btrfs: preserve i_mode if __btrfs_set_acl() fails
[linux/fpc-iii.git] / net / socket.c
blob5b31e5baf3b5cf4c788f42f8243cde2c81dcac5f
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use);
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
219 int err;
220 int len;
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
240 return __put_user(klen, ulen);
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 static struct inode *sock_alloc_inode(struct super_block *sb)
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
269 return &ei->vfs_inode;
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
283 static void init_once(void *foo)
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
287 inode_init_once(&ei->vfs_inode);
290 static int init_inodecache(void)
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 int flags, const char *dev_name, void *data)
326 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 &sockfs_dentry_operations, SOCKFS_MAGIC);
330 static struct vfsmount *sock_mnt __read_mostly;
332 static struct file_system_type sock_fs_type = {
333 .name = "sockfs",
334 .mount = sockfs_mount,
335 .kill_sb = kill_anon_super,
339 * Obtains the first available file descriptor and sets it up for use.
341 * These functions create file structures and maps them to fd space
342 * of the current process. On success it returns file descriptor
343 * and file struct implicitly stored in sock->file.
344 * Note that another thread may close file descriptor before we return
345 * from this function. We use the fact that now we do not refer
346 * to socket after mapping. If one day we will need it, this
347 * function will increment ref. count on file by 1.
349 * In any case returned fd MAY BE not valid!
350 * This race condition is unavoidable
351 * with shared fd spaces, we cannot solve it inside kernel,
352 * but we take care of internal coherence yet.
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 struct qstr name = { .name = "" };
358 struct path path;
359 struct file *file;
361 if (dname) {
362 name.name = dname;
363 name.len = strlen(name.name);
364 } else if (sock->sk) {
365 name.name = sock->sk->sk_prot_creator->name;
366 name.len = strlen(name.name);
368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 if (unlikely(!path.dentry))
370 return ERR_PTR(-ENOMEM);
371 path.mnt = mntget(sock_mnt);
373 d_instantiate(path.dentry, SOCK_INODE(sock));
375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376 &socket_file_ops);
377 if (IS_ERR(file)) {
378 /* drop dentry, keep inode */
379 ihold(d_inode(path.dentry));
380 path_put(&path);
381 return file;
384 sock->file = file;
385 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 file->private_data = sock;
387 return file;
389 EXPORT_SYMBOL(sock_alloc_file);
391 static int sock_map_fd(struct socket *sock, int flags)
393 struct file *newfile;
394 int fd = get_unused_fd_flags(flags);
395 if (unlikely(fd < 0))
396 return fd;
398 newfile = sock_alloc_file(sock, flags, NULL);
399 if (likely(!IS_ERR(newfile))) {
400 fd_install(fd, newfile);
401 return fd;
404 put_unused_fd(fd);
405 return PTR_ERR(newfile);
408 struct socket *sock_from_file(struct file *file, int *err)
410 if (file->f_op == &socket_file_ops)
411 return file->private_data; /* set in sock_map_fd */
413 *err = -ENOTSOCK;
414 return NULL;
416 EXPORT_SYMBOL(sock_from_file);
419 * sockfd_lookup - Go from a file number to its socket slot
420 * @fd: file handle
421 * @err: pointer to an error code return
423 * The file handle passed in is locked and the socket it is bound
424 * too is returned. If an error occurs the err pointer is overwritten
425 * with a negative errno code and NULL is returned. The function checks
426 * for both invalid handles and passing a handle which is not a socket.
428 * On a success the socket object pointer is returned.
431 struct socket *sockfd_lookup(int fd, int *err)
433 struct file *file;
434 struct socket *sock;
436 file = fget(fd);
437 if (!file) {
438 *err = -EBADF;
439 return NULL;
442 sock = sock_from_file(file, err);
443 if (!sock)
444 fput(file);
445 return sock;
447 EXPORT_SYMBOL(sockfd_lookup);
449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 struct fd f = fdget(fd);
452 struct socket *sock;
454 *err = -EBADF;
455 if (f.file) {
456 sock = sock_from_file(f.file, err);
457 if (likely(sock)) {
458 *fput_needed = f.flags;
459 return sock;
461 fdput(f);
463 return NULL;
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry,
470 const char *name, void *value, size_t size)
472 const char *proto_name;
473 size_t proto_size;
474 int error;
476 error = -ENODATA;
477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 proto_name = dentry->d_name.name;
479 proto_size = strlen(proto_name);
481 if (value) {
482 error = -ERANGE;
483 if (proto_size + 1 > size)
484 goto out;
486 strncpy(value, proto_name, proto_size + 1);
488 error = proto_size + 1;
491 out:
492 return error;
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 size_t size)
498 ssize_t len;
499 ssize_t used = 0;
501 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
502 if (len < 0)
503 return len;
504 used += len;
505 if (buffer) {
506 if (size < used)
507 return -ERANGE;
508 buffer += len;
511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 used += len;
513 if (buffer) {
514 if (size < used)
515 return -ERANGE;
516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 buffer += len;
520 return used;
523 static const struct inode_operations sockfs_inode_ops = {
524 .getxattr = sockfs_getxattr,
525 .listxattr = sockfs_listxattr,
529 * sock_alloc - allocate a socket
531 * Allocate a new inode and socket object. The two are bound together
532 * and initialised. The socket is then returned. If we are out of inodes
533 * NULL is returned.
536 static struct socket *sock_alloc(void)
538 struct inode *inode;
539 struct socket *sock;
541 inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 if (!inode)
543 return NULL;
545 sock = SOCKET_I(inode);
547 kmemcheck_annotate_bitfield(sock, type);
548 inode->i_ino = get_next_ino();
549 inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 inode->i_uid = current_fsuid();
551 inode->i_gid = current_fsgid();
552 inode->i_op = &sockfs_inode_ops;
554 this_cpu_add(sockets_in_use, 1);
555 return sock;
559 * sock_release - close a socket
560 * @sock: socket to close
562 * The socket is released from the protocol stack if it has a release
563 * callback, and the inode is then released if the socket is bound to
564 * an inode not a file.
567 void sock_release(struct socket *sock)
569 if (sock->ops) {
570 struct module *owner = sock->ops->owner;
572 sock->ops->release(sock);
573 sock->ops = NULL;
574 module_put(owner);
577 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
578 pr_err("%s: fasync list not empty!\n", __func__);
580 this_cpu_sub(sockets_in_use, 1);
581 if (!sock->file) {
582 iput(SOCK_INODE(sock));
583 return;
585 sock->file = NULL;
587 EXPORT_SYMBOL(sock_release);
589 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
591 u8 flags = *tx_flags;
593 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
594 flags |= SKBTX_HW_TSTAMP;
596 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
597 flags |= SKBTX_SW_TSTAMP;
599 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
600 flags |= SKBTX_SCHED_TSTAMP;
602 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
603 flags |= SKBTX_ACK_TSTAMP;
605 *tx_flags = flags;
607 EXPORT_SYMBOL(__sock_tx_timestamp);
609 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
611 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
612 BUG_ON(ret == -EIOCBQUEUED);
613 return ret;
616 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
618 int err = security_socket_sendmsg(sock, msg,
619 msg_data_left(msg));
621 return err ?: sock_sendmsg_nosec(sock, msg);
623 EXPORT_SYMBOL(sock_sendmsg);
625 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
626 struct kvec *vec, size_t num, size_t size)
628 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
629 return sock_sendmsg(sock, msg);
631 EXPORT_SYMBOL(kernel_sendmsg);
634 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
636 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
637 struct sk_buff *skb)
639 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
640 struct scm_timestamping tss;
641 int empty = 1;
642 struct skb_shared_hwtstamps *shhwtstamps =
643 skb_hwtstamps(skb);
645 /* Race occurred between timestamp enabling and packet
646 receiving. Fill in the current time for now. */
647 if (need_software_tstamp && skb->tstamp.tv64 == 0)
648 __net_timestamp(skb);
650 if (need_software_tstamp) {
651 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
652 struct timeval tv;
653 skb_get_timestamp(skb, &tv);
654 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
655 sizeof(tv), &tv);
656 } else {
657 struct timespec ts;
658 skb_get_timestampns(skb, &ts);
659 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
660 sizeof(ts), &ts);
664 memset(&tss, 0, sizeof(tss));
665 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
666 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
667 empty = 0;
668 if (shhwtstamps &&
669 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
670 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
671 empty = 0;
672 if (!empty)
673 put_cmsg(msg, SOL_SOCKET,
674 SCM_TIMESTAMPING, sizeof(tss), &tss);
676 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
678 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
679 struct sk_buff *skb)
681 int ack;
683 if (!sock_flag(sk, SOCK_WIFI_STATUS))
684 return;
685 if (!skb->wifi_acked_valid)
686 return;
688 ack = skb->wifi_acked;
690 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
692 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
694 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
695 struct sk_buff *skb)
697 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
698 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
699 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
702 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
703 struct sk_buff *skb)
705 sock_recv_timestamp(msg, sk, skb);
706 sock_recv_drops(msg, sk, skb);
708 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
710 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
711 size_t size, int flags)
713 return sock->ops->recvmsg(sock, msg, size, flags);
716 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
717 int flags)
719 int err = security_socket_recvmsg(sock, msg, size, flags);
721 return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
723 EXPORT_SYMBOL(sock_recvmsg);
726 * kernel_recvmsg - Receive a message from a socket (kernel space)
727 * @sock: The socket to receive the message from
728 * @msg: Received message
729 * @vec: Input s/g array for message data
730 * @num: Size of input s/g array
731 * @size: Number of bytes to read
732 * @flags: Message flags (MSG_DONTWAIT, etc...)
