hw.wiphy->bands[status->band];
3344 if (!(status->encoding == RX_ENC_HT) &&
3345 !(status->encoding == RX_ENC_VHT))
3346 rate = &sband->bitrates[status->rate_idx];
3348 ieee80211_rx_cooked_monitor(rx, rate);
3349 break;
3351 case RX_DROP_UNUSABLE:
3352 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3353 if (rx->sta)
3354 rx->sta->rx_stats.dropped++;
3355 dev_kfree_skb(rx->skb);
3356 break;
3357 case RX_QUEUED:
3358 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3359 break;
3363 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3364 struct sk_buff_head *frames)
3366 ieee80211_rx_result res = RX_DROP_MONITOR;
3367 struct sk_buff *skb;
3369 #define CALL_RXH(rxh) \
3370 do { \
3371 res = rxh(rx); \
3372 if (res != RX_CONTINUE) \
3373 goto rxh_next; \
3374 } while (0)
3376 /* Lock here to avoid hitting all of the data used in the RX
3377 * path (e.g. key data, station data, ...) concurrently when
3378 * a frame is released from the reorder buffer due to timeout
3379 * from the timer, potentially concurrently with RX from the
3380 * driver.
3382 spin_lock_bh(&rx->local->rx_path_lock);
3384 while ((skb = __skb_dequeue(frames))) {
3386 * all the other fields are valid across frames
3387 * that belong to an aMPDU since they are on the
3388 * same TID from the same station
3390 rx->skb = skb;
3392 CALL_RXH(ieee80211_rx_h_check_more_data);
3393 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3394 CALL_RXH(ieee80211_rx_h_sta_process);
3395 CALL_RXH(ieee80211_rx_h_decrypt);
3396 CALL_RXH(ieee80211_rx_h_defragment);
3397 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3398 /* must be after MMIC verify so header is counted in MPDU mic */
3399 #ifdef CONFIG_MAC80211_MESH
3400 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3401 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3402 #endif
3403 CALL_RXH(ieee80211_rx_h_amsdu);
3404 CALL_RXH(ieee80211_rx_h_data);
3406 /* special treatment -- needs the queue */
3407 res = ieee80211_rx_h_ctrl(rx, frames);
3408 if (res != RX_CONTINUE)
3409 goto rxh_next;
3411 CALL_RXH(ieee80211_rx_h_mgmt_check);
3412 CALL_RXH(ieee80211_rx_h_action);
3413 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3414 CALL_RXH(ieee80211_rx_h_action_return);
3415 CALL_RXH(ieee80211_rx_h_mgmt);
3417 rxh_next:
3418 ieee80211_rx_handlers_result(rx, res);
3420 #undef CALL_RXH
3423 spin_unlock_bh(&rx->local->rx_path_lock);
3426 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3428 struct sk_buff_head reorder_release;
3429 ieee80211_rx_result res = RX_DROP_MONITOR;
3431 __skb_queue_head_init(&reorder_release);
3433 #define CALL_RXH(rxh) \
3434 do { \
3435 res = rxh(rx); \
3436 if (res != RX_CONTINUE) \
3437 goto rxh_next; \
3438 } while (0)
3440 CALL_RXH(ieee80211_rx_h_check_dup);
3441 CALL_RXH(ieee80211_rx_h_check);
3443 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3445 ieee80211_rx_handlers(rx, &reorder_release);
3446 return;
3448 rxh_next:
3449 ieee80211_rx_handlers_result(rx, res);
3451 #undef CALL_RXH
3455 * This function makes calls into the RX path, therefore
3456 * it has to be invoked under RCU read lock.