734 * On return the msg structure contains the scatter/gather array passed in the
735 * vec argument. The array is modified so that it consists of the unfilled
736 * portion of the original array.
738 * The returned value is the total number of bytes received, or an error.
740 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
741 struct kvec *vec, size_t num, size_t size, int flags)
743 mm_segment_t oldfs = get_fs();
744 int result;
746 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
747 set_fs(KERNEL_DS);
748 result = sock_recvmsg(sock, msg, size, flags);
749 set_fs(oldfs);
750 return result;
752 EXPORT_SYMBOL(kernel_recvmsg);
754 static ssize_t sock_sendpage(struct file *file, struct page *page,
755 int offset, size_t size, loff_t *ppos, int more)
757 struct socket *sock;
758 int flags;
760 sock = file->private_data;
762 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
763 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
764 flags |= more;
766 return kernel_sendpage(sock, page, offset, size, flags);
769 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
770 struct pipe_inode_info *pipe, size_t len,
771 unsigned int flags)
773 struct socket *sock = file->private_data;
775 if (unlikely(!sock->ops->splice_read))
776 return -EINVAL;
778 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
781 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
783 struct file *file = iocb->ki_filp;
784 struct socket *sock = file->private_data;
785 struct msghdr msg = {.msg_iter = *to,
786 .msg_iocb = iocb};
787 ssize_t res;
789 if (file->f_flags & O_NONBLOCK)
790 msg.msg_flags = MSG_DONTWAIT;
792 if (iocb->ki_pos != 0)
793 return -ESPIPE;
795 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
796 return 0;
798 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
799 *to = msg.msg_iter;
800 return res;
803 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
805 struct file *file = iocb->ki_filp;
806 struct socket *sock = file->private_data;
807 struct msghdr msg = {.msg_iter = *from,
808 .msg_iocb = iocb};
809 ssize_t res;
811 if (iocb->ki_pos != 0)
812 return -ESPIPE;
814 if (file->f_flags & O_NONBLOCK)
815 msg.msg_flags = MSG_DONTWAIT;
817 if (sock->type == SOCK_SEQPACKET)
818 msg.msg_flags |= MSG_EOR;
820 res = sock_sendmsg(sock, &msg);
821 *from = msg.msg_iter;
822 return res;
826 * Atomic setting of ioctl hooks to avoid race
827 * with module unload.
830 static DEFINE_MUTEX(br_ioctl_mutex);
831 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
833 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
835 mutex_lock(&br_ioctl_mutex);
836 br_ioctl_hook = hook;
837 mutex_unlock(&br_ioctl_mutex);
839 EXPORT_SYMBOL(brioctl_set);
841 static DEFINE_MUTEX(vlan_ioctl_mutex);
842 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
844 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
846 mutex_lock(&vlan_ioctl_mutex);
847 vlan_ioctl_hook = hook;
848 mutex_unlock(&vlan_ioctl_mutex);
850 EXPORT_SYMBOL(vlan_ioctl_set);
852 static DEFINE_MUTEX(dlci_ioctl_mutex);
853 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
855 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
857 mutex_lock(&dlci_ioctl_mutex);
858 dlci_ioctl_hook = hook;
859 mutex_unlock(&dlci_ioctl_mutex);
861 EXPORT_SYMBOL(dlci_ioctl_set);
863 static long sock_do_ioctl(struct net *net, struct socket *sock,
864 unsigned int cmd, unsigned long arg)
866 int err;
867 void __user *argp = (void __user *)arg;
869 err = sock->ops->ioctl(sock, cmd, arg);
872 * If this ioctl is unknown try to hand it down
873 * to the NIC driver.
875 if (err == -ENOIOCTLCMD)
876 err = dev_ioctl(net, cmd, argp);
878 return err;
882 * With an ioctl, arg may well be a user mode pointer, but we don't know
883 * what to do with it - that's up to the protocol still.
886 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
888 struct socket *sock;
889 struct sock *sk;
890 void __user *argp = (void __user *)arg;
891 int pid, err;
892 struct net *net;
894 sock = file->private_data;
895 sk = sock->sk;
896 net = sock_net(sk);
897 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
898 err = dev_ioctl(net, cmd, argp);
899 } else
900 #ifdef CONFIG_WEXT_CORE
901 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
902 err = dev_ioctl(net, cmd, argp);
903 } else
904 #endif
905 switch (cmd) {
906 case FIOSETOWN:
907 case SIOCSPGRP:
908 err = -EFAULT;
909 if (get_user(pid, (int __user *)argp))
910 break;
911 f_setown(sock->file, pid, 1);
912 err = 0;
913 break;
914 case FIOGETOWN:
915 case SIOCGPGRP:
916 err = put_user(f_getown(sock->file),
917 (int __user *)argp);
918 break;
919 case SIOCGIFBR:
920 case SIOCSIFBR:
921 case SIOCBRADDBR:
922 case SIOCBRDELBR:
923 err = -ENOPKG;
924 if (!br_ioctl_hook)
925 request_module("bridge");
927 mutex_lock(&br_ioctl_mutex);
928 if (br_ioctl_hook)
929 err = br_ioctl_hook(net, cmd, argp);
930 mutex_unlock(&br_ioctl_mutex);
931 break;
932 case SIOCGIFVLAN:
933 case SIOCSIFVLAN:
934 err = -ENOPKG;
935 if (!vlan_ioctl_hook)
936 request_module("8021q");
938 mutex_lock(&vlan_ioctl_mutex);
939 if (vlan_ioctl_hook)
940 err = vlan_ioctl_hook(net, argp);
941 mutex_unlock(&vlan_ioctl_mutex);
942 break;
943 case SIOCADDDLCI:
944 case SIOCDELDLCI:
945 err = -ENOPKG;
946 if (!dlci_ioctl_hook)
947 request_module("dlci");
949 mutex_lock(&dlci_ioctl_mutex);
950 if (dlci_ioctl_hook)
951 err = dlci_ioctl_hook(cmd, argp);
952 mutex_unlock(&dlci_ioctl_mutex);
953 break;
954 default:
955 err = sock_do_ioctl(net, sock, cmd, arg);
956 break;
958 return err;
961 int sock_create_lite(int family, int type, int protocol, struct socket **res)
963 int err;
964 struct socket *sock = NULL;
966 err = security_socket_create(family, type, protocol, 1);
967 if (err)
968 goto out;
970 sock = sock_alloc();
971 if (!sock) {
972 err = -ENOMEM;
973 goto out;
976 sock->type = type;
977 err = security_socket_post_create(sock, family, type, protocol, 1);
978 if (err)
979 goto out_release;
981 out:
982 *res = sock;
983 return err;
984 out_release:
985 sock_release(sock);
986 sock = NULL;
987 goto out;
989 EXPORT_SYMBOL(sock_create_lite);
991 /* No kernel lock held - perfect */
992 static unsigned int sock_poll(struct file *file, poll_table *wait)
994 unsigned int busy_flag = 0;
995 struct socket *sock;
998 * We can't return errors to poll, so it's either yes or no.
1000 sock = file->private_data;
1002 if (sk_can_busy_loop(sock->sk)) {
1003 /* this socket can poll_ll so tell the system call */
1004 busy_flag = POLL_BUSY_LOOP;
1006 /* once, only if requested by syscall */
1007 if (wait && (wait->_key & POLL_BUSY_LOOP))
1008 sk_busy_loop(sock->sk, 1);
1011 return busy_flag | sock->ops->poll(file, sock, wait);
1014 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1016 struct socket *sock = file->private_data;
1018 return sock->ops->mmap(file, sock, vma);
1021 static int sock_close(struct inode *inode, struct file *filp)
1023 sock_release(SOCKET_I(inode));
1024 return 0;
1028 * Update the socket async list
1030 * Fasync_list locking strategy.
1032 * 1. fasync_list is modified only under process context socket lock
1033 * i.e. under semaphore.
1034 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1035 * or under socket lock
1038 static int sock_fasync(int fd, struct file *filp, int on)
1040 struct socket *sock = filp->private_data;
1041 struct sock *sk = sock->sk;
1042 struct socket_wq *wq;
1044 if (sk == NULL)
1045 return -EINVAL;
1047 lock_sock(sk);
1048 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1049 fasync_helper(fd, filp, on, &wq->fasync_list);
1051 if (!wq->fasync_list)
1052 sock_reset_flag(sk, SOCK_FASYNC);
1053 else
1054 sock_set_flag(sk, SOCK_FASYNC);
1056 release_sock(sk);
1057 return 0;
1060 /* This function may be called only under rcu_lock */
1062 int sock_wake_async(struct socket_wq *wq, int how, int band)
1064 if (!wq || !wq->fasync_list)
1065 return -1;
1067 switch (how) {
1068 case SOCK_WAKE_WAITD:
1069 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1070 break;
1071 goto call_kill;
1072 case SOCK_WAKE_SPACE:
1073 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1074 break;
1075 /* fall through */
1076 case SOCK_WAKE_IO:
1077 call_kill:
1078 kill_fasync(&wq->fasync_list, SIGIO, band);
1079 break;
1080 case SOCK_WAKE_URG:
1081 kill_fasync(&wq->fasync_list, SIGURG, band);
1084 return 0;
1086 EXPORT_SYMBOL(sock_wake_async);
1088 int __sock_create(struct net *net, int family, int type, int protocol,
1089 struct socket **res, int kern)
1091 int err;
1092 struct socket *sock;
1093 const struct net_proto_family *pf;
1096 * Check protocol is in range
1098 if (family < 0 || family >= NPROTO)
1099 return -EAFNOSUPPORT;
1100 if (type < 0 || type >= SOCK_MAX)
1101 return -EINVAL;
1103 /* Compatibility.