3458 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3460 struct sk_buff_head frames;
3461 struct ieee80211_rx_data rx = {
3462 .sta = sta,
3463 .sdata = sta->sdata,
3464 .local = sta->local,
3465 /* This is OK -- must be QoS data frame */
3466 .security_idx = tid,
3467 .seqno_idx = tid,
3468 .napi = NULL, /* must be NULL to not have races */
3470 struct tid_ampdu_rx *tid_agg_rx;
3472 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3473 if (!tid_agg_rx)
3474 return;
3476 __skb_queue_head_init(&frames);
3478 spin_lock(&tid_agg_rx->reorder_lock);
3479 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3480 spin_unlock(&tid_agg_rx->reorder_lock);
3482 if (!skb_queue_empty(&frames)) {
3483 struct ieee80211_event event = {
3484 .type = BA_FRAME_TIMEOUT,
3485 .u.ba.tid = tid,
3486 .u.ba.sta = &sta->sta,
3488 drv_event_callback(rx.local, rx.sdata, &event);
3491 ieee80211_rx_handlers(&rx, &frames);
3494 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3495 u16 ssn, u64 filtered,
3496 u16 received_mpdus)
3498 struct sta_info *sta;
3499 struct tid_ampdu_rx *tid_agg_rx;
3500 struct sk_buff_head frames;
3501 struct ieee80211_rx_data rx = {
3502 /* This is OK -- must be QoS data frame */
3503 .security_idx = tid,
3504 .seqno_idx = tid,
3506 int i, diff;
3508 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3509 return;
3511 __skb_queue_head_init(&frames);
3513 sta = container_of(pubsta, struct sta_info, sta);
3515 rx.sta = sta;
3516 rx.sdata = sta->sdata;
3517 rx.local = sta->local;
3519 rcu_read_lock();
3520 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3521 if (!tid_agg_rx)
3522 goto out;
3524 spin_lock_bh(&tid_agg_rx->reorder_lock);
3526 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3527 int release;
3529 /* release all frames in the reorder buffer */
3530 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3531 IEEE80211_SN_MODULO;
3532 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3533 release, &frames);
3534 /* update ssn to match received ssn */
3535 tid_agg_rx->head_seq_num = ssn;
3536 } else {
3537 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3538 &frames);
3541 /* handle the case that received ssn is behind the mac ssn.
3542 * it can be tid_agg_rx->buf_size behind and still be valid */
3543 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3544 if (diff >= tid_agg_rx->buf_size) {
3545 tid_agg_rx->reorder_buf_filtered = 0;
3546 goto release;
3548 filtered = filtered >> diff;
3549 ssn += diff;
3551 /* update bitmap */
3552 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3553 int index = (ssn + i) % tid_agg_rx->buf_size;
3555 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3556 if (filtered & BIT_ULL(i))
3557 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3560 /* now process also frames that the filter marking released */
3561 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3563 release:
3564 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3566 ieee80211_rx_handlers(&rx, &frames);
3568 out:
3569 rcu_read_unlock();
3571 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3573 /* main receive path */
3575 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3577 struct ieee80211_sub_if_data *sdata = rx->sdata;
3578 struct sk_buff *skb = rx->skb;
3579 struct ieee80211_hdr *hdr = (void *)skb->data;
3580 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3581 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3582 bool multicast = is_multicast_ether_addr(hdr->addr1);
3584 switch (sdata->vif.type) {
3585 case NL80211_IFTYPE_STATION:
3586 if (!bssid && !sdata->u.mgd.use_4addr)
3587 return false;
3588 if (multicast)
3589 return true;
3590 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3591 case NL80211_IFTYPE_ADHOC:
3592 if (!bssid)
3593 return false;
3594 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3595 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3596 return false;
3597 if (ieee80211_is_beacon(hdr->frame_control))
3598 return true;
3599 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3600 return false;
3601 if (!multicast &&
3602 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3603 return false;
3604 if (!rx->sta) {
3605 int rate_idx;
3606 if (status->encoding != RX_ENC_LEGACY)
3607 rate_idx = 0; /* TODO: HT/VHT rates */
3608 else
3609 rate_idx = status->rate_idx;
3610 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3611 BIT(rate_idx));
3613 return true;
3614 case NL80211_IFTYPE_OCB:
3615 if (!bssid)
3616 return false;
3617 if (!ieee80211_is_data_present(hdr->frame_control))
3618 return false;
3619 if (!is_broadcast_ether_addr(bssid))
3620 return false;
3621 if (!multicast &&
3622 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3623 return false;
3624 if (!rx->sta) {
3625 int rate_idx;
3626 if (status->encoding != RX_ENC_LEGACY)
3627 rate_idx = 0; /* TODO: HT rates */
3628 else
3629 rate_idx = status->rate_idx;
3630 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3631 BIT(rate_idx));
3633 return true;
3634 case NL80211_IFTYPE_MESH_POINT:
3635 if (multicast)
3636 return true;
3637 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3638 case NL80211_IFTYPE_AP_VLAN:
3639 case NL80211_IFTYPE_AP:
3640 if (!bssid)
3641 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3643 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3645 * Accept public action frames even when the
3646 * BSSID doesn't match, this is used for P2P
3647 * and location updates. Note that mac80211
3648 * itself never looks at these frames.