1105 This uglymoron is moved from INET layer to here to avoid
1106 deadlock in module load.
1108 if (family == PF_INET && type == SOCK_PACKET) {
1109 static int warned;
1110 if (!warned) {
1111 warned = 1;
1112 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1113 current->comm);
1115 family = PF_PACKET;
1118 err = security_socket_create(family, type, protocol, kern);
1119 if (err)
1120 return err;
1123 * Allocate the socket and allow the family to set things up. if
1124 * the protocol is 0, the family is instructed to select an appropriate
1125 * default.
1127 sock = sock_alloc();
1128 if (!sock) {
1129 net_warn_ratelimited("socket: no more sockets\n");
1130 return -ENFILE; /* Not exactly a match, but its the
1131 closest posix thing */
1134 sock->type = type;
1136 #ifdef CONFIG_MODULES
1137 /* Attempt to load a protocol module if the find failed.
1139 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1140 * requested real, full-featured networking support upon configuration.
1141 * Otherwise module support will break!
1143 if (rcu_access_pointer(net_families[family]) == NULL)
1144 request_module("net-pf-%d", family);
1145 #endif
1147 rcu_read_lock();
1148 pf = rcu_dereference(net_families[family]);
1149 err = -EAFNOSUPPORT;
1150 if (!pf)
1151 goto out_release;
1154 * We will call the ->create function, that possibly is in a loadable
1155 * module, so we have to bump that loadable module refcnt first.
1157 if (!try_module_get(pf->owner))
1158 goto out_release;
1160 /* Now protected by module ref count */
1161 rcu_read_unlock();
1163 err = pf->create(net, sock, protocol, kern);
1164 if (err < 0)
1165 goto out_module_put;
1168 * Now to bump the refcnt of the [loadable] module that owns this
1169 * socket at sock_release time we decrement its refcnt.
1171 if (!try_module_get(sock->ops->owner))
1172 goto out_module_busy;
1175 * Now that we're done with the ->create function, the [loadable]
1176 * module can have its refcnt decremented
1178 module_put(pf->owner);
1179 err = security_socket_post_create(sock, family, type, protocol, kern);
1180 if (err)
1181 goto out_sock_release;
1182 *res = sock;
1184 return 0;
1186 out_module_busy:
1187 err = -EAFNOSUPPORT;
1188 out_module_put:
1189 sock->ops = NULL;
1190 module_put(pf->owner);
1191 out_sock_release:
1192 sock_release(sock);
1193 return err;
1195 out_release:
1196 rcu_read_unlock();
1197 goto out_sock_release;
1199 EXPORT_SYMBOL(__sock_create);
1201 int sock_create(int family, int type, int protocol, struct socket **res)
1203 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1205 EXPORT_SYMBOL(sock_create);
1207 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1209 return __sock_create(net, family, type, protocol, res, 1);
1211 EXPORT_SYMBOL(sock_create_kern);
1213 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1215 int retval;
1216 struct socket *sock;
1217 int flags;
1219 /* Check the SOCK_* constants for consistency. */
1220 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1221 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1222 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1223 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1225 flags = type & ~SOCK_TYPE_MASK;
1226 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1227 return -EINVAL;
1228 type &= SOCK_TYPE_MASK;
1230 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1231 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1233 retval = sock_create(family, type, protocol, &sock);
1234 if (retval < 0)
1235 goto out;
1237 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1238 if (retval < 0)
1239 goto out_release;
1241 out:
1242 /* It may be already another descriptor 8) Not kernel problem. */
1243 return retval;
1245 out_release:
1246 sock_release(sock);
1247 return retval;
1251 * Create a pair of connected sockets.
1254 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1255 int __user *, usockvec)
1257 struct socket *sock1, *sock2;
1258 int fd1, fd2, err;
1259 struct file *newfile1, *newfile2;
1260 int flags;
1262 flags = type & ~SOCK_TYPE_MASK;
1263 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1264 return -EINVAL;
1265 type &= SOCK_TYPE_MASK;
1267 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1268 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1271 * Obtain the first socket and check if the underlying protocol
1272 * supports the socketpair call.
1275 err = sock_create(family, type, protocol, &sock1);
1276 if (err < 0)
1277 goto out;
1279 err = sock_create(family, type, protocol, &sock2);
1280 if (err < 0)
1281 goto out_release_1;
1283 err = sock1->ops->socketpair(sock1, sock2);
1284 if (err < 0)
1285 goto out_release_both;
1287 fd1 = get_unused_fd_flags(flags);
1288 if (unlikely(fd1 < 0)) {
1289 err = fd1;
1290 goto out_release_both;
1293 fd2 = get_unused_fd_flags(flags);
1294 if (unlikely(fd2 < 0)) {
1295 err = fd2;
1296 goto out_put_unused_1;
1299 newfile1 = sock_alloc_file(sock1, flags, NULL);
1300 if (IS_ERR(newfile1)) {
1301 err = PTR_ERR(newfile1);
1302 goto out_put_unused_both;
1305 newfile2 = sock_alloc_file(sock2, flags, NULL);
1306 if (IS_ERR(newfile2)) {
1307 err = PTR_ERR(newfile2);
1308 goto out_fput_1;
1311 err = put_user(fd1, &usockvec[0]);
1312 if (err)
1313 goto out_fput_both;
1315 err = put_user(fd2, &usockvec[1]);
1316 if (err)
1317 goto out_fput_both;
1319 audit_fd_pair(fd1, fd2);
1321 fd_install(fd1, newfile1);
1322 fd_install(fd2, newfile2);
1323 /* fd1 and fd2 may be already another descriptors.
1324 * Not kernel problem.
1327 return 0;
1329 out_fput_both:
1330 fput(newfile2);
1331 fput(newfile1);
1332 put_unused_fd(fd2);
1333 put_unused_fd(fd1);
1334 goto out;
1336 out_fput_1:
1337 fput(newfile1);
1338 put_unused_fd(fd2);
1339 put_unused_fd(fd1);
1340 sock_release(sock2);
1341 goto out;
1343 out_put_unused_both:
1344 put_unused_fd(fd2);
1345 out_put_unused_1:
1346 put_unused_fd(fd1);
1347 out_release_both:
1348 sock_release(sock2);
1349 out_release_1:
1350 sock_release(sock1);
1351 out:
1352 return err;
1356 * Bind a name to a socket. Nothing much to do here since it's
1357 * the protocol's responsibility to handle the local address.
1359 * We move the socket address to kernel space before we call
1360 * the protocol layer (having also checked the address is ok).
1363 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1365 struct socket *sock;
1366 struct sockaddr_storage address;
1367 int err, fput_needed;
1369 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1370 if (sock) {
1371 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1372 if (err >= 0) {
1373 err = security_socket_bind(sock,
1374 (struct sockaddr *)&address,
1375 addrlen);
1376 if (!err)
1377 err = sock->ops->bind(sock,
1378 (struct sockaddr *)
1379 &address, addrlen);
1381 fput_light(sock->file, fput_needed);
1383 return err;
1387 * Perform a listen. Basically, we allow the protocol to do anything
1388 * necessary for a listen, and if that works, we mark the socket as
1389 * ready for listening.
1392 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1394 struct socket *sock;
1395 int err, fput_needed;
1396 int somaxconn;
1398 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1399 if (sock) {
1400 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1401 if ((unsigned int)backlog > somaxconn)
1402 backlog = somaxconn;
1404 err = security_socket_listen(sock, backlog);
1405 if (!err)
1406 err = sock->ops->listen(sock, backlog);
1408 fput_light(sock->file, fput_needed);
1410 return err;
1414 * For accept, we attempt to create a new socket, set up the link
1415 * with the client, wake up the client, then return the new
1416 * connected fd. We collect the address of the connector in kernel
1417 * space and move it to user at the very end. This is unclean because
1418 * we open the socket then return an error.
1420 * 1003.1g adds the ability to recvmsg() to query connection pending
1421 * status to recvmsg. We need to add that support in a way thats
1422 * clean when we restucture accept also.
1425 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1426 int __user *, upeer_addrlen, int, flags)
1428 struct socket *sock, *newsock;
1429 struct file *newfile;
1430 int err, len, newfd, fput_needed;
1431 struct sockaddr_storage address;
1433 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1434 return -EINVAL;
1436 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1437 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1439 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1440 if (!sock)
1441 goto out;
1443 err = -ENFILE;
1444 newsock = sock_alloc();
1445 if (!newsock)
1446 goto out_put;
1448 newsock->type = sock->type;
1449 newsock->ops = sock->ops;
1452 * We don't need try_module_get here, as the listening socket (sock)
1453 * has the protocol module (sock->ops->owner) held.
1455 __module_get(newsock->ops->owner);
1457 newfd = get_unused_fd_flags(flags);
1458 if (unlikely(newfd < 0)) {
1459 err = newfd;
1460 sock_release(newsock);
1461 goto out_put;
1463 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1464 if (IS_ERR(newfile)) {
1465 err = PTR_ERR(newfile);
1466 put_unused_fd(newfd);
1467 sock_release(newsock);
1468 goto out_put;
1471 err = security_socket_accept(sock, newsock);
1472 if (err)
1473 goto out_fd;
1475 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1476 if (err < 0)
1477 goto out_fd;
1479 if (upeer_sockaddr) {
1480 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1481 &len, 2) < 0) {
1482 err = -ECONNABORTED;
1483 goto out_fd;
1485 err = move_addr_to_user(&address,
1486 len, upeer_sockaddr, upeer_addrlen);
1487 if (err < 0)
1488 goto out_fd;
1491 /* File flags are not inherited via accept() unlike another OSes. */
1493 fd_install(newfd, newfile);
1494 err = newfd;
1496 out_put:
1497 fput_light(sock->file, fput_needed);
1498 out:
1499 return err;
1500 out_fd:
1501 fput(newfile);
1502 put_unused_fd(newfd);
1503 goto out_put;
1506 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1507 int __user *, upeer_addrlen)
1509 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1513 * Attempt to connect to a socket with the server address. The address
1514 * is in user space so we verify it is OK and move it to kernel space.
1516 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1517 * break bindings
1519 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1520 * other SEQPACKET protocols that take time to connect() as it doesn't
1521 * include the -EINPROGRESS status for such sockets.
1524 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1525 int, addrlen)
1527 struct socket *sock;
1528 struct sockaddr_storage address;
1529 int err, fput_needed;
1531 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1532 if (!sock)
1533 goto out;
1534 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1535 if (err < 0)
1536 goto out_put;
1538 err =
1539 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1540 if (err)
1541 goto out_put;
1543 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1544 sock->file->f_flags);
1545 out_put:
1546 fput_light(sock->file, fput_needed);
1547 out:
1548 return err;
1552 * Get the local address ('name') of a socket object. Move the obtained
1553 * name to user space.
1556 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1557 int __user *, usockaddr_len)
1559 struct socket *sock;
1560 struct sockaddr_storage address;
1561 int len, err, fput_needed;
1563 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1564 if (!sock)
1565 goto out;
1567 err = security_socket_getsockname(sock);
1568 if (err)
1569 goto out_put;
1571 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1572 if (err)
1573 goto out_put;
1574 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1576 out_put:
1577 fput_light(sock->file, fput_needed);
1578 out:
1579 return err;
1583 * Get the remote address ('name') of a socket object. Move the obtained
1584 * name to user space.
1587 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1588 int __user *, usockaddr_len)
1590 struct socket *sock;
1591 struct sockaddr_storage address;
1592 int len, err, fput_needed;
1594 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1595 if (sock != NULL) {
1596 err = security_socket_getpeername(sock);
1597 if (err) {
1598 fput_light(sock->file, fput_needed);
1599 return err;
1602 err =
1603 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1605 if (!err)
1606 err = move_addr_to_user(&address, len, usockaddr,
1607 usockaddr_len);
1608 fput_light(sock->file, fput_needed);
1610 return err;
1614 * Send a datagram to a given address. We move the address into kernel
1615 * space and check the user space data area is readable before invoking
1616 * the protocol.
1619 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1620 unsigned int, flags, struct sockaddr __user *, addr,
1621 int, addr_len)
1623 struct socket *sock;
1624 struct sockaddr_storage address;
1625 int err;
1626 struct msghdr msg;
1627 struct iovec iov;
1628 int fput_needed;
1630 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1631 if (unlikely(err))
1632 return err;
1633 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1634 if (!sock)
1635 goto out;
1637 msg.msg_name = NULL;
1638 msg.msg_control = NULL;
1639 msg.msg_controllen = 0;
1640 msg.msg_namelen = 0;
1641 if (addr) {
1642 err = move_addr_to_kernel(addr, addr_len, &address);
1643 if (err < 0)
1644 goto out_put;
1645 msg.msg_name = (struct sockaddr *)&address;
1646 msg.msg_namelen = addr_len;
1648 if (sock->file->f_flags & O_NONBLOCK)
1649 flags |= MSG_DONTWAIT;
1650 msg.msg_flags = flags;
1651 err = sock_sendmsg(sock, &msg);
1653 out_put:
1654 fput_light(sock->file, fput_needed);
1655 out:
1656 return err;
1660 * Send a datagram down a socket.
1663 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1664 unsigned int, flags)
1666 return sys_sendto(fd, buff, len, flags, NULL, 0);
1670 * Receive a frame from the socket and optionally record the address of the
1671 * sender. We verify the buffers are writable and if needed move the
1672 * sender address from kernel to user space.
1675 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1676 unsigned int, flags, struct sockaddr __user *, addr,
1677 int __user *, addr_len)
1679 struct socket *sock;
1680 struct iovec iov;
1681 struct msghdr msg;
1682 struct sockaddr_storage address;
1683 int err, err2;
1684 int fput_needed;
1686 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1687 if (unlikely(err))
1688 return err;
1689 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 if (!sock)
1691 goto out;
1693 msg.msg_control = NULL;
1694 msg.msg_controllen = 0;
1695 /* Save some cycles and don't copy the address if not needed */
1696 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1697 /* We assume all kernel code knows the size of sockaddr_storage */
1698 msg.msg_namelen = 0;
1699 msg.msg_iocb = NULL;
1700 msg.msg_flags = 0;
1701 if (sock->file->f_flags & O_NONBLOCK)
1702 flags |= MSG_DONTWAIT;
1703 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1705 if (err >= 0 && addr != NULL) {
1706 err2 = move_addr_to_user(&address,
1707 msg.msg_namelen, addr, addr_len);
1708 if (err2 < 0)
1709 err = err2;
1712 fput_light(sock->file, fput_needed);
1713 out:
1714 return err;
1718 * Receive a datagram from a socket.
1721 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1722 unsigned int, flags)
1724 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1728 * Set a socket option. Because we don't know the option lengths we have
1729 * to pass the user mode parameter for the protocols to sort out.
1732 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1733 char __user *, optval, int, optlen)
1735 int err, fput_needed;
1736 struct socket *sock;
1738 if (optlen < 0)
1739 return -EINVAL;
1741 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1742 if (sock != NULL) {
1743 err = security_socket_setsockopt(sock, level, optname);
1744 if (err)
1745 goto out_put;
1747 if (level == SOL_SOCKET)
1748 err =
1749 sock_setsockopt(sock, level, optname, optval,
1750 optlen);
1751 else
1752 err =
1753 sock->ops->setsockopt(sock, level, optname, optval,
1754 optlen);
1755 out_put:
1756 fput_light(sock->file, fput_needed);
1758 return err;
1762 * Get a socket option. Because we don't know the option lengths we have
1763 * to pass a user mode parameter for the protocols to sort out.
1766 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1767 char __user *, optval, int __user *, optlen)
1769 int err, fput_needed;
1770 struct socket *sock;
1772 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1773 if (sock != NULL) {
1774 err = security_socket_getsockopt(sock, level, optname);
1775 if (err)
1776 goto out_put;
1778 if (level == SOL_SOCKET)
1779 err =
1780 sock_getsockopt(sock, level, optname, optval,
1781 optlen);
1782 else
1783 err =
1784 sock->ops->getsockopt(sock, level, optname, optval,
1785 optlen);
1786 out_put:
1787 fput_light(sock->file, fput_needed);
1789 return err;
1793 * Shutdown a socket.
1796 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1798 int err, fput_needed;
1799 struct socket *sock;
1801 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1802 if (sock != NULL) {
1803 err = security_socket_shutdown(sock, how);
1804 if (!err)
1805 err = sock->ops->shutdown(sock, how);
1806 fput_light(sock->file, fput_needed);
1808 return err;
1811 /* A couple of helpful macros for getting the address of the 32/64 bit
1812 * fields which are the same type (int / unsigned) on our platforms.
1814 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1815 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1816 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1818 struct used_address {
1819 struct sockaddr_storage name;
1820 unsigned int name_len;
1823 static int copy_msghdr_from_user(struct msghdr *kmsg,
1824 struct user_msghdr __user *umsg,
1825 struct sockaddr __user **save_addr,
1826 struct iovec **iov)
1828 struct sockaddr __user *uaddr;
1829 struct iovec __user *uiov;
1830 size_t nr_segs;
1831 ssize_t err;
1833 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1834 __get_user(uaddr, &umsg->msg_name) ||
1835 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1836 __get_user(uiov, &umsg->msg_iov) ||
1837 __get_user(nr_segs, &umsg->msg_iovlen) ||
1838 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1839 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1840 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1841 return -EFAULT;
1843 if (!uaddr)
1844 kmsg->msg_namelen = 0;
1846 if (kmsg->msg_namelen < 0)
1847 return -EINVAL;
1849 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1850 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1852 if (save_addr)
1853 *save_addr = uaddr;
1855 if (uaddr && kmsg->msg_namelen) {
1856 if (!save_addr) {
1857 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1858 kmsg->msg_name);
1859 if (err < 0)
1860 return err;
1862 } else {
1863 kmsg->msg_name = NULL;
1864 kmsg->msg_namelen = 0;
1867 if (nr_segs > UIO_MAXIOV)
1868 return -EMSGSIZE;
1870 kmsg->msg_iocb = NULL;
1872 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1873 UIO_FASTIOV, iov, &kmsg->msg_iter);
1876 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1877 struct msghdr *msg_sys, unsigned int flags,
1878 struct used_address *used_address)
1880 struct compat_msghdr __user *msg_compat =
1881 (struct compat_msghdr __user *)msg;
1882 struct sockaddr_storage address;
1883 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1884 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1885 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1886 /* 20 is size of ipv6_pktinfo */
1887 unsigned char *ctl_buf = ctl;
1888 int ctl_len;
1889 ssize_t err;
1891 msg_sys->msg_name = &address;
1893 if (MSG_CMSG_COMPAT & flags)
1894 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1895 else
1896 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1897 if (err < 0)
1898 return err;
1900 err = -ENOBUFS;
1902 if (msg_sys->msg_controllen > INT_MAX)
1903 goto out_freeiov;
1904 ctl_len = msg_sys->msg_controllen;
1905 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1906 err =
1907 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1908 sizeof(ctl));
1909 if (err)
1910 goto out_freeiov;
1911 ctl_buf = msg_sys->msg_control;
1912 ctl_len = msg_sys->msg_controllen;
1913 } else if (ctl_len) {
1914 if (ctl_len > sizeof(ctl)) {
1915 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1916 if (ctl_buf == NULL)
1917 goto out_freeiov;
1919 err = -EFAULT;
1921 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1922 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1923 * checking falls down on this.