3650 if (!multicast &&
3651 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3652 return false;
3653 if (ieee80211_is_public_action(hdr, skb->len))
3654 return true;
3655 return ieee80211_is_beacon(hdr->frame_control);
3658 if (!ieee80211_has_tods(hdr->frame_control)) {
3659 /* ignore data frames to TDLS-peers */
3660 if (ieee80211_is_data(hdr->frame_control))
3661 return false;
3662 /* ignore action frames to TDLS-peers */
3663 if (ieee80211_is_action(hdr->frame_control) &&
3664 !is_broadcast_ether_addr(bssid) &&
3665 !ether_addr_equal(bssid, hdr->addr1))
3666 return false;
3670 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3671 * the BSSID - we've checked that already but may have accepted
3672 * the wildcard (ff:ff:ff:ff:ff:ff).
3674 * It also says:
3675 * The BSSID of the Data frame is determined as follows:
3676 * a) If the STA is contained within an AP or is associated
3677 * with an AP, the BSSID is the address currently in use
3678 * by the STA contained in the AP.
3680 * So we should not accept data frames with an address that's
3681 * multicast.
3683 * Accepting it also opens a security problem because stations
3684 * could encrypt it with the GTK and inject traffic that way.
3686 if (ieee80211_is_data(hdr->frame_control) && multicast)
3687 return false;
3689 return true;
3690 case NL80211_IFTYPE_WDS:
3691 if (bssid || !ieee80211_is_data(hdr->frame_control))
3692 return false;
3693 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3694 case NL80211_IFTYPE_P2P_DEVICE:
3695 return ieee80211_is_public_action(hdr, skb->len) ||
3696 ieee80211_is_probe_req(hdr->frame_control) ||
3697 ieee80211_is_probe_resp(hdr->frame_control) ||
3698 ieee80211_is_beacon(hdr->frame_control);
3699 case NL80211_IFTYPE_NAN:
3700 /* Currently no frames on NAN interface are allowed */
3701 return false;
3702 default:
3703 break;
3706 WARN_ON_ONCE(1);
3707 return false;
3710 void ieee80211_check_fast_rx(struct sta_info *sta)
3712 struct ieee80211_sub_if_data *sdata = sta->sdata;
3713 struct ieee80211_local *local = sdata->local;
3714 struct ieee80211_key *key;
3715 struct ieee80211_fast_rx fastrx = {
3716 .dev = sdata->dev,
3717 .vif_type = sdata->vif.type,
3718 .control_port_protocol = sdata->control_port_protocol,
3719 }, *old, *new = NULL;
3720 bool assign = false;
3722 /* use sparse to check that we don't return without updating */
3723 __acquire(check_fast_rx);
3725 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3726 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3727 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3728 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3730 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3732 /* fast-rx doesn't do reordering */
3733 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3734 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3735 goto clear;
3737 switch (sdata->vif.type) {
3738 case NL80211_IFTYPE_STATION:
3739 /* 4-addr is harder to deal with, later maybe */
3740 if (sdata->u.mgd.use_4addr)
3741 goto clear;
3742 /* software powersave is a huge mess, avoid all of it */
3743 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3744 goto clear;
3745 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3746 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3747 goto clear;
3748 if (sta->sta.tdls) {
3749 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3750 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3751 fastrx.expected_ds_bits = 0;
3752 } else {
3753 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3754 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3755 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3756 fastrx.expected_ds_bits =
3757 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3759 break;
3760 case NL80211_IFTYPE_AP_VLAN:
3761 case NL80211_IFTYPE_AP:
3762 /* parallel-rx requires this, at least with calls to
3763 * ieee80211_sta_ps_transition()
3765 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3766 goto clear;
3767 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3768 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3769 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3771 fastrx.internal_forward =