1925 if (copy_from_user(ctl_buf,
1926 (void __user __force *)msg_sys->msg_control,
1927 ctl_len))
1928 goto out_freectl;
1929 msg_sys->msg_control = ctl_buf;
1931 msg_sys->msg_flags = flags;
1933 if (sock->file->f_flags & O_NONBLOCK)
1934 msg_sys->msg_flags |= MSG_DONTWAIT;
1936 * If this is sendmmsg() and current destination address is same as
1937 * previously succeeded address, omit asking LSM's decision.
1938 * used_address->name_len is initialized to UINT_MAX so that the first
1939 * destination address never matches.
1941 if (used_address && msg_sys->msg_name &&
1942 used_address->name_len == msg_sys->msg_namelen &&
1943 !memcmp(&used_address->name, msg_sys->msg_name,
1944 used_address->name_len)) {
1945 err = sock_sendmsg_nosec(sock, msg_sys);
1946 goto out_freectl;
1948 err = sock_sendmsg(sock, msg_sys);
1950 * If this is sendmmsg() and sending to current destination address was
1951 * successful, remember it.
1953 if (used_address && err >= 0) {
1954 used_address->name_len = msg_sys->msg_namelen;
1955 if (msg_sys->msg_name)
1956 memcpy(&used_address->name, msg_sys->msg_name,
1957 used_address->name_len);
1960 out_freectl:
1961 if (ctl_buf != ctl)
1962 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1963 out_freeiov:
1964 kfree(iov);
1965 return err;
1969 * BSD sendmsg interface
1972 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1974 int fput_needed, err;
1975 struct msghdr msg_sys;
1976 struct socket *sock;
1978 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1979 if (!sock)
1980 goto out;
1982 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1984 fput_light(sock->file, fput_needed);
1985 out:
1986 return err;
1989 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1991 if (flags & MSG_CMSG_COMPAT)
1992 return -EINVAL;
1993 return __sys_sendmsg(fd, msg, flags);
1997 * Linux sendmmsg interface
2000 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2001 unsigned int flags)
2003 int fput_needed, err, datagrams;
2004 struct socket *sock;
2005 struct mmsghdr __user *entry;
2006 struct compat_mmsghdr __user *compat_entry;
2007 struct msghdr msg_sys;
2008 struct used_address used_address;
2010 if (vlen > UIO_MAXIOV)
2011 vlen = UIO_MAXIOV;
2013 datagrams = 0;
2015 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016 if (!sock)
2017 return err;
2019 used_address.name_len = UINT_MAX;
2020 entry = mmsg;
2021 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2022 err = 0;
2024 while (datagrams < vlen) {
2025 if (MSG_CMSG_COMPAT & flags) {
2026 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2027 &msg_sys, flags, &used_address);
2028 if (err < 0)
2029 break;
2030 err = __put_user(err, &compat_entry->msg_len);
2031 ++compat_entry;
2032 } else {
2033 err = ___sys_sendmsg(sock,
2034 (struct user_msghdr __user *)entry,
2035 &msg_sys, flags, &used_address);
2036 if (err < 0)
2037 break;
2038 err = put_user(err, &entry->msg_len);
2039 ++entry;
2042 if (err)
2043 break;
2044 ++datagrams;
2045 if (msg_data_left(&msg_sys))
2046 break;
2049 fput_light(sock->file, fput_needed);
2051 /* We only return an error if no datagrams were able to be sent */
2052 if (datagrams != 0)
2053 return datagrams;
2055 return err;
2058 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2059 unsigned int, vlen, unsigned int, flags)
2061 if (flags & MSG_CMSG_COMPAT)
2062 return -EINVAL;
2063 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2066 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2067 struct msghdr *msg_sys, unsigned int flags, int nosec)
2069 struct compat_msghdr __user *msg_compat =
2070 (struct compat_msghdr __user *)msg;
2071 struct iovec iovstack[UIO_FASTIOV];
2072 struct iovec *iov = iovstack;
2073 unsigned long cmsg_ptr;
2074 int total_len, len;
2075 ssize_t err;
2077 /* kernel mode address */
2078 struct sockaddr_storage addr;
2080 /* user mode address pointers */
2081 struct sockaddr __user *uaddr;
2082 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2084 msg_sys->msg_name = &addr;
2086 if (MSG_CMSG_COMPAT & flags)
2087 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2088 else
2089 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2090 if (err < 0)
2091 return err;
2092 total_len = iov_iter_count(&msg_sys->msg_iter);
2094 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2095 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2097 /* We assume all kernel code knows the size of sockaddr_storage */
2098 msg_sys->msg_namelen = 0;
2100 if (sock->file->f_flags & O_NONBLOCK)
2101 flags |= MSG_DONTWAIT;
2102 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2103 total_len, flags);
2104 if (err < 0)
2105 goto out_freeiov;
2106 len = err;
2108 if (uaddr != NULL) {
2109 err = move_addr_to_user(&addr,
2110 msg_sys->msg_namelen, uaddr,
2111 uaddr_len);
2112 if (err < 0)
2113 goto out_freeiov;
2115 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2116 COMPAT_FLAGS(msg));
2117 if (err)
2118 goto out_freeiov;
2119 if (MSG_CMSG_COMPAT & flags)
2120 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2121 &msg_compat->msg_controllen);
2122 else
2123 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2124 &msg->msg_controllen);
2125 if (err)
2126 goto out_freeiov;
2127 err = len;
2129 out_freeiov:
2130 kfree(iov);
2131 return err;
2135 * BSD recvmsg interface
2138 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2140 int fput_needed, err;
2141 struct msghdr msg_sys;
2142 struct socket *sock;
2144 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2145 if (!sock)
2146 goto out;
2148 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2150 fput_light(sock->file, fput_needed);
2151 out:
2152 return err;
2155 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2156 unsigned int, flags)
2158 if (flags & MSG_CMSG_COMPAT)
2159 return -EINVAL;
2160 return __sys_recvmsg(fd, msg, flags);
2164 * Linux recvmmsg interface
2167 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2168 unsigned int flags, struct timespec *timeout)
2170 int fput_needed, err, datagrams;
2171 struct socket *sock;
2172 struct mmsghdr __user *entry;
2173 struct compat_mmsghdr __user *compat_entry;
2174 struct msghdr msg_sys;
2175 struct timespec end_time;
2177 if (timeout &&
2178 poll_select_set_timeout(&end_time, timeout->tv_sec,
2179 timeout->tv_nsec))
2180 return -EINVAL;
2182 datagrams = 0;
2184 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2185 if (!sock)
2186 return err;
2188 err = sock_error(sock->sk);
2189 if (err) {
2190 datagrams = err;
2191 goto out_put;
2194 entry = mmsg;
2195 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2197 while (datagrams < vlen) {
2199 * No need to ask LSM for more than the first datagram.
2201 if (MSG_CMSG_COMPAT & flags) {
2202 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2203 &msg_sys, flags & ~MSG_WAITFORONE,
2204 datagrams);
2205 if (err < 0)
2206 break;
2207 err = __put_user(err, &compat_entry->msg_len);
2208 ++compat_entry;
2209 } else {
2210 err = ___sys_recvmsg(sock,
2211 (struct user_msghdr __user *)entry,
2212 &msg_sys, flags & ~MSG_WAITFORONE,
2213 datagrams);
2214 if (err < 0)
2215 break;
2216 err = put_user(err, &entry->msg_len);
2217 ++entry;
2220 if (err)
2221 break;
2222 ++datagrams;
2224 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2225 if (flags & MSG_WAITFORONE)
2226 flags |= MSG_DONTWAIT;
2228 if (timeout) {
2229 ktime_get_ts(timeout);
2230 *timeout = timespec_sub(end_time, *timeout);
2231 if (timeout->tv_sec < 0) {
2232 timeout->tv_sec = timeout->tv_nsec = 0;
2233 break;
2236 /* Timeout, return less than vlen datagrams */
2237 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2238 break;
2241 /* Out of band data, return right away */
2242 if (msg_sys.msg_flags & MSG_OOB)
2243 break;
2246 if (err == 0)
2247 goto out_put;
2249 if (datagrams == 0) {
2250 datagrams = err;
2251 goto out_put;
2255 * We may return less entries than requested (vlen) if the
2256 * sock is non block and there aren't enough datagrams...
2258 if (err != -EAGAIN) {
2260 * ... or if recvmsg returns an error after we
2261 * received some datagrams, where we record the
2262 * error to return on the next call or if the
2263 * app asks about it using getsockopt(SO_ERROR).
2265 sock->sk->sk_err = -err;
2267 out_put:
2268 fput_light(sock->file, fput_needed);
2270 return datagrams;
2273 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2274 unsigned int, vlen, unsigned int, flags,
2275 struct timespec __user *, timeout)
2277 int datagrams;
2278 struct timespec timeout_sys;
2280 if (flags & MSG_CMSG_COMPAT)
2281 return -EINVAL;
2283 if (!timeout)
2284 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2286 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2287 return -EFAULT;
2289 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2291 if (datagrams > 0 &&
2292 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2293 datagrams = -EFAULT;
2295 return datagrams;
2298 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2299 /* Argument list sizes for sys_socketcall */
2300 #define AL(x) ((x) * sizeof(unsigned long))
2301 static const unsigned char nargs[21] = {
2302 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2303 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2304 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2305 AL(4), AL(5), AL(4)
2308 #undef AL
2311 * System call vectors.
2313 * Argument checking cleaned up. Saved 20% in size.
2314 * This function doesn't need to set the kernel lock because
2315 * it is set by the callees.
2318 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2320 unsigned long a[AUDITSC_ARGS];
2321 unsigned long a0, a1;
2322 int err;
2323 unsigned int len;
2325 if (call < 1 || call > SYS_SENDMMSG)
2326 return -EINVAL;
2328 len = nargs[call];
2329 if (len > sizeof(a))
2330 return -EINVAL;
2332 /* copy_from_user should be SMP safe. */
2333 if (copy_from_user(a, args, len))
2334 return -EFAULT;
2336 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2337 if (err)
2338 return err;
2340 a0 = a[0];
2341 a1 = a[1];
2343 switch (call) {
2344 case SYS_SOCKET:
2345 err = sys_socket(a0, a1, a[2]);
2346 break;
2347 case SYS_BIND:
2348 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2349 break;
2350 case SYS_CONNECT:
2351 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2352 break;
2353 case SYS_LISTEN:
2354 err = sys_listen(a0, a1);
2355 break;
2356 case SYS_ACCEPT:
2357 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2358 (int __user *)a[2], 0);
2359 break;
2360 case SYS_GETSOCKNAME:
2361 err =
2362 sys_getsockname(a0, (struct sockaddr __user *)a1,
2363 (int __user *)a[2]);
2364 break;
2365 case SYS_GETPEERNAME:
2366 err =
2367 sys_getpeername(a0, (struct sockaddr __user *)a1,
2368 (int __user *)a[2]);
2369 break;
2370 case SYS_SOCKETPAIR:
2371 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2372 break;
2373 case SYS_SEND:
2374 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2375 break;
2376 case SYS_SENDTO:
2377 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2378 (struct sockaddr __user *)a[4], a[5]);
2379 break;
2380 case SYS_RECV:
2381 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2382 break;
2383 case SYS_RECVFROM:
2384 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2385 (struct sockaddr __user *)a[4],
2386 (int __user *)a[5]);
2387 break;
2388 case SYS_SHUTDOWN:
2389 err = sys_shutdown(a0, a1);
2390 break;
2391 case SYS_SETSOCKOPT:
2392 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2393 break;
2394 case SYS_GETSOCKOPT:
2395 err =
2396 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2397 (int __user *)a[4]);
2398 break;
2399 case SYS_SENDMSG:
2400 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2401 break;
2402 case SYS_SENDMMSG:
2403 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2404 break;
2405 case SYS_RECVMSG:
2406 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2407 break;
2408 case SYS_RECVMMSG:
2409 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2410 (struct timespec __user *)a[4]);
2411 break;
2412 case SYS_ACCEPT4:
2413 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2414 (int __user *)a[2], a[3]);
2415 break;
2416 default:
2417 err = -EINVAL;
2418 break;
2420 return err;
2423 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2426 * sock_register - add a socket protocol handler
2427 * @ops: description of protocol
2429 * This function is called by a protocol handler that wants to
2430 * advertise its address family, and have it linked into the
2431 * socket interface. The value ops->family corresponds to the
2432 * socket system call protocol family.
2434 int sock_register(const struct net_proto_family *ops)
2436 int err;
2438 if (ops->family >= NPROTO) {
2439 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2440 return -ENOBUFS;
2443 spin_lock(&net_family_lock);
2444 if (rcu_dereference_protected(net_families[ops->family],
2445 lockdep_is_held(&net_family_lock)))
2446 err = -EEXIST;
2447 else {
2448 rcu_assign_pointer(net_families[ops->family], ops);
2449 err = 0;
2451 spin_unlock(&net_family_lock);
2453 pr_info("NET: Registered protocol family %d\n", ops->family);
2454 return err;
2456 EXPORT_SYMBOL(sock_register);
2459 * sock_unregister - remove a protocol handler
2460 * @family: protocol family to remove
2462 * This function is called by a protocol handler that wants to
2463 * remove its address family, and have it unlinked from the
2464 * new socket creation.
2466 * If protocol handler is a module, then it can use module reference
2467 * counts to protect against new references. If protocol handler is not
2468 * a module then it needs to provide its own protection in
2469 * the ops->create routine.
2471 void sock_unregister(int family)
2473 BUG_ON(family < 0 || family >= NPROTO);
2475 spin_lock(&net_family_lock);
2476 RCU_INIT_POINTER(net_families[family], NULL);
2477 spin_unlock(&net_family_lock);
2479 synchronize_rcu();
2481 pr_info("NET: Unregistered protocol family %d\n", family);
2483 EXPORT_SYMBOL(sock_unregister);
2485 static int __init sock_init(void)
2487 int err;
2489 * Initialize the network sysctl infrastructure.
2491 err = net_sysctl_init();
2492 if (err)
2493 goto out;
2496 * Initialize skbuff SLAB cache
2498 skb_init();
2501 * Initialize the protocols module.
2504 init_inodecache();
2506 err = register_filesystem(&sock_fs_type);
2507 if (err)
2508 goto out_fs;
2509 sock_mnt = kern_mount(&sock_fs_type);
2510 if (IS_ERR(sock_mnt)) {
2511 err = PTR_ERR(sock_mnt);
2512 goto out_mount;
2515 /* The real protocol initialization is performed in later initcalls.
2518 #ifdef CONFIG_NETFILTER
2519 err = netfilter_init();
2520 if (err)
2521 goto out;
2522 #endif
2524 ptp_classifier_init();
2526 out:
2527 return err;
2529 out_mount:
2530 unregister_filesystem(&sock_fs_type);
2531 out_fs:
2532 goto out;
2535 core_initcall(sock_init); /* early initcall */
2537 static int __init jit_init(void)
2539 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2540 bpf_jit_enable = 1;
2541 #endif
2542 return 0;
2544 pure_initcall(jit_init);
2546 #ifdef CONFIG_PROC_FS
2547 void socket_seq_show(struct seq_file *seq)
2549 int cpu;
2550 int counter = 0;
2552 for_each_possible_cpu(cpu)
2553 counter += per_cpu(sockets_in_use, cpu);
2555 /* It can be negative, by the way. 8) */
2556 if (counter < 0)
2557 counter = 0;
2559 seq_printf(seq, "sockets: used %d\n", counter);
2561 #endif /* CONFIG_PROC_FS */
2563 #ifdef CONFIG_COMPAT
2564 static int do_siocgstamp(struct net *net, struct socket *sock,
2565 unsigned int cmd, void __user *up)
2567 mm_segment_t old_fs = get_fs();
2568 struct timeval ktv;
2569 int err;
2571 set_fs(KERNEL_DS);
2572 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2573 set_fs(old_fs);
2574 if (!err)
2575 err = compat_put_timeval(&ktv, up);
2577 return err;
2580 static int do_siocgstampns(struct net *net, struct socket *sock,
2581 unsigned int cmd, void __user *up)
2583 mm_segment_t old_fs = get_fs();
2584 struct timespec kts;
2585 int err;
2587 set_fs(KERNEL_DS);
2588 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2589 set_fs(old_fs);
2590 if (!err)
2591 err = compat_put_timespec(&kts, up);
2593 return err;
2596 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2598 struct ifreq __user *uifr;
2599 int err;
2601 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2602 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2603 return -EFAULT;
2605 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2606 if (err)
2607 return err;
2609 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2610 return -EFAULT;
2612 return 0;
2615 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2617 struct compat_ifconf ifc32;
2618 struct ifconf ifc;
2619 struct ifconf __user *uifc;
2620 struct compat_ifreq __user *ifr32;
2621 struct ifreq __user *ifr;
2622 unsigned int i, j;
2623 int err;
2625 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2626 return -EFAULT;
2628 memset(&ifc, 0, sizeof(ifc));
2629 if (ifc32.ifcbuf == 0) {
2630 ifc32.ifc_len = 0;
2631 ifc.ifc_len = 0;
2632 ifc.ifc_req = NULL;
2633 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2634 } else {
2635 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2636 sizeof(struct ifreq);
2637 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2638 ifc.ifc_len = len;
2639 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2640 ifr32 = compat_ptr(ifc32.ifcbuf);
2641 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2642 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2643 return -EFAULT;
2644 ifr++;
2645 ifr32++;
2648 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2649 return -EFAULT;
2651 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2652 if (err)
2653 return err;
2655 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2656 return -EFAULT;
2658 ifr = ifc.ifc_req;
2659 ifr32 = compat_ptr(ifc32.ifcbuf);
2660 for (i = 0, j = 0;
2661 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2662 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2663 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2664 return -EFAULT;
2665 ifr32++;
2666 ifr++;
2669 if (ifc32.ifcbuf == 0) {
2670 /* Translate from 64-bit structure multiple to
2671 * a 32-bit one.