3772 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3773 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3774 !sdata->u.vlan.sta);
3775 break;
3776 default:
3777 goto clear;
3780 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3781 goto clear;
3783 rcu_read_lock();
3784 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3785 if (key) {
3786 switch (key->conf.cipher) {
3787 case WLAN_CIPHER_SUITE_TKIP:
3788 /* we don't want to deal with MMIC in fast-rx */
3789 goto clear_rcu;
3790 case WLAN_CIPHER_SUITE_CCMP:
3791 case WLAN_CIPHER_SUITE_CCMP_256:
3792 case WLAN_CIPHER_SUITE_GCMP:
3793 case WLAN_CIPHER_SUITE_GCMP_256:
3794 break;
3795 default:
3796 /* we also don't want to deal with WEP or cipher scheme
3797 * since those require looking up the key idx in the
3798 * frame, rather than assuming the PTK is used
3799 * (we need to revisit this once we implement the real
3800 * PTK index, which is now valid in the spec, but we
3801 * haven't implemented that part yet)
3803 goto clear_rcu;
3806 fastrx.key = true;
3807 fastrx.icv_len = key->conf.icv_len;
3810 assign = true;
3811 clear_rcu:
3812 rcu_read_unlock();
3813 clear:
3814 __release(check_fast_rx);
3816 if (assign)
3817 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3819 spin_lock_bh(&sta->lock);
3820 old = rcu_dereference_protected(sta->fast_rx, true);
3821 rcu_assign_pointer(sta->fast_rx, new);
3822 spin_unlock_bh(&sta->lock);
3824 if (old)
3825 kfree_rcu(old, rcu_head);
3828 void ieee80211_clear_fast_rx(struct sta_info *sta)
3830 struct ieee80211_fast_rx *old;
3832 spin_lock_bh(&sta->lock);
3833 old = rcu_dereference_protected(sta->fast_rx, true);
3834 RCU_INIT_POINTER(sta->fast_rx, NULL);
3835 spin_unlock_bh(&sta->lock);
3837 if (old)
3838 kfree_rcu(old, rcu_head);
3841 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3843 struct ieee80211_local *local = sdata->local;
3844 struct sta_info *sta;
3846 lockdep_assert_held(&local->sta_mtx);
3848 list_for_each_entry_rcu(sta, &local->sta_list, list) {
3849 if (sdata != sta->sdata &&
3850 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3851 continue;
3852 ieee80211_check_fast_rx(sta);
3856 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3858 struct ieee80211_local *local = sdata->local;
3860 mutex_lock(&local->sta_mtx);
3861 __ieee80211_check_fast_rx_iface(sdata);
3862 mutex_unlock(&local->sta_mtx);
3865 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3866 struct ieee80211_fast_rx *fast_rx)
3868 struct sk_buff *skb = rx->skb;
3869 struct ieee80211_hdr *hdr = (void *)skb->data;
3870 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3871 struct sta_info *sta = rx->sta;
3872 int orig_len = skb->len;
3873 int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3874 struct {
3875 u8 snap[sizeof(rfc1042_header)];
3876 __be16 proto;
3877 } *payload __aligned(2);
3878 struct {
3879 u8 da[ETH_ALEN];
3880 u8 sa[ETH_ALEN];
3881 } addrs __aligned(2);
3882 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3884 if (fast_rx->uses_rss)
3885 stats = this_cpu_ptr(sta->pcpu_rx_stats);
3887 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3888 * to a common data structure; drivers can implement that per queue
3889 * but we don't have that information in mac80211
3891 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3892 return false;
3894 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3896 /* If using encryption, we also need to have:
3897 * - PN_VALIDATED: similar, but the implementation is tricky
3898 * - DECRYPTED: necessary for PN_VALIDATED
3900 if (fast_rx->key &&
3901 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3902 return false;
3904 /* we don't deal with A-MSDU deaggregation here */
3905 if (status->rx_flags & IEEE80211_RX_AMSDU)
3906 return false;
3908 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3909 return false;
3911 if (unlikely(ieee80211_is_frag(hdr)))
3912 return false;
3914 /* Since our interface address cannot be multicast, this
3915 * implicitly also rejects multicast frames without the
3916 * explicit check.