2673 i = ifc.ifc_len;
2674 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2675 ifc32.ifc_len = i;
2676 } else {
2677 ifc32.ifc_len = i;
2679 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2680 return -EFAULT;
2682 return 0;
2685 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2687 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2688 bool convert_in = false, convert_out = false;
2689 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2690 struct ethtool_rxnfc __user *rxnfc;
2691 struct ifreq __user *ifr;
2692 u32 rule_cnt = 0, actual_rule_cnt;
2693 u32 ethcmd;
2694 u32 data;
2695 int ret;
2697 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2698 return -EFAULT;
2700 compat_rxnfc = compat_ptr(data);
2702 if (get_user(ethcmd, &compat_rxnfc->cmd))
2703 return -EFAULT;
2705 /* Most ethtool structures are defined without padding.
2706 * Unfortunately struct ethtool_rxnfc is an exception.
2708 switch (ethcmd) {
2709 default:
2710 break;
2711 case ETHTOOL_GRXCLSRLALL:
2712 /* Buffer size is variable */
2713 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2714 return -EFAULT;
2715 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2716 return -ENOMEM;
2717 buf_size += rule_cnt * sizeof(u32);
2718 /* fall through */
2719 case ETHTOOL_GRXRINGS:
2720 case ETHTOOL_GRXCLSRLCNT:
2721 case ETHTOOL_GRXCLSRULE:
2722 case ETHTOOL_SRXCLSRLINS:
2723 convert_out = true;
2724 /* fall through */
2725 case ETHTOOL_SRXCLSRLDEL:
2726 buf_size += sizeof(struct ethtool_rxnfc);
2727 convert_in = true;
2728 break;
2731 ifr = compat_alloc_user_space(buf_size);
2732 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2734 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2735 return -EFAULT;
2737 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2738 &ifr->ifr_ifru.ifru_data))
2739 return -EFAULT;
2741 if (convert_in) {
2742 /* We expect there to be holes between fs.m_ext and
2743 * fs.ring_cookie and at the end of fs, but nowhere else.
2745 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2746 sizeof(compat_rxnfc->fs.m_ext) !=
2747 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2748 sizeof(rxnfc->fs.m_ext));
2749 BUILD_BUG_ON(
2750 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2751 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2752 offsetof(struct ethtool_rxnfc, fs.location) -
2753 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2755 if (copy_in_user(rxnfc, compat_rxnfc,
2756 (void __user *)(&rxnfc->fs.m_ext + 1) -
2757 (void __user *)rxnfc) ||
2758 copy_in_user(&rxnfc->fs.ring_cookie,
2759 &compat_rxnfc->fs.ring_cookie,
2760 (void __user *)(&rxnfc->fs.location + 1) -
2761 (void __user *)&rxnfc->fs.ring_cookie) ||
2762 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2763 sizeof(rxnfc->rule_cnt)))
2764 return -EFAULT;
2767 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2768 if (ret)
2769 return ret;
2771 if (convert_out) {
2772 if (copy_in_user(compat_rxnfc, rxnfc,
2773 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2774 (const void __user *)rxnfc) ||
2775 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2776 &rxnfc->fs.ring_cookie,
2777 (const void __user *)(&rxnfc->fs.location + 1) -
2778 (const void __user *)&rxnfc->fs.ring_cookie) ||
2779 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2780 sizeof(rxnfc->rule_cnt)))
2781 return -EFAULT;
2783 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2784 /* As an optimisation, we only copy the actual
2785 * number of rules that the underlying
2786 * function returned. Since Mallory might
2787 * change the rule count in user memory, we
2788 * check that it is less than the rule count
2789 * originally given (as the user buffer size),
2790 * which has been range-checked.
2792 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2793 return -EFAULT;
2794 if (actual_rule_cnt < rule_cnt)
2795 rule_cnt = actual_rule_cnt;
2796 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2797 &rxnfc->rule_locs[0],
2798 rule_cnt * sizeof(u32)))
2799 return -EFAULT;
2803 return 0;
2806 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2808 void __user *uptr;
2809 compat_uptr_t uptr32;
2810 struct ifreq __user *uifr;
2812 uifr = compat_alloc_user_space(sizeof(*uifr));
2813 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2814 return -EFAULT;
2816 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2817 return -EFAULT;
2819 uptr = compat_ptr(uptr32);
2821 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2822 return -EFAULT;
2824 return dev_ioctl(net, SIOCWANDEV, uifr);
2827 static int bond_ioctl(struct net *net, unsigned int cmd,
2828 struct compat_ifreq __user *ifr32)
2830 struct ifreq kifr;
2831 mm_segment_t old_fs;
2832 int err;
2834 switch (cmd) {
2835 case SIOCBONDENSLAVE:
2836 case SIOCBONDRELEASE:
2837 case SIOCBONDSETHWADDR:
2838 case SIOCBONDCHANGEACTIVE:
2839 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2840 return -EFAULT;
2842 old_fs = get_fs();
2843 set_fs(KERNEL_DS);
2844 err = dev_ioctl(net, cmd,
2845 (struct ifreq __user __force *) &kifr);
2846 set_fs(old_fs);
2848 return err;
2849 default:
2850 return -ENOIOCTLCMD;
2854 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2855 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2856 struct compat_ifreq __user *u_ifreq32)
2858 struct ifreq __user *u_ifreq64;
2859 char tmp_buf[IFNAMSIZ];
2860 void __user *data64;
2861 u32 data32;
2863 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2864 IFNAMSIZ))
2865 return -EFAULT;
2866 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2867 return -EFAULT;
2868 data64 = compat_ptr(data32);
2870 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2872 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2873 IFNAMSIZ))
2874 return -EFAULT;
2875 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2876 return -EFAULT;
2878 return dev_ioctl(net, cmd, u_ifreq64);
2881 static int dev_ifsioc(struct net *net, struct socket *sock,
2882 unsigned int cmd, struct compat_ifreq __user *uifr32)
2884 struct ifreq __user *uifr;
2885 int err;
2887 uifr = compat_alloc_user_space(sizeof(*uifr));
2888 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2889 return -EFAULT;
2891 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2893 if (!err) {
2894 switch (cmd) {
2895 case SIOCGIFFLAGS:
2896 case SIOCGIFMETRIC:
2897 case SIOCGIFMTU:
2898 case SIOCGIFMEM:
2899 case SIOCGIFHWADDR:
2900 case SIOCGIFINDEX:
2901 case SIOCGIFADDR:
2902 case SIOCGIFBRDADDR:
2903 case SIOCGIFDSTADDR:
2904 case SIOCGIFNETMASK:
2905 case SIOCGIFPFLAGS:
2906 case SIOCGIFTXQLEN:
2907 case SIOCGMIIPHY:
2908 case SIOCGMIIREG:
2909 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2910 err = -EFAULT;
2911 break;
2914 return err;
2917 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2918 struct compat_ifreq __user *uifr32)
2920 struct ifreq ifr;
2921 struct compat_ifmap __user *uifmap32;
2922 mm_segment_t old_fs;
2923 int err;
2925 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2926 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2927 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2928 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2929 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2930 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2931 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2932 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2933 if (err)
2934 return -EFAULT;
2936 old_fs = get_fs();
2937 set_fs(KERNEL_DS);
2938 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2939 set_fs(old_fs);
2941 if (cmd == SIOCGIFMAP && !err) {
2942 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2943 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2944 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2945 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2946 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2947 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2948 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2949 if (err)
2950 err = -EFAULT;
2952 return err;
2955 struct rtentry32 {
2956 u32 rt_pad1;
2957 struct sockaddr rt_dst; /* target address */
2958 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2959 struct sockaddr rt_genmask; /* target network mask (IP) */
2960 unsigned short rt_flags;
2961 short rt_pad2;
2962 u32 rt_pad3;
2963 unsigned char rt_tos;
2964 unsigned char rt_class;
2965 short rt_pad4;
2966 short rt_metric; /* +1 for binary compatibility! */
2967 /* char * */ u32 rt_dev; /* forcing the device at add */
2968 u32 rt_mtu; /* per route MTU/Window */
2969 u32 rt_window; /* Window clamping */
2970 unsigned short rt_irtt; /* Initial RTT */