3918 * We shouldn't get any *data* frames not addressed to us
3919 * (AP mode will accept multicast *management* frames), but
3920 * punting here will make it go through the full checks in
3921 * ieee80211_accept_frame().
3923 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3924 return false;
3926 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3927 IEEE80211_FCTL_TODS)) !=
3928 fast_rx->expected_ds_bits)
3929 goto drop;
3931 /* assign the key to drop unencrypted frames (later)
3932 * and strip the IV/MIC if necessary
3934 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3935 /* GCMP header length is the same */
3936 snap_offs += IEEE80211_CCMP_HDR_LEN;
3939 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3940 goto drop;
3941 payload = (void *)(skb->data + snap_offs);
3943 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3944 return false;
3946 /* Don't handle these here since they require special code.
3947 * Accept AARP and IPX even though they should come with a
3948 * bridge-tunnel header - but if we get them this way then
3949 * there's little point in discarding them.
3951 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3952 payload->proto == fast_rx->control_port_protocol))
3953 return false;
3955 /* after this point, don't punt to the slowpath! */
3957 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3958 pskb_trim(skb, skb->len - fast_rx->icv_len))
3959 goto drop;
3961 if (unlikely(fast_rx->sta_notify)) {
3962 ieee80211_sta_rx_notify(rx->sdata, hdr);
3963 fast_rx->sta_notify = false;
3966 /* statistics part of ieee80211_rx_h_sta_process() */
3967 stats->last_rx = jiffies;
3968 stats->last_rate = sta_stats_encode_rate(status);
3970 stats->fragments++;
3971 stats->packets++;
3973 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3974 stats->last_signal = status->signal;
3975 if (!fast_rx->uses_rss)
3976 ewma_signal_add(&sta->rx_stats_avg.signal,
3977 -status->signal);
3980 if (status->chains) {
3981 int i;
3983 stats->chains = status->chains;
3984 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3985 int signal = status->chain_signal[i];
3987 if (!(status->chains & BIT(i)))
3988 continue;
3990 stats->chain_signal_last[i] = signal;
3991 if (!fast_rx->uses_rss)
3992 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3993 -signal);
3996 /* end of statistics */
3998 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3999 goto drop;
4001 /* do the header conversion - first grab the addresses */
4002 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4003 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4004 /* remove the SNAP but leave the ethertype */
4005 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4006 /* push the addresses in front */
4007 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4009 skb->dev = fast_rx->dev;
4011 ieee80211_rx_stats(fast_rx->dev, skb->len);
4013 /* The seqno index has the same property as needed
4014 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4015 * for non-QoS-data frames. Here we know it's a data
4016 * frame, so count MSDUs.
4018 u64_stats_update_begin(&stats->syncp);
4019 stats->msdu[rx->seqno_idx]++;
4020 stats->bytes += orig_len;
4021 u64_stats_update_end(&stats->syncp);
4023 if (fast_rx->internal_forward) {
4024 struct sk_buff *xmit_skb = NULL;
4025 bool multicast = is_multicast_ether_addr(skb->data);
4027 if (multicast) {
4028 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4029 } else if (sta_info_get(rx->sdata, skb->data)) {
4030 xmit_skb = skb;
4031 skb = NULL;
4034 if (xmit_skb) {
4036 * Send to wireless media and increase priority by 256
4037 * to keep the received priority instead of
4038 * reclassifying the frame (see cfg80211_classify8021d).
4040 xmit_skb->priority += 256;
4041 xmit_skb->protocol = htons(ETH_P_802_3);
4042 skb_reset_network_header(xmit_skb);
4043 skb_reset_mac_header(xmit_skb);
4044 dev_queue_xmit(xmit_skb);
4047 if (!skb)
4048 return true;
4051 /* deliver to local stack */
4052 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4053 memset(skb->cb, 0, sizeof(skb->cb));
4054 if (rx->napi)
4055 napi_gro_receive(rx->napi, skb);
4056 else
4057 netif_receive_skb(skb);
4059 return true;
4060 drop:
4061 dev_kfree_skb(skb);
4062 stats->dropped++;
4063 return true;
4067 * This function returns whether or not the SKB
4068 * was destined for RX processing or not, which,
4069 * if consume is true, is equivalent to whether
4070 * or not the skb was consumed.
4072 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4073 struct sk_buff *skb, bool consume)
4075 struct ieee80211_local *local = rx->local;
4076 struct ieee80211_sub_if_data *sdata = rx->sdata;
4078 rx->skb = skb;
4080 /* See if we can do fast-rx; if we have to copy we already lost,
4081 * so punt in that case. We should never have to deliver a data
4082 * frame to multiple interfaces anyway.
4084 * We skip the ieee80211_accept_frame() call and do the necessary
4085 * checking inside ieee80211_invoke_fast_rx().
4087 if (consume && rx->sta) {
4088 struct ieee80211_fast_rx *fast_rx;
4090 fast_rx = rcu_dereference(rx->sta->fast_rx);
4091 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4092 return true;
4095 if (!ieee80211_accept_frame(rx))
4096 return false;
4098 if (!consume) {
4099 skb = skb_copy(skb, GFP_ATOMIC);
4100 if (!skb) {
4101 if (net_ratelimit())
4102 wiphy_debug(local->hw.wiphy,
4103 "failed to copy skb for %s\n",
4104 sdata->name);
4105 return true;
4108 rx->skb = skb;
4111 ieee80211_invoke_rx_handlers(rx);
4112 return true;
4116 * This is the actual Rx frames handler. as it belongs to Rx path it must
4117 * be called with rcu_read_lock protection.
4119 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4120 struct ieee80211_sta *pubsta,
4121 struct sk_buff *skb,
4122 struct napi_struct *napi)
4124 struct ieee80211_local *local = hw_to_local(hw);
4125 struct ieee80211_sub_if_data *sdata;
4126 struct ieee80211_hdr *hdr;
4127 __le16 fc;
4128 struct ieee80211_rx_data rx;
4129 struct ieee80211_sub_if_data *prev;
4130 struct rhlist_head *tmp;
4131 int err = 0;
4133 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4134 memset(&rx, 0, sizeof(rx));
4135 rx.skb = skb;
4136 rx.local = local;
4137 rx.napi = napi;
4139 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4140 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4142 if (ieee80211_is_mgmt(fc)) {
4143 /* drop frame if too short for header */
4144 if (skb->len < ieee80211_hdrlen(fc))
4145 err = -ENOBUFS;
4146 else
4147 err = skb_linearize(skb);
4148 } else {
4149 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4152 if (err) {
4153 dev_kfree_skb(skb);
4154 return;
4157 hdr = (struct ieee80211_hdr *)skb->data;
4158 ieee80211_parse_qos(&rx);
4159 ieee80211_verify_alignment(&rx);
4161 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4162 ieee80211_is_beacon(hdr->frame_control)))
4163 ieee80211_scan_rx(local, skb);
4165 if (ieee80211_is_data(fc)) {
4166 struct sta_info *sta, *prev_sta;
4168 if (pubsta) {
4169 rx.sta = container_of(pubsta, struct sta_info, sta);
4170 rx.sdata = rx.sta->sdata;
4171 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4172 return;
4173 goto out;
4176 prev_sta = NULL;
4178 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4179 if (!prev_sta) {
4180 prev_sta = sta;
4181 continue;
4184 rx.sta = prev_sta;
4185 rx.sdata = prev_sta->sdata;
4186 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4188 prev_sta = sta;
4191 if (prev_sta) {
4192 rx.sta = prev_sta;
4193 rx.sdata = prev_sta->sdata;
4195 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4196 return;
4197 goto out;
4201 prev = NULL;
4203 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4204 if (!ieee80211_sdata_running(sdata))
4205 continue;
4207 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4208 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4209 continue;
4212 * frame is destined for this interface, but if it's
4213 * not also for the previous one we handle that after
4214 * the loop to avoid copying the SKB once too much
4217 if (!prev) {
4218 prev = sdata;
4219 continue;
4222 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4223 rx.sdata = prev;
4224 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4226 prev = sdata;
4229 if (prev) {
4230 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4231 rx.sdata = prev;
4233 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4234 return;
4237 out:
4238 dev_kfree_skb(skb);
4242 * This is the receive path handler. It is called by a low level driver when an
4243 * 802.11 MPDU is received from the hardware.