2973 struct in6_rtmsg32 {
2974 struct in6_addr rtmsg_dst;
2975 struct in6_addr rtmsg_src;
2976 struct in6_addr rtmsg_gateway;
2977 u32 rtmsg_type;
2978 u16 rtmsg_dst_len;
2979 u16 rtmsg_src_len;
2980 u32 rtmsg_metric;
2981 u32 rtmsg_info;
2982 u32 rtmsg_flags;
2983 s32 rtmsg_ifindex;
2986 static int routing_ioctl(struct net *net, struct socket *sock,
2987 unsigned int cmd, void __user *argp)
2989 int ret;
2990 void *r = NULL;
2991 struct in6_rtmsg r6;
2992 struct rtentry r4;
2993 char devname[16];
2994 u32 rtdev;
2995 mm_segment_t old_fs = get_fs();
2997 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2998 struct in6_rtmsg32 __user *ur6 = argp;
2999 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3000 3 * sizeof(struct in6_addr));
3001 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3002 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3003 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3004 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3005 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3006 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3007 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3009 r = (void *) &r6;
3010 } else { /* ipv4 */
3011 struct rtentry32 __user *ur4 = argp;
3012 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3013 3 * sizeof(struct sockaddr));
3014 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3015 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3016 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3017 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3018 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3019 ret |= get_user(rtdev, &(ur4->rt_dev));
3020 if (rtdev) {
3021 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3022 r4.rt_dev = (char __user __force *)devname;
3023 devname[15] = 0;
3024 } else
3025 r4.rt_dev = NULL;
3027 r = (void *) &r4;
3030 if (ret) {
3031 ret = -EFAULT;
3032 goto out;
3035 set_fs(KERNEL_DS);
3036 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3037 set_fs(old_fs);
3039 out:
3040 return ret;
3043 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3044 * for some operations; this forces use of the newer bridge-utils that
3045 * use compatible ioctls
3047 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3049 compat_ulong_t tmp;
3051 if (get_user(tmp, argp))
3052 return -EFAULT;
3053 if (tmp == BRCTL_GET_VERSION)
3054 return BRCTL_VERSION + 1;
3055 return -EINVAL;
3058 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3059 unsigned int cmd, unsigned long arg)
3061 void __user *argp = compat_ptr(arg);
3062 struct sock *sk = sock->sk;
3063 struct net *net = sock_net(sk);
3065 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3066 return compat_ifr_data_ioctl(net, cmd, argp);
3068 switch (cmd) {
3069 case SIOCSIFBR:
3070 case SIOCGIFBR:
3071 return old_bridge_ioctl(argp);
3072 case SIOCGIFNAME:
3073 return dev_ifname32(net, argp);
3074 case SIOCGIFCONF:
3075 return dev_ifconf(net, argp);
3076 case SIOCETHTOOL:
3077 return ethtool_ioctl(net, argp);
3078 case SIOCWANDEV:
3079 return compat_siocwandev(net, argp);
3080 case SIOCGIFMAP:
3081 case SIOCSIFMAP:
3082 return compat_sioc_ifmap(net, cmd, argp);
3083 case SIOCBONDENSLAVE:
3084 case SIOCBONDRELEASE:
3085 case SIOCBONDSETHWADDR:
3086 case SIOCBONDCHANGEACTIVE:
3087 return bond_ioctl(net, cmd, argp);
3088 case SIOCADDRT:
3089 case SIOCDELRT:
3090 return routing_ioctl(net, sock, cmd, argp);
3091 case SIOCGSTAMP:
3092 return do_siocgstamp(net, sock, cmd, argp);
3093 case SIOCGSTAMPNS:
3094 return do_siocgstampns(net, sock, cmd, argp);
3095 case SIOCBONDSLAVEINFOQUERY:
3096 case SIOCBONDINFOQUERY:
3097 case SIOCSHWTSTAMP:
3098 case SIOCGHWTSTAMP:
3099 return compat_ifr_data_ioctl(net, cmd, argp);
3101 case FIOSETOWN:
3102 case SIOCSPGRP:
3103 case FIOGETOWN:
3104 case SIOCGPGRP:
3105 case SIOCBRADDBR:
3106 case SIOCBRDELBR:
3107 case SIOCGIFVLAN:
3108 case SIOCSIFVLAN:
3109 case SIOCADDDLCI:
3110 case SIOCDELDLCI:
3111 return sock_ioctl(file, cmd, arg);
3113 case SIOCGIFFLAGS:
3114 case SIOCSIFFLAGS:
3115 case SIOCGIFMETRIC:
3116 case SIOCSIFMETRIC:
3117 case SIOCGIFMTU:
3118 case SIOCSIFMTU:
3119 case SIOCGIFMEM:
3120 case SIOCSIFMEM:
3121 case SIOCGIFHWADDR:
3122 case SIOCSIFHWADDR:
3123 case SIOCADDMULTI:
3124 case SIOCDELMULTI:
3125 case SIOCGIFINDEX:
3126 case SIOCGIFADDR:
3127 case SIOCSIFADDR:
3128 case SIOCSIFHWBROADCAST:
3129 case SIOCDIFADDR:
3130 case SIOCGIFBRDADDR:
3131 case SIOCSIFBRDADDR:
3132 case SIOCGIFDSTADDR:
3133 case SIOCSIFDSTADDR:
3134 case SIOCGIFNETMASK:
3135 case SIOCSIFNETMASK:
3136 case SIOCSIFPFLAGS:
3137 case SIOCGIFPFLAGS:
3138 case SIOCGIFTXQLEN:
3139 case SIOCSIFTXQLEN:
3140 case SIOCBRADDIF:
3141 case SIOCBRDELIF:
3142 case SIOCSIFNAME:
3143 case SIOCGMIIPHY:
3144 case SIOCGMIIREG:
3145 case SIOCSMIIREG:
3146 return dev_ifsioc(net, sock, cmd, argp);
3148 case SIOCSARP:
3149 case SIOCGARP:
3150 case SIOCDARP:
3151 case SIOCATMARK:
3152 return sock_do_ioctl(net, sock, cmd, arg);
3155 return -ENOIOCTLCMD;
3158 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3159 unsigned long arg)
3161 struct socket *sock = file->private_data;
3162 int ret = -ENOIOCTLCMD;
3163 struct sock *sk;
3164 struct net *net;
3166 sk = sock->sk;
3167 net = sock_net(sk);
3169 if (sock->ops->compat_ioctl)
3170 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3172 if (ret == -ENOIOCTLCMD &&
3173 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3174 ret = compat_wext_handle_ioctl(net, cmd, arg);
3176 if (ret == -ENOIOCTLCMD)
3177 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3179 return ret;
3181 #endif
3183 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3185 return sock->ops->bind(sock, addr, addrlen);
3187 EXPORT_SYMBOL(kernel_bind);
3189 int kernel_listen(struct socket *sock, int backlog)
3191 return sock->ops->listen(sock, backlog);
3193 EXPORT_SYMBOL(kernel_listen);
3195 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3197 struct sock *sk = sock->sk;
3198 int err;
3200 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3201 newsock);
3202 if (err < 0)
3203 goto done;
3205 err = sock->ops->accept(sock, *newsock, flags);
3206 if (err < 0) {
3207 sock_release(*newsock);
3208 *newsock = NULL;
3209 goto done;
3212 (*newsock)->ops = sock->ops;
3213 __module_get((*newsock)->ops->owner);
3215 done:
3216 return err;
3218 EXPORT_SYMBOL(kernel_accept);
3220 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3221 int flags)
3223 return sock->ops->connect(sock, addr, addrlen, flags);
3225 EXPORT_SYMBOL(kernel_connect);
3227 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3228 int *addrlen)
3230 return sock->ops->getname(sock, addr, addrlen, 0);
3232 EXPORT_SYMBOL(kernel_getsockname);
3234 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3235 int *addrlen)
3237 return sock->ops->getname(sock, addr, addrlen, 1);
3239 EXPORT_SYMBOL(kernel_getpeername);
3241 int kernel_getsockopt(struct socket *sock, int level, int optname,
3242 char *optval, int *optlen)
3244 mm_segment_t oldfs = get_fs();
3245 char __user *uoptval;
3246 int __user *uoptlen;
3247 int err;
3249 uoptval = (char __user __force *) optval;
3250 uoptlen = (int __user __force *) optlen;
3252 set_fs(KERNEL_DS);
3253 if (level == SOL_SOCKET)
3254 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3255 else
3256 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3257 uoptlen);
3258 set_fs(oldfs);
3259 return err;
3261 EXPORT_SYMBOL(kernel_getsockopt);
3263 int kernel_setsockopt(struct socket *sock, int level, int optname,
3264 char *optval, unsigned int optlen)
3266 mm_segment_t oldfs = get_fs();
3267 char __user *uoptval;
3268 int err;
3270 uoptval = (char __user __force *) optval;
3272 set_fs(KERNEL_DS);
3273 if (level == SOL_SOCKET)
3274 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3275 else
3276 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3277 optlen);
3278 set_fs(oldfs);
3279 return err;
3281 EXPORT_SYMBOL(kernel_setsockopt);
3283 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3284 size_t size, int flags)
3286 if (sock->ops->sendpage)
3287 return sock->ops->sendpage(sock, page, offset, size, flags);
3289 return sock_no_sendpage(sock, page, offset, size, flags);
3291 EXPORT_SYMBOL(kernel_sendpage);
3293 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3295 mm_segment_t oldfs = get_fs();
3296 int err;
3298 set_fs(KERNEL_DS);
3299 err = sock->ops->ioctl(sock, cmd, arg);
3300 set_fs(oldfs);
3302 return err;
3304 EXPORT_SYMBOL(kernel_sock_ioctl);
3306 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3308 return sock->ops->shutdown(sock, how);
3310 EXPORT_SYMBOL(kernel_sock_shutdown);