4245 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4246 struct sk_buff *skb, struct napi_struct *napi)
4248 struct ieee80211_local *local = hw_to_local(hw);
4249 struct ieee80211_rate *rate = NULL;
4250 struct ieee80211_supported_band *sband;
4251 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4253 WARN_ON_ONCE(softirq_count() == 0);
4255 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4256 goto drop;
4258 sband = local->hw.wiphy->bands[status->band];
4259 if (WARN_ON(!sband))
4260 goto drop;
4263 * If we're suspending, it is possible although not too likely
4264 * that we'd be receiving frames after having already partially
4265 * quiesced the stack. We can't process such frames then since
4266 * that might, for example, cause stations to be added or other
4267 * driver callbacks be invoked.
4269 if (unlikely(local->quiescing || local->suspended))
4270 goto drop;
4272 /* We might be during a HW reconfig, prevent Rx for the same reason */
4273 if (unlikely(local->in_reconfig))
4274 goto drop;
4277 * The same happens when we're not even started,
4278 * but that's worth a warning.
4280 if (WARN_ON(!local->started))
4281 goto drop;
4283 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4285 * Validate the rate, unless a PLCP error means that
4286 * we probably can't have a valid rate here anyway.
4289 switch (status->encoding) {
4290 case RX_ENC_HT:
4292 * rate_idx is MCS index, which can be [0-76]
4293 * as documented on:
4295 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4297 * Anything else would be some sort of driver or
4298 * hardware error. The driver should catch hardware
4299 * errors.
4301 if (WARN(status->rate_idx > 76,
4302 "Rate marked as an HT rate but passed "
4303 "status->rate_idx is not "
4304 "an MCS index [0-76]: %d (0x%02x)\n",
4305 status->rate_idx,
4306 status->rate_idx))
4307 goto drop;
4308 break;
4309 case RX_ENC_VHT:
4310 if (WARN_ONCE(status->rate_idx > 9 ||
4311 !status->nss ||
4312 status->nss > 8,
4313 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4314 status->rate_idx, status->nss))
4315 goto drop;
4316 break;
4317 default:
4318 WARN_ON_ONCE(1);
4319 /* fall through */
4320 case RX_ENC_LEGACY:
4321 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4322 goto drop;
4323 rate = &sband->bitrates[status->rate_idx];
4327 status->rx_flags = 0;
4330 * key references and virtual interfaces are protected using RCU
4331 * and this requires that we are in a read-side RCU section during
4332 * receive processing
4334 rcu_read_lock();
4337 * Frames with failed FCS/PLCP checksum are not returned,
4338 * all other frames are returned without radiotap header
4339 * if it was previously present.
4340 * Also, frames with less than 16 bytes are dropped.
4342 skb = ieee80211_rx_monitor(local, skb, rate);
4343 if (!skb) {
4344 rcu_read_unlock();
4345 return;
4348 ieee80211_tpt_led_trig_rx(local,
4349 ((struct ieee80211_hdr *)skb->data)->frame_control,
4350 skb->len);
4352 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4354 rcu_read_unlock();
4356 return;
4357 drop:
4358 kfree_skb(skb);
4360 EXPORT_SYMBOL(ieee80211_rx_napi);
4362 /* This is a version of the rx handler that can be called from hard irq
4363 * context. Post the skb on the queue and schedule the tasklet */
4364 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4366 struct ieee80211_local *local = hw_to_local(hw);
4368 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4370 skb->pkt_type = IEEE80211_RX_MSG;
4371 skb_queue_tail(&local->skb_queue, skb);
4372 tasklet_schedule(&local->tasklet);
4374 EXPORT_SYMBOL(ieee80211_rx_irqsafe